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Nonlocal Poisson-Fermi model for ionic solvent
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We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization
correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-
Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal
Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of
optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical
results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson

solution.
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I. INTRODUCTION

Ionic solutions have been studied for a very long time,
usually with the Poisson-Boltzmann equation (PBE) as a
starting point. The PBE model has its successes [1-11],
particularly compared to the treatment of ionic solutions
by the theory of ideal (uncharged) perfect gases, found in
biochemistry texts [12,13]. But the successes of PBE are
mostly qualitative because PBE distinguishes between ions
only by charge. PBE does not distinguish between sodium
and potassium ions, for example. Real ionic solutions have
nonideal excess properties that distinguish between types of
ions (e.g., sodium and potassium) that cannot be approximated
by PBE treatments in which sodium and potassium are
identical point charges. The different specific properties of
ions are of the greatest importance in biology and technology
[9,13-29]. As Nobelist Aaron Klug (over-) states the is-
sue [30]: “There is only one word that matters in biology, and
that is specificity.” Both life and electrochemical technology
(e.g., batteries) depend on the difference between ions. If your
nerve cells lose their ability to deal separately with sodium and
potassium ions, you die, in minutes.

The need for more realistic theories was well known in
physical chemistry nearly a century ago and the failure to
make much progress has been a source of great frustration.
For example, a leading monograph, in print for more than 50
years, says “... many workers adopt a counsel of despair,
confining their interest to concentrations below about 0.02
M...” [31, p. 302], an opinion restated in even more colorful
language by up-to-date references as well: “It is still a
fact that over the last decades, it was easier to fly to the
moon than to describe the free energy of even the simplest
salt solutions beyond a concentration of 0.1 M or so” [23,
p- 10]. These issues are discussed, and some of the innumer-
able corroborating references are listed in [14,15,17-19,21—
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26,28,29,31-40]. The nonideal properties of ionic solutions
arise because ions are not points of charge. Rather, ions
are charged molecules that also can interact with the highly
charged solvent water. Water is a complex distribution of
charge, more or less a dipole plus a quadrupole, with zero net
charge but large local charges arising from the asymmetrical
charge distribution in the chemical bonds between oxygen and
hydrogen atoms. Much of biology depends on the properties
of spherical ions that have charge independent of the local
electric field (sodium and potassium ions) or are customarily
treated (with reasonable success) as if they have charge
independent of the local electric field (chloride and calcium
ions). These bio-ions—as they might be called because of
their enormous significance to biology (documented in the
classical texts of physiology and biophysics [41-43])—have
nonideal properties mostly because they are spheres not points.
Solutions made of spheres have entropy and energy quite
different from solutions of points. Bio-ions have their greatest
importance where they are most concentrated, in and near the
electrodes of batteries and electrochemical cells, in and near
ion channel proteins, ion binding proteins (including drug
receptors), nucleic acids (DNA and RNA of various types),
and enzymes, particularly their active sites [44]. Where they
are most important, ion concentrations are usually more than
10 molar, often reaching 100 molar (!), more concentrated
than Na™Cl™ in table salt (37 molar). This surprising fact
is the subject of the reviews [19,34,35], and is documented
there for L-type calcium channels, DEKA sodium channels,
and ryanodine receptor channels. Similar charge densities are
found in catalytic active sites [44] and in Rb™" binding sites in
the KcsA potassium channel [27].

In the last decades, simple treatments of ionic solutions
as spheres of fixed charge in a dielectric have had surprising
success in describing detailed properties of complex systems,
including bulk solutions [19,34,35,45,46] and ion channels,
starting with approximate treatments of bulk solutions, moving
to Monte Carlo simulations of all sphere systems, culminating
in a variational treatment [16] that combines diffusion,
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migration, and convection using the energetic variational
approach pioneered by Chun Liu [47,48] more than anyone
else.

