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Numerical methods for a Poisson-Nernst-Planck-Fermi model of biological ion channels
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Numerical methods are proposed for an advanced Poisson-Nernst-Planck-Fermi (PNPF) model for studying
ion transport through biological ion channels. PNPF contains many more correlations than most models and
simulations of channels, because it includes water and calculates dielectric properties consistently as outputs.
This model accounts for the steric effect of ions and water molecules with different sizes and interstitial voids, the
correlation effect of crowded ions with different valences, and the screening effect of polarized water molecules
in an inhomogeneous aqueous electrolyte. The steric energy is shown to be comparable to the electrical energy
under physiological conditions, demonstrating the crucial role of the excluded volume of particles and the voids in
the natural function of channel proteins. Water is shown to play a critical role in both correlation and steric effects
in the model. We extend the classical Scharfetter-Gummel (SG) method for semiconductor devices to include
the steric potential for ion channels, which is a fundamental physical property not present in semiconductors.
Together with a simplified matched interface and boundary (SMIB) method for treating molecular surfaces
and singular charges of channel proteins, the extended SG method is shown to exhibit important features in
flow simulations such as optimal convergence, efficient nonlinear iterations, and physical conservation. The
generalized SG stability condition shows why the standard discretization (without SG exponential fitting) of NP
equations may fail and that divalent Ca2+ may cause more unstable discrete Ca2+ fluxes than that of monovalent
Na+. Two different methods—called the SMIB and multiscale methods—are proposed for two different types
of channels, namely, the gramicidin A channel and an L-type calcium channel, depending on whether water is
allowed to pass through the channel. Numerical methods are first validated with constructed models whose exact
solutions are known. The experimental data of both channels are then used to verify and explain novel features
of PNPF as compared with previous PNP models. The PNPF currents are in accord with the experimental I-V (V
for applied voltages) data of the gramicidin A channel and I-C (C for bath concentrations) data of the calcium
channel with 10−8-fold bath concentrations that pose severe challenges in theoretical simulations.
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I. INTRODUCTION

The literature on numerical methods for drift-diffusion
(DD) or Poisson-Nernst-Planck (PNP) models of semiconduc-
tor devices and ion channels is large, including Refs. [1–22]
and references therein. In biological simulations, continuum
models have been challenged as inaccurate compared to Monte
Carlo (MC), Brownian dynamics (BD), or molecular dynamics
(MD) due to the gross approximation of atomic properties of
channel proteins and electrolyte solutions [23–33]. Continuum
models, on the other hand, have substantial advantages in
efficiency that are of great importance in studying a range of
conditions and concentrations especially for large nonequilib-
rium or inhomogeneous systems, as are present in experiments
and in life itself [15,20–22,28,34–41].

Based on the configurational entropy model [42] for
aqueous electrolytes with arbitrary K species of nonuniform
size, hard spherical ions, we extended the Poisson-Fermi
model in Ref. [42] to a new model—called the Poisson-Nernst-
Planck-Fermi (PNPF) model—for nonequilibrium systems
by including specifically the excluded volume effects of the
next species (K + 1) of water molecules and the interstitial
voids (K + 2) between all particles [43]. The PNPF model
differs from most channel models in several respects: (i)
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It computes dielectric properties as an output that in fact
vary with position and with experimental condition; (ii) a
fourth-order Cahn-Hilliard type partial differential equation
emerges to replace the second-order Poisson equation of PNP,
which has a richness of behavior beyond the usual second order
PNP description; and (iii) using the methods of this paper, this
more powerfully correlated model is in fact much easier to
compute in three dimensions than other steric PNP models.
Previous work [43] gives more details.

The PNPF model also provides a quantitative mean-field
description of the charge or space competition mechanism
of particles within the highly charged and crowded channel
pore. The steric energy lumps the effects of excluded volumes
of all ions, water, and voids. It yields an energy landscape
of ions that varies significantly with bath concentrations in a
108-fold range of experimental conditions for L-type calcium
channels.

A. Computational challenges

The 108-fold range of bath conditions and the highly
energetic behavior of permeating ions through the extremely
crowded narrow channels pose severe challenges in imple-
mentations. The strength of local electric fields in a calcium
channel can be higher than that in a semiconductor device
(comparing, for example, 0.27 V/nm estimated from Fig. 14
in this paper for an ion channel and 0.06 V/nm from Fig. 7
in Ref. [18] for a semiconductor device). This means that the
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convergence and stability problems in ion channel simulation
can be more severe than those in semiconductor devices. These
problems are not made easier by the presence of countervailing
steric potentials of the same order of magnitude.

Moreover, geometric complexity and singularities of
molecular surfaces separating electrolyte solutions from pro-
tein atoms in biological systems need to be carefully treated
in order to obtain tolerable accuracy in three-dimensional
(3D) PNP simulations [22]. Seemingly small numerical over
approximations can lead to errors that make results not useful.
A second-order method called the matched interface and
boundary (MIB) method was developed by Wei et al. [22,44]
for Poisson-Boltzmann and PNP models and is simplified
(SMIB) in Ref. [45] for the PF model to deal with the geometric
singularities by the standard finite-difference approximation.

The Scharfetter-Gummel (SG) [2] method is an optimal and
uniformly convergent method (with respect to the mesh size) to
discretize drift-diffusion (or Nernst-Planck) equations for flux
calculations because it integrates the corresponding 1D initial
value problem exactly at every grid point [5]. We extend the
classical SG method to the NPF equation by showing how the
Fermi distribution of hard spheres of water and ions is imposed.
If the classical Boltzmann distribution is used, the density of
point charges would grossly overestimate ionic concentrations
(that are in fact limited because of the finite size of ions)
and, consequently, lead to inaccurate electrostatic potential
and ion mobility in the classical PNP [25,29,35]. We also show
that the classical Goldman-Hodgkin-Katz flux approximation
[46] in ion channels is in fact exactly the Scharfetter-Gummel
flux approximation on grid points in semiconductor devices.
Similar results appear in the seminal work of Mott [47] that
was well known to Hodgkin, Cole, and Goldman. The pioneers
in two different fields had the same idea that made a profound
impact on their respective fields and others.

The SG stability condition—a critical condition of the flux
equation in implementation—is also extended to include the
steric potential that is not present in classical PNP models. This
stability condition explains why the standard finite-difference
or finite-element discretization fails when the electric and/or
steric potentials vary sharply in a layer region and the mesh of
grid points is not sufficiently resolved. It plays a key role in
preserving physically positive concentrations and divergence-
free currents (current conservation) in approximation [10]. We
take a closer look at the numerics concerning the extended SG
condition and discover that this condition is harder to satisfy for
the standard methods for the divalent Ca2+ than the monovalent
Na+ flux since the SG condition depends on the valence of
ions. This is physically reasonable because Ca2+ ions are more
energetic in binding and permeation in voltage-gated calcium
channels that conduct Ca2+ ions with high fidelity and high
throughput [48].

The combined method—the SMIB-SG method—is shown
not only to achieve second order accuracy for the PNPF model
(with constructed exact solutions) but also to outperform the
primitive SMIB method (without SG) for the gramicidin A
channel due to the exactness property of the SG exponential
fitting between grid points. We also show that the primitive
SMIB method fails to converge for the calcium channel due
to its highly charged (−4e, e is the proton charge) and very
narrow (about 1 Å in radius) binding site as compared with that

of the gramicidin A channel (−2e and about 2 Å in radius).
In our simulations, water (1.4 Å in radius) is found to flow
through the gramicidin A channel but not to flow through
the calcium channel in some conditions. We use a second
method—called the multiscale method—that treats water and
ions explicitly in the binding site of the calcium channel so
water may not move through the channel. It is multiscale since
both Poisson’s theory of continuous charges and Coulomb’s
law of discrete charges are used in the solvent domain. This
demonstrates the novelty of the PNPF model as compared with
previous PNP models in dealing with ion-protein, ion-ion, and
ion-water interactions and the steric effect of ions and water
in the narrow pore.

PNPF captures many more of the correlations not present
in PNP itself. It captures steric interactions of ions and
water and packs them well (i.e., consistently) because it
includes free space. Dielectric properties vary with position
and concentration and are fully consistent with the rest of the
model because they are outputs of the calcualtions, not inputs,
as assumed in most channel models.

