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Abstract
In this work, we are interested in effects of a simple profile of permanent
charges on ionic flows. We determine when a permanent charge produces
current reversal. We adopt the classical Poisson–Nernst–Planck (PNP) models
of ionic flows for this study. The starting point of our analysis is the recently
developed geometric singular perturbation approach for PNP models. Under
the setting in the paper for case studies, we are able to identify a single governing
equation for the existence and the value of the permanent charge for a current
reversal. A number of interesting features are established. The related topic on
reversal potential can be viewed as a dual problem and is briefly examined in
this work too.

Keywords: electrodiffusion, reversal permanent charge, reversal potential

(Some figures may appear in colour only in the online journal)
Mathematics Subject Classification: 34B16, 76Z05, 78A35, 92C35

1. Introduction

Electrodiffusion—migration of charges—exhibits incredibly rich phenomena. Indeed,
our digital technology is a direct result of the rich but easily controlled behaviours of
electrodiffusion. Recently, it has become clear that ion channels are described by physics
fundamentally similar to that of semiconductor devices (see, e.g., [13–15]). Ion channels are
proteins with a hole in their middle that control a wide range of biological functions. Indeed,
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almost all biological functions are controlled one way or another by ion channels, just as almost
all digital functions are controlled by the channels of field effect transistors.

The study of electrodiffusion is thus an extremely rich area for multidisciplinary research
with diverse applications from computer science, through engineering to biology in which
mathematics may lend an important hand by generalizing and understanding the principles that
allow control of electrodiffusion. For semiconductors and ion channels, permanent charges add
an additional component—probably the most important one—to the rich behaviour. A single
permanent distribution of charge (i.e., doping) creates several different devices, with robust
reduced descriptions, when different electrical potentials are placed on its boundaries, e.g.,
amplifiers, limiters, multipliers, logarithmic convertors, exponentiators and so on. Permanent
charges come into the picture in semiconductors and ion channels in different ways: for
semiconductors, one would like to (at least theoretically) design a permanent charge (doping
profile) for the semiconductor to achieve a desired performance; for ion channels, one would
like to detect (see, e.g., [8–10]) the distribution of permanent charges—a structural property
of ion channels—and to analyse its roles in ion channel functions (permeation, selectivity,
stability, etc). Synthetic ion channels are now being created ([44], etc) in which the distributions
of permanent charge can be created and tested and exploited for technological use.

In this work, we will focus on some basic questions about how permanent charges affect
ionic flows; more precisely, we will study when and how a permanent charge produces current
reversal using the classical Poisson–Nernst–Planck (PNP) model for ionic flows. It is important
to remember that our model is a reduced model with effective parameters that depend on
atomic scale details in many ways. In fact, for ion channels, a permanent charge reflects the
structure of the channel protein, and its distribution of amino acid side chains, with acidic side
chains contributing permanent negative charge and basic side chains contributing permanent
positive charge, according to their ionization states, regulated by local pH. Thus, what we call
permanent charge density can depend on the location of many atoms, the shape of the protein,
etc. Reduced models are needed to compute current–voltage relations of channels in a variety
of ionic conditions. As far as we know, all atom simulations cannot deal with the range of
concentrations important for biological function, e.g., calcium ions at 10−8M.

1.1. PNP models for ionic flows

There are many models, from low resolution to high, for ionic flows in various settings (see, e.g.,
[2–4, 11, 12, 16, 18, 21–24, 28–30, 35–37, 40, 41, 43, 45, 46, 51–54]). Among them, primitive
PNP models have been extensively examined analytically and numerically.

In this work, we take a one-dimensional PNP model. A one-dimensional dimensionless
steady-state PNP system for n types of ion species through ion channels is, for k = 1, 2, · · · , n,

ε2

h(x)

d

dx

(
h(x)

d

dx
φ

)
= −

n∑
s=1

αscs − Q(x),

dJk

dx
= 0, −Jk = h(x)Dkck

d

dx
µk

(1.1)

with the boundary conditions

φ(0) = V0, ck(0) = lk � 0; φ(1) = 0, ck(1) = rk � 0. (1.2)

Here ε2 � 1 is a dimensionless parameter, h(x) represents the cross-section area of the ion
channel over x, φ is the electric potential, Q(x) is the permanent charge, and, for the kth
ion species, ck is its concentration (number density), αk is its valence (number of charges per
particle), Dk is the diffusion coefficient, µk is the electrochemical potential, Jk is its scaled
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ion flux density, lk and rk are its concentrations at the boundaries (left and right baths). For
boundary conditions, one often imposes the electroneutrality conditions on the concentrations

n∑
s=1

αsls =
n∑

s=1

αsrs = 0. (1.3)

The electrochemical potential µk(x) for the kth ion species consists of the ideal component
µid

k (x) and the excess component µex
k (x):

µk(x) = µid
k (x) + µex

k (x)

where the ideal component is

µid
k (x) = αkφ(x) + ln

ck(x)

c0
(1.4)

with some characteristic number density c0. Since the only relevant quantity from the chemical
potential ln ck(x)

c0
is its gradient, without loss of generality, we will set c0 = 1 in the sequel.

The classical PNP model only deals with the ideal component µid
k (x), which reflects the

collision between ion particles and water molecules and ignores the size of ions. The excess
electrochemical potential µex

k (x) accounts for the finite size effect of ions. This component is
essential for dealing with properties of bulk ionic solutions containing divalents like calcium
ions, or mixtures, and is in fact needed whenever concentrations exceed say 50mM, as they
almost always do in technological and biological situations. This component is extremely
important for many critical properties of ion channels, for example, ideal sodium and potassium
solutions are indistinguishable, but life depends on the ability of channels to distinguish
between these ions. We refer the readers to, for example, [5–7, 47, 49, 50] for concrete models.
In applications, both local models for µex

k (x) (a function of the values {cj (x)} at x) and nonlocal
models for µex

k (x) (a functional of the functions {cj }) are employed for a variety of purposes.

1.2. An elementary property and a basic question

We will briefly discuss a particular aspect of ionic flows from the model which leads to our
question in terms of specific quantities in the model.

Dividing h(x)Dkck through the Nernst–Planck equation for the ion flux Jk in (1.1) and
integrating from x = 0 to x = 1, one has

Jk

∫ 1

0

1

h(x)Dkck(x)
dx = µk(0) − µk(1). (1.5)

Since h(x) and ck(x) are positive, the sign of Jk is the same as that of µk(0) − µk(1). For
any local model of µex

k , the latter is completely determined by the boundary values of electric
potential V0 and of concentrations lk’s and rk’s; in particular, it is independent of a permanent
charge. In the language of biologists and chemists, the sign of Jk is determined by the driving
force (the gradient of electrochemical potential) and not the structure (permanent charge Q)
of the channel protein.

For the classical PNP model where µk(x) = µid
k (x) = αkφ(x) + ln ck(x), one has the

explicit formula for µk(0) − µk(1):

Jk

∫ 1

0

1

h(x)Dkck(x)
dx = µk(0) − µk(1) = αkV0 + ln

lk

rk

. (1.6)

On the other hand, the actual amount of each Jk does depend on Q since the profile of
concentration ck(x) does. An important quantity involving the amount of each Jk is the current
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I. For given V0, Q(x), lk’s and rk’s, if (φ(x; ε), ck(x; ε), Jk(ε)) is a solution of the boundary
value problem (1.1) and (1.2), then the current I is

I = I(ε) =
n∑

s=1

αsJs(ε). (1.7)

The electrical current is the important variable for a number of reasons. (1) It is what
is almost always measured. (2) Almost all our technology involves electrical currents and
potentials. Little involves ion fluxes. (3) Maxwell’s equations can be viewed as the ultimate
statement of conservation of charge, a generalization of Kirchhoff’s current law that says
current is always exactly conserved no matter how different the carrier of the current (electrons
in a cathode ray tube, the displacement current in a vacuum, holes and ‘electrons’ in a
semiconductor, ions in an electrolyte solution).

