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We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and
polarization correlations among water molecules in the calculation of electrostatic potential. It
includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a
solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function.
Moreover, the Fermi distribution is shown to be a set of optimal ionic concentration functions in the
sense of minimizing an electrostatic potential free energy. Finally, numerical results are reported to
show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.

PACS numbers: 41.20.Cv, 77.22.-d, 82.60.Lf, 87.10.-e
Keywords: Electrostatics, ionic concentrations, Poisson-Fermi models, Poisson dielectric models

I. INTRODUCTION

Ionic solutions have been studied for a very long time,
usually by using the Poisson-Boltzmann equation (PBE)
as a starting point. The PBE model has its successes
[2–4, 14, 26, 31, 37, 49, 63, 74, 75], particularly com-
pared to the treatment of ionic solutions by the theory of
ideal (uncharged) perfect gases, found in biochemistry
texts [73, 78]. But the successes of PBE are mostly
qualitative because PBE distinguishes between ions only
by charge. PBE does not distinguish between sodium
and potassium ions, for example. Real ionic solutions
have nonideal excess properties that distinguish between
types of ions (e.g., sodium and potassium) that cannot
be approximated by PBE treatments in which sodium
and potassium are identical point charges. The different
specific properties of ions are of the greatest importance
in biology and technology [18, 21–25, 32, 39, 43–47, 59–
61, 63, 78] As Nobelist Aaron Klug (over-) states the
issue [36]: “There is only one word that matters in biol-
ogy, and that is specificity.” Both life and electrochemical
technology (e.g., batteries) depend on the difference be-
tween ions. If your nerve cells lose their ability to deal
separately with sodium and potassium ions, you die, in
minutes.

The need for more realistic theories was well known in
physical chemistry nearly a century ago and the failure
to make much progress has been a source of great frus-
tration. For example, a leading monograph, in print for
more than fifty years, says “... many workers adopt a
counsel of despair, confining their interest to concentra-
tions below about 0.02 M ...” [64, page 302], an opin-
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ion restated in even more colorful language by up-to-
date references as well: “It is still a fact that over the
last decades, it was easier to fly to the moon than to
describe the free energy of even the simplest salt solu-
tions beyond a concentration of 0.1M or so” [44, page
10]. These issues are discussed, and some of the in-
numerable references are listed in [5, 6, 10, 17–21, 23–
25, 33, 39, 43–47, 60, 61, 64, 77, 89]. The nonideal prop-
erties of ionic solutions arise because ions are not points
of charge. Rather, ions are charged molecules that also
can interact with the highly charged solvent water. Wa-
ter is a complex distribution of charge, more or less a
dipole plus a quadrupole, with zero net charge but large
local charges arising from the asymmetrical charge dis-
tribution in the chemical bonds between oxygen and hy-
drogen atoms. Much of biology depends on the prop-
erties of spherical ions that have charge independent of
the local electric field (sodium and potassium ions) or
are customarily treated (with reasonable success) as if
they have charge independent of the local electric field
(chloride and calcium ions). These bio-ions — as they
might be called because of their enormous significance to
biology (documented in the classical texts of physiology
and biophysics [12, 38, 67]) — have nonideal properties
mostly because they are spheres not points. Solutions
made of spheres have entropy and energy quite different
from solutions of points. Bio-ions have their greatest im-
portance where they are most concentrated, in and near
the electrodes of batteries and electrochemical cells, in
and near ion channel proteins, ion binding proteins (in-
cluding drug receptors), nucleic acids (DNA and RNA
of various types), and enzymes, particularly their active
sites [34]. Where they are most important, ion concentra-
tions are usually more than 10 molar, often reaching 100
molar (!), more concentrated than Na+Cl− in table salt
(37 molar). This surprising fact is the subject of the re-
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views [10, 17, 25], and is documented there for L-type cal-
cium channels, DEKA sodium channels, and ryanodine
receptor channels. Similar charge densities are found in
catalytic active sites [34] and in Rb+ binding sites in the
KcsA potassium channel [59].

In the last decades, simple treatments of ionic solutions
as spheres of fixed charge in a dielectric have had surpris-
ing success in describing detailed properties of complex
systems, including bulk solutions [10, 17, 25, 56, 57] and
ion channels, starting with approximate treatments of
bulk solutions, moving to Monte Carlo simulations of all
sphere systems, culminating in a variational treatment
[22] that combines diffusion, migration, and convection
using the energetic variational approach pioneered by
Chun Liu [51, 69] more than anyone else.

The variational treatment, however, computes forces
between all spheres and so leads to partial differential
equations that are difficult to solve even numerically in
three dimensions. Spheres cannot overfill space and the
resulting saturation phenomena can be dealt with by the
Fermi-like distribution approach derived by J. Liu and
Eisenberg in the calculation of the entropy of an arbitrary
mixture of spheres of any diameter in various systems
[52–57]. This Fermi-like approach describes bulk ionic so-
lutions, calcium channels, and the gramicidin channel (in
a model based on its three dimensional structure) with
some success but it is based on an approximate treatment
of the energy and free energy of these systems using San-
tangelo’s potential model [71] that has been popularized
by [9] and others [76].