The nonlinear algebraic systems of discrete PNP equations
are very difficult to solve due to strong nonlinearity of
the coupled system in both semiconductor devices and ion
channels, especially with sharp potentials at practical applied
voltages [5,9,10,14–16,18–22]. The PNPF model consists of
K + 2 PDEs (one fourth-order Poisson-Fermi and K + 1
second-order Nernst-Planck). The fourth-order PF equation
was proposed to account for the correlation effect of ions
in water [49] and transformed to two second-order PDEs
for computational efficiency and for calculating variable
permittivity within the channel pore [42,45]. The last NP
equation describes the dynamics of water molecules that
play a critical role not only in the steric arrangement of all
particles but also in its screening and polarization effects on
ions in the system [42,45]. The full PNPF model incorporates
these atomic properties and thus can provide more accurate
simulations but obviously at the expense of more difficulties
in implementation than that of previous PNP models. It
is impractical to solve the (K + 2)M nonlinear algebraic
equations resulting from a discretization of PNPF using
Newton’s iteration on the coupled system, where the matrix
size M corresponding to each PDE can easily grow to millions
in 3D implementations. With a linearized Poisson equation,
Gummel’s iteration is an efficient method because it solves
each PDE successively [9]. It has been shown in Ref. [22] that
an SOR-like method (without linearization) converges faster
than Gummel’s method at higher bath concentrations for ion
channel simulations provided that the relaxation parameter
is appropriately chosen. We present a new SOR-like method
for the PNPF model that differs from the previous models in
the fourth-order PDE, the water NP equation, and the steric
potential. It is shown that the method improves the convergence
rate using the same gramicidin A channel protein as considered
in Ref. [22].

The rest of the paper is organized as follows. In Sec. II, we
briefly describe the PNPF theory. Sections III and IV present
the numerical methods proposed in this paper. Section IV
also include two algorithms with respect to the SMIB and
multiscale methods to illustrate implementation procedures
for studying two different types of ion channels. In Sec. V,
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the SMIB and SG methods are first validated by using a real
protein structure of the GA channel with a set of exact solutions
constructed for the PNP model. Both methods are shown to
achieve optimal results as analyzed in this paper. The extended
SG condition is then carefully scrutinized in discretization
and used to explain why the standard discretization method is
not feasible for the calcium channel model considered here,
especially to approximate the high energetic Ca2+ flux. PNPF
results are shown to agree with experimental I-V and I-C
data of GA and calcium channels using the two algorithms,
respectively. Some concluding remarks are made in Sec. VI.

II. POISSON-NERNST-PLANCK-FERMI MODEL

For an electrolyte in a solvent domain �s with arbitrary
K species of ions and the next species K + 1 of water,
the configurational entropy model proposed in Ref. [42] is
extended in Ref. [43] to treat all particles as hard spheres
with nonuniform sizes and to include explicitly as its last
species K + 2 the voids between all particles. Based on
the extended entropy model, the following Gibbs-Fermi free
energy functional of the system is proposed in Ref. [43]

GFermi =
∫

�s

dr
{
−εsl

2
c

2
[∇2φ(r)]2 − εs

2
|∇φ(r)|2 + ρ(r)φ(r) + g

}
(1)

g = kBT

⎛⎝K+1∑
j=1

{
Cj (r) ln[(vjCj (r)] − Cj (r)

−Cj (r) ln [vK+2CK+2(r)] − μB
i Cj (r)
kBT

}⎞⎠,

where εs = εwε0, εw is the dielectric constant of bulk water,
ε0 is the vacuum permittivity, lc is a correlation length
[49,50], φ(r) is the electrostatic potential function of spatial
variable r ∈ �s , ρ(r) = ∑K+1

j=1 qjCj (r) is the charge density,
Cj (r) is the concentration of type j particles carrying the
charge qj = zj e with valence zj and having the volume
vj = 4πa3

j /3 with radius aj , kB is the Boltzmann constant,
T is the absolute temperature, and μB

i = kBT ln (viC
B
i /�B)

is a constant chemical potential. Water is treated as polarizable
spheres with zero net charge, so zK+1 = qK+1 = 0.

The total volume V of the system consists of the volumes
of all particles and the total void volume vK+2, i.e., V =∑K+1

j=1 vjNj + vK+2, where Nj is the total number of type-j
particles. Under the bulk condition, dividing this equation by
V yields the bath void volume fraction

�B = vK+2

V
= 1 −

K+1∑
j=1

vj

Nj

V
= 1 −

K+1∑
j=1

vjC
B
j , (2)

where CB
j is the bath concentration. The void fraction function

�(r) = 1 −
K+1∑
j=1

vjCj (r) = vK+2CK+2(r) (3)

varies with concentrations Cj (r) of all particles and thus with
the distribution CK+2(r) of interstitial voids.

Minimizing the Gibbs-Fermi functional (1) with respect to
φ and Ci yields the Poisson-Fermi equation [42,45,49,50]

εs

(
l2
c∇2 − 1

)∇2φ(r) =
K∑

i=1

qiCi(r) = ρ(r) (4)

and the Fermi distribution

Ci(r) = CB
i exp[−βiφ(r) + S trc(r)], S trc(r) = ln

�(r)

�B
,

(5)

respectively, where βi = qi/(kBT ) and S trc(r) is called the
steric potential. The fourth-order PF equation reduces to the

classical Poisson-Boltzmann (PB) equation −εs∇2φ = ρ and
the Fermi distribution reduces to the Boltzmann distribution
Ci = CB

i exp (−βiφ) when lc = S trc(r) = 0. The distribution
(5) is of Fermi type since all concentration functions are
bounded above, Ci(r) < 1/vi [43], i.e., Ci(r) cannot exceed
the maximum value 1/vi for any arbitrary (or even infinite)
potential φ(r) at any location r in the domain �s .

If lc �= 0, the dielectric operator ε̂ = εs(1 − l2
c∇2) approx-

imates the permittivity of the bulk solvent and the linear
response of correlated ions [50]. The dielectric function
ε̃(r) = εw/(1 + η/ρ) is a further approximation of ε̂. It is
found by transforming (4) into two second-order PDEs [45],

PF1 : εs

(
l2
c∇2 − 1

)

(r) = ρ(r), (6)

PF2 : ∇2φ(r) = 
(r), (7)

by introducing a density-like variable 
 that yields a polariza-
tion charge density η = −εs
 − ρ of water using Maxwell’s
first equation [42]. Numerical approximation of the fourth-
order equation (4) was simplified to the standard seven-point
finite difference approximation of the second-order equations
(6) and (7) in Ref. [45]. Boundary conditions of the new
variable 
 on the solvent boundary ∂�s were derived from the
global charge neutrality condition [45]. These functions make
dielectric properties outputs in our model and calculations,
unlike in most other treatments of channels.

Including the electrostatic effect of a total of Q fixed atomic
charges qj located at rj in the biomolecular domain �m that
contains both channel protein and membrane lipids, the PF
equation (4) is written as

ε
(
l2
c∇2 − 1

)∇2φ(r) =
Q∑

j=1

qj δ(r − rj ) +
K∑

i=1

qiCi(r)

= ρ(r), ∀r ∈ �, (8)

where � = �s ∪ �m and δ(r − rj ) is the δ function. Note
that ε = εmε0, lc = 0, ρ(r) = ∑Q

j=1 qj δ(r − rj ) in �m and

ε = εsε0, lc �= 0, ρ(r) = ∑K
i=1 qiCi(r) in �s , where εm is
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the dielectric constant of biomolecules. As mentioned above,
numerical implementation of Eq. (8) [or Eqs. (6) and (7)] is
complicated by the complex molecular surface ∂�m in real
protein structures on which suitable interface conditions for
the unknown functions 
(r) and φ(r) should be properly
imposed [45]. The approximation of interface conditions is
not straightforward [22,44,45] and can be made much worse
by geometric singularities of ∂�m if the singularities are not
properly treated. It was shown in Ref. [51] that the standard,
second-order finite difference method is degraded to only
O(h0.37) by this kind of singularities, where h is the mesh
size of grid points.

For nonequilibrium systems, the classical Poisson-Nernst-
Planck model [52–54] can then be generalized to the Poisson-
Nernst-Planck-Fermi model by coupling the flux density
equation (in steady state)

−∇ · Ji(r) = 0, r ∈ �s (9)

of each particle species i = 1, . . . ,K + 1 (including water) to
the PF equation (8), where the flux density is defined as

Ji(r) = −Di[∇Ci(r) + βiCi(r)∇φ(r) − Ci(r)∇S trc(r)]

(10)

and Di is the diffusion coefficient. The flux equation (9) is
called the Nernst-Planck-Fermi equation because the Fermi
steric potential S trc(r) is introduced to the classical NP equa-
tion. The NPF equation (9) reduces to the Fermi distribution
(5) at equilibrium [43].