It is important to realize that the components of the current can be positive or negative
because of the sign of αk’s of the charges. Thus the current has much more complexity than
the individual ion fluxes. We are thus interested in how the sign of the current depends on the
permanent charge via classical PNP models.

For classical PNP models with the electroneutrality assumption (1.3) and that Dk = 1, it
is known (e.g., [4, 48] for n = 2 and [42] for general n) that, if Q = 0, then V0 and I have
the same sign (independent of the boundary concentrations lk’s and rk’s). Furthermore, as an
immediate consequence of (1.6), one has the simple property below.

Proposition 1.1. If the quantities αk(αkV0 + ln lk − ln rk), for k = 1, 2, . . . , n, are all
nonnegative (nonpositive), then the quantities αkJk’s are all nonnegative (nonpositive), and
hence, the current I is nonnegative (nonpositive) too, independent of a permanent charge Q;
that is, under the above condition on V0, lk’s and rk’s, no permanent charge Q can reverse the
sign of the current I.

In general, the sign of the current I could be reversed. This fact has been used to identify
the type (i.e., selectivity) of ion channels in biological experiments since 1949 ([26, 27]). A
natural question is then:

Question: Under what conditions on V0, lk’s and rk’s, can current I be reversed for appropriate
choices of permanent charges Q ?

We raise this question from the mathematical analysis point of view, which captures the
general physical and biological importance of the issue. The profile of Q in general governs
many of the properties of ion channels and semiconductor devices.

A related well-known topic is the reversal potential: for given Q, lk’s and rk’s, what is
the so-called reversal potential V0 so that I = 0? Identification of reversal potentials is a
central subject in experiments on channels; indeed, identification of reversal potentials is often
a prerequisite for further identification of a channel or transporter.

1.3. Setup of our case study

To this end, we specify the case we will study in this paper. We will examine the
question by working on the simplest model, the classical PNP (cPNP) model (1.1) with ideal
electrochemical potential µk = αkφ + ln ck , and the boundary condition (1.2). We will focus
on the case with equal diffusion coefficients (see remark 1.1 below) and with a simplest profile
of a permanent charge Q. More precisely, we will assume

(A1) Dk = 1 for k = 1, 2, . . . , n, and h(x) = 1;
(A2) Electroneutrality boundary conditions (1.3);
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(A3) A piecewise constant permanent charge Q with one nonzero region; that is, for a partition
x0 = 0 < x1 < x2 < x3 = 1 of [0, 1],

Q(x) =
{

0, x ∈ (x0, x1) ∪ (x2, x3)

Q2, x ∈ (x1, x2)
(1.8)

where Q2 is a constant.

Remark 1.1. In general, it is limiting to assume that all diffusion coefficients are equal. It is
known experimentally that many phenomena (e.g., diffusion potentials) disappear altogether
when diffusion coefficients of anion and cation are equal (in a two species solution). In other
words this is a degenerate case and whatever phenomena presented here serve as motivation
to study the additional important phenomena of non-degenerate cases. �

For the current reversal effect caused by a permanent charge Q in (A3), we look for the
value(s) Q∗ for Q2 so that the corresponding current I is zero. Suppose Q∗ exists. Then,
generically, the current I will change sign as Q2 crosses Q∗. Motivated by the terminology
of reversal potential, we give the following definition.

Definition 1.2. If, for Q2 = Q∗, the current I = 0, then we call the permanent charge Q in
(A3) a reversal permanent charge; or, we simply call Q∗ a reversal permanent charge.

To answer the questions about reversal permanent charges and reversal potentials, one has
to examine the dependences of the current I on the boundary potential V0 and the permanent
charge Q. In terms of the cPNP model, we need to analyse the BVP (1.1) and (1.2). We will
treat system (1.1) as a singularly perturbed system with ε as the singular parameter. Also, we
will focus on information from the zeroth order approximation of solutions of the BVP (1.1)
and (1.2), which dominates the quantitative and qualitative properties of the problem interested
in this work.

2. Geometric singular perturbations for the BVP (1.1) and (1.2)

In [39], a geometric singular perturbation framework, combining with special structures of PNP
systems, has been developed for studying the BVP (1.1) and (1.2). This general dynamical
system framework and the subsequent analysis have demonstrated the great power of analysing
PNP type problems with potential boundary and internal layers (see [17, 38, 39, 42] for study
on cPNP models, [37] for PNP with a local excess hard-sphere components, and [30, 40] for
PNP with nonlocal excess hard-sphere components).

For convenience, we will give a brief account of the relevant results in [39] (with slightly
different notations) and refer the readers to the paper for details. We remind the readers that
we will work on cPNP with ideal electrochemical potential µk = αkφ + ln ck .

2.1. Converting the BVP to a connecting orbit problem

We rewrite system (1.1) into a standard form of singularly perturbed systems and convert the
BVP to a connecting orbit problem.

Denote the derivative with respect to x by overdot and introduce u = εφ̇ and w = x.
System (1.1) becomes, for k = 1, 2, . . . , n,

εφ̇ = u, εu̇ = −
n∑

s=1

αscs − Q(w),

εċk = − αkcku − εJk, J̇k = 0, ẇ = 1.

(2.1)

107



Nonlinearity 28 (2015) 103 B Eisenberg et al

System (2.1) will be treated as a dynamical system with the phase space R
2n+3 and

the independent variable x is viewed as time for the dynamical system. The boundary
condition (1.2) becomes, for k = 1, 2, . . . , n,

φ(0) = V0, ck(0) = lk, w(0) = 0; φ(1) = 0, ck(1) = rk, w(1) = 1.

Let BL and BR be the subsets of the phase space R
2n+3 defined by

BL = {(φ, u, C, J, w) : φ = V0, C = L, w = 0},
BR = {(φ, u, C, J, w) : φ = 0, C = R, w = 1}, (2.2)

where C = (c1, c2, . . . , cn)
T , J = (J1, J2, . . . , Jn)

T , L = (l1, l2, . . . , ln)
T , R =

(r1, r2, . . . , rn)
T . Note that dim BL = dim BR = n + 1.

Then, the BVP (1.1) and (1.2) is equivalent to the following connecting orbit problem:
finding an orbit of (2.1) from BL to BR .

We now explain the idea for a construction of a connecting orbit. Let Mε
L be the

collection of all forward orbits of (2.1) starting from BL and Mε
R be the collection of all

backward orbits starting from BR . For ε > 0 small, due to w-equation in (2.1), the vector
field of (2.1) is not tangent to BL and BR . It implies that both Mε

L and Mε
R are smooth

invariant manifolds of (2.1) and dim Mε
L = dim Mε

R = dim BL + 1 = dim BR + 1 = n + 2.
Generically, one expects that Mε

L and Mε
R intersect transversally. If this is the case, then

dim(Mε
L ∩ Mε

R) = dim Mε
L + dim Mε

R − dim R
2n+3 = 1, and hence, the intersection Mε

L ∩ Mε
R

would consist of a discrete set of orbits of (2.1). To find a connecting orbit from BL to BR , it
amounts to show that Mε

L and Mε
R intersect. The geometric procedure for the latter involves

two steps:

(i) to construct a singular orbit: a union of fast and slow orbits of different limiting systems
of (2.1), where fast orbits represent boundary/internal layers and slow orbits connect
boundary/internal layers;

(ii) to examine the evolutions of Mε
L and Mε

R along the singular orbit and apply the exchange
lemma (see, e.g., [31, 32]) to show a nonempty intersection.

For this work, we will be interested in only singular orbits of the problem and will recall
the procedure of constructing singular orbits from [39].

Due to the jumps of Q(x) at xj ’s, we preassign (unknown) values of φ and ck’s at xj as

φ(xj ) = φ[j ], ck(xj ) = c
[j ]
k , (2.3)

and, for each jump point xj of Q(x), introduce the set,

Bj = {(φ, u, C, J, w) : φ = φ[j ], C = C[j ], w = xj }. (2.4)

We then construct singular orbits over each interval [xj−1, xj ] for the connecting problem
between Bj−1 and Bj . At the end, we match those singular orbits at each xj to obtain one
singular orbit over the whole interval [0, 1].

