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ABSTRACT 
Gating currents of the voltage sensor involve back-and forth movements of 
positively charged arginines through the hydrophobic plug of the gating pore. 
Transient movements of the permanent charge of the arginines induce structural 
changes and polarization charge nearby. The moving permanent charge induces 
current flow everywhere. Everything interacts with everything else in this structural 
model so everything must interact with everything else in the mathematics, as 
everything does in the structure. Energy variational methods EnVarA are used to 
compute gating currents in which all movements of charge and mass satisfy 
conservation laws of current and mass. Conservation laws are partial differential 
equations in space and time. Ordinary differential equations cannot capture such 
interactions with one set of parameters. Indeed, they may inadvertently violate 
conservation of current. Conservation of current is particularly important since 
small violations (<0.01%) quickly (microseconds) produce forces that destroy 
molecules. Our model reproduces signature properties of gating current: (1) 
equality of ON and OFF charge (2) saturating voltage dependence and (3) many 
(but not all) details of the shape of charge movement as a function of voltage, time, 
and solution composition. The model computes gating current flowing in the baths 
produced by arginines moving in the voltage sensor. The movement of arginines 
induces current flow everywhere producing ‘capacitive’ pile ups at the ends of the 
channel. Such pile-ups at charged interfaces are well studied in measurements and 
theories of physical chemistry but they are not typically included in models of 
gating current or ion channels. The pile-ups of charge change local electric fields, 
and they store charge in series with the charge storage of the arginines of the 
voltage sensor. Implications are being investigated. 



INTRODUCTION 
Voltage Sensors 

Much of biology depends on the voltage across cell membranes. The voltage across the 

membrane must be sensed before it can be used by proteins. Permanent charges move in the 

strong electric fields within membranes, so carriers of gating and sensing charge were proposed 

as voltage sensors even before membrane proteins were known to span lipid membranes (1). 

Movement of permanent charges of the voltage sensor is gating current and movement is the 

voltage sensing mechanism. 

Measurements 

Measurement of gating currents is possible because Maxwell’s equations guarantee conservation 

of current. ‘Current’ is defined in Maxwell’s equations as that which produces (the curl of) the 

magnetic field, that is, the flux of charge plus the ‘displacement term’  which is ε0 times the rate of 

change of the electric field. Measurements of gating current were greatly aided by biological 

preparations with much higher densities of voltage sensors, in which the non-gating currents are a 

much smaller part of the displacement current. 

Structure and sensors 

Knowledge of membrane protein structure has allowed us to identify and look at the atoms that 

make up the voltage sensor. Protein structures do not include the membrane potentials and 

macroscopic concentrations that power gating currents, therefore simulations are needed. 

Atomic level simulations 

Molecular (really atomic) dynamics do not provide an easy extension from the atomic time scale 

2×10-16 sec to the biological time scale of gating currents that reaches 50×10-3 sec. Calculations of 

gating currents from simulations must average the trajectories (lasting 50×10-3 sec sampled every 

2×10-16 sec) of ~106 atoms all of which interact through the electric field to conserve charge and 

current, while conserving mass. It is difficult to enforce continuity of current flow in simulations of 

atomic dynamics because simulations compute only local behavior while continuity of current is 
global, involving current flow far from the atoms that control the local behavior. 

Our Modeling Approach 
A hybrid approach is needed, starting with the essential knowledge of structure, but computing only 

those parts of the structure used by biology to sense voltage. In close packed (‘condensed’) 

systems like the voltage sensor, or ionic solutions, ‘everything interacts with everything else’ 

because electric fields are long ranged as well as strong. In ionic solutions, ion channels, even in 

enzyme active sites, steric interactions are also of great importance that prevent the overfilling of 

space. Closely packed charged systems are best handled mathematically by variational methods. 

Variational methods guarantee that all variables satisfy all equations (and boundary conditions) at all 

times and under all conditions 

 We have then used the energy variational approach developed by Chun Liu (2,3),  to 

derive a consistent model of gating charge movement, based on the basic features of the structure 

of crystallized channels and voltage sensors. The schematic of the model is shown below. 

 

S4 segment 

V clamp I measurement 

Figure 1. Geometric 
configuration of the 
model including the 
attachments of arginines 
to the S4 segment 



The reduced 1D dimensionless PNP-steric equations are expressed as below. The first 
one is Poisson equation: 
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𝐿𝑟𝑒𝑓=1nm is the characteristic length here. 𝑟𝑎 and 𝑟𝑅 are radius of zone 2 and zone 1, 3 

respectively. As to valence (charge) of ions 𝑧𝑁𝑎 = 1,  𝑧𝐶𝑙 = −1. 𝑧𝑎𝑟𝑔 depends on pKa of 

channel environment, and will be a free parameter to input. The second equation is the 
transport equation based on conservation law: 
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with the content of Ji based on Nernst-Planck equation: 
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and for 4 arginines ci, i=1, 2, 3 and 4,  𝑧 ∈ Ω𝑎 ∪ Ω𝑅, 
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where Di, i=Na, Cl, 1, 2, 3, and 4 are diffusion coefficients, and g is the parameter 
characterizing steric effect. Larger g implies larger steric effect, but g can not be arbitrarily 
large due to the limitation of stability. Vi, i=1, 2, 3 and 4 being the trap potential for ci 