The gradient of the steric potential ∇S trc in (10) represents
an entropic force of vacancies exerted on particles. The
negative sign in −Ci∇S trc means that the steric force ∇S trc

is in the opposite direction to the “diffusional” force ∇Ci ,
i.e., the larger S trc = ln �(r)

�B (meaning more space available to
the particle as implied by the numerator) at r in comparison
with that of neighboring locations, the more the entropic force
pushes the particle to the location r. The entropic force is
simply opposite to the diffusional force ∇Ci that pushes the
particle away from r if the concentration is larger at r than
that of neighboring locations. Moreover, the Nernst-Einstein
relationship [46] implies that the steric flux DiCi∇S trc is
greater if the particle is more mobile. Therefore, the gradients
of electric and steric potentials (∇φ and ∇S trc) describe the
charge or space competition mechanism of particles in a
crowded region within a mean-field framework [43]. For more
physical and mathematical details about the PNPF theory, we
refer to Ref. [43].

III. A GENERALIZED SCHARFETTER-GUMMEL
METHOD

We use the standard seven-point finite-difference (FD)
scheme in 3D [45] to discretize the PNPF model. For ease
of notation, we omit the subscript i in (9) when no confusion
should arise. For conciseness, the FD discretization is simpli-
fied to 1D in the following discussions as the corresponding
3D case follows obviously in a similar way. Furthermore, we
only provide the FD formula for the flux equation (9) as the FD
formulas with the SMIB method across the molecular surface
∂�m for Eqs. (6) and (7) have been given in Ref. [45], i.e., we

consider

dJ (x)

dx
= d

dx

{
−D(x)

[
dC(x)

dx
+ βC(x)

dφ(x)

dx

−C(x)
dS trc(x)

dx

]}
= 0. (11)

The primitive FD approximation of (11) is

ai−1Ci−1 + aiCi + ai+1Ci+1

x2
= 0, (12)

where x = xi+1 − xi = h is the mesh size of a uniform
grid on the x axis in the domain, Ci ≈ C(xi) is the unknown
approximation of the concentration function C(x) at any grid
point xi , and the coefficients are given as

ai−1 = Di− 1
2

[
1 − βφi−1/2 + S trc

i−1

/
2
]

ai = ai−1 + ai+1 − 2
(
Di− 1

2
+ Di+ 1

2

)
(13)

ai+1 = Di+ 1
2

[
1 + βφi/2 − S trc

i

/
2
]
,

where φi−1 = φi − φi−1, φi ≈ φ(xi), xi+ 1
2

= (xi+1 + xi)/2,
etc. The diffusion coefficient function D(x) is equal to a
constant DB in the bath and to a reduced constant θDB in
the channel pore with 0 < θ < 1. The function D(x) along the
channel axis is constructed by using the interpolation method
presented in Ref. [22] for connecting the bath value DB and the
pore value θD B such that D(x) is a continuously differentiable
function. The factor θ is the only tuning parameter in the PNPF
model to fit experimental data [15,22,28,35,36,40,55,56]. We
shall investigate the magnitude of θ for GA channel and
compare it with those obtained by MD and BD simulations.
The comparison is used to verify the correlation and steric
effects considered in PNPF.

At any two adjacent grid points xi and xi+1, the FD
approximation of the zero flux [J (x) = 0] is

Ci+1 − Ci

x
= Ci+1 + Ci

2

(
−β

φi

x
+ S trc

i

x

)
, (14)

which implies that we may obtain the inequality

Ci+1 − Ci > Ci+1 + Ci (15)

and thereby a negative (unphysical) concentration Ci < 0 at
xi if

1
2

(−βφi + S trc
i

)
> 1. (16)

Without the steric term S trc, this inequality is the well-
known Scharfetter-Gummel stability condition in semiconduc-
tor device simulations [2,7],

− φi = −(φi+1 − φi) � 2

β
= 2kBT

q
(for β > 0), (17)

required to ensure that the FD equation (12) does not produce
unphysical approximations. Note that q = 2e for Ca2+ yields
an upper bound kBT /e in (17), which is half of that for Na+

and means that if the potential difference −φi between two
adjacent points is greater than kBT /e ≈ 25.7 mV at room
temperature, the resulting approximation of the Ca2+ flux
JCa2+ in (9) may be completely unphysical, although the same
discretization of the Na+ flux JNa+ may still be feasible. In
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other words, the FD formula (12) is more unstable for Ca2+

than for Na+. In fact, if the SG condition is violated, Newton’s
iteration for solving the coupled PNP system of nonlinear
algebraic equations is generally divergent. Of course, we could
reduce the mesh size x so the difference −φi is small
enough to satisfy (17) at all grid points i. This would, however,
incur larger algebraic systems (and thus larger conditioning
numbers of the system) for which the computational cost
would be more expensive. Even using adaptive meshes that
efficiently resolve internal or boundary layer regions where
−φi varies sharply, the primitive approximation (12) would
still diverge or show extremely slow convergence if the layer
thickness is very small [16,18,19].

The convergence and stability issues are further compli-
cated by the steric potential S trc in ion channel simulations if
it is added to the FD flux equation (12) as given in (13). From
(16), we obtain a new SG condition for ion channels

− βφi + S trc
i � 2 (18)

that will be a focal point in our numerical investigations in
Sec. V.

A. Stabilization

To stabilize (12), we extend the classical Scharfetter-
Gummel approximation [2] of the flux J (x) to include the
steric potential such that

Ji+ 1
2

= − D

x
[B(−ti)Ci+1 − B(ti)Ci], (19)

where ti = βφi − S trc
i and B(t) = t

et−1 is the Bernoulli
function [7]. Equation (19) is an exponential fitting scheme
for the concentration function C(x) between the mesh points
xi and xi+1 and is derived from the assumption that the flux J ,
the local electric field −dφ

dx
, and the local steric field dStrc

dx
are

all constant in this subinterval, i.e.,

J

D
= −dC(x)

dx
− kC(x), for all x ∈ (xi , xi+1), (20)

where k = β
dφ

dx
− dStrc

dx
. Solving this ordinary differential

equation (ODE) with a boundary condition Ci or Ci+1 yields
the well-known Goldman-Hodgkin-Katz flux equation in ion
channels [46], which is exactly the same as that in (19).

The generalized Scharfetter-Gummel method for (11) is
thus

dJ (xi)

dx
≈

Ji+ 1
2
− Ji− 1

2

x
= ai−1Ci−1 + aiCi + ai+1Ci+1

x2
= 0

Ji− 1
2

= −D

x
[B(−ti−1)Ci − B(ti−1)Ci−1]

Ji+ 1
2

= −D

x
[B(−ti)Ci+1 − B(ti)Ci] (21)

ti = βφi − S trc
i , B(t) = t

et − 1
ai−1 = −B(ti−1), ai = B(−ti−1) + B(ti),

ai+1 = −B(−ti).

The SG method is optimal in the sense that it integrates the
ODE (20) exactly at every grid point with a suitable boundary

condition [5]. Therefore, the SG method can resolve sharp
layers very accurately [5] and hence needs few grid points
to obtain tolerable approximations when compared with the
primitive FD method. Moreover, the exact solution of (20)
for the concentration function C(x) yields an exact flux J (x).
Consequently, the SG method is current preserving, which
is particularly important in nonequilibrium systems, where
the current is possibly the most relevant physical property of
interest [10].

It is difficult to overstate the importance of the current
preserving feature and it must be emphasized for workers
coming from fluid mechanics that preserving current has a
significance quite beyond the preserving of flux in uncharged
systems. The electric field is so strong that the tiniest error in
preserving current, i.e., the tiniest deviation from Maxwell’s
equations, produces huge effects. The third paragraph of
Feynman’s lectures on electrodynamics makes this point
unforgettable [57]. Thus, the consequences of a seemingly
small error in preserving the flow of charge are dramatically
larger than the consequences of the same error in preserving
the flux of mass.

IV. SMIB-SG AND MULTISCALE METHODS

To test the PNPF theory and verify the numerical methods
developed in this paper, we consider the GA channel with
a real protein structure and a simplified molecular model of
L-type calcium channels. The main difference between these
two channels is that the GA channel has a more rigid and less
negatively charged pore with about 2 Å in radius, whereas the
Ca2+ channel has a flexible and higher negatively charged
binding site with radius varying from 1 Å to 2.5 Å. The
GA channel is also much longer (22 Å, see below) than the
selectivity filter of the L type calcium channel (10 Å [58]).
Consequently, the GA channel is only cation selective, whereas
the Ca2+ channel is exquisitely Ca2+ selective. The steric
potential is a key component of PNPF to properly describe this
important difference in selectivity along with the size effect
of water (1.4 Å in radius). We use two different treatments of
water that yield two different steric potentials and size effects.