Santangelo’s model neatly encloses the near-field cor-
relations in a far field Poisson equation and boundary
conditions that allow flow when combined with a diffu-
sion (Nernst Planck) representation. The separation of
near and far fields depends on a single screening param-
eter, however, and this is clearly an over-simplification,
perhaps with significant limitations, particularly in the
crowded situations where ions are most important. In
reality, the screening includes both solvent and solute ef-
fects, neither of which can be captured by a single param-
eter independent of ion concentration and type. Rather,
the screening effects of other ions depend on concentra-
tion, even in the (nearly) ideal case of point charged ions,
and on the diameter of ions and the composition of their
solution in general. In addition, the attenuation by di-
electric properties of the solvent — that might be called
dielectric screening as described by the Bjerrum constant
— must be nonlocal, because the water molecules that
make up the solvent are connected by a chain of hydro-
gen bonds. A replacement of Santangelo’s model that is
nonlocal is needed, and that is what we provide here.

The study of nonlocal dielectric continuum models was
started thirty years ago to account for either the polariza-
tion correlations among water molecules or the spatial-
frequency dependence of a dielectric medium in the pre-
diction of electrostatics [8, 11, 13, 16, 41, 65, 70, 72].
Because of the complexity and difficulty in numerical so-
lution, early work was done only on a Lorentz nonlocal

model for the water solvent with charges near a half-
space or a dielectric sphere containing one central charge
or multiple charges [7, 42, 66, 79]. To sharply reduce the
numerical complexity, Hildebrandt et al. developed novel
reformulation techniques to modify the Lorentz nonlo-
cal model into a system of two coupled partial differ-
ential equations (PDEs) [30], opening a way to solve a
nonlocal model numerically by advanced PDE numeri-
cal techniques [29, 80]. Motivated by Hildebrandt et al.’s
work, Xie et al. adopted different reformation techniques
than the ones used by Hildebrandt et al. to reformulate
the Lorentz nonlocal model for water into two decoupled
PDEs, and solved them by a fast finite element algorithm
[83]. Their reformulation techniques were then applied
to the construction of a new nonlocal dielectric model
for protein in water [86] and a general nonlocal Pois-
son dielectric model for protein in ionic solvent [82, 84].
In fact, this general nonlocal Poisson dielectric model is
the first ionic solvent model that incorporates nonlocal
dielectric effects in the field of dielectric continuum mod-
eling. It also provides us with a general framework for
developing various nonlocal dielectric models. As one of
its applications, a nonlocal modified Poisson-Boltzmann
equation has recently been derived as part of a nonlinear
and nonlocal dielectric continuum model for protein in
ionic solvent [82].

However, none of the current ionic models incorporate
both nonlocal dielectric effects and ionic size effects due
to modeling and algorithmic challenges. As the first step
toward the direction of changing this situation, in this
paper, we propose a nonlocal Poisson-Fermi dielectric
model, which includes Santangelo’s fourth-order partial
differential equation (PDE) model and the classic Pois-
son dielectric model as two special cases. In our new
nonlocal treatment, Santangelo’s model is equivalent to
a convolution of the the classic Poisson dielectric model
with a Yukawa-like kernel function.

Interestingly, we observe that an electrostatic poten-
tial function can be split into two functions — one for
nonlocal dielectric effects and the other for ionic size ef-
fects for an ionic solvent as a mixture of spheres with
different radii. We also note that these two functions can
be found from solving the Poisson-Fermi model when the
model is reformulated from a fourth-order PDE boundary
value problem into a system of two coupled second-order
PDEs. Clearly, as a fourth order PBE model, a Poisson-
Fermi equation can have a much smoother solution than
a Poisson model. Hence, it is expected to be much eas-
ier to solve numerically. This explains partially why a
Poisson-Fermi model deserves to be studied in dielectric
continuum modeling.

One significant feature of the Fermi-like distribution
derived by Liu and Eisenberg (see [55, eq. (10)])
is to model interstitial voids as an additional particle
species. However, since the size of each void is position-
dependent, it is difficult to define a concentration of the
voids. We avoid this difficulty in this paper by construct-
ing a new electrostatic free energy functional. In fact,
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as a modification of the traditional electrostatic free en-
ergy functional commonly used in the PBE study (see
[50, 58] for example), our new electrostatic free energy
functional has an excess energy term that reflects the
properties of the the interstitial voids and of ion size. The
new functional involves only the bulk concentrations of
ions and water molecules and the radii of ions and wa-
ter molecules. In contrast, the traditional electrostatic
free energy functional requires a chemical potential con-
stant for each ionic species, which may be difficult to
obtain and in fact varies from one experimental condi-
tion to another. By minimizing our new electrostatic
free energy functional, a new nonlocal Fermi distribution
is produced for defining optimal concentration functions
for ionic species and water molecules. Consequently, we
obtain the new nonlocal Poisson-Fermi model for com-
puting the electrostatic potential, its convolution, and
the concentrations of ionic species and water molecules.