The variational treatment, however, computes forces (that
can become very large) between all spheres and so leads to
partial differential equations that are difficult to solve even
numerically in three dimensions. Spheres cannot overfill space
and the resulting saturation phenomena can be dealt with by the
Fermi-like distribution approach derived by J. Liu and Eisen-
berg in the calculation of the entropy of an arbitrary mixture of
spheres of any diameter in various systems [45,46,49-52]. This
Fermi-like approach describes bulk ionic solutions, calcium
channels, and the gramicidin channel (in a model based on its
three-dimensional structure) with some success but it is based
on an approximate treatment of the energy and free energy of
these systems using Santangelo’s potential model [53] that has
been popularized by [54] and others [55].

Santangelo’s model neatly encloses the near-field
correlations in a far-field Poisson equation and boundary
conditions that allow flow when combined with a diffusion
(Nernst Planck) representation. The separation of near and far
fields depends on a single screening parameter, however, and
this is clearly an over-simplification, perhaps with significant
limitations, particularly in the crowded situations where
ions are most important. In reality, the screening includes
both solvent and solute effects, neither of which can be
captured by a single parameter independent of ion type and
concentration. Rather, the screening effects of other ions
depend on concentration, even in the (nearly) ideal case
of point charged ions, and on the diameter of ions and the
composition of their solution in general. In addition, the
attenuation by dielectric properties of the solvent—that might
be called dielectric screening as described by the Bjerrum
constant—must be nonlocal, because the water molecules that
make up the solvent are connected by a chain of hydrogen
bonds. A replacement of Santangelo’s model is needed, which
is more general and nonlocal, and that is what we provide here.

The study of nonlocal dielectric continuum models was
started 30 years ago to account for either the polarization
correlations among water molecules or the spatial-frequency
dependence of a dielectric medium in the prediction of elec-
trostatics [56—-63]. Because of the complexity and difficulty of
numerical solution, early work was done only on a Lorentz
nonlocal model for the water solvent with charges near a
half-space or a dielectric sphere containing one central charge
or multiple charges [64—67]. To sharply reduce the numerical
complexity, Hildebrandt et al. developed novel reformulation
techniques to modify the Lorentz nonlocal model into a system
of two coupled partial differential equations (PDEs) [68],
opening a way to solve a nonlocal model numerically by
advanced PDE numerical techniques [69,70]. Motivated by
Hildebrandt et al.’s work, Xie et al. adopted different tech-
niques from those used by Hildebrandt et al. to reformulate
the Lorentz nonlocal model for water into two decoupled
PDE:s, and solved them by a fast finite element algorithm [71].
Their reformulation techniques were then applied to the
construction of a new nonlocal dielectric model for protein
in water [72] and a general nonlocal Poisson dielectric model
for proteins in ionic solvents [73,74]. In fact, this general
nonlocal Poisson dielectric model is the first ionic solvent
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model that incorporates nonlocal dielectric effects in the field
of dielectric continuum modeling. It also provides us with a
general framework for developing various nonlocal dielectric
models. As one of its applications, a nonlocal modified
Poisson-Boltzmann equation has recently been derived as a
nonlinear and nonlocal dielectric continuum model for protein
in ionic solvent [73].

However, none of the current ionic models incorporate
both nonlocal dielectric effects and ionic size effects due to
modeling and algorithmic challenges. As the first step toward
the direction of changing this situation, in this paper, we
propose a nonlocal Poisson-Fermi dielectric model, which
includes Santangelo’s fourth-order partial differential equation
(PDE) model and the classic Poisson dielectric model as two
special cases. In our new nonlocal treatment, Santangelo’s
model is equivalent to a convolution of the classic Poisson
dielectric model with a Yukawa-like kernel function.

Interestingly, we observe that an electrostatic potential
function can be split into two functions—one for nonlocal
dielectric effects and the other for ionic size effects for an
ionic solvent as a mixture of spheres with different radii. We
also note that these two functions can be found from solving the
Poisson-Fermi model when the model is reformulated from a
fourth-order PDE boundary value problem into a system of two
coupled second-order PDEs. Clearly, as a fourth-order PBE
model, a Poisson-Fermi equation can have a much smoother
solution than a Poisson model. Hence, it is expected to be much
easier to solve numerically. This is one reason why a Poisson-
Fermi model deserves to be studied in dielectric continuum
modeling.