2.2. Construction of singular orbits connecting Bj−1 and Bj .

A typical singular connecting orbit between Bj−1 and Bj will consist of two fast orbits (singular
layers) �[j−1,+] at xj−1 and �[j,−] at xj , and one slow orbit (regular layer) �j over [xj−1, xj ]
(see figure 1).
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Figure 1. A singular orbit over [xj−1, xj ] projected to the space of variables u,
∑

αscs

and w: �[j−1,+] is a singular layer at x = xj−1 from Bj−1 to Zj and �[j,−] from Zj to
Bj , and �j connects ‘landing’ points of �[j−1,+] in ω(N [j−1,+]) and ‘departing’ points
of �[j,−] in α(N [j,−]) on Zj .

2.2.1. Fast dynamics for singular layers at xj−1 and xj By setting ε = 0 in system (2.1), we
get the slow manifold

Zj =
{
u = 0,

n∑
s=1

αscs + Qj = 0
}
.

Note that Zj is of co-dimension two, i.e., dim Zj = 2n + 1. In terms of the independent
variable ξ = x/ε, we obtain the fast system of (2.1), for k = 1, 2, . . . , n,

φ′ = u, u′ = −
n∑

s=1

αscs − Qj, c′
k = −αkcku − εJk, J ′ = 0, w′ = ε, (2.5)

where prime denotes the derivative with respect to ξ . The limiting fast system is, for
k = 1, 2, . . . , n,

φ′ = u, u′ = −
n∑

s=1

αscs − Qj, c′
k = −αkcku, J ′ = 0, w′ = 0. (2.6)

The slow manifold Zj is precisely the set of equilibria of (2.6). Recall that dim Zj = 2n + 1.
For the linearization of (2.6) at each point on Zj , there are (2n+ 1) zero eigenvalues associated
to the tangent space of Zj and the other two eigenvalues are ±√∑n

s=1 α2
s cs . Thus, Zj is

normally hyperbolic (see [19,25]). We will denote the stable and unstable manifolds of Zj by
Ws(Zj ) and Wu(Zj ), respectively.

Let M [j−1,+] be the collection of all forward orbits from Bj−1 under the flow of (2.6) and
let M [j,−] be the collection of all backward orbits from Bj . Then the set of forward orbits
from Bj−1 to Zj is N [j−1,+] = M [j−1,+] ∩ Ws(Zj ), and the set of backward orbits from Bj

to Zj is N [j,−] = M [j,−] ∩ Wu(Zj ). Therefore, the singular layer �[j−1,+] at xj−1 satisfies
�[j−1,+] ⊂ N [j−1,+] and the singular layer �[j,−] at xj satisfies �[j,−] ⊂ N [j,−].

All those important geometric objects in the previous paragraph are explicitly characterized
in [39]. For general nonlinear singular perturbation problems, this is of course unexpected. It
is only possible for the problem at hand due to the special structures of cPNP stated next. We
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suspect that this special property of cPNP (and relate systems) is related to their importance
in semiconductor technology and biology.

Proposition 2.1. The following functions are first integrals of system (2.6),

Gk = ln ck + αkφ for k = 1, 2, . . . , n and Gn+1 = u2

2
−

n∑
s=1

cs + Qjφ.

Proof. This is proposition 3.1 in [39] and can also be verified directly. �

In [39], intermediate variables φ[j−1,+] and φ[j,−] are introduced for characterizing the
singular layers.

Lemma 2.2. There is a unique φ = φ[j−1,+] satisfying

n∑
s=1

αsc
[j−1]
s eαs(φ

[j−1]−φ) + Qj = 0; (2.7)

and a unique φ = φ[j,−] satisfying

n∑
s=1

αsc
[j ]
s eαs(φ

[j ]−φ) + Qj = 0. (2.8)

One can then characterize all layers �[j−1,+] from Bj−1 to Zj and �[j,−] from Zj to Bj ,
which is the content of proposition 3.3 in [39] recast below.

Proposition 2.3. (i) Let �[j−1,+] ⊂ N [j−1,+] be a singular layer at x = xj−1. Suppose
�[j−1,+] is the orbit of the solution z(ξ) = (φ(ξ), u(ξ), C(ξ), J, xj−1) with z(0) ∈ Bj−1

and limξ→+∞ z(ξ) = z(+∞) ∈ Zj . Then, φ(ξ) is determined by the Hamiltonian system

φ′′ +
n∑

s=1

αsc
[j−1]
s e−αs(φ−φ[j−1]) + Qj = 0

together with the conditions φ(0) = φ[j−1] and φ(+∞) = φ[j−1,+] where φ[j−1,+] is as in
lemma 2.2; u(ξ) = φ′(ξ) with u(0) = u

[j−1]
+ and u(+∞) = 0, where

u
[j−1]
+ = δ

[j−1]
+

√√√√ n∑
s=1

2c
[j−1]
s (1 − eαs(φ[j−1]−φ[j−1,+])) − 2Qj(φ[j−1] − φ[j−1,+]) (2.9)

where δ
[j−1]
+ = sgn(φ[j−1,+] − φ[j−1]) is the sign function; and

ck(ξ) = c
[j−1]
k e−αk(φ(ξ)−φ[j−1])

with ck(0) = c
[j−1]
k and

c
[j−1,+]
k := ck(+∞) = c

[j−1]
k e−αk(φ

[j−1,+]−φ[j−1]). (2.10)

Let �[j,−] ⊂ N [j,−] be a singular layer at x = xj . Suppose �[j,−] is the orbit of the
solution z(ξ) = (φ(ξ), u(ξ), C(ξ), J, xj ) with z(0) ∈ Bj and limξ→−∞ z(ξ) = z(−∞) ∈ Zj .
Then, φ(ξ) is determined by the Hamiltonian system

φ′′ +
n∑

s=1

αsc
[j ]
s e−αs(φ−φ[j ]) + Qj = 0
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together with the conditions φ(0) = φ[j ] and φ(−∞) = φ[j,−] where φ[j,−] is as in lemma 2.2;
u(ξ) = φ′(ξ) with u(0) = u

[j ]
− and u(−∞) = 0, where

u
[j ]
− = δ

[j ]
−

√√√√ n∑
s=1

2c
[j ]
s (1 − eαs(φ[j ]−φ[j,−])) − 2Qj(φ[j ] − φ[j,−]), (2.11)

where δ
[j ]
− = sgn(φ[j ] − φ[j,−]); ck(ξ) = c

[j ]
k e−αk(φ(ξ)−φ[j ]) with ck(0) = c

[j ]
k and

c
[j,−]
k := ck(−∞) = c

[j ]
k e−αk(φ

[j,−]−φ[j ]). (2.12)

(ii) The intersections M [j−1,+] ∩ Ws(Zj ) and M [j,−] ∩ Wu(Zj ) are transversal.
(iii) The ω-limit set of N [j−1,+] and the α-limit set of N [j,−] are

ω
(
N [j−1,+]

) = {(
φ[j−1,+], 0, C[j−1,+], J, xj−1

)
: all J

} ⊂ Zj ,

α
(
N [j,−]

) = {(
φ[j,−], 0, C[j,−], J, xj

)
: all J

} ⊂ Zj .

We end this part with a discussion of interfacial behaviour of electric potential at jump
points of permanent charges.

Proposition 2.4. If Qj < Qj+1 (resp. Qj > Qj+1), then

φ[j,−] < φ[j ] < φ[j,+] (resp. φ[j,−] > φ[j ] > φ[j,+]).

Proof. We show the result for the case where Qj < Qj+1. Set

f (t) =
n∑

s=1

αsc
[j ]
s eαs t .

It follows from (2.7) and (2.8) that

f (φ[j ] − φ[j,−]) = −Qj > f (φ[j ] − φ[j,+]) = −Qj+1.

Since f ′(t) > 0, φ[j ] − φ[j,−] > φ[j ] − φ[j,+], and hence, φ[j,−] < φ[j,+]. �

The remark below will be useful for readers to have a better understanding of the possibility
of the results obtained in the paper and difficulties involved in obtaining the results.