The Poisson-Fermi model is highly nonlinear because
the state energy of any particle in the generalized Boltz-
mann (Fermi) distribution function contains both electric
and steric potentials. Therefore, in addition to the self-
consistent issue associated with the electric potential in
solving the Poisson equation as usual, the solution pro-
cess must also be self-consistent with the steric potential.
In other words, the Poisson equation for the electric po-
tential, the steric potential of nonuniform size effects, and
the n + 1 nonlinear algebraic equations for the concen-
tration functions of n ionic species and water molecules
are all strongly coupled together. Numerical stability is
of great concern in practical implementation during an
iterative solution process of the Poisson-Fermi model.

As an initial study on the issue of numerical stability,
we obtain boundedness conditions that can ensure the
numerical stability of an iterative search algorithm (such
as Newton’s method) for computing concentration func-
tions and an electrostatic potential function when the
size effects of ions and water are taken into account. We
then made numerical tests to illustrate the reason why
our Poisson-Fermi model can be more stable numerically
than the corresponding Poisson dielectric model.

We organize the remaining part of the paper as fol-
lows. In Section II, we review the nonlocal Poisson di-
electric model, and obtain the new formula for estimating
an important nonlocal model parameter. In Section III,
we present the new nonlocal Poisson-Fermi model, and
show that its solution is a convolution of the solution
of a nonlocal Poisson dielectric model. In Section IV,
we derive the new nonlocal Fermi distribution as a mini-
mization of our new electrostatic free energy functional.
In Section V, we reformulate the Poisson-Fermi model
in a dimensionless form, and obtain sufficient conditions
to guarantee its definition. In Section VI, we discuss a
numerical stability issue and report related numerical re-
sults. Finally, the conclusions are made in Section VII.

II. A NONLOCAL POISSON DIELECTRIC
MODEL

We start with a short review on the derivation of a
nonlocal Poisson dielectric model. Let e denote an elec-
trostatic field. When a fixed charge density function ρ
and a polarization charge density function γ are given, e
can be simply defined by Gauss’s law as follows:

ε0∇·e(r) = γ(r) + ρ(r) for r = (x1, x2, x3) ∈ R3, (1)

where ε0 is the permittivity of the vacuum. However, it
is difficult to obtain γ in practice. To avoid the difficulty,
the classic linear dielectric theory [15, 27] has been estab-
lished based on the linear relationships of displacement
field d and polarization field p with e:

(a) d(r) = ε0ε(r)e(r); (b) p(r) = ε0χ(r)e(r), (2)

where d and p are defined by

(a) ∇·d(r) = ρ(r); (b) −∇·p(r) = γ(r), (3)

ε is the permittivity function, and χ is the susceptibility
function. Since e is conservative, there exists an electro-
static potential function, Φ, such that

e(r) = −∇Φ(r). (4)

Hence, applying the above formula and (2a) to (3a), we
obtain the classic Poisson dielectric model:

− ε0∇·(ε(r)∇Φ(r)) = ρ(r) ∀r ∈ R3, (5)

where Φ(r) → 0 as |r| → ∞, and ∆ =
∑3
i=1

∂2

∂x2
i

is the

Laplace operator.
It has been known that the relationship (2) depends

on a spatial frequency of a dielectric medium (see [35] for
example). To reflect this feature, the spatial frequency
variable of the Fourier transform is used to describe the
spatial dependence of the dielectric so that the two linear
relationships of (2) are mimicked in the Fourier frequency
space as follows:

(a) d̂(k) = ε0ε̂(k)ê(k); (b) p̂(k) = ε0χ̂(k)ê(k),
(6)

where ε̂(k), χ̂(k), d̂(k), p̂(k), and ê(k) denote the Fourier
transforms of ε(r), χ(r),d(r), p(r), and e(r), respectively
[8]. Applying the inverse Fourier transform to (6), we
obtain the nonlocal relationships of d and p with e:

d(r) = ε0

∫
R3

ε(r− r′)e(r′) dr′, (7a)

p(r) = ε0

∫
R3

χ(r− r′)e(r′) dr′. (7b)

Substituting (7a) and (4) to (3a), we obtain the nonlocal
Poisson dielectric model:

− ε0∇·
∫
R3

ε(r− r′)∇Φ(r′) dr′ = ρ(r) ∀r ∈ R3, (8)
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where Φ(r)→ 0 as |r| → ∞. In particular, following De-
bye’s (temporal) frequency dependent permittivity func-
tion (see [8, page 100] and [35] for example), we set ε̂ in
the expression

ε̂(k) = ε∞ +
εs − ε∞

1 + λ2|k|2
, (9)

where εs and ε∞ are the static and optic values corre-
sponding to the spatial frequencies |k| = 0 and |k| → ∞,
respectively, εs > ε∞, and λ is a parameter for char-
acterizing the spatial frequency of the water solvent as a
dielectric medium (or the polarization correlations of wa-
ter molecules) [28, 88]. The inverse Fourier transform of ε̂
gives the commonly-used nonlocal permittivity function

ε(r) = ε∞δ(r) + (εs − ε∞)Qλ(r) ∀r ∈ R3, (10)

where δ denotes the Dirac-delta distribution at the origin
[68], and Qλ is given by

Qλ(r) =
e−|r|/λ

4πλ2|r|
.