A. The SMIB-SG method for the gramicidin A channel

Figure 1(a) is a top view of the GA channel downloaded
from the Protein Data Bank [59]. A 2D cross section of the 3D
simulation domain of the channel embedded in a membrane
is sketched in Fig. 1(b), where the biomolecular domain �m

is composed of the channel protein and the membrane and the
solvent domain �s consists of extracellular (upper), channel
pore (central), and intracellular (lower) regions. Particle
species are indexed by 1, 2, and 3, for K+, Cl−, and H2O with
radii a1 = aK+ , a2 = aCl− , and a3 = aH2O given in Table I.

The SMIB method is an advanced method to treat singular-
ities of protein charges and molecular surfaces [22,44,45]. In
SMIB, the electric potential generated by the protein charges
[qj δ(r − rj ) in (8)] is modeled as a sum of an analytical Green
function φ∗ in infinite space and the Laplace potential φ0

in the biomolecular domain �m with boundary values of φ∗
on ∂�m. The combined potential then defines an electric field
−∇(φ∗ + φ0) that acts on ions and water in the solvent domain
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FIG. 1. (Color online) (a) Top view of the gramicidin A channel.
(b) A cross section of 3D simulation domain for the GA channel. The
channel is placed in a cubic box with the length of each side being 40
Å and the thickness of the membrane being 24 Å.

�s from the molecular surface ∂�m. The total potential φ

of all charged objects (ions, atomic charges, and polarized
water) is then calculated by solving Eqs. (6) and (7) with the
SMIB method for Eq. (7) across the interface ∂�m of dielectric
solvent �s and molecular �m domains.

The molecular surface ∂�m as depicted in Fig. 1(a) is
generated by rolling a probe ball (water molecule) with radius
1.4 Å over a total of 554 spherical atoms in the GA protein [60].
In SMIB, the molecular surface is not fixed and is adaptively
determined by the grid size so the interface point is always in
the middle of neighboring grid points. The resulting surface is
thus free of geometric singularities. We refer to Ref. [45] for
more details about the SMIB and surface generation methods.

The NP equation (9) is then solved by the SG method for
each particle species i once φ is known. An iterative process of
solving PF1 (6), PF2 (7), and NP equations is repeated again
until convergent approximations of φ(r) and Ci(r) are found
at all grid points. As noted above, convergence of this kind
of iterative process is in general not guaranteed and must be
checked at all grid points. We propose the following nonlinear

iteration algorithm for the PNPF system (6), (7), and (9) using
SMIB and SG methods:

Nonlinear Iteration Algorithm 1:
(1) Solve the Laplace equation −∇2φ0(r) = 0 in �m

for the potential φ0(r) once for all with φ0(r) = φ∗(r) =∑Q
j=1 qj/(4πεmε0|r − rj |) on ∂�m.
(2) Solve the Poisson equation −∇ · [ε∇φ(r)] = 0 in �

at equilibrium for the initial potential φOld(r) with φOld = 0
on ∂� and the jump condition [ε∇φOld · n] = −εmε0∇(φ∗ +
φ0) · n on ∂�m, where [u] denotes the jump function across
∂�m [45].

(3) Solve the PF1 εs(l2
c∇2 − 1)
(r) = ∑K

i=1 qiC
Old
i (r)

in �s for 
New(r) with ∇
 New · n = 0 on ∂�m,

New = 0 on ∂�, and the Fermi distribution COld

i [r) =
CB

i exp (−βiφ
Old(r) + S trc(r)], S trc(r) = ln �Old(r)

�B , �(r) = 1 −∑K+1
j=1 vjC

Old
j (r).

(4) Solve the linearized PF2 −∇ · [ε∇φ(r)] +
ρ ′(φOld)φ(r) = −ε
New + ρ ′(φOld)φOld at equilibrium
for the next potential φNew(r) with the same jump
and boundary conditions in Step 2. Here ρ ′(φ)
denotes the derivative of the charge density functional
ρ(φ) = ∑K

i=1 qiC
B
i exp (−βiφ + S trc) in �s with respect to φ.

(5) Assign φOld = ωPFφ
Old + (1 − ωPF)φNew with a suit-

able relaxation parameter ωPF and go to Step 3 if the error
‖φNew − φOld‖∞ in the infinity norm is larger than a preset
tolerance, else go to Step 6.

(6) Solve the steady-state NP equation
−∇ · Ji(r) = 0 in �s at nonequilibrium for
CNew

i (r) and all i = 1, . . . ,K + 1 with Ji(r) =
−Di[∇Ci(r) + βiCi(r)∇φOld(r) − Ci(r)∇S trc(r)],
S trc(r) = ln �Old(r)

�B , CNew
i (r) = 0 on ∂�, and Ji(r) · n = 0 on

∂�m.
(7) Solve the PF1 for 
New as in Step 3 with CNew

i in place
of COld

i .
(8) Solve the PF2 −∇ · [ε∇φ(r)] = −ε
New (without

linearization) at nonequilibrium for φNew.
(9) Assign φOld = ωPNPFφ

Old + (1 − ωPNPF)φNew with a
suitable relaxation parameter ωPNPF and go to Step 6 if

TABLE I. Notations and physical constants.

Symbol Meaning Value Unit

kB Boltzmann constant 1.38 × 10−23 J/K
T Temperature 298.15 K
e Proton charge 1.602 × 10−19 C
ε0 Permittivity of vacuum 8.85 × 10−14 F/cm
εw Water dielectric constant 80 or 78.5
εm Protein dielectric constant 2
ε̂ = εs(1 − l2

c ∇2) Dielectric operator, εs = εwε0 In Eq. (6) F/cm
ε̃(r) ≈ ε̂ Dielectric function In Eqs. (6), (31)
aNa+ , aCa2+ Particle radii 0.95, 0.99 Å
aK+ , aCl− , aH2O Particle radii 1.33, 1.81, 1.4 Å
lc Correlation length 1.2aK+ or 2aCa2+ Å
DB

K+ K+ diffusion coefficient 1.96 × 10−5 cm2/s
DB

Na+ Na + diffusion coefficient 1.334 × 10−5 cm2/s
DB

Ca2+ Ca2+ diffusion coefficient 0.792 × 10−5 cm2/s
DB

Cl− Cl− diffusion coefficient 2.032 × 10−5 cm2/s
DB

H2O H2O diffusion coefficient 2.3 × 10−5 cm2/s
Vi,o Inside (outside) voltage V
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‖φNew − φOld‖∞ is larger than a preset error tolerance, else
stop.

This is an SOR-like iteration algorithm modified from
that in Ref. [22]. The modifications include the additional
solution processes at equilibrium in Steps 2, 3, and 4; the
extra PF1 in Steps 3 and 7; Newton’s linearization for PF2
in Step 4; two relaxation parameters ωPF and ωPNPF in Step
5 and 9 with 0 < ωPF, ωPNPF < 1 (under relaxation); and the
extra water NP equation −∇ · JK+1(r) = 0 in Step 6. The
stability and convergence rate are controlled by these two
parameters. If the parameter is close to zero, we will have
more stable iteration but slower convergence. The correlation
length lc and the Fermi distribution (or the steric potential S trc)
in Step 3 signify the difference between the classical PNP
and advanced PNPF models. The stability and convergence
are further complicated by these two physical properties for
which a continuation method may be needed by introducing
two stepping parameters λc and λS such that λclc and λSS

trc are
gradually increased from λc = λS = 0 to λc = λS = 1 [45].

The water NP equation is not considered in previous PNP
models and plays an essential role not only for numerical
stability but also for physical validity because the void
volume fraction �(r) = 1 − ∑K+1

j=1 vjCj (r) in Step 3 at any
location r in the solvent domain �s needs to be carefully
checked in each iteration. Numerical errors in approximating
the concentration functions Cj (r) for any particle species
j = 1, . . . ,K + 1 could easily lead to an unphysical void
fraction �(r) < 0 at some r. Water molecules automatically
adjust themselves in the PNPF model and move together
with all ions in the system as the above iteration process
converges to a stable and correct state, although the net
water flow through the channel may be zero. Moreover, the
water NP equation also dynamically determines the variable
permittivity ε̃(r)ε0 = εs/[1 + η(r)/ρ(r)] from the bath to the
pore and thus automatically adjusts dielectric forces on ions
along the channel pathway. These dielectric forces can have a
decisive effect on biologically important conductance [61] and
on selectivity. For example, Na+ versus K+ selectivity in Na+

channels is only found when the dielectric function is handled
in more detail [62,63].