Remark 2.1. Proposition 2.4 indicates that a jump-up of permanent charge Qj+1 > Qj at
the junction causes a jump-up of the potential φ[j,+] > φ[j,−] and a jump-down of permanent
charge Qj+1 < Qj causes a jump-down of the potential φ[j,+] < φ[j,−].

The amount of jump-up or jump-down of the potential is NOT determined by that of Q

alone but involves other system parameters. For example, if Qj−1 = Qj+1 < Qj , that is,
the amount of jump-up of Q at xj−1 equals the amount of jump-down at xj , the jump-up
φ[j−1,+] −φ[j−1,−] > 0 at xj−1 and the jump-down φ[j,+] −φ[j,−] < 0 at xj do not cancel each
other in general; that is, |φ[j−1,+] − φ[j−1,−]| 
= |φ[j,+] − φ[j,−]|.

The above property is extremely important since it allows even simple permanent charge
distributions to have a great impact on ionic flows (see results in sections 3 and 4). We believe
that it is this property that allows doping distributions in semiconductor devices to control their
behaviour. One can anticipate similar controls in biological channels, although they have not
yet been definitively identified. �
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2.2.2. Slow dynamics for regular layers over (xj−1, xj ). We will now construct slow orbits
�j on the slow manifold

Zj =
{
u = 0,

∑
s=1

αscs + Qj = 0
}
.

From proposition 2.3, possible landing points of �[j−1,+] onto Zj are ω(N [j−1,+]) and possible
departing points of �[j,−] from Zj are α(N [j,−]). If �j connects ω(N [j−1,+]) to α(N [j,−]),
then the union �[j−1,+] ∪ �j ∪ �[j,−] is a singular orbit connecting Bj−1 to Bj .

Note that system (2.1) is degenerate at ε = 0 in the sense that all dynamical information
on (φ, c1, · · · , cn) would be lost when setting ε = 0. In [39], the dependent variables are
rescaled as

u = εp, αncn = −
n−1∑
s=1

αscs − Qj − εq. (2.13)

Replacing (u, cn) with (p, q), system (2.1) becomes, for k = 1, 2, . . . , n − 1,

φ̇ = p, εṗ = q,

εq̇ =
( n−1∑

s=1

(αs − αn)αscs − αnQj − εαnq
)
p + I,

ċk = − αkpck − Jk, J̇ = 0, ẇ = 1,

(2.14)

where I = ∑n
s=1 αsJs is the current. We remark that this is the reason that Dk = 1 assumption

(A1) simplifies the analysis of the problem greatly. Without assumption (A1), the term I in
(2.14) would be

∑n
s=1 D−1

s αsJs and the analysis in section 3 would be much more complicated.
The limiting slow system of (2.14) is, for k = 1, 2, . . . , n − 1,

φ̇ = p, q =
( n−1∑

s=1

(αs − αn)αscs − αnQj

)
p + I = 0,

ċk = − αkpck − Jk, J̇ = 0, ẇ = 1.

(2.15)

For this system, the slow manifold is

Sj =
{

p = − I∑n−1
s=1 (αs − αn)αscs − αnQj

, q = 0

}
.

Therefore, on Sj system (2.15) reads, for k = 1, 2, . . . , n − 1,

φ̇ = − I∑n−1
s=1 (αs − αn)αscs − αnQj

,

ċk = I∑n−1
s=1 (αs − αn)αscs − αnQj

αkck − Jk,

J̇ = 0, ẇ = 1.

(2.16)

Another special structure of the cPNP comes in to play a crucial role for analysing the
limiting slow dynamics.

On Sj where q = ∑n
s=1 αscs + Qj = 0, it follows from (2.13) that

n−1∑
s=1

(αs − αn)αscs − αnQj =
n∑

s=1

α2
s cs .

Note that ck’s are the concentrations of ion species. Therefore, we will be interested in solutions
with ck > 0 for k = 1, 2, · · · , n, and hence,

∑n
s=1 α2

s cs > 0. If we multiply
∑n

s=1 α2
s cs > 0
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on the right hand side of system (2.16), the phase portrait remains the same. In doing so, the
system becomes, in term of the new independent variable, say τ , for k = 1, 2, . . . , n − 1,

d

dτ
φ = − I,

d

dτ
ck = Iαkck − Jk

n∑
s=1

α2
s cs,

d

dτ
J =0,

d

dτ
w =

n∑
s=1

α2
s cs .

(2.17)

The further treatment below was motivated by that in [42] for cPNP with Q = 0. The
observation is that, since

∑n
s=1 αscs + Qj = 0 on Sj , one has

αn

d

dτ
cn = Iα2

ncn − αnJn

n∑
s=1

α2
s cs .

Therefore, system (2.17) on Sj is equivalent to, for k = 1, 2, . . . , n,

d

dτ
φ = − I,

n∑
s=1

αscs + Qj = 0,

d

dτ
C =D(J )C,

d

dτ
J = 0,

d

dτ
w = bT C,

(2.18)

where D(J ) = I� − JbT with

� = diag{α1, α2, · · · , αn} and bT = (
α2

1, α
2
2, · · · , α2

n

)
.

We comment that
∑n

s=1 αscs is a first integral of the system for C in (2.18). The condition∑n
s=1 αscs + Qj = 0 reflects that (2.18) is restricted to Sj which is invariant under (2.18).

The solution of (2.18) with the initial condition (φ[j−1,+], C[j−1,+], J, xj−1) ∈
ω(N [j−1,+]) is

φ(τ) =φ[j−1,+] − Iτ, C(τ) = eD(J )τC[j−1,+],

w(τ) =xj−1 +
∫ τ

0
bT C(z) dz.

(2.19)

Recall that we are looking for regular orbit �j from ω(N [j−1,+]) to α(N [j,−]). Assume
w(τj ) = xj for some τj . Necessarily, φ(τj ) = φ[j,−] and C(τj ) = C[j,−]. Evaluate (2.19) at
τ = τj to get

φ[j,−] = φ[j−1,+] − Iτj , C[j,−] = eD(J )τj C[j−1,+],

xj = xj−1 +
∫ τj

0
bT C(z) dz.

(2.20)

Note that τj > 0 from the last identity above and that bT C(z) � 0.
System (2.20) is the condition for the existence of singular orbits connecting Bj−1 to Bj .

In [42], it is shown that, for given (φ[j−1,+], C[j−1,+]) and (φ[j,−], C[j,−]), there is a unique
solution of (2.19) satisfying (2.20) and ck(x) > 0 for all x ∈ (xj−1, xj ). We denote the unique
J by

J T =
(
J

[j ]
1 , J

[j ]
2 , . . . , J [j ]

n

)
. (2.21)

The following result is a direct consequence of (2.20) and that τj > 0.

Corollary 2.5. For each j , the drop φ[j−1,+] − φ[j,−] of electric potential along the regular
orbit �j from xj−1 to xj has the same sign as that of the current I; in particular, I = 0 if and
only if φ[j−1,+] = φ[j,−] for each j .
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2.3. Matchings at xj ’s for singular orbits over [0, 1]

Once a singular orbit �[j−1,+] ∪ �j ∪ �[j,−] connecting Bj−1 to Bj over each subinterval
[xj−1, xj ] is constructed, those singular orbits will be matched to form one singular orbit to
connect BL to BR over the whole interval [0, 1]. The matching conditions are

u
[j ]
− = u

[j ]
+ for each j and, for each k, J

[j ]
k is the same for all j. (2.22)

It turns out the number of matching conditions is exactly the number of pre-assigned
unknowns in (2.3). As the result, the matching conditions provide an algebraic system that
governs the existence and multiplicity of solutions for the BVP (see [39]).

3. Results on current reversal for the case study

We now apply the analysis in previous section to our case study for Q in (A3). Recall that we
are searching conditions on the potential V0 and the permanent charge Q for current reversal
moment I = ∑n

s=1 αsJs = 0.