Mathematical Description 

 
The axisymmetric geometric configuration is 
shown in Fig. 2,  
with Ω𝑅 = 0, 𝐿𝑅 ∪ 𝐿 + 𝐿𝑅 , 𝐿 + 2𝐿𝑅  (zone 1 
and 3) being the antechambers and Ω𝑎 =
[𝐿𝑅 , 𝐿𝑅 + 𝐿] (zone 2) being the channel. Na and 
Cl only reside at antechambers and can not 
enter channel, while 4 arginines (marked 1-4) 
can reside at both antechambers and channel 
but can not further exit to the reservoirs 
outside. 

Figure 2. Geometric Configuration for 
mathematical model. 



representing a spring connecting ci to the S4 segment (see Fig. 1). Specifically, 
   𝑉𝑖 𝑧, 𝑡 = 𝐾(𝑧 − 𝑧𝑖 + ∆𝑍𝑆4(𝑡) )2,          (8) 
 
where K is the spring constant, zi is the anchoring position of spring for ci on S4, 
∆𝑍𝑆4(𝑡) is the z-direction displacement of S4 by treating S4 as a rigid body. ∆𝑍𝑆4(𝑡) 
follows the motion of equation of S4 based on spring-mass system: 

 𝑚𝑆4
𝑑2∆𝑍𝑆4

𝑑𝑡2 + 𝑏𝑆4
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+ 𝐾𝑆4∆𝑍𝑆4 =  𝐾 𝑧𝑖,𝐶𝑀 − 𝑧𝑖 ,4

𝑖=1           (9) 

 
where mS4, bS4 and KS4 are mass, damping coefficient and restraining spring constant 
for S4. 𝑧𝑖,𝐶𝑀 is the center of mass for ci , which is calculated by 

𝑧𝑖,𝐶𝑀 =
 𝐴(𝑧)𝑧𝑐𝑖𝑑𝑧Ω𝑎∪Ω𝑅

 𝐴(𝑧)𝑐𝑖𝑑𝑧Ω𝑎∪Ω𝑅

,  i=1, 2, 3, 4.      (10) 

 
Usually (9) is over-damped, therefore the inertia term in (9) can then be neglected. 
The additional potential V in (4-7) is caused by the hydrophobic environment of 
channel. It can be seen as the solvation energy barrier. If we use Born model to 
estimate the solvation energy Δ𝐸𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛, 
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where 𝜀𝑅 and 𝜀𝑎 are dielectric constants for antechamber and channel, respectively. 

Usually we treat 𝜀𝑅 = 80, and then 𝜀𝑎 = 8 (here we set Γ =  
1,      𝑧 ∈ Ω𝑅,
0.1,    𝑧 ∈ Ω𝑎.

). The 

apparent radius of the guanidinium ion, which is the ionic part of the arginine, is 0.21 
nm. With zarg=1, we can therefore obtain Δ𝐸𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 to be close to 15𝑘𝐵𝑇.  

Here, we set 

𝑉 = 𝑉𝑚𝑎𝑥 tanh 5 𝑧 − 𝐿𝑅 − 𝑡𝑎𝑛ℎ 5 𝑧 − 𝐿 − 𝐿𝑅 − 1 ,    𝑧 ∈ Ω𝑎,    (12) 

with Vmax being the free parameter to input and related to Δ𝐸𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛. Note that tanh 
function is employed to smooth the top-hat-shape barrier profile, which is not good for 
differentiation. 
Boundary and interface conditions for electric potential 𝜙 are 

𝜙 0 = 𝜙𝐿,   𝜙 𝐿𝑅
− = 𝜙 𝐿𝑅
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−
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+
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𝑑𝑧
𝐿𝑅
+ , 

𝜙 𝐿𝑅 + 𝐿− = 𝜙 𝐿𝑅 + 𝐿+ ,

  Γ 𝐿𝑅 + 𝐿− 𝐴 𝐿𝑅 + 𝐿− 𝑑𝜙

𝑑𝑧
𝐿𝑅 + 𝐿− = Γ 𝐿𝑅 + 𝐿+ 𝐴 𝐿𝑅 + 𝐿+ 𝑑𝜙

𝑑𝑧
𝐿𝑅 + 𝐿+ ,   

  𝜙 2𝐿𝑅 + 𝐿 = 0.    (13) 
 