Applying (10) to (8), we obtain the nonlocal Poisson
dielectric model: For r ∈ R3,

− ε0 [ε∞∆Φ(r) + (εs − ε∞)∇·(∇Φ ∗Qλ)(r)] = ρ(r), (11)

where Φ(r) → 0 as |r| → ∞, and ∇Φ ∗ Qλ denotes the
convolution of ∇Φ with Qλ, which is defined by

(∇Φ ∗Qλ)(r) =

∫
R3

Qλ(r− r′)∇Φ(r′)dr′.

Furthermore, by the derivative properties of the con-
volution [68, Theorem 6.30, Page 171], we can detach the
derivatives from the integral term to get

(∇Φ ∗Qλ)(r) = ∇(Φ ∗Qλ)(r).

The nonlocal Poisson dielectric model (11) can then be
reformulated in the form

− ε0∆ [ε∞Φ + (εs − ε∞)(Φ ∗Qλ)] = ρ(r), r ∈ R3. (12)

One interesting issue in the study of the nonlocal Pois-
son dielectric model comes from the selection of param-
eter λ. Many studies have been performed with different
ionic solvents in a range of applications [5, 32, 39, 62, 89],
[83, Figure 2.1], and [28, 29], showing that a value of λ
can vary from 3 to 25.

While a value of λ can be determined from experi-
ments, it can also be estimated theoretically by a formula
to yield a reference value for experiments. To get such a
formula, we rewrite Qλ as

Qλ(r) =
1

λ2
H(r) ∀r ∈ R3 with H =

e−|r|/λ

4π|r|
,

0 0.1 0.2 0.3 0.4 0.5

4.3

6.8

9.7

12.5

15.3

21.7

30.7 Is = 0.01

Is = 0.02

Is = 0.04

Is = 0.06

Ionic strength Is (moles)

λ

FIG. 1: The correlation length parameter λ predicted
by formula (16) as a decreasing function of Is.

where H is the Yukawa kernel function [40], which satis-
fies the distribution equation

−∆H(r) +
1

λ2
H(r) = δ(r), r ∈ R3. (13)

We recall that a Debye-Hückel equation for a symmet-
ric 1:1 ionic solvent is defined by

− εs∆u(r) + κ2u(r) =
1010e2

c

ε0kBT
zδ(r), r ∈ R3, (14)

where kB is the Boltzmann constant, T is the absolute
temperature, ec is the elementary charge, z is the charge
number at the origin, and κ is given by

κ =
ec

108
√

5

(
NAIs
ε0kBT

)1/2

(15)

with NA being the Avogadro number (NA =
6.02214129 × 1023) and Is the ionic solvent strength.
Clearly, the Debye-Hückel equation is reduced to (13)
in the case that z = ε0εskBT/(1010e2

c), and λ =
√
εs/κ,

from which we obtain a formula for estimating λ:

λ =
108
√

5

ec

(
ε0εskBT

NAIs

)1/2

. (16)

Here λ has the length unit in angstroms (Å) since (14) is
in the dimensionless form produced by using the length
unit in angstroms under the SI unit system.

By the formula (16) with the parameter values of
kB , ec, ε0 and T given in [81, Table 1], λ was found to
have the range 4.3 ≤ λ ≤ 30.7 for 0.01 ≤ Is ≤ 0.5 as
displayed in Figure 1. Further studies will be done on a
proper selection of λ in our sequential work.
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III. THE NONLOCAL POISSON-FERMI MODEL

In this section, we derive a nonlocal Poisson-Fermi
model for computing the convolution of Φ with respect
to the Yukawa-like kernel function Qλ. We then show
that the electrostatic potential Φ can be split into two
component functions — one for permittivity correlations
among water molecules and the other one for ionic size
effects.

Doing the convolution of Φ on the both sides of (13),
we find that Φ can be expressed in the form

Φ(r) = −λ2∆W (r) +W (r), r ∈ R3, (17)

where we have set W = Φ ∗Qλ, and used the derivative
identity Φ∗∆Qλ = ∆(Φ∗Qλ). The above expression can
lead to a new way for us to calculate the electrostatic
potential function Φ provided that we can construct an
equation for W to calculate both W and ∆W (r) quickly.

We now produce an equation for W from the nonlocal
dielectric model (12). With (17), we can reformulate the
expression ε∞Φ + (εs − ε∞)(Φ ∗ Qλ) in terms of W as
follows:

ε∞Φ + (εs − ε∞)(Φ ∗Qλ) = εsW − ε∞λ2∆W.

Let l2c = ε∞
εs
λ2. Applying the above expression to the

nonlocal model (12) yields an equation for W as follows:

− ε0εs∆
[
W (r)− l2c∆W (r)

]
= ρ(r), r ∈ R3, (18)

where W → 0 and ∆W → 0 as |r| → ∞, which are
followed from (17) and Φ→ 0 as |r| → ∞.

As a special case, setting ε∞ = εs reduces (18) to

− ε0εs∆
[
W (r)− λ2∆W (r)

]
= ρ(r), r ∈ R3, (19)

where W → 0 as |r| → ∞.
Furthermore, when λ = 0, the model (18) is reduced

to the classic Poisson model:

− ε0εs∆Φ(r) = ρ(r) ∀r ∈ R3, (20)

where Φ(r)→ 0 as |r| → ∞.
From the above description it can be seen that the

solutions of (18) and (19) are the convolutions of the so-
lutions of nonlocal Poisson dielectric model (11) and local
Poisson dielectric model (20), respectively, with respect
to the Yukawa-like kernel function Qλ. For clarity, we
will call (18) a nonlocal Poisson-Fermi model while (19)
is referred to as a local Poisson-Fermi model.