3.1. Slow and fast dynamics with I = 0

Concerning the slow dynamics, the following results follow directly from (2.16) with I = 0.

Lemma 3.1. The slow dynamics over (0, x1) with
∑n

s=1 αscs(x) = −Q1 = 0 is given by
φ(x) = V0 and ck(x) = lk − Jkx for k = 1, 2, . . . , n; in particular, φ[1,−] = φ[0,+] = V0 and
c

[1,−]
k = lk − Jkx1.

Lemma 3.2. The slow dynamics over (x1, x2) with
∑n

s=1 αscs(x) + Q2 = 0 is given by
φ(x) = V∗ for some unknown V∗ and ck(x) = c

[1,+]
k − Jk(x − x1) for k = 1, 2, . . . , n;

in particular, φ[2,−] = φ[1,+] = V∗ and c
[2,−]
k = c

[1,+]
k − Jk(x2 − x1).

Lemma 3.3. The slow dynamics over (x2, 1) with
∑n

s=1 αsc
[2,+]
s = −Q3 = 0 is given by

φ(x) = 0 and ck(x) = rk + Jk(1 − x) for k = 1, 2, . . . , n; in particular, φ[2,+] = φ[3,−] = 0
and c

[2,+]
k = rk + Jk(1 − x2).

We now collect results for the fast dynamics from section 2.2.1 under I = 0.

Lemma 3.4. The fast layer dynamics over x1 provides, for k = 1, 2, . . . , n,

(i) relative to (0, x1) where Q(x) = Q1 = 0 and φ[1,−] = V0:
n∑

s=1

αsc
[1]
s eαs(φ

[1]−V0) = 0, c
[1,−]
k = c

[1]
k eαk(φ

[1]−V0);

(ii) relative to (x1, x2) where Q(x) = Q2 and φ[1,+] = V∗:
n∑

s=1

αsc
[1]
s eαs(φ

[1]−V∗) + Q2 = 0, c
[1,+]
k = c

[1]
k eαk(φ

[1]−V∗);

(iii) the matching u
[1]
− = u

[1]
+ :

∑n
s=1 c[1,−]

s = ∑n
s=1 c[1,+]

s + Q2(φ
[1] − V∗).

Lemma 3.5. The fast layer dynamics over x2 provides, for k = 1, 2, . . . , n,

(i) relative to (x1, x2) where Q(x) = Q2 and φ[2,−] = V∗:
n∑

s=1

αsc
[2]
s eαs(φ

[2]−V∗) + Q2 = 0, c
[2,−]
k = c

[2]
k eαk(φ

[2]−V∗);
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(ii) relative to (x2, 1) where Q(x) = Q3 = 0 and φ[2,+] = 0:
n∑

s=1

αsc
[2]
s eαsφ

[2] = 0, c
[2,+]
k = c

[2]
k eαsφ

[2];

(ii) the matching u
[2]
− = u

[2]
+ :

∑n
s=1 c[2,−]

s + Q2(φ
[2] − V∗) = ∑n

s=1 c[2,+]
s .

Following from the above lemmas, we immediately have, for k = 1, 2, . . . , n,

φ[1,−] = φ[0,+] = V0, φ[2,−] = φ[1,+] = V∗, φ[2,+] = φ[3,−] = 0,

c
[1,−]
k = c

[1]
k eαk(φ

[1]−V0), c
[1,+]
k = c

[1]
k eαk(φ

[1]−V∗),

c
[2,−]
k = c

[2]
k eαk(φ

[2]−V∗), c
[2,+]
k = c

[2]
k eαkφ

[2]
.

The remaining relations are

c
[1]
k eαk(φ

[1]−V0) = lk − Jkx1; c
[2]
k eαkφ

[2] = rk + Jk(1 − x2);
c

[2]
k eαk(φ

[2]−V∗) = c
[1]
k eαk(φ

[1]−V∗) − Jk(x2 − x1);
n∑

s=1

αsc
[1]
s eαs(φ

[1]−V∗) + Q2 = 0,

n∑
s=1

c[1]
s eαs(φ

[1]−V0) =
n∑

s=1

c[1]
s eαs(φ

[1]−V∗) + Q2(φ
[1] − V∗),

n∑
s=1

c[2]
s eαs(φ

[2]−V∗) + Q2(φ
[2] − V∗) =

n∑
s=1

c[2]
s eαsφ

[2]
.

(3.1)

Together with I = 0, we will determine (φ[1], V∗, φ[2], c
[1]
k , c

[2]
k , Jk, Q2).

3.2. A general result for reversal permanent charges Q∗.

For fixed V0, lk’s and rk’s, we consider the equation

g(V, V0) :=
n∑

s=1

αs(lseαsV0 − rs)

1 − x2 + x1eαsV0 + (x2 − x1)eαsV
= 0. (3.2)

Our main result for reversal permanent charges is

Theorem 3.6. Assume (A1)–(A3). Then I = 0 if and only if V∗ is a real root of (3.2). To
any real root V = V∗ of (3.2), there corresponds to a reversal permanent charge Q2 = Q∗

given by

Q∗ = −
n∑

s=1

αse
αs(V0−V∗) (1 − x2 + (x2 − x1)eαsV∗

)ls + x1rs

1 − x2 + x1eαsV0 + (x2 − x1)eαsV∗ , (3.3)

and the corresponding ion fluxes Jk’s are given by, for k = 1, 2, . . . , n,

Jk = lkeαkV0 − rk

1 − x2 + x1eαkV0 + (x2 − x1)eαkV∗ . (3.4)

Proof. From the first three equations in (3.1), one has, for k = 1, 2, . . . , n,(
1 − x2 + x1eαkV0 + (x2 − x1)e

αkV∗)
Jk = lkeαkV0 − rk.

The formula (3.4) for Jk then follows directly. In turn, the equation (3.2) for V∗ follows from
I = ∑

αsJs = 0 and (3.4).
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The first equation and the fourth equation in (3.1) give that

Q∗ = −
n∑

s=1

αs(ls − Jsx1)e
αs(V0−V∗). (3.5)

Substitution of (3.4) into (3.5) yields the formula (3.3). �
Note that

g(−∞, V0) = lim
V →−∞

g(V, V0) =
∑
αs>0

αs(lseαsV0 − rs)

1 − x2 + x1eαsV0
,

g(+∞, V0) = lim
V →+∞

g(V, V0) =
∑
αs<0

αs(lseαsV0 − rs)

1 − x2 + x1eαsV0
.

Concerning the equation (3.2), the following result is straightforward and is consistent with
the simple property in proposition 1.1.

Lemma 3.7. If g(−∞, V0)g(∞, V0) < 0, then g(V, V0) = 0 has at least one real root
V = V∗, and hence, there is a reversal permanent charge Q∗.

In general, the existence of a real root of g(V, V0) = 0 can be formulated as an eigenvalue
problem of a matrix or a matrix pencil (see section 3.4). But, a simple version of a sufficient
and necessary condition for the existence is not yet available.

Corollary 3.8. For any reversal permanent charge Q∗ associated to a real root V∗ of (3.2),
the zeroth order approximation of the electric potential φ(x; ε) is given explicitly by

φ(x; 0) =



V0, x ∈ (x0, x1)

V∗, x ∈ (x1, x2)

0, x ∈ (x2, x3),

and the zeroth order approximation of concentrations ck(x; ε) are

ck(x; 0) =



lk − Jkx, x ∈ (x0, x1)

(lk − Jkx1)eαk(V0−V∗) − Jk(x − x1), x ∈ (x1, x2)

rk + Jk(1 − x), x ∈ (x2, x3).