Boundary and interface conditions for arginine are 
𝐽𝑖 0, 𝑡 = 𝐽𝑖 2𝐿𝑅 + 𝐿, 𝑡 = 0,    𝑐𝑖 𝐿𝑅

+ , 𝑡 = 𝑐𝑖 𝐿𝑅
− , 𝑡 ,    𝐽𝑖 𝐿𝑅

− , 𝑡 = 𝐽𝑖 𝐿𝑅
+ , 𝑡 ,       

𝑐𝑖 𝐿𝑅 + 𝐿−, 𝑡 = 𝑐𝑖 𝐿𝑅 + 𝐿+, 𝑡 ,    𝐽𝑖 𝐿𝑅 + 𝐿−, 𝑡 = 𝐽𝑖 𝐿𝑅 + 𝐿−, 𝑡 ,    𝑖 = 1,2,3,4.    (14) 
 
Boundary conditions for Na and Cl are 

𝑐𝑁𝑎 0, 𝑡 = 𝑐𝐶𝑙 0, 𝑡 = 𝑐𝑁𝑎 2𝐿𝑅 + 𝐿, 𝑡 = 𝑐𝐶𝑙 2𝐿𝑅 + 𝐿, 𝑡 = 1,   
 𝐽𝑁𝑎 𝐿𝑅 , 𝑡 = 𝐽𝐶𝑙 𝐿𝑅 , 𝑡 = 𝐽𝑁𝑎 𝐿𝑅 + 𝐿, 𝑡 = 𝐽𝐶𝑙 𝐿𝑅 + 𝐿, 𝑡 = 0.                  (15) 



Initial conditions are 
𝑐𝑁𝑎 𝑧, 0 = 𝑐𝐶𝑙 𝑧, 0 = 1,  𝑧 ∈ Ω𝑅;   𝑐𝑖 𝑧, 0 = 𝑄,  𝑧 ∈ Ω𝑎 ∪ Ω𝑅, 𝑖 = 1,2,3,4.              (16) 
 
Input parameter and its value: LR=1.5, L=0.7, ra=0.15, rR=1, zarg=1, Di(z)=Darg=5, i=1,2,3,4, 
Q=0.1, g=0.5, Vmax=5, K=3 , KS4=12 , bS4=6.  
 
The most important parameter to be varied for investigation is 𝜙𝐿. Note that 𝜙𝐿 is 
dimensionless. Changing to a dimensional one will be multiplied by 25mV. 

Outputs: gating current I at z= LR+L/2; 𝑄1 =
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0

 are volume fraction of arginine in zone 1, 2 and 3, respectively. 

𝑧𝑖,𝐶𝑀(𝑡) and time course of gating charge (time integral of gating current at z=LR+L/2) are 
also outputs to be compared. 

Numerical Methods 
High-order multi-block Chebyshev pseudospectral methods are used here to discretize (1) 
and (2) in space. The resultant semi-discrete system is then a set of coupled ordinary 
differential equations in time, chiefly from (2), and algebraic equations, chiefly from (1) 
and boundary/interface conditions (13-15). This system is further integrated in time by an 
ODAE solver (ODE15S in MATLAB) together with the initial condition (16). High-order 
pseudospectral methods provides good accuracy with economic resolutions. ODE15S is a 
variable-order-variable-step (VSVO) solver, which is highly efficient in time integration. 
With these two highly efficient techniques, we can conduct fast simulations to find results 
comparable with experiments through tuning a large set of parameters. 
Note on units: time (t) is dimensionless and is normalized by L2/Dref, Dref=Darg  /5 here  
     distance (z) is in nanometers 

We explored several parameter values to obtain charge movement with kinetics and 
steady state properties similar to the experimentally recorded gating currents. 
Parameters selected were: L=0.7, K=3, Ks=12, b=6, distance between arginines=0.4 nm. 
 

Time course of Gating current and total Arginine movement 
 

Figure 3. A. Example of gating current obtained by pulsing from -125 to 0 mV. B. Time 
course of arginines volume fraction in the three compartments of the sensor 
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Time course of arginine translocation and voltage profile 

Figure 4. The four panels on the top row show how the individual arginines distribute 
in the different regions of the sensor depending on voltage and time (as indicated at 
the top) as a result of a pulse to 0 mV starting at t=10 and ending at t=150. The 
relative concentration of ions, Na (blue) and Cl (green) change in the vestibules to 
compensate for the charge of the arginines present in the vestibule. Arginines are 
color coded starting from the left c1 (red), c2 (black), c3 (magenta) and c4 (cyan). Note 
that the concentration of arginines in the channel is close to zero at all times.  
The four panels on the bottom row show the potential profile in the voltage sensor at 
different times (as indicated at the top). By definition, the right side is always 
maintained at 0 mV. By comparing the profile at t=13 and t=148 is clear that the 
potential profile changes as the arginines move from left to right even though the 
voltage is maintained constant across the sensor. 