One significant feature of the Fermi-like distribution
derived by Liu and Eisenberg (see [52, Eq. (10)]) is its
treatment of interstitial voids as an additional particle species.
However, since the size of each void is position dependent,
it is difficult to define a concentration of the voids. We
avoid this difficulty in this paper by constructing a new
electrostatic free energy functional. In fact, as a modification of
the traditional electrostatic free energy functional commonly
used in the PBE study (see [75,76], for example), our new
electrostatic free energy functional has an excess energy
term that reflects the properties of the the interstitial voids
and of ion size. The new functional involves only the bulk
concentrations of ions and water molecules and the radii of ions
and water molecules. In contrast, the traditional electrostatic
free energy functional requires a chemical potential constant
for each ionic species, which may be difficult to obtain and
in fact varies from one experimental condition to another.
By minimizing our new electrostatic free energy functional,
a new nonlocal Fermi distribution is produced for defining
optimal concentration functions for ionic species and water
molecules. Consequently, we obtain the new nonlocal Poisson-
Fermi model for computing the electrostatic potential, its
convolution, and the concentrations of ionic species and water
molecules.

The Poisson-Fermi model is highly nonlinear because the
state energy of any particle in the generalized Boltzmann
(Fermi) distribution function contains both electric and steric
potentials. In addition to the self-consistent issue associated
with the electric potential in solving the Poisson equation as
usual, the solution process must also be self-consistent with
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the steric potential. In other words, the Poisson equation for
the electric potential, the steric potential of nonuniform size
effects, and the n + 1 nonlinear algebraic equations for the
concentration functions of » ionic species and water molecules
are all strongly coupled together. Numerical stability is of great
concern when solving the Poisson-Fermi model by an iterative
method.

As an initial study of the issue of numerical stability, we
obtain boundedness conditions that can ensure the numerical
stability of an iterative search algorithm (such as Newton’s
method) for computing concentration functions and an elec-
trostatic potential function when the size effects of ions and
water are taken into account. We then made numerical tests to
illustrate the reason why our Poisson-Fermi model can be more
stable numerically than the corresponding Poisson dielectric
model.

We organize the remaining part of the paper as follows.
In Sec. II, we review the nonlocal Poisson dielectric model,
and obtain the new formula for estimating an important
nonlocal model parameter. In Sec. III, we present the new
nonlocal Poisson-Fermi model, and show that its solution is a
convolution of the solution of a nonlocal Poisson dielectric
model. In Sec. IV, we derive the new nonlocal Fermi
distribution as a minimization of our new electrostatic free
energy functional. In Sec. V, we reformulate the Poisson-Fermi
model in a dimensionless form, and obtain sufficient conditions
to guarantee its definition. In Sec. VI, we discuss a numerical
stability issue and report related numerical results. Finally, the
conclusions are made in Sec. VII.

II. ANONLOCAL POISSON DIELECTRIC MODEL

We start with a short review on the derivation of a nonlocal
Poisson dielectric model. Let e denote an electrostatic field.
When a fixed charge density function p and a polarization
charge density function y are given, e can be simply defined
by Gauss’s law as follows:

eV-er) =y + p(r) for r=(x,x,x3)eR} (1)

where € is the permittivity of the vacuum. However, it is
difficult to obtain y in practice. To avoid the difficulty, the
classic linear dielectric theory [77,78] has been established
based on the linear relationships of displacement field d and
polarization field p with e:

(a) d(r) = ee(r)e(r);
where d and p are defined by
(@) V-d(r) = p(r); (b) —V-p(r) =y(r), 3)

e is the permittivity function, and y is the susceptibility
function. Since e is conservative, there exists an electrostatic
potential function @ such that

e(r) = —Vo(r). “4)

(®) p(r) =eox(e), (2

Hence, applying the above formula and (2a) to (3a), we obtain
the classic Poisson dielectric model:

—€oV-(e(r)VO(r)) = p(r) Vr e R, (5)

where ®(r) — 0 as |[r| — oo.