The values φ[1] and φ[2] are determined explicitly as

φ[1] = 1

Q∗

n∑
s=1

(ls − Jsx1)
(
1 − eαs(V0−V∗)) + V∗,

φ[2] = 1

Q∗

n∑
s=1

(rs + Js(1 − x2))
(
1 − e−αsV∗)

+ V∗.
(3.6)

The values for c
[1]
k and c

[2]
k are determined explicitly as

c
[1]
k = (lk − Jkx1)e

−αk(φ
[1]−V0), c

[2]
k = (rk + Jk(1 − x2))e

−αkφ
[2]

. (3.7)

Proof. Substituting the first and third equations in (3.1) into the last two equations, one has
n∑

s=1

(ls − Jsx1) =
n∑

s=1

(ls − Jsx1)e
αs(V0−V∗) + Q∗(φ[1] − V∗),

n∑
s=1

(rs + Js(1 − x2))e
−αsV∗

+ Q∗(φ[2] − V∗) =
n∑

s=1

(rs + Js(1 − x2)).
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The formulas (3.6) for φ[1] and φ[2] follow immediately. The first and third equations in (3.1)
now give the formulas for c

[1]
k and c

[2]
k . �

We note that the jumps of φ(x; 0) and ck(x; 0) at each location x1 and x2 are realized by
double layers: �[1,−] ∪ �[1,+] at x1 and �[2,−] ∪ �[2,+] at x2 (see, e.g., [17, 39]).

We do need c
[1]
k � 0 and c

[2]
k � 0. It turns out this is always true.

Lemma 3.9. For k = 1, 2, . . . , n, we have c
[1]
k � 0 and c

[2]
k � 0, and hence, c

[1,±]
k � 0 and

c
[2,±]
k � 0. Thus, any solution V∗ of (3.2) provides a physical solution for a current reversal.

Proof. It follows directly from (3.4) that, for any 1 � k � n,

lk − Jkx1 = ((1 − x2) + (x2 − x1)eαkV∗
)lk + x1rk

1 − x2 + x1eαkV0 + (x2 − x1)eαkV∗ > 0, (3.8)

rk + Jk(1 − x2) = lk(1 − x2)eαkV0 + (x1eαkV0 + (x2 − x1)eαkV∗
)rk

1 − x2 + x1eαkV0 + (x2 − x1)eαkV∗ > 0.

The claim then follows from (3.7). �

3.3. A general result for reversal potential V0.

In view of the duality of reversal potential V0 and the reversal permanent charge Q∗, we now
present a general result for reversal potential V0 with Q in (A3). We comment that there
are differences between these two problems. There is a simple necessary condition for the
existence of the reversal permanent charge Q∗ as discussed above. On the other hand, as
probably expected, reversal potentials should always exist. This is indeed established below
for the special case of permanent charges Q in (A3).

Theorem 3.10. For any given permanent charge Q in (A3), reversal potentials always exist,
and the number of reversal potentials is odd.

Proof. Due to (3.2) and (3.3), it amounts to prove that, for any Q2, there is a (real) solution
(V , V0) of the system

g(V, V0) = 0 and f (V, V0) + Q2 = 0

where g(V, V0) is defined in (3.2) and

f (V, V0) =
n∑

s=1

αse
αs(V0−V ) (1 − x2 + (x2 − x1)eαsV )ls + x1rs

1 − x2 + x1eαsV0 + (x2 − x1)eαsV
.

This will be accomplished in three steps.
Claim 1. For any fixed V , there is a unique V0 so that g(V, V0) = 0.

Indeed, for any fixed V , one has

lim
V0→+∞

g(V, V0) > 0, lim
V0→−∞

g(V, V0) < 0,
d

dV0
g(V, V0) > 0.

Claim 1 then follows. Denote the solution of g(V, V0) = 0 by V0 = h(V ).
Claim 2. There are m < M , independent of V , so that V0 = h(V ) ∈ [m, M].

Suppose, on the contrary, that the claim is wrong. Then, at least one of the following
occurs

(i) ∃Vn such that, as n → ∞, Vn → +∞ and V0 = h(Vn) → +∞;
(ii) ∃Vn such that, as n → ∞, Vn → −∞ and V0 = h(Vn) → −∞;
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(iii) ∃Vn such that, as n → ∞, Vn → +∞ and V0 = h(Vn) → −∞;
(iv) ∃Vn such that, as n → ∞, Vn → −∞ and V0 = h(Vn) → +∞.

Simple calculations, from the formula of g(V, V0) in (3.2), give

lim
n→∞ g(Vn, h(Vn)) > 0 for case (i), lim

n→∞ g(Vn, h(Vn)) < 0 for case (ii),

lim
n→∞ g(Vn, h(Vn)) < 0 for case (iii), lim

n→∞ g(Vn, h(Vn)) > 0 for case (iv).

Each case contradicts to that g(Vn, h(Vn)) = 0. Claim 2 is then established.
Based on claim 2, one can show easily that

lim
V →+∞

f (V, h(V )) = −∞ and lim
V →−∞

f (V, h(V )) = +∞. (3.9)

Therefore, there is an odd number of roots V = V∗ of f (V∗, h(V∗)) + Q2 = 0. With
V0 = h(V∗), one then has g(V∗, V0) = f (V∗, V0) + Q2 = 0. �

3.4. An equivalent eigenvalue problem of equation (3.2)

In this part, we transform equation (3.2) to an eigenvalue problem. First of all, it can be checked
directly that (3.2) is equivalent to

g(V, V0) = d +
n∑

s=1

ws

ms + nse|αs |V = 0, (3.10)

where

d =
∑
αs<0

αs(lseαsV0 − rs)

1 − x2 + x1eαsV0
, ws =




αs(lseαsV0 − rs), αs > 0,

−αs(lseαsV0 − rs)(x2 − x1)

1 − x2 + x1eαsV0
, αs < 0,

ms =
{

1 − x2 + x1eαsV0 , αs > 0,

x2 − x1, αs < 0,
ns =

{
x2 − x1, αs > 0,

1 − x2 + x1eαsV0 , αs < 0.

Note that ms > 0 and ns > 0 for all s. We assume
mi

ni

+ e|αi |V 
= mj

nj

+ e|αj |V for i 
= j.

Otherwise, the corresponding two terms can be combined into a single term. Using the
substitution t = eV , one has

h(t) = g(V, V0) = d +
n∑

s=1

ws

ms + nst |αs | .

Note |α1|, |α2|, . . . , |αn| are positive integers. For each fixed s, define

Ps =




0 . . . 0 −ms

ns

1
. . .

. . .
...

. . .
. . .

...

1 0




|αs |×|αs |

, e1 =




1
0
...

0


 , e|αs | =




0
...

0
1


 .

Then, for t > 0,

det(tI − Ps) = t |αs | +
ms

ns

,
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and the (|αs |, 1)-entry of (tI − Ps)
−1 is (det(tI − Ps))

−1. Hence

ws

ns

eT
|αs |(tI − Ps)

−1e1 = ws

ms + nst |αs | .

Define

u =




w1

n1
e|α1|
...

wn

nn

e|αn|


 , v =




e1

...

e1


 , P = diag(P1, . . . , Pn).

Then h(t) = d + uT (tI − P)−1v. For the pencil

t

[
I 0
0 0

]
−

[
P v

uT d

]
=

[
tI − P −v

−uT −d

]
, (3.11)

one has [
I 0

uT (tI − P)−1 1

] [
tI − P −v

−uT −d

]
=

[
tI − P −v

0 −h(t)

]
.

Since tI − P is invertible for t > 0, one has h(t) = 0 if and only if

det

(
t

[
I 0
0 0

]
−

[
P v

uT d

])
= 0,

or equivalently, t is a positive zero of h(t) if and only if t is a positive eigenvalue of the pencil
(3.11). If d 
= 0, then

I − 1

d
v

0 1


 (

t

[
I 0
0 0

]
−

[
P v

uT d

])
=

[
tI − (P − vuT /d) 0

−uT −d

]
.

The eigenvalues of the pencil are just those of the matrix P − d−1vuT . Although P, u, v have
simple forms, it is still hard to detect whether the matrix has a positive eigenvalue analytically.
On the other hand, the eigenvalue formulation provides a numerical tool for testing the existence
of V∗ when the values of the other parameters are given.

The above process is called a minimal realization, which is a fundamental tool in systems
and control theory [20,33,34]. Here it serves as a tool that transforms the problem about zeros
of a rational matrix function to the eigenvalue problem of a matrix or matrix pencil.