In general, the convolution Φ ∗ Qλ can be much
smoother than Φ without involving any singularity over
the whole space R3 (see Figure 2 for example). Hence, a
Poisson-Fermi model can be much easier to solve numer-
ically and should give a much more accurate numerical
solution than the corresponding Poisson model.

Note that our local Poisson-Fermi model (19) is a
significant generalization of Santangelo’s fourth-order
model [71] since in Santangelo’s model, the solution

is simply treated as an electrostatic potential function,
which is usually quite different from W .

Clearly, with a bounded domain Ω of R3, we can ap-
proximate (18) as a boundary value problem as follows: −ε0εs∆

[
W (r)− l2c∆W (r)

]
= ρ(r), r ∈ Ω,

W (s) = g1(s), ∆W (s) = g2(s), s ∈ ∂Ω, (21)

where g1 and g2 are two boundary value functions, and
∂Ω denotes the boundary of Ω. For example, we can
simply set g1 = 0 and g2 = 0 when Ω is large enough.

To simplify the numerical solution of the above fourth
order PDE boundary value problem, we set

Ψ = −∆W

as a new unknown function to reformulate (21) as a sys-
tem of two partial differential equations as follows:

−ε0εs
[
l2c∆Ψ(r)−Ψ(r)

]
= ρ(r), r ∈ Ω,

∆W (r) + Ψ(r) = 0, r ∈ Ω,
W (s) = g1(s), Ψ(s) = −g2(s), s ∈ ∂Ω.

(22)

Using (17) and the solution (Ψ,W ) of (22), we then
obtain the nonlocal electrostatic potential Φ by

Φ(r) = W (r) + λ2Ψ(r), r ∈ Ω. (23)

To understand the physical meaning of Ψ, we can use
the multiplication properties of convolution to get

Ψ(r) = −∆W (r) = −∆(Φ ∗Qλ)(r) = −(∆Φ ∗Qλ)(r)

=
1

ε0εs
(ρ ∗Qλ)(r) +

εs − ε∞
ε∞

(W ∗Qλ)(r). (24)

When the charge density function ρ is estimated
in terms of ionic concentration functions ci for i =
1, 2, . . . , n for a solution containing n different ionic
species in the expression

ρ(r) = ec

n∑
i=1

Zici(r), r ∈ Ω, (25)

where Zi is the charge number of ionic species i, we can
use (24) to find that

Ψ(r) =
ec
ε0εs

n∑
i=1

Zi(ci ∗Qλ)(r) +
εs − ε∞
ε∞

(W ∗Qλ)(r).

This shows that Ψ can be used to reflect ionic size effects
by the choice of ci. Substituting the above expression
into (23), we obtain a solution splitting formula for the
nonlocal Poisson model (11) in the form

Φ(r) = Φw(r) + Φc(r), r ∈ Ω, (26)

where Φw and Φc are defined by

Φw(r) = W (r) +
λ2(εs − ε∞)

ε∞
(W ∗Qλ)(r),
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and

Φc(r) =
ecλ

2

ε0εs

n∑
i=1

Zi(ci ∗Qλ)(r).

Clearly, Φw and Φc reflect ionic size effects and nonlocal
dielectric effects, respectively.

As a special case, for the local Poisson model (20), we
have ε∞ = εs so that

Φw(r) = W (r), Φc(r) = λ2Ψ(r).

Hence, a solution of the local Poisson model (20) can be
simply expressed in (23).

IV. A NONLOCAL FERMI DISTRIBUTION

In this section, we derive a nonlocal Fermi distribution
for an ionic solution containing n different ionic species,
and show that it leads to optimal ionic concentrations in
the sense of minimizing an electrostatic free energy.

To do so, we consider the boundary value problem (21).
Following what is done in [85], we first can show that this
boundary value problem has a unique solution, W , and
the solution can be expressed in the operator form

W = L−1ρ for ρ ∈ L2(Ω), (27)

where L−1 denotes the inverse of L, which is a continuous
self-adjoint positive linear operator as defined by

(LW, v) = ε0εs

[
l2c

3∑
i,j=1

∫
Ω

∂2W

∂xi∂xj

∂2v

∂xi∂xj
dr

+

3∑
i=1

∫
Ω

∂W

∂xi

∂v

∂xi
dr
]
∀v ∈ H2

0 (Ω)

for W ∈ H2
0 (Ω). Here, H2

0 (Ω) = {v ∈ H2(Ω) | v(s) =
0 ∀s ∈ ∂Ω} with H2(Ω) being a Sobolev space of func-
tions with second order weak derivatives [1], (u, v) =∫

Ω
u(r)v(r)dr is an inner product for the Hilbert space

L2(Ω), which is a set of functions satisfying (v, v) <∞.
Clearly, applying (25) to (27), we can express the so-

lution W of the nonlocal Poisson-Fermi equation (21) as
a function of ionic concentrations ci for i = 1, 2, . . . , n in
the operator form

W = ec

n∑
i=1

ZiL
−1ci. (28)

This shows that different ionic concentrations may result
in different potential functions. Hence, it is interesting to
search for a set of optimal ionic concentration functions
that minimize an electrostatic free energy.