PHYSICAL REVIEW E 94, 012114 (2016)

It has been known that the relationship (2) depends on
a spatial frequency of a dielectric medium (see [79] for
example). To reflect this feature, the spatial frequency variable
of the Fourier transform is used to describe the spatial
dependence of the dielectric so that the two linear relationships
of (2) are mimicked in the Fourier frequency space as follows:

(b) p(k) = eox(kjek), (6)

where ?(k),f(k),a(k),ﬁ(k), and €(k) denote the Fourier
transforms of &(r), x (r),d(r), p(r), and e(r), respectively [56].
Applying the inverse Fourier transform to (6), we obtain the
nonlocal relationships of d and p with e:

(a) d(k) = ed(k)e(k);

d(r) = ¢ f e(r — re()dr, (7a)
R3

p(r) = ¢ /R% x(r —r)e)dr. (7b)

Substituting (7a) and (4) to (3a), we obtain the nonlocal
Poisson dielectric model:

—eov-f e(r —r)Vo(r)dr = p(r) VreR3  (8)
RS

where ®(r) — 0 as |r| — oo. In particular, following De-
bye’s (temporal) frequency-dependent permittivity function
(see [56, p. 100] and [79], for example), we set € in the
expression,

€ — €
: 9

Ak: oo T o0
e(k)=¢€ +1+A2|k|2

where ¢ and ¢, are the static and optic values corresponding
to the spatial frequencies |k| = 0 and |k| — oo, respectively,
€5 > €o0, and A is a parameter for characterizing the spatial
frequency of the water solvent as a dielectric medium (or
the polarization correlations of water molecules) [81,82]. The
inverse Fourier transform of € gives the commonly used
nonlocal permittivity function,

£(r) = €xd(r) + (€, — €x)Oi(r) VreR®,  (10)

where § denotes the Dirac-delta distribution at the origin [83],
and Q, is given by
—[rl/x
e
r)=——.
QD) = 4 o

Applying (10) to (8), we obtain the nonlocal Poisson
dielectric model: For r € R3,

—€0[€cc AD(r) + (6, — €50) V- (VP * 0;)(1)] = p(r), (11)

where ®(r) - 0 as |r| - oo, and V® x O, denotes the
convolution of V& with Q,, which is defined by

(VO * 0))(r) = A;; 0,(r —r)Vo)dr.

Furthermore, by the derivative properties of the convolu-
tion [83, Theorem 6.30, p. 171], we can detach the derivatives
from the integral term to get

(VO 05)(r) = V(P % Q;)(r).
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The nonlocal Poisson dielectric model (11) can then be
reformulated in the form,

—€0 Al ® + (6, — €x)(@ % 03)] = p(r), T e R (12)

where A = 21‘3:1 %22 is the Laplace operator.

One interesting issue in the study of the nonlocal Poisson
dielectric model comes from the selection of parameter
A. Many studies have been performed with different ionic
solvents in a range of applications [20,21,32,40,84], [71,
Fig. 2.1], and [69,81], showing that a value of A can vary
from 3 to 25.

While a value of A can be determined from experiments,
for an ionic solution, it can also be estimated theoretically by
a formula to yield a reference value for experiments. To get
such a formula, we rewrite Q; as

1 3 e~ lrl/x
r)=—Hx VreR’ with H=—,
0u(r) = 75 H(®) i
where H is the Yukawa kernel function [80], which satisfies
the distribution equation,

—AH(r) + %H(r) =48(r), relR>. (13)

We recall that a Debye-Hiickel equation for a symmetric
1:1 ionic solvent is defined by
01042
—e; Au(r) + «2u(r) = = 28(r),
Gok BT
where kp is the Boltzmann constant, 7' is the absolute
temperature, e, is the elementary charge, z is the charge
number at the origin, and « is given by

NaI, \ 2
K= —t ( A ) , (15)
108+4/5 \ €0k T

with N4 being the Avogadro number (N4 = 6.02214129 x
10?%) and I, the ionic solvent strength. Clearly, the Debye-
Hiickel equation is reduced to (13) in the case that z =
€oeskpT /(10'0€?), and A = /€, /k, from which we obtain a
formula for estimating A:

L IOSﬁ(eoeskBT)l/z

r e R, (14)

(16)

€c NAIs

Here X has the length unit in angstroms (A) since (14) is in
the dimensionless form produced by using the length unit in
angstroms under the SI unit system.