4. Further specifics and more features

In this section, we will illustrate applications of equation (3.2) for more specific cases, provide
a number of interesting features for reversal permanent charges, and include a discussion on
the results from physical considerations.

4.1. n = 2 with α1 > 0 > α2.

This might be Na+Cl−, K+Cl−, or Ca++Cl−2 . For this case, we are able to give a precise condition
for the existence of a reversal permanent charge and will discuss an interesting feature.
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4.1.1. A complete result on reversal permanent charges

Proposition 4.1. There exists a reversal permanent charge Q∗ if and only if

(l1eα1V0 − r1)(l2eα2V0 − r2) > 0. (4.1)

In this case, the reversal permanent charge Q∗ is unique.
The values of Q∗ and V∗ have the same sign that is determined as follows.

(i) If l2eα2V0 − r2 > 0 and V0 > 0, then V∗ > V0 > 0 and Q∗ > 0;
(ii) If l1eα1V0 − r1 > 0 and V0 < 0, then V∗ < V0 < 0 and Q∗ < 0;

(iii) If l1eα1V0 − r1 < 0 and V0 > 0, then V∗ < 0 < V0 and Q∗ < 0;
(iv) If l2eα2V0 − r2 < 0 and V0 < 0, then V∗ > 0 > V0 and Q∗ > 0.

In particular, V∗ lies outside of the interval between 0 and V0 but could be on either side, and
Q∗ always has the same sign as that of V∗.

Proof. Using the electroneutrality conditions α1l1 + α2l2 = α1r1 + α2r2 = 0, equation (3.2)
becomes χ(V ) = δ(r1/l1) where

χ(V ) = 1 − x2 + x1eα2V0 + (x2 − x1)eα2V

1 − x2 + x1eα1V0 + (x2 − x1)eα1V
and δ(ρ) = eα2V0 − ρ

eα1V0 − ρ
. (4.2)

The left hand side is positive. Thus, a necessary condition for the existence of a real root of
(3.2) is (l1eα1V0 − r1)(l1eα2V0 − r1) > 0, or equivalently,

(l1eα1V0 − r1)(l2eα2V0 − r2) > 0. (4.3)

The function χ(V ) is decreasing in V with the range (0, ∞). Therefore, the necessary
condition (4.3) implies that (3.2) has a unique solution, which leads to a reversal permanent
charge Q∗.

For the statement on the signs of Q∗ and V∗, we demonstrate the proof for (i). Under the
conditions in (i), it can be verified directly that

χ(V0) = 1 − x2 + x1eα2V0 + (x2 − x1)eα2V0

1 − x2 + x1eα1V0 + (x2 − x1)eα1V0
>

l1eα2V0 − r1

l1eα1V0 − r1
= δ(r1/l1).

Since χ(V ) is decreasing in V , we have V∗ > V0. Now, from (3.5),

Q∗ = α1(l1 − J1x1)
(

eα2(V0−V∗) − eα1(V0−V∗)
)
.

The right-hand-side is positive due to l1 − J1x1 > 0 from (3.8), α1 > 0 > α2 and V∗ > V0.
One concludes that Q∗ > 0. �

We comment that case (i) and case (iv) are equivalent—one can be obtained from the other
by flipping the channel. Similarly, case (ii) and case (iii) are equivalent.

Example 4.2. We provide a simple numerical study to illustrate our result. Consider α1 = 2,
α2 = −1, V0 = 0.1, l1 = 1, l2 = 2, r1 = r , r2 = 2r , x1 = 1/4 and x2 = 3/8. Recall, from
(4.2), V = V∗ solves χ(V ) = δ(r) where

χ(V ) = 5 + 2e−1/10 + e−V

5 + 2e1/5 + e2V
and δ(r) = e−1/10 − r

e1/5 − r
.

Figure 2 shows the graph of χ(V ) and the lines of δ(r) with r = 0, 0.5, 2, ∞. For r = 0.5
and 2, the corresponding values are given in table 1.

Note when r increases from 0 to e−V0 , δ(r) decreases from e−3V0 to 0; and when r increases
from e2V0 to ∞, δ(r) decreases from ∞ to 1. For r � 0, δ(r) can not take any value in the
interval (δ(0), 1).
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Figure 2. Values of V∗ with different r in example 4.2.

Table 1. Data in the first row correspond to case (i) in proposition 4.1 and second row
to case (iii).

r1 = r V∗ Q∗ J1 J2

0.5 0.8482 3.356 0.4475 0.895
2 −1.324 −41.09 −0.829 −1.658

4.1.2. An interesting property of individual ion fluxes. In attempting to understand how the
reversal permanent charge Q∗ affects individual ion fluxes J1 and J2, an interesting feature was
discovered that may not be totally intuitive. Take the case (i) in proposition 4.1 with α1 = 1
and α2 = −1 for example. To make the discussion easy to follow, we use Jk(Q2) to denote
the dependence of Jk on the value Q2 for the permanent charge Q in (A3). In this case, l1 = l2
and r1 = r2. If r2 < e−V0 l2 (and hence r1 < eV0 l1 as well), then J1(Q2) > 0 and J2(Q2) > 0
from (1.6). If Q = 0, then I and V0 have the same sign; that is, I = J1(0) − J2(0) > 0 since
V0 > 0. As Q2 increases from 0 to Q∗ > 0, one might suspect that the ion flux J1(Q2) of the
positively charged ions should tend to reduce while the ion flux J2(Q2) should increase, and
the value Q∗ > 0 would be the right amount of positive charges to produce zero current. This
is NOT true in general. In fact, we have the following result.

Proposition 4.3. Consider n = 2 with α1 = 1 and α2 = −1 (so l1 = l2 = l and
r1 = r2 = r due to electroneutrality boundary conditions). Assume r < e−V0 l and
V0 > 0 (so that J1(0) > J2(0) > 0). For some choices of parameters, one may have
J1(0) > J2(0) > J1(Q

∗) = J2(Q
∗).

Proof. It is known (see, e.g. [1, 38]) that, for Q2 = 0,

J1(0) = (l − r)
(

1 +
V0

ln l − ln r

)
and J2(0) = (l − r)

(
1 − V0

ln l − ln r

)
.

Therefore, J2(0) > J1(Q
∗) = J2(Q

∗) if and only if

(x2 − x1)e
V∗

>
leV0 − r

l − r

ln l − ln r

ln l − ln r − V0
− 1 + x2 − x1eV0 . (4.4)
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Figure 3. Graphs of J1(0), J2(0) and J1(Q
∗) = J2(Q

∗) as functions of r . The top
curve is the graph of J1(0), the dashed curve is that of J2(0), and the thin curve is that
of J1(Q

∗) = J2(Q
∗).

It follows from (3.2) that V∗ satisfies

eV∗ = B +
√

B2 + 4(x2 − x1)2(le−V0 − r)(leV0 − r)

2(x2 − x1)(le−V0 − r)
,

where B = ((1 − x2)l + x1r)(eV0 − e−V0).
For fixed V0, as l/r → ∞, one has

eV∗ → (1 − x2)(e2V0 − 1) +
√

(1 − x2)2(e2V0 − 1)2 + 4(x2 − x1)2e2V0

2(x2 − x1)
.

As l/r → ∞, the right-hand-side of (4.4) approaches (1 − x1)e
V0 − 1 + x2.

Therefore, for any fixed x1 and x2 with 0 < x1 < x2 < 1, the inequality (4.4) holds if V0

is large enough and l/r is large enough. �

Example 4.4. In this example we consider

α1 = 1 = −α2; V0 = 2, l1 = l2 = 1, r1 = r2 = r; x1 = 1/4, x2 = 7/8

and vary r in [10−6, 0.1296] (0.1296 < e−2). The graphs of J1(0), J2(0), and J1(Q
∗) =

J2(Q
∗), which are considered as functions of r , are plotted in figure 3. For r < 0.0027, one

has J2(0) > J1(Q
∗) = J2(Q

∗).