Figure 5. Top Panel. Time course of gating current contribution of individual arginines. 
Bottom Panel, displacement of individual arginines center of mass (Δzi,CM,i=1…4) 
compared to gating charge (green) and displacement of S4 segment center of mass ΔzS4). 
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Figure 7. Top row shows 
distribution of individual arginines 
as a function of distance at 
different times for a pulse to 125 
mV. Conventions as in Figure 4. 
Middle row shows the potential 
profile as a function of distance in 
the voltage sensor at different 
times for a pulse to 125 mV. 
Conventions as in  Figure 4. 
Bottom Row shows the current 
profile as a function of distance. 
Notice that the model satisfies 
conservation of current at all 
times. 
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Figure 6. A. Time course of gating 
current for a pulse to 125 mV from 
a holding of -125 mV, showing the 
total charge movement. Note that 
the kinetics of the decay of gating 
current at this potential is much 
faster that the decay at 0 mv, 
shown in Figure 1. However the off 
time course in both cases are 
similar. 
B. Time course of arginine  fraction 
in the three compartments of the 
sensor. Note that at this voltage 
most of the arginines have been 
translocated and the concentration 
in the channel is zero. 
C. Top Panel. Time course of the 
contribution of each arginine  to the 
gating current. Bottom panel, 
displacement of individual arginines 
center of mass (Δzi,CM,i=1…4) 
compared to gating charge (green) 
and displacement of S4 segment 
(ΔzS4, brown). Notice that the S4 
segment moves a total of 0.88 nm 
(8.8 Å) while individual arginines 
move as much as  1.5 nm, showing 
that the side chain movement 
contributes significantly to the total 
movement of the charged residues. 
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A 
Large depolarization (to saturating voltage) 



Family of gating currents for a range of voltages 

Figure 8. I-V curve. Top panel. Voltage  pulses (holding:-125 mV, pulse to 125 mV 
every 25 mV). Bottom panel. Gating currents for pulses indicated in left panel. Note 
that the current at large potentials cross the current at small voltages showing that 
kinetics is voltage dependent. 
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Figure 9. Kinetics. The voltage dependence 
of the gating current decay is bell-shaped 
as seen experimentally. Gating currents of 
Figure 6 were fit with to  

𝑎𝑒−𝑡/𝜏1  + 𝑏𝑒−𝑡/𝜏2   
after the peak and the weighted average t 

was plotted as a function of the voltage of 
the pulse. 

F 

Figure 10. Steady-state. The voltage 
dependence of the charge transferred (Q-
V curve) is sigmoidal as seen 
experimentally. The blue curve 
corresponds to the parameters used in all 
the graphs shown. The red curve shows a 
Q-V curve with increased values of the 
spring constants of the arginine and the 
S4, as well and the friction of the S4, 
demonstrating that these parameters 
determine the steepness of the gating 
charge voltage dependence. The midpoint 
of the Q-V is at 0 mV because we have not 
biased the S4 position. 



DISCUSSION AND PERSPECTIVE 

• The present model of the voltage sensor is an attempt at capturing the essential 
structural details that are necessary to reproduce the basic features of experimentally 
recorded gating currents. After finding appropriate parameters, we found that the 
general kinetic and steady-state properties are well represented by the simulations. 
This indicates that this approach, which takes in account all interactions, and satisfies 
conservation of current, is a good model of voltage sensors. 

• There are some differences between the predictions of the model and the 
experiments, most notably that the Q-V curve predicted is less steep than the 
experimental one, even after decreasing the spring constants significantly (see Fig. 8). 
This may reveal an important limitation in the present formulation, that is, the fact 
that arginines may move more cooperatively cross the channel.  

• The present dielectric energy term in the channel is an approximation of the Born 
potential and at present has been left fixed. This is probably the weakest point in this 
model because it oversimplifies the interactions of the channel dielectric with the 
arginines as they move through the channel. 

• The next step is to model the details of interactions or the moving arginines with the 
wall of the channel. There is plenty of detailed information on the amino acid side 
chains in the channel and how each one of them have important effects in the 
kinetics and steady-state properties of gating charge movement (4). The studied side 
chains reveal steric as well as dielectric interactions with the arginines that the 
present model does not have. On the other hand, the power of the present 
mathematical modeling is precisely the implementation of interactions,  therefore we 
believe that when we add the dielectric details of the channel a better prediction of 
the currents should be attained and it is even possible that the cooperativity between 
arginines may occur. 

• Further work must address the mechanism of coupling between the voltage sensor 
movements and the conduction pore. It seems likely that the classical mechanical 
models will need to be extended to include coupling through the electrical field. It is 
possible that the voltage sensor modifies the stability of conduction current. 
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