By the formula (16) with the parameter values of kg,e.,€o,
and T given in [85, Table 1], A was found to have the range
4.3 < X2 <30.7 for 0.01 < I; < 0.5 as displayed in Fig. 1.
Further studies will be done on a proper selection of A.

III. THE NONLOCAL POISSON-FERMI MODEL

In this section, we derive a nonlocal Poisson-Fermi model
for computing the convolution of ® with respect to the
Yukawa-like kernel function Q,. We then show that the
electrostatic potential & can be split into two component
functions—one for permittivity correlations among water
molecules and the other one for ionic size effects.

PHYSICAL REVIEW E 94, 012114 (2016)
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FIG. 1. The correlation length parameter A predicted by for-
mula (16) as a decreasing function of I;.

Doing the convolution of ® on both sides of (13), we find
that ® can be expressed in the form,

O(r) = —A2AW() + W(r), re R, (17)

where we have set W = @ x Q;,, and used the derivative
identity ® x* AQ; = A(®D * Q;). The above expression can
lead to a new way for us to calculate the electrostatic potential
function ® provided that we can construct an equation for W
to calculate both W and AW (r) quickly.

We now produce an equation for W from the nonlocal
dielectric model (12). With (17), we can reformulate the ex-
pression €5, P + (€5 — €50)(P * Q;) in terms of W as follows:

€oo® + (65 — €x)(P x Q) = e, W — € AIAW.

Let/? = i—%kz. Applying the above expression to the nonlocal
model (12) yields an equation for W as follows:

—e0&; A[W(r) — ZAW(@)] = p(r), reR’,  (18)

where W — Oand AW — 0 as |r| — oo, which are followed
from (17) and ® — 0 as |r| — oc.
As a special case, setting €5, = €, reduces (18) to

—epes A[W(r) — A2AW(r)] = p(r), reR3, (19)

where W — 0 as |r| — oo.
Furthermore, when A = 0, the model (18) is reduced to the
classic Poisson model:

—€0es AD(r) = p(r) Vr e R, (20)

where ®(r) — 0 as |r| — oo.

From the above description it can be seen that the solutions
of (18) and (19) are the convolutions of the solutions of the
nonlocal Poisson dielectric model (11) and the local Poisson
dielectric model (20), respectively, with respect to the Yukawa-
like kernel function Q. For clarity, we will call (18) a nonlocal
Poisson-Fermi model.

In general, the convolution ® x Q; can be much smoother
than & without involving any singularity over the whole space
R3 (see Fig. 2, for example). Hence, a Poisson-Fermi model
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FIG. 2. A comparison of a nonlocal Poisson model solution &
(top plot) with a nonlocal Poisson-Fermi model solution W of &
(bottom plot) in a view using r = (x,0,z) for a test model with a
dielectric unit ball containing 488 charges from a protein (PDB ID:
2L.ZX).

can be much easier to solve numerically and should give a
much more accurate numerical solution than the corresponding
Poisson model.

Note that our local Poisson-Fermi model (19) is a significant
generalization of Santangelo’s fourth-order model [53] since
in Santangelo’s model, the solution is simply treated as an
electrostatic potential function, which is usually quite different
from W.

Clearly, with a bounded domain €2 of R3, we can approxi-
mate (18) as a boundary value problem as follows:

— €& A[W(Ir) — ZAW®D)] = p(r), reQ,

W(s) = gi1(s),

where g; and g, are two boundary value functions, and 92
denotes the boundary of 2. For example, we can simply set
g1 = 0 and g, = 0 when 2 is large enough.