However, this SMIB-SG method and previous PNP meth-
ods suffer from a major difficulty in ion channel simulations.
Those methods have difficulty in dealing with the essential
property of selectivity, which of course differs in different
types of channels with different structures. The L-type calcium
channel selects Ca2+ over Na+ of similar size and a potassium
channel selects K+ over Na+ of the same charge. The following
method is proposed to overcome this difficulty.

B. A multiscale method for calcium channel

Calcium channels have not yet been crystallized and so
we use the Lipkind-Fozzard molecular model [64] of L-type
calcium channels in which the EEEE locus (four glutamate
side chains modeled by 8 O1/2− ions) forms a high-affinity
Ca2+ binding site that is essential to Ca2+ selectivity, blockage,
and permeation. Figure 2(a) illustrates the binding site and the
EEEE locus, where three Ca2+ are shown in violet, eight O1/2−
in red, two H2O in white and red. Figure 2(b) is a cross section
of a simplified 3D channel geometry for the present work,

where the central circle denotes the binding site, the other
four circles denote the side view of 8 O1/2− ions, �s is the
solvent domain consisting of two baths and the channel pore
including the binding domain �Bind, �m is the biomolecular
domain with the boundary ∂�m, and ∂� is the outside and
inside bath boundary. Figure 3 is a sketch of the binding site
and O1/2− ions, where dCa

O is the distance between the center
of a binding Ca2+ ion and the center cj of any O1/2−, and
A is any point on the surface of the site. In our model, the 8
O1/2− ions are not contained in the solvent domain �s . Particle
species are indexed by 1, 2, 3, and 4 for Na+, Ca2+, Cl−, and
H2O, respectively.

In Ref. [65], we proposed an algebraic model for calculating
the electrical potential φb and the steric potential S

trc
b in �Bind

by using Coulomb’s law with the atomic structure of binding
ion and atoms in a channel protein as shown in Fig. 3, without
solving the Poisson-Fermi equation (8) in �Bind. The volume
of �Bind is an unknown variable vb that changes with different
charges in the binding site. The algebraic model [65] defined
in �Bind consists of the following equations:

Ob
1 = vbC

B
1 exp

(−β1φb + S
trc
b

)
Ob

2 = vbC
B
2 exp

(−β2φb + S
trc
b

)
(22)

Ob
4 = vbC

B
4 exp

(
S

trc
b

)
,

S
trc
b = ln

vb − v1O
b
1 − v2O

b
2 − v4O

b
4

vb�B
, (23)

e

4πε0

⎛⎝ 8∑
j=1

zO1/2−

|cj − A| + Ob
1 zNa+

aNa+
+ Ob

2 zCa2+

aCa2+

⎞⎠ = φb, (24)

where Ob
1 , Ob

2 , and Ob
4 denote the occupancy numbers of Na+,

Ca2+, and H2O in vb, respectively; φb and S
trc
b are average

electrical and steric potentials; and |cj − A| is the distance
between A and cj in Fig. 3.

In this mean field, we allow Ob
1 and Ob

2 (and hence the total
charge Ob

1 ezNa+ + Ob
2 ezCa2+) to vary continuously subject

to the condition on their sum Ob
1 + Ob

2 = 1 in the binding
volume vb. Equations (22) and (23) uniquely determine the
four unknowns vb, Ob

4 , φb, and S
trc
b with Ob

1 and Ob
2 being

given. Equation (24) uniquely determines the locations (cj )
of 8 O1/2− ions (and thus the binding distance dCa

O or dNa
O in

Fig. 3) once φb is obtained. Note that the binding distance

d
Ob

1 Na+Ob
2 Ca

O (or cj ) changes continuously with varying Ob
1 and

Ob
2 but φb remains fixed, where the binding ion Ob

1 Na + Ob
2 Ca

is a linear combination of Na+ and Ca2+. Therefore, O1/2−
ions are movable—the protein is flexible in our model—as
their locations cj changes with varying Ob

1 and Ob
2 .

For the half-blockage experimental condition [66]

CB
Na+ = CB

1 = 32 mM, CB

Ca2+ = CB
2 = 0.9 μM,︸ ︷︷ ︸

Experimental data

(25)

we follow convention and assume relative occupancies of a
filled channel, Ob

1 = 0.5 and Ob
2 = 0.5, and thereby obtain

φb = −10.48 kBT /e, S
trc
b = −1.83, and vb = 4.56 Å

3
[65].

The binding experiments [66] used a fixed CB
Na+=CB

1 =32 mM
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FIG. 2. (Color online) (a) The Lipkind-Fozzard pore model, where three Ca2+ are shown in violet, eight O1/2− in red, two H2O in white
and red. Reprinted with permission from [G. M. Lipkind and H. A. Fozzard, Biochem. 40, 6786 (2001)]. Copyright (2001) American Chemical
Society. (b) A simplified Ca channel geometry in a cubic box with baths, pore, and binding site. The solvent region �s consists of two baths and
the channel pore. The binding site �Bind is contained in �s but the O1/2− ions are not in �s . The outside and inside bath boundary is denoted
by ∂�.

and various Ca2+ bath concentrations CB

Ca2+ = CB
2 that imply

different Ob
1 and Ob

2 of Na+ and Ca2+ occupying the binding
site. The occupancy numbers Ob

1 and Ob
2 are determined by

Ob
1

Ob
2

= 1 − Ob
2

Ob
2

= exp[−(β1 − β2)φb]
CB

1

CB
2

, (26)

where φb was just obtained from the case of equal occupancy.
The occupancy ratio in (26) thus deviates from unity as CB

2 is
varied along the horizontal axis of the binding curve from its
midpoint value CB

2 = 0.9 μM as shown in Fig. 5 in Ref. [65].
For nonequilibrium cases, the binding steric potential

S
trc
b is assigned its equilibrium value in subsequent PNPF

calculations, i.e., the void fraction �(r) in �Bind is assumed to
remain unchanged from equilibrium to nonequilibrium. The
electrical potential φb will be modified by the membrane
potential Vi − Vo [14] and then used as a Dirichlet type
condition for the potential function φ(r) in �Bind. For this
multiscale method, the boundary conditions for the PF (8) and

FIG. 3. The binding distance between the center of the binding
Ca2+ ion and the center cj of the j th O1/2− ion is denoted by dCa

O for
j = 1, . . . ,8. A is any point on the surface of the binding ion.

NP (9) equations are

φ(r) = φ̃b(r) in �Bind, φ(r) = Vo,i on ∂�,

Ci(r) = CB
i on ∂�, i = 1,2,3,4, (27)

Ji(r) · n = 0 on ∂�m.

Note that the electrostatic potential φ(r) is prescribed as a
Dirichlet function φ̃b(r) whose spatial average in �Bind is the
constant φb . However, the binding domain �Bind is treated
as an interior domain instead of boundary domain for the NP
equation (9).

If a condition on the boundary is used to solve the Poisson
(or PF) equation as in Algorithm 1, the resulting steric potential
S

trc
b [as an output of φ(r) by (5)] may be incorrect in �Bind

because the atomic equations (23) and (24) are not used. We
do not have any differential equation for the steric function
S trc(r) for which appropriate boundary conditions near �Bind

can be imposed if a conventional method is used.
The methods proposed in this paper are still coarse approx-

imations to ion transport as the PNPF theory is in its early
development. Nevertheless, the theory provides many atomic
properties such as (23) and (24) that have been shown to be
important for studying the binding mechanism in CaV channels
[65] and are also important for the transport mechanism as
shown in the next section. Incorporating atomic properties into
continuum models is a step forward to improve and refine the
continuum theory. We refer to Refs. [43,65] for more details
of the algebraic model and its extension to PNPF.

We summarize the PNPF solution process using the
multiscale method as follows.

Nonlinear Iteration Algorithm 2:
(1) Solve (23) and (24) for φb and S

trc
b in the binding site

�Bind with the experimental data (25).

(2) Choose any linear interpolation φ
Old

(an initial guess
potential profile) that links the binding potential φA to the zero
potential at each bath boundary for the potential function φ(r).
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(3) Solve the PB equation −∇ · [ε∇φ(r)] = ρ(φ
Old

) =∑K
i=1 qiC

Old
i at equilibrium for φOld with the Boltzmann

distribution C
Old
i = CB

i exp (−βiφ
Old

). Compute the initial
concentrations COld

i = CB
i exp (−βiφ

Old).
(4) Solve the PF1 εs(l2

c∇2 − 1)
(r) = ∑K
i=1 qiC

Old
i (r) in

�s for 
New(r) with the same conditions as in Algorithm 1.
(5) Solve the linearized PF2 −∇ · [ε∇φ(r)] +

ρ ′(φOld)φ(r) = −ε
New + ρ ′(φOld)φOld in �s at
nonequilibrium for φNew with the conditions in (27).