For simplicity, we treat each ion of ionic species i as a
hard-sphere with radius ai for i = 1, 2, . . . , n, and denote
by cn+1 as the concentration function of water molecules,
and each water molecule is also treated a hard-sphere

with radius an+1. Thus, the volume of each ball is given
by 4πa3

i /3. Because of non-uniform radii, there exist in-
terstitial voids among these balls, whose size effects have
been shown to be important in the ion channel study [56].
Hence, we define two void volume fraction functions, Γb

and Γ(r), according to the size constraint conditions

4π

3

n+1∑
i=1

a3
i c
b
i + Γb = 1,

4π

3

n+1∑
i=1

a3
i ci(r) + Γ(r) = 1, (29)

where cbi denotes the balk concentration of the ith species.
Let c = (c1, c2, . . . , cn, cn+1). We define an electro-

static free energy, F , as a function of c by

F (c) = Fes(c) + Fid(c) + Fex(c), (30)

where Fes, Fid, and Fex denote the electrostatic, ideal
gas, and excess energies, respectively, as follows:

Fes(c) =
ec
2

n∑
i=1

∫
Ω

ZiW (r)ci(r)dr,

Fid(c) = kBT

n+1∑
i=1

∫
Ω

ci(r)

[
ln

(
ci
cbi

)
− 1

]
dr,

and

Fex(c) =
kBT

v0

∫
Ω

Γ(r)

[
ln

(
Γ(r)

Γb

)
− 1

]
dr.

Here, Γb and Γ are given in (29) to be positive, and v0 de-
notes a scaling parameter that gives Fex units of energy.
Note that v0 is a constant independent of position. It
can be simply set as one unit volume, or by the formula

v0 = (8− 4π/3)a3, (31)

which is determined from the case of uniform ionic sizes,
i.e., all the radii ai = a with a > 0 for i = 1, 2, . . . , n+ 1.
Note that F is a new free energy functional as a modifica-
tion of the one given in [55, eq. (10)]. The classic Gibbs
free energy functional has been generalized to include all
the species — ions, water molecules, and voids — in the
same entropy form.

By (28), the electrostatic free energy Fes can be refor-
mulated as

Fes(c) =
e2
c

2

n∑
i,j=1

ZiZj

∫
Ω

L−1cicjdr.

We then can find the first and second Fréchet partial
derivatives of F (c) along any direction v, which are de-
noted by F ′v and F ′′(c)(v, v), respectively, as follows:

F ′(c)v =

n+1∑
i=1

∫
Ds

[
ecZiW + kBT ln

(
ci
cbi

)
−kBT

4πa3
i

3v0
ln

(
Γ(r)

Γb

)]
vi(r)dr,



7

and

F ′′(c)(v, v) = e2
c〈L−1

n∑
i=1

Zivi,

n∑
i=1

Zivi〉L2(Ω)

+ kBT

n+1∑
i=1

∫
Ds

1

ci
(vi(r))2dr

+

∫
Ds

kBT

v0Γ(r)

(
4π

3

n+1∑
i=1

a3
i vi

)2

dr.

The stationary equation F ′(c)v = 0 implies the system
of equations: For i = 1, 2, . . . , n+ 1,

ecZiW +kBT ln

(
ci
cbi

)
−kBT

4πa3
i

3v0
ln

(
Γ(r)

Γb

)
= 0, (32)

from which we obtain the Fermi distributions

ci(r) = cbie
−
[
ecZi
kBT

W (r)− 4πa3i
3v0

Strc(r)

]
(33)

for i = 1, 2, . . . , n+ 1. Here Γ and Γb are defined in (29),
W is a solution of the nonlocal Poisson-Fermi model (21),
v0 is defined in (31), and Strc is defined by

Strc(r) = ln

(
Γ(r)

Γb

)
.

Since F ′′(c) is strictly positive, the energy functional F (c)
has a unique minimizer, which satisfies the Fermi distri-
butions of (33).

The term Strc has been referred to as a steric potential
since it describes ionic size effects caused by the ionic size
constraint conditions (29) [56]. This is the reason why the
expression of (33) can be called a Fermi distribution. By

setting the factor
4πa3i
3v0

= 1, our new Fermi distributions

(33) can be reduced to the previous ones given in [55, eq.
(7)]. This indicates that our new Fermi distributions have
improved the previous ones to better reflect the effects of
non-uniform ionic sizes.

Specially, when all the radii ai = 0, the Fermi distri-
bution is reduced to the Boltzmann distribution

ci(r) = cbie
−Zi ec

kBT
W (r)

, i = 1, 2, . . . , n.

In addition, setting the correlation length parameter
λ = 0 (without considering any dielectric correlation ef-
fect), we obtain the classic Boltzmann distribution

ci(r) = cbie
−Zi ec

kBT
Φ(r)

, i = 1, 2, . . . , n,

where Φ is the solution of the local Poisson dielectric
equation (20).