21

AW(s) = ga(s), se€ 0%,
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To simplify the numerical solution of the above fourth-order
PDE boundary value problem, we set

v =—-AW

as a new unknown function to reformulate (21) as a system of
two partial differential equations as follows:

— €& [IZAW(r) — ¥(r)] = p(r), reQ,
AW@ +¥(@) =0, reQ, (22)
W(s) = gi1(s), W(s) = —gs), se€dQ.

Using (17) and the solution (¥, W) of (22), we then obtain
the nonlocal electrostatic potential ® by

d(r) = W) + 2 20(r), re Q. (23)

To understand the physical meaning of W, we can use the
multiplication properties of convolution to get

W(r) = —AW(r) = —A(® % 0,)(X) = —(AD % 0;)(1)
1 s = Coo
(0% 0 + 22 Wx o)), (24)

€0€s €00

When the charge density function p is estimated in terms
of ionic concentration functions ¢; for i = 1,2,...,n for a
solution containing n different ionic species in the expression,

P =ec ) Zici(r), re, (25)
i=1

where Z; is the charge number of ionic species i, we can
use (24) to find that

e
U(r) =

c - €5 — €

> Ziei % Q) + ——(W % Q,)(r).
€0€s il €00
This shows that W can be used to reflect ionic size effects by
the choice of ¢;. Substituting the above expression into (23),
we obtain a solution splitting formula for the nonlocal Poisson
model (11) in the form,

O(r) = D,(r) + O (r), reQ, (26)
where ®,, and @, are defined by
)‘2(63 — €o0)
Dy(r) = W)+ ——(W = 0)(r),

oo

and

€c

2
Pelr) = —— 3 Zilei % 01)(0).
$i=1

€0

Clearly, @, and ®,, reflect ionic size effects and nonlocal
dielectric effects, respectively.
As a special case, for the local Poisson model (20), we have
€5 = € SO that
Dy (r) = W(r), Dc(r) =212W(r).

Hence, a solution of the local Poisson model (20) can be simply
expressed in (23).
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IV. ANONLOCAL FERMI DISTRIBUTION

In this section, we derive a nonlocal Fermi distribution
for an ionic solution containing n different ionic species, and
show that it leads to optimal ionic concentrations in the sense
of minimizing an electrostatic free energy.

To do so, we consider the boundary value problem (21).
Following what is done in [86], we first can show that this
boundary value problem has a unique solution W, and the
solution can be expressed in the operator form,

W=L"p for pelL*), 27
where L~! denotes the inverse of L, which is a continuous
self-adjoint positive linear operator as defined by

(LW,v) = €oe Z / ox;0x; 8x, Bxf «

3
AW dv
——d Yv € HX(Q
+i21/98x,- 8x,~ l':| ve 0( )

for W € H;(Q2). Here, H}(Q) = {v € HX(Q) | v(s) =0 Vs €
92} with H*(Q2) being a Sobolev space of functions with
second-order weak derivatives [87], (u,v) = fQ u(r)v(r)dr is
an inner product for the Hilbert space L?(2), which is a set of
functions satisfying (v,v) < co.

Clearly, applying (25) to (27), we can express the solution
W of the nonlocal Poisson-Fermi Eq. (21) as a function
of ionic concentrations ¢; for i = 1,2, ...,n in the operator
form,

W=e Y ZiL'c. (28)

This shows that different ionic concentrations may result in
different potential functions. Hence, it is interesting to search
for a set of optimal ionic concentration functions that minimize
an electrostatic free energy.

For simplicity, we treat each ion of ionic species i as a hard
sphere with radius g; fori = 1,2, ... ,n, and denote by c,+ as
the concentration function of water molecules, and each water
molecule is also treated a hard sphere with radius a,,;. Thus,
the volume of each ball is given by 4Jm[3 /3. Following [45],
we define two void volume fraction functions, '’ and I'(r),
according to the size constraint conditions,

n+l ﬂn+]
3b b 3

E rv=1, —E e rmy=1, 29
a;c; + 3 i:la,c(r)—f— (r) 29)

where ¢ denotes the balk concentration of the ith species.
Letc = (cy,c2, ... ,Cnycuy1). We define an electrostatic free
energy F as a function of ¢ by