(6) Solve the NP equation −∇ · Ji(r) = 0 in �s at nonequi-
librium for CNew

i (r) and all i = 1, . . . ,K + 1 with the same
conditions as in Algorithm 1.

(7) Go to Step 4 if ‖φNew − φOld‖∞ or ‖CNew
i − COld

i ‖∞ is
larger than a preset error tolerance, else stop.

We do not need to solve the Poisson equation in the
biomolecular domain �m that contains the singular charges
of 8 O1/2−, since the effect of these charges on potentials
has been included in the integral constraint we apply to the
binding potential φb in (24). Consequently, we do not have
to deal with the δ function in (8) and the potential jump
conditions on ∂�m as used in Algorithm 1. The absence of
jump conditions makes the approximation of PF1 and PF2
more accurate since numerical methods for handling the jump
conditions across molecular surfaces with singular cusps are
subtle, complex, and thus prone to error [44,45]. Moreover, the
SOR-like scheme is not needed for this iteration. Application
of the multiscale method to the sodium-calcium (Na+-Ca2+)
exchanger (NCX) structure [67] is briefly discussed in
Ref. [65]. It will be interesting to apply the method to
the celebrated KcsA potassium channel [68] and to recent
structures of TRPV1 [69] and CaV Ab channels [70].

V. NUMERICAL RESULTS

The main purpose of this work is to present numerical
methods that are suitable for continuum simulations of ion
transport in different types of biological ion channels with
particular interests in treating the excluded volume effect of
all particles and the dynamical effect of water molecules.
Numerical methods are validated for accuracy with exact
solutions of the PNP model for the GA channel. Numerical
results of the PNPF model for both GA and calcium channels
are all verified with experimental data.

A. Gramicidin A channel

The Scharfetter-Gummel method (21) is first validated with
the following exact solutions for the PNP model [22]:

φ(r) =
{

cos x cos y cos z, r = (x,y,z) ∈ �m,

cos x cos y cos z, r ∈ �s ,
(28)

TABLE II. Errors in L∞ norm by FD.

h (Å) P Ord NP1 Ord NP2 Ord

1.00 0.0927 0.0505 0.0211
0.50 0.0245 1.91 0.0076 2.73 0.0042 2.33
0.25 0.0060 2.03 0.0019 2.00 0.0010 2.07

C1(r) =
{

0 in �m,

0.2 cos x cos y cos z + 0.3 in �s ,
(29)

C2(r) =
{

0 in �m,

0.1 cos x cos y cos z + 0.3 in �s.
(30)

Note that the right-hand side of the Poisson equation in
Algorithm 1 is not zero as the exact solution (28) has been
imposed and the Green function φ∗(r) = ∑Q

j=1 qj/(4πεm

|r − rj |) is only used in the jump condition on the molecular
surface ∂�m, where the coordinates rj of the atoms in the GA
channel protein are provided in the Protein Data Bank [59], the
protein charge qj and the radius of each atom j are obtained by
the PDB2PQR software [71], and the total number of atoms is
Q = 554. The optimal convergence (second) order, i.e., O(h2),
of the SMIB method for the nonlinear Poisson-Boltzmann
equation has been confirmed in [45]. The need for such
validation has been pointed out before [72]. It is easy to mistake
convergence for accuracy in systems of PNP-like equations
[13].

For a full nonlinear PNP system (without steric, correlation,
and water NP effects) using Algorithm 1, Table II shows
that the optimal convergence order has been achieved for
all PNP equations as well by using the SMIB method for
the Poisson equation and the primitive FD method (12) for
the NP equations in the nonlinear iteration process. In the
table, errors are measured in the L∞ norm. For example,
0.0927 = maxijk |φ(xi,yj ,zk) − φijk|, where φijk is the FD
approximation of the Poisson equation and φ(xi,yj ,zk) is the
exact value evaluated by (28) at the grid point (xi,yj ,zk) with
the mesh size h = 1 Å. The error tolerance for both linear
solver and nonlinear iteration was set to 10−6. All errors and
orders (Ord) of convergence in Table II are similar to those
in Ref. [22], showing that the SMIB method in Ref. [45] is
comparable to the original MIB [22].

When the primitive FD method is replaced by the SG
method (21) for NP equations, it is surprising that the preset
error tolerance 10−6 was satisfied by all SG approximations
φijk , C

ijk

1 , and C
ijk

2 at all grid points for all mesh sizes as
shown in Table III. Errors in Table III are much smaller than
those in Table II. This demonstrates that the SG is an optimal
(exponential fitting) method to discretize the NP equation as
implied by the exact analysis of the ODE (20), since all solution
functions in (28)–(30) are very smooth so the assumptions
made in (20) are valid. It only took two nonlinear iterations and
about 1 h and 8 min on a laptop computer with a 2.6-GHz Intel
CPU to reach the error tolerance for the case of h = 0.25 Å.
The corresponding matrix size is about 4.2 million. The
maximum potential difference φi between any two adjacent
grid points for the most coarse case (h = 1 Å) is −1.045 (not
shown), which satisfies the SG condition (18). This illustrates

TABLE III. Errors by SG.

h (Å) P NP1 NP2

1.00 10−6 10−6 10−6

0.50 10−6 10−6 10−6

0.25 10−6 10−6 10−6

012711-9



JINN-LIANG LIU AND BOB EISENBERG PHYSICAL REVIEW E 92, 012711 (2015)

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

Membrane Potential (mV)

S
in

gl
e 

C
ha

nn
el

 C
ur

re
nt

 (
pA

)

 

 

2.0 M (PNPF)
1.0 M
0.5 M
0.2 M
0.1 M
2.0 M (Experiment)
1.0 M
0.5 M
0.2 M
0.1 M

FIG. 4. (Color online) A comparison of PNPF (lines) and ex-
perimental [73] (symbols) I-V results with bath K+ and Cl−

concentrations CB = 0.1, 0.2, 0.5, 1, 2 M and membrane potentials
V = 0, 50, 100, 150, 200 mV.

why the convergence has been achieved by the primitive FD
without SG as shown in Table II.

We now study full PNPF (with steric, correlation, and water
NP effects) simulations of the GA channel using the SMIB
and SG methods. Figure 4 is a comparison of the I-V curves
obtained by PNPF (lines) and the experimental data (symbols)
from Cole et al. [73] with bath K+ and Cl− concentrations
CB = 0.1, 0.2, 0.5, 1, and 2 M and membrane potentials
V = Vi − Vo = 0, 50, 100, 150, and 200 mV. The PNPF
currents in pico ampere (pA) were obtained with only one
adjustable parameter, namely the reduction parameter θ in the
pore diffusion coefficients θDB

i for all particle species, while
all physical parameters in Table I were kept fixed throughout
simulations. This kind of reduction parameter has been used
in all previous PNP papers and is necessary in continuum
simulations when compared with MD, BD, or experimental
data because there is abundant qualitative evidence that the
diffusion coefficient in channels is much smaller than in
bulk, but quantitative estimates are not available, as well
described by Gillespie in Ref. [56], including the Appendix
and supporting material. In principle, all experimental data can
be fitted by adjusting this parameter. For the PNPF currents at
all CB and V in Fig. 4, we chose θ = 1/4.7, which agrees
with the range 1/3 to 1/10 obtained by many MD simulations
of various channel models [24,74,75], indicating that the steric,
correlation, and water NP properties have made PNPF more
realistic and closer to MD simulations than previous PNP
simulations for which the parameter θ differs from MD values
by an order to several orders of magnitude [24].

Furthermore, PNPF can also provide more physical proper-
ties that have not been observed by previous PNP models such
as the variation of electric permittivity [dielectric function ε̃(r)
in Fig. 5] and water density [CH2O(r) in Fig. 6] from bath
to channel pore. Together with the electric [φ(r) in Fig. 8]
and steric [S trc(r) in Fig. 8] potentials, K+ ions (in Fig. 9)
are subject not only to the electric field −∇φ(r) but also to
the steric (entropic) field ∇S trc(r) as described in Eq. (10).
These fields change with the variations of water density, other
ion concentrations, voids �(r), and dielectric function ε̃(r) at
any location r in the solvent domain �s . For example, the
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FIG. 5. (Color online) The averaged dielectric function ε̃(r) pro-
files at each cross section along the pore axis with CB = 0.1, 0.2, 0.5,
1, 2 M, and V = 200 mV. Figures 5.3–5.6 are obtained with the
same averaging method, CB , and V .

magnitude of electric fields modified by the dielectric function
ε̃(r) can be as large as (80–50)/80 = 37.5% of that by the
constant permittivity 80ε0 for the bath condition CB = 2 M
with the membrane potential 200 mV as shown in Fig. 5. The
dielectric function in ε̃(r)ε0 was calculated by

ε̃(r) = εm + CH2O(r)(εw − εm)/CB
H2O (31)

using the water density function CH2O(r) as proposed in
Ref. [76]. The protein is most negatively charged around
z = 13 Å, where the pore is very narrow (about 1.6 Å in
radius) so it is most crowded [most negative S trc(r) = ln �(r)

�B

in Fig. 8] there. The size effect of all particle species is clearly
manifested by the steric function S trc(r) in PNPF. These results
provide one of the most comprehensive simulations on ion
transport in real proteins using continuum models of which
we know.