4.2. n = 3 with α1 = 1, α2 = 2 and α3 = −1

This case might be for a mixture of Ca++Cl−2 and Na+Cl−.
In this case, l1 + 2l2 − l3 = 0 and r1 + 2r2 − r3 = 0. We will show it is possible that,

for fixed V0, g(V, V0) has two real zeros, each leading to a reversal permanent charge—a new
feature that does not occur for ion solutions with only two distinct valences.

Proposition 4.5. For appropriate choices of V0, lk’s and rk’s, g(V, V0) = 0 has at least two
real roots.
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Proof. The statement will be established by showing that, it is possible to have g(−∞, V0) > 0,
g(+∞, V0) > 0 and g(V1, V0) < 0 for some V1.

We first rewrite g(V, V0) as

g(V, V0) = N − (x2 − x1)
(
2(r2 − l2e2V0) − (l1eV0 − r1)eV

)
eV

(1 − x2 + x1eV0 + (x2 − x1)eV )(1 − x2 + x1e2V0 + (x2 − x1)e2V )

+
r1 + 2r2 − (l1 + 2l2)e−V0

1 − x2 + x1e−V0 + (x2 − x1)e−V
,

where

N = (l1eV0 − r1)(1 − x2 + x1e2V0) + 2(l2e2V0 − r2)(1 − x2 + x1eV0).

It is clear that g(−∞, V0) has the same sign as that of N .
We now fix V0 > 0 and choose (l1, r1) so that 0 < l1e−V0 < r1 < l1eV0 . We will also fix

l2. Next, we choose V1 to be determined later on so that

N = (x2 − x1)(l1eV0 − r1)e
2V1 > 0;

in particular, g(−∞, V0) > 0. In view of the definition of N , we have

r2 = l2e2V0 +
l1eV0 − r1

2

1 − x2 + x1e2V0 − (x2 − x1)e2V1

1 − x2 + x1eV0
. (4.5)

It is clear that there is a number M such that, if V1 < M , then

1 − x2 + x1e2V0 − (x2 − x1)e
2V1 > 0,

and hence, r2 − l2e2V0 > 0, and

r3 − l3e−V0 = r1 + 2r2 − (l1 + 2l2)e
−V0 > 2r2 − 2l2e2V0 > 0. (4.6)

In particular,

g(+∞, V0) = − l3e−V0 − r3

1 − x2 + x1e−V0
> 0.

Note that

g(V1, V0) = −(x2 − x1)
(
2(r2 − l2e2V0) − 2(l1eV0 − r1)eV1

)
eV1

(1 − x2 + x1eV0 + (x2 − x1)eV1)(1 − x2 + x1e2V0 + (x2 − x1)e2V1)

+
r1 + 2r2 − (l1 + 2l2)e−V0

1 − x2 + x1e−V0 + (x2 − x1)e−V1
.

It follows from (4.5) and (4.6) that, as V1 → −∞,

r2 → l2e2V0 +
l1eV0 − r1

2

1 − x2 + x1e2V0

1 − x2 + x1eV0
,

r3 → r1 + 2l2e2V0 + (l1eV0 − r1)
1 − x2 + x1e2V0

1 − x2 + x1eV0
.

A direct calculation also gives, as V1 → −∞,

e−V1g(V1, V0) → − (x2 − x1)(l1eV0 − r1)

(1 − x2 + x1eV0)2

(
1 − (1 − x2 + x1eV0)(1 − x2 + x1e2V0)

(x2 − x1)2

)

+
1

x2 − x1

(
r1 − l1e−V0 + 2l2(e

2V0 − e−V0)
)
.

It is easy to see that, as (x1, x2) → (0, 1), the first term on the right-hand-side approaches
−∞ and the second term approaches a finite number. Thus one can choose x1 and x2 so
that the right-hand-side is strictly less than zero. By continuity, if V1 is small enough, then
g(V1, V0) < 0. �
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Figure 4. Graph of g(V, V0) in example 4.6.

Table 2. First row correspond to V∗
1 and second row to V∗

2 in example 4.6.

V∗ Q∗ J1 J2 J3

−3.4328 −3509.028 1.9038 −0.99783 −0.091840
−1.6314 −99.138 1.2574 −0.89723 −0.53702

Example 4.6. We illustrate the result in proposition 4.5 for a concrete set of boundary
conditions and locations for a permanent charge. We choose

V0 = 1/4, (l1, l2, l3) = (1, 1, 3), (r1, r2, r3) = (0.8, 1.91385, 4.62770),

x1 = 0.1 and x2 = 0.9. Note that electroneutrality conditions are satisfied.
Figure 4 shows the graph of g(V, V0) on interval [−8, −1]. The function g(V, V0) is

decreasing on (−∞, Vmin) and is increasing on (Vmin, ∞), and has one minimum at a point
Vmin ∈ (−3, −2). So g(V, V0) = 0 has exactly two roots, which are V∗

1 ≈ −3.4328 and
V∗

2 ≈ −1.6314.
Table 2 provides corresponding values of the reversal permanent charges Q∗ and the ion

fluxes. Since V∗
1 < 0 < V0 and V∗

2 < 0 < V0, proposition 2.4 implies that the reversal
permanent charge should be negative. Also, the signs of Jk’s are determined by the boundary
conditions and are consistent with (1.6).

4.3. Physical discussion

Note that, for both cases (i) and (ii) in proposition 4.1, the individual ion fluxes J1 and J2

are positive due to (3.4) and (4.1). But the reversal permanent charges for these two cases
have opposite signs. This indicates a complex dependence of the ion current on the boundary
conditions and permanent charges. The result in proposition 4.3 suggests another complexity.
The existence of possible multiple reversal permanent charges could be thought of a certain
version of instability of biological functions.

All these results are presented for the simple setting in this section and already provide
strong evidence for a very rich and complex phenomena of electrodiffusion. Of course,
extensive further studies should reveal more important phenomena.
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The complexity presented in these results reflect the physical essence of the problem.
The ion flux of each ion contains diffusion and migration terms and these can have opposite
signs depending on the size and sign of the gradients of electrical and chemical potential (e.g.,
concentration). It is precisely the various combinations of these gradients that make possible
the rich behaviour of semiconductor devices and (presumably) channels and transporters.
Engineers adjust parameters so that particular terms dominate in particular parts of a transistor
(e.g., the junctions between source and gate or gate and drain in field effect transistors) and
thus can combine to produce particular characteristics of semiconductor devices. Evolution
may use similar tactics, but that has not yet been established.

5. Conclusion

In this paper, we provide a mathematical analysis of qualitative properties of cPNP models of
ion channels. The specific questions about reversal potentials and reversal permanent charges
studied in this paper are among the central issues of biological functions. Based on the cPNP
model with the equal diffusion coefficients assumption and for a simple profile of permanent
charges, we are able to reduce the problem significantly to a single equation (3.2) that involves
only physical parameters of the biological problem. As an illustration, a number of interesting
properties are resulted from analyses of this governing equation. The success of our case study
relies heavily on a recent advance of a general geometric singular perturbation framework and,
most importantly, some special structures of the cPNP models—the integrals in proposition 2.1
for the nonlinear limiting fast system (2.6) and the rescaling that converts the nonlinear limiting
slow system (2.16) to a linear system (2.17) or (2.18). (Strictly speaking, the linear system
(2.18) presents a nonlinear problem due to the dependence of the coefficient matrix D on the
unknown ion fluxes J . See [42] for a rather complete analysis of system (2.18).) It is our belief
that these special structures of the cPNP model reflect some intrinsic properties of ionic flows
of large number of ions through ion channels. A better understanding of these macroscopic
structures deserves further extensive study.

The study in this paper as well as those analytical studies appeared in recent literatures
suggest that mathematical analysis can directly address central issues of biological functions,
assuming of course that the underlying model of the ion channel is good enough. Extending,
refining, and testing the model are thus of great importance. The analysis also suggests
that qualitative properties of semiconductor systems could be analysed in a similar way, if this
analysis is extended to include more complex geometries of doping, that represent combinations
of the junctions that define field effect and bipolar transistors.
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