V. A DIMENSIONLESS NONLOCAL
POISSON-FERMI MODEL

A combination of (32) and (25) with (21) immediately
results in a system of n+2 equations for solving the elec-
trostatic potential W and concentration functions {ci}

as follows:

−ε0εs∆
[
W − l2c∆W

]
= ec

n∑
i=1

Zici(r), r ∈ Ω,

Zi
ec
kBT

W + ln
(
ci
cbi

)
− 4π

3v0
a3
i ln

(
Γ(r)
Γb

)
= 0,

r ∈ Ω for i = 1, 2, . . . , n+ 1,
W (s) = g1(s), ∆W (s) = g2(s), s ∈ ∂Ω,

(34)

where Γ(r) and Γb are given in (29), v0 is given in (31),
Zn+1 = 0, and l2c = ε∞

εs
λ2.

In biomolecular simulation, length is measured in
angstroms (Å), and ci is in moles per liter. Thus, we
need to convert ci to the number concentration (i.e., the
number of ions per cubic angstroms) by

ci moles per liter = ciNA10−27/Å
3
.

We then reformulate both Γ(r) and Γb as follows:

Γ(r) = 1− 4πNA
3×1027

n+1∑
i=1

a3
i ci(r), (35a)

Γb = 1− 4πNA
3×1027

n+1∑
i=1

a3
i c
b
i . (35b)

Furthermore, by the variable changes

u =
ec
kBT

W,

the nonlocal Poisson-Fermi model (34) can be reformu-
lated into the dimensionless form
−εs∆

[
u− l2c∆u

]
=

e2cNA
ε0kBT1017

n∑
i=1

Zici in Ω,

u(s) = ec
kBT

g1(s), ∆u(s) = ec
kBT

g2(s), s ∈ ∂Ω,
(36)

subject to the n+ 1 nonlinear algebraic equations:

Ziu+ ln(ci)−
4πa3

i

3v0
ln Γ(r) = ln(cbi )−

4πa3
i

3v0
ln(Γb), (37)

for i = 1, 2, . . . , n + 1 in Ω. Here, Γ(r) and Γb are given
in (35), ci and cbi are in moles per liter, and u gives an
electrostatic potential in units of ec/(kBT ).

From the definition of each algebraic equation of (37) it
can be seen that both Γb and Γ(r) must be positive. By a
proper selection of bulk concentrations, the requirement
that Γb > 0 can be easily satisfied. However, ensuring
that Γ(r) > 0 for an approximation method for solving
the Poisson-Fermi model (36) is of great concern, which
may cause numerical stability problems in practical im-
plementation.

As initial study, we obtain a sufficient condition that
guarantees Γ(r) > 0 to hold for each r in Ω as follows:

0 < cj(r) <
3× 1027

4πNA
n+1∑
i=1

a3
i

, j = 1, 2, . . . , n+ 1. (38)
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To get a boundedness condition for the potential func-
tion u under the above condition, we reformulate each
algebraic equation of (37) as

ci(r) = cbi (Γ
b)−

4πa3i
3v0 (Γ(r))

4πa3i
3v0 e−Ziu(r).

Since Γ(r) < 1, from the above identity we can get an-
other upper bound of ci in terms of u,

ci(r) ≤ cbi (Γb)
− 4πa3i

3v0 e−Ziu(r), i = 1, 2, . . . , n, (39)

showing that a value range of each ionic concentration
function is mainly determined by the value range of po-
tential function. Hence, a combination of (38) with (39)
results in a sufficient condition for u to satisfy,

cbi (Γ
b)−

4πa3i
3v0 e−Ziu ≤ 3× 1027

4πNA
n+1∑
i=1

a3
i

, i = 1, 2, · · · , n, (40)

to ensure that Γ(r) > 0. The above condition can be used
to estimate a value range of potential function under the
requirement that Γ(r) > 0 in the solvent domain Ω.

VI. NUMERICAL TESTS

The boundedness conditions (38) and (40) are partic-
ularly valuable in the study of numerical stability for an
iterative algorithm used to compute electrostatic poten-
tial function and ionic concentrations. To illustrate this
issue, we compare the nonlocal Poisson model (11) and
Poisson-Fermi model (36) for a NaCl electrolyte in terms
of their solution ranges. The smaller the range of the po-
tential function is, the better the model, since the model
with a smaller solution range can satisfy the boundedness
conditions (38) and (40) relatively easier.

Figure 2 shows that the value range of convolution
function W in the bottom plot is

−0.4363 ≤W (r) ≤ −0.2273, r ∈ Ω,

which is considerably smaller than that of potential func-
tion Φ as shown in the top plot:

−37.7190 ≤ Φ ≤ −1.2484, r ∈ Ω.

Here, Φ is a solution of a nonlocal Poisson test model
(called Model 1 in Xie et al’s recent work [87]), and W
is the convolution of Φ with the Yukawa-like kernel Qλ.