The incompressibility of water and the mass conservation
are important physical properties that can be used to further
verify continuum results. MD simulations have shown that the
GA channel can be occupied by two K+ ions at moderately
high concentration [77,78]. In Fig. 10(a), we observe that a
total of eight particles (water molecules plus K+ ions) in the
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FIG. 6. (Color online) The averaged water density CH2O(r)
profiles.
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FIG. 7. (Color online) The averaged electric potential φ(r)
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channel pore is conserved by PNPF but not by PNP as [KCl]
increases from 0 to 2 M. The pore volume is determined by
a length of 22 Å (from 11 to 33 Å in the channel axis in
Fig. 9) and radii varying from 1.466 to 2.343 Å along
the axis (not shown). The PNPF water density profiles in
Fig. 6 show that water molecules adjust their configurations
self-consistently to accommodate K+ ions (Fig. 9) in the
two binding sites near the mouths of the channel as [KCl]
increases. The complementary profiles of water and K+ in
Figs. 6 and 9 illustrate a continuum picture of six water
molecules separating two K+ ions in single file [78]. Figures
10(a) and 10(b) also illustrate the saturation of ions and
currents, respectively, as [KCl] increases. Note that PNP
yields fewer K+ ions (and hence currents) since the constant
permittivity ε = εwε0 in Eq. (8) for PNP (with lc = 0) is
larger than the variable permittivity ε̃(r)ε0 obtained by Eq. (31)
for PNPF (with lc �= 0) as shown in Fig. 5, i.e., larger ε results
in smaller charge density ρ (fewer ions) for the same φ.

Therefore, the mass conservation and saturation results in
Fig. 10 and the PNPF current results in Fig. 4 with the MD com-
patible parameter θ = 1/4.7 support the approximation for-
mula (31) for calculating the variable ε̃(r). We emphasize that
in our treatment, unlike most treatments of channels, dielectric
and polarization effects are operators that are outputs of the
calculations. They are not assumed as constants. The polariza-
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FIG. 8. (Color online) The averaged steric potential S trc(r)
profiles.
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FIG. 9. (Color online) The averaged K+ concentration CK+ (r)
profiles.

tion effects of water are actually approximated by the dielectric
operator ε̂ = εs(1 − l2

c∇2) in Eq. (8) not by ε̃(r). Obviously,
the polarization effects (or, equivalently, the correlation effects
of ions in PNPF) play a crucial role in very narrow channels
that are more challenging to describe by classical PNP models
or even by all-atom MD simulations as the current MD force
fields do not include the electronic polarization effects [79,80].
Of course, the single-file picture by PNPF is still far from that
by MD [78] due to inevitable averaging effects of numerous
atoms in the system. On the other hand, PNPF allows the flows
essential to biological function and deals with macroscopic
concentrations and activities of ions in mixtures in which life
occurs. MD is not yet able to deal with these features of real
biological systems.

We make a final remark about the nonlinear iteration
method for GA simulations. The two relaxation parameters
of the SOR-like scheme in Algorithm 1 were set to ωPF = 0.3
and ωPNPF = 0.5 for all above results. The number of iterations
for each PNPF I-V data point in Fig. 4 is given in Table IV. We
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FIG. 10. (Color online) (a) Occupancy of H2O and K+ in the GA
channel pore by PNPF and PNP as [KCl] increases from 0 to 2 M. The
total number of H2O and K+ in the pore is 8 [77], which is conserved
by PNPF but not by PNP (without steric and correlation effects). (b)
Currents by PNPF and PNP at V = 200 mV. PNP underestimates
the currents.
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TABLE IV. SOR iterations.

CB\V 0 mV 50 100 150 200

0.1M 22 22 22 22 22
0.2 30 22 22 22 22
0.5 45 21 22 22 22
1.0 61 21 21 21 21
2.0 78 34 38 43 49

do not need to solve NP equations when V = 0. Iterations
for solving PF1 and PF2 in Steps 3 and 4 in Algorithm 1
increase with increasing bath concentrations as shown in the
table. Iterations for solving K+, Cl−, and H2O NP equations
and then PF1 and PF2 in Steps 6, 7, and 8 are all about 22
for CB = 0.1 to 1 M when V �= 0. These numbers are more
steady and less than those in Ref. [22] (see Table 7 in that
paper). For CB = 2 M, iterations increase with increasing V

as those in Ref. [22]. Note that the relaxation parameter was set
to different values for the first three steps in Ref. [22], whereas
ωPF and ωPNPF were fixed throughout here.

B. Calcium channel

The calcium channel operates very delicately in physiologi-
cal and experimental conditions as it shifts its exquisitely tuned
conductance from Na+ flow to Na+ blockage and to Ca2+

flow when bath Ca2+ varies from trace to high concentrations.
In Ref. [66], 19 extracellular solutions and 3 intracellular
solutions were studied experimentally, in which the range of
[Ca2+]o is 108-fold from 10−10.3 to 10−2 M.

PNPF results are in accord with the experimental data
in Ref. [66] as shown in Fig. 11 under only the same
salt conditions of NaCl and CaCl2 in pure water, without
considering other bulk salts in experimental solutions. With
[Na+]i = [Na+]o = 32 mM and [Ca2+]i = 0, the membrane
potential is fixed at −20 mV (Vo = 0 and Vi = −20 mV)
throughout, as assumed in Fig. 11 of Ref. [66] for all
single-channel currents (in femtoamperes, fA) recorded in
the experiment. The small circles in Fig. 11 denote the
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FIG. 11. (Color online) Single-channel inward current in fem-
toamperes (fA) plotted as a function of log10[Ca2+]o. Experimental
data of Ref. [66] are marked by small circles and PNPF data are
denoted by the plus sign and lines.

−20 −15 −10 −5 0 5 10 15 20
0

10

20

30

40

50

60

70

80

Channel Axis (Å)

D
ie

le
ct

ric
 C

oe
ffi

ci
en

t

10−7.2 M

10−5.7 M

10−4.2 M

10−3.2 M

10−2.0 M

FIG. 12. (Color online) The averaged dielectric function ε̃(r)
profiles at each cross section along the pore axis for various [Ca2+]o

ranging from 10−7.2 M to 10−2 M. All the following figures are
obtained with the same averaging method and the same range of
[Ca2+]o.

experimental currents from Fig. 11 of Ref. [66] and the plus
signs denote the total currents calculated by PNPF, where the
partial Ca2+ and Na+ currents are denoted by the solid and
dotted lines, respectively. These two ionic currents show the
anomalous fraction effect of the channel at nonequilibrium.
The reduction parameter in θDi was set to θ = 0.1 and all
physical parameters in Table I were kept fixed throughout.

The solution profiles of the calcium channel differ markedly
from those of the GA channel, as shown in Figs. 12 (dielectric
function ε̃(r)), 13 [water density CH2O(r)], 14 [electric po-
tential φ(r)], 15 [steric potential S trc(r)kBT ], and 16 (scaled
flux density|JCa2+(r)|). Figure 12 displays the combined effects
of correlation, polarization, and screening in this highly
inhomogeneous electrolyte by means of the dielectric function
ε̃(r). Water (Fig. 13) plays a more profound role than in the
GA channel as the water density is dramatically reduced from
55.5 M in the bath to almost 0 in the binding site when
[Ca2+]o = 10−2 M.

Water is not allowed to occupy the binding site because
Ca2+ occupies it in this bath condition and the 8 O1/2−
ions in the EEEE locus are electrically attracted toward the
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FIG. 13. (Color online) The averaged water density CH2O(r)
profiles.
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FIG. 14. (Color online) The averaged electric potential φ(r)
profiles.

binding Ca2+ as illustrated by Fig. 2(a). The EEEE locus is
very hydrophobic in this condition. Without using the atomic
properties of water and ions inside the solvent domain �s

like those in (22)–(24), continuum models are not likely
to produce results like in Figs. 12 and 13. Mathematically,
the Dirichlet condition φ(r) = φ̃b(r) in the interior of �s ,
i.e., �Bind ⊂ �s in (27), is crucially important to connect
the continuum Poisson-Fermi model (4) in �s\� Bind to the
molecular (Coulomb) model (22)–(24) in �Bind. From the
binding formula (24), the pore radius is enlarged by the binding
Na+ when [Ca2+]o decreases from 10−2 to 10−7.2 M, i.e., Na+

occupancy [O1 in (26)] increases. The enlarged radius allows
more space for water molecules in the channel pore as shown
in Fig. 13.

1. Novel features

The steric potential profiles shown in Fig. 15 represent
the novelty of the PNPF theory. All effects of volume
exclusion, interstitial void, configuration entropy, short-range
interactions, correlation, polarization, screening, and dielectric
response of this nonideal system are described by the steric
functional S trc(r). The steric potential in the binding region
decreases drastically from −1.30 to −10.34 kBT as [Ca2+]o

increases from 10−7.2 to 10−2 M. However, the electric
potential remains almost unchanged as shown in Fig. 14
following the linear occupancy model (26). In physiological
bath conditions [Ca2+]o = 10−2 ∼ 10−3 M, Fig. 13 shows
that the region containing the binding site with the length
about 10 Å is very dry (hydrophobic), which agrees with the
recent crystallographic analysis [67] of the Ca2+ binding site
of the related protein NCX with the EETT locus showing a
hydrophobic patch (also about 10 Å in length) formed by the
conserved Pro residues. The hydrophobicity near the binding
site in our model is described by the continuous water density
function CH2O(r) via the continuous steric function S trc(r),
namely the Fermi distribution CH2O(r) = CB

H2O exp [S trc(r)] in
(5). At [Ca2+]o = 10−2 M, the magnitude of the steric energy
S trc = −10.34 kBT is comparable to that of the electrostatic
energy φ = −10.48 kBT /e. This surprisingly large energy due
only to the steric effect has not been quantified and observed
by other continuum methods in CaV channel modeling, as far
as we know.
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FIG. 15. (Color online) The averaged steric potential S trc(r)
profiles.

The variable steric potential with respect to bath con-
centrations as shown in Fig. 15 plays a similar role as the
confinement potential in MC simulations for constraining the
eight mobile O1/2− ions of protein glutamates in a filter [59].
These are two different approaches to modeling the flexible
glutamates and the steric effect of ions. The excluded volumes
of electrolyte and glutamate ions are explicitly given as an
input in MC simulations by using the confinement potential
in a fixed filter, whereas the volumes are implicitly calculated
in PNPF simulations and are outputs that describe the steric
potential in a variable binding site. We had difficulties
obtaining nonequilibrium results as those in Fig. 11 in our
early attempt to use a fixed confinement potential in a fixed
filter partly because the confinement potential would generate
large artificial electric fields near the boundary of the filter
in the continuum setting. It is also difficult to incorporate
the confinement potential into the flux density in Eq. (10)
since the confinement potential is fixed and cannot not be
explicitly decomposed to the electrostatic and nonelectrostatic
parts the way φ and S trc do in (10). These difficulties are typical
of inconsistent calculations. Imposing potentials (whether in
simulations or theories) requires injection of charge and mass
that is not present in the real system. The injection occurs at a
sensitive part of the system, the selectivity filter. The approach
here avoids these difficulties.

As observed from Fig. 11, ionic transport is blocked by
the competition between Na+ and Ca2+ ions in the range
[Ca2+]o = 10−5.7 ∼ 10−4.2 M. In this blocking range, the
corresponding steric profiles in Fig. 15 are wider, indicating
that the water density or the void volume is more evenly
distributed. From Fig. 11, we observe that Ca2+ currents
increase dramatically when [Ca2+]o increases from 10−3.2 to
10−2 M in the physiological mM range of the channel, as does
the corresponding flux density, as shown in Fig. 16.

2. Numerical verification

All the above results were obtained by using the standard
FD method (see Ref. [45], for instance) for the Poisson-Fermi
equations (6) and (7) and the Scharfetter-Gummel method
(21) for the flux equation (9). We now provide more numerical
details for the extended SG stability condition (18) and explain
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profiles.

why the primitive method (12) fails. We first verify the SG
method at equilibrium (V = Vo = Vi = 0) for which the
PNPF solution should agree with the PF solution as shown
in Table V, where the averaged Na+ and Ca2+ concentrations
in the filter (binding site) are denoted by CF

1 and CF
2 ,

respectively. Here the approximate PF solution of Ci(r) in
(5) is treated as an exact solution to justify the approximate
PNPF solution. The PNPF concentrations agree quite well
with the PF concentrations indicating that the SG method (21)
works well. Note that CF

1 and CF
2 are all bounded by their

respective maximum values 462.39 and 408.57 M at very large
electrostatic potential φ = −10.48 in the filter, as guaranteed
by the Fermi distribution (5). We use the SOR method [81]
for solving all linear algebraic systems with the relaxation
parameter taken to be 1.9. The error tolerance of the SOR linear
solver is 10−8 because the boundary bath condition [Ca2+]o

for (21) is in the 108-fold range. The error tolerance for solving
each PDE in the PNPF model in Algorithm 2 is 10−4.

3. Primitive FD method fails

We next look more closely into the numerics of the SG
discretization concerning the SG condition (18) at nonequi-
librium (V = −20 mV) under the conditions as those in
Fig. 11. In Table VI, −βiφ denotes the maximum difference
of −βiφ(r) between all adjacent pairs of grid points in 3D,
where the subscript i denotes the ionic species not the grid
node. Since [Ca2+]o varies in the 108-fold range, the maximum
difference −βiφ varies in a range for each ionic species i as
shown in the table. Moreover, the adjacent pair of grid points
at which the maximum difference is obtained may differ for
different NP equations. The other two maximum differences
S trc and −βiφ + S trc are similarly defined. Note also that
the three maximum differences may occur at different pairs of

TABLE V. Verification of the SG method (21).

[Ca2+] in M 0.9 × 10−6 10−5 10−4 10−3 10−2

PF CF
1 /CF

2 61.7/63.7 10.1/116.9 1.1/126.2 0.11/127.3 0.01/127.4

PNPF 61.7/63.4 10.1/116.1 1.1/126.2 0.11/127.3 0.01/127.4

TABLE VI. Checking the SG condition (18).

−βiφ S trc −βiφ + S trc

NP1 (Na+) 2.43 ∼ 2.79 0.34 ∼ 1.75 1.16 ∼ 2.51
NP2 (Ca2+) 4.86 ∼ 5.59 0.34 ∼ 1.75 4.03 ∼ 5.30
NP3 (Cl−) 2.47 ∼ 2.82 0.34 ∼ 1.75 0.34 ∼ 1.75

adjacent grid points with the mesh size h = 1 Å even for the
same NP equation.

From Table VI, we observe that the primitive FD method
(12) violates the SG condition (18) for all NP1, NP2, and NP3
(without S trc) and for NP1 and NP2 (with S trc). The worst case
of the violation occurs in the Ca2+ flux equation NP2 with or
without S trc, as analyzed in (17). Obviously, the primitive FD
is not suitable for PNPF simulations on CaV channels. The SG
not only delivers stable results for all equations in the PNPF
model at all experimental conditions but also converges very
rapidly in the nonlinear iteration.

VI. CONCLUSION

The classical SG method for semiconductor devices was
extended to include the steric potential for biological ion
channels in this paper. The steric potential—a key feature of
the PNPF theory—represents a combination of various effects
of volume exclusion, interstitial void, configuration entropy,
short-range interactions, correlation, polarization, screening,
and dielectric response in a complex fluid system of ion
channel. The SMIB method together with the SG method was
shown to yield optimal convergence for a PNP model with
exact solutions of the gramicidin A channel. The primitive
finite-difference method without SG was shown to lead to
unphysical approximations for an L-type calcium channel due
to the violation of the generalized SG condition presented here.
Two algorithms based on the SMIB and multiscale methods
have been presented for these two different types of channels
depending on whether water is allowed to pass through the
channel pore. Numerical results for both channels are in
accord with the respective experimental results. Compared
with previous PNP models, new physical details by PNPF such
as water dynamics, dielectric function, voids, and steric energy
in the system have been illustrated and discussed. The PNPF
model differs from most channel models in several respects.
It computes dielectric properties as an output that in fact vary
with position and with experimental condition. It provides a
fourth-order partial differential equation to describe current
flow, of the general Cahn-Hillard type, which has a richness
of behavior beyond the usual second-order PNP description.
Practically, it is important that PNPF is much easier to compute
in three dimensions than other steric PNP models.
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