We also calculated the bounds of conditions (38) and
(40) for the NaCl electrolyte. Here, we set n = 2, Z1 = 1,
Z2 = −1, a1 = 0.95, a2 = 1.81, and a3 = 1.4 as the radii
of Na+, Cl−, and water molecule H2O, respectively [57].
By (38), an upper bound for all the three concentrations
was found as

0 < ci(r) < 41.6, r ∈ Ω, for i = 1, 2, 3. (41)

Using (40), we then found a value range of u as

− 4.8 < u < 1.4, (42)

for the case that Γb = 0.2, v0 = 10, and cb1 = cb2 = 0.2.
As shown in Section III, our nonlocal Poisson-Fermi

model is a convolution of the corresponding nonlocal
Poisson model. Hence, the above numerical results il-
lustrate that a Poisson-Fermi model can be better than
its corresponding Poisson model.

Finally, some details of the protein tests for Figure
2 are given here. The protein was downloaded from the
Protein Data Bank (PDB, http://www.rcsb.org) with the
PDB ID: 2LZX. The solvent region Ω = (−2,−2)3 \Dp

with Dp = {r | |r| < 1}. The 488 atomic charges from
the protein were scaled to the unit ball Dp such that each
charge position had a length less than 0.8. The potentials
Φ and W were calculated by using their series expressions
given in [87], approximately, as a partial sum of the series
with 20 terms, which was found to have a relative error
O(10−5) with respect to the partial sum calculated by
using 100 terms. In the tests, we set εp = 2, εs = 80,
ε∞ = 1.8, and λ = 10. The physical parameter values of
ε0, ec, T , and kB given in [87] were used.

VII. CONCLUSIONS

Ions always interact in water solutions, because ions
are charged and water has strong electric fields (although
the net charge of a water molecule is zero). In chemi-
cal language, ions interact in polar solvents (like water),
which have a non-vanishing dipole moment. The interac-
tions of ions and water and the interactions of ions with
each other have been studied extensively, first treating
ions as point charges. Recently, the finite size of ions
has been dealt with successfully in models that are easy
to compute, both in flow and in mixtures, with a Fermi
distribution coupled to a Poisson equation using the San-
tangelo equation to link electric field near and far from
ions. The Fermi distribution describes the main differ-
ence between points and finite size ions. Finite size ions
cannot overfill space. Points can fill space to any density
including ‘infinity’.

In this work, we propose a new Poisson-Fermi model
for ionic solvent using Xie et al ’s nonlocal Poisson dielec-
tric theory. Its solution is found to be a convolution of
the solution of a nonlocal Poisson dielectric model with
a Yukawa-like kernel function. It also remarkably leads
to a new decomposition of an electrostatic potential with
one component function for nonlocal dielectric effects and
the other for ionic size effects. We then obtain a new
formula for estimating the nonlocal parameter λ in the
spirit of the Debye length, which depends on (and varies
with) the ionic strength and individual concentrations of
ions present in ionic mixtures like biological solutions and
seawater. This is very different from Santagelo’s model
[71] in which the parameter is a correlation length that is
not specifically related to ionic strength and hence does
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FIG. 2: A comparison of a nonlocal Poisson model
solution Φ (top plot) with a nonlocal Poisson-Fermi

model solution W of Φ (bottom plot) in a view using
r = (x, 0, z) for a test model with a dielectric unit ball

containing 488 charges from a protein (PDB ID: 2LZX).

not change with ionic concentrations in the bulk solution.
Furthermore, we construct a new electrostatic free energy
and prove it to have a unique minimizer. After the mini-
mization of this electrostatic free energy, we derive a new
nonlocal Fermi distribution for a mixture of spherical ions
and water molecules with different radii. Our Fermi dis-
tribution and the corresponding free energy functional
are different from those derived by Liu and Eisenberg
even though they similarly use the specific ionic radii as-

sociated with a steric potential and the interstitial voids
among bio-ions and water molecules. A combination of
our Poisson-Fermi model with this new Fermi distribu-
tion leads to our new nonlocal Poisson Fermi model for
computing both the convolution of electrostatic poten-
tial and ionic concentrations. In addition, we find that
ionic concentrations have a limited range when they are
placed in the Fermi-Poisson model. They cannot overfill
space. This treatment of saturation of concentration well
illustrates why the Poisson-Fermi approach is more fa-
vorable than the classic Poisson approach: ionic concen-
trations are very large, approaching saturation, in many
biological and technological applications involving ionic
solutions. The new approach may also improve stability
and convergence as we implement the model numerically
for real applications, involving nonuniform sizes, nonlo-
cal dielectric properties, and nearly saturating concentra-
tions in crucial locations, and much smaller concentra-
tions elsewhere. Our numerical results indeed show that
the Poisson-Fermi approach is numerically more stable.
They encourage us to further study the nonlocal Poisson-
Fermi model theoretically and numerically in the future.
Following what was done in [56, 57], we plan to vali-
date our nonlocal Poisson-Fermi model using experimen-
tal data on bulk solutions and later on ion channels.

Later work will examine how well the nonlocal Pois-
son Fermi model fits experimental data. Moreover, this
new model will be adopted to the study of biomolecules
(e.g., nucleic acids and proteins, including ion channels,)
and biological applications that involve ionic flows and
concentrated ionic mixtures, and will be compared to
Liu and Eisenberg’s Poisson-Fermi and Poisson-Nernst-
Planck-Fermi (PNPF) models, which themselves did sur-
prisingly well describing bulk solutions [57], and the
gramicidin and L-type calcium channels [56].
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