F(c) = Fes(c) + Fia(c) 4 Fex(0), (30)

PHYSICAL REVIEW E 94, 012114 (2016)

where F,q, F;4, and F,, denote the electrostatic, ideal gas, and
excess energies, respectively, as follows:

%; /Q 7, W(r)c; (r)dr,

n+1
Fua(e) = kBTZ/ c,(r)[ln( ) 1o
kT I'(r)

Here, ['? and " are given in (29) to be positive, and vy denotes
a scaling parameter that gives F,, units of energy. Note that vy
is a constant independent of position. It can be simply set by
the formula,

Fo (C) =

and

Fex(c) =

vo = (8 — 41 /3)a’, (31)

which is determined from the case of uniform ionic sizes, i.e.,
alltheradiia; = a witha > Ofori = 1,2, ...,n + 1. Note that
F is a new free energy functional as a modification of the one
givenin [52, Eq. (10)]. The classic Gibbs free energy functional
has been generalized to include all the species—ions, water
molecules, and voids—in the same entropy form.

By (28), the electrostatic free energy F,; can be reformu-
lated as

Fes(c) =

Z Z;Z; / cicjdr.

le

We then can find the first and second Fréchet partial derivatives
of F(c) along any direction v, which are denoted by F’(c)v
and F”(c)(v,v), respectively, as follows:

n+1
F'(c)v = Z/ |:eLZ W+kBT1n< )
Cl
47”’, I'(r)
< (20) o

n n
F'(c)(v,v) = 63<L1 Z Ziv;, Z Zivi>
i=1 i=1

—kgT

and

L2(Q)
n+1

+kBTZ / —(vi(r))’dr

k 4 '
B

i | d
+/l\_v0F(r)( Za v) r.

The stationary equation F’(c)v = 0 implies the system of

equations: Fori = 1,2, ...,n+ 1,
ci 47'ra I'(r)
ZiW +kgTIn| — | —kgT ! — =0, (32
e +() i (F) 32
from which we obtain the Fermi distributions,
¢; (I') _ C e [kBT W(l‘)f ' Str(’(r)]’ (33)
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fori = 1,2,...,n+ 1. Here I' and '’ are defined in (29), W
is a solution of the nonlocal Poisson-Fermi model (21), vy is
defined in (31), and S" is defined by

tre 0
S"(r) = In ( o )

Since F"(c) is strictly positive, the energy functional F(c) has
a unique minimizer, which satisfies the Fermi distributions
of (33).

The term S'" has been referred to as a steric potential since
it describes ionic size effects caused by the ionic size constraint
conditions (29) [45]. This is the reason why the expression
of (33) can be called a Fermi distribution. By setting the factor

47m,3

%, = L, our new Fermi distributions (33) can be reduced to
the previous ones given in [52, Eq. (7)]. This indicates that our
new Fermi distributions have improved the previous ones to
better reflect the effects of nonuniform ionic sizes.

Specially, when all the radii a; = 0, the Fermi distribution
is reduced to the Boltzmann distribution,

Z;

W .
ci(r)ch»’e T (r) i=1.2,...,n.

In addition, setting the correlation length parameter A =
0 (without considering any dielectric correlation effect), we
obtain the classic Boltzmann distribution,

e D .
c,-(r):cibe 7T (r) i=1,2,...,n,

where @ is the solution of the local Poisson dielectric Eq. (20).

V. A DIMENSIONLESS NONLOCAL
POISSON-FERMI MODEL

A combination of (32) and (25) with (21) immediately
results in a system of n 42 equations for solving the
electrostatic potential W and concentration functions {c;} as
follows:

— & A[W —ZAW] =e. > Zici(r), reQ,

i=1
€ Ci %4 I'(r)
Zi_W 1 — _— 1 —_— = 07
T+ n(dz) 300 ( I >
reQ fori=12,....n+1,
W(s) = gi(s), AW(s) = s € 0%,

(34)

82(s),

where T'(r) and T'? are given in (29), vy is given in (31),
Zyt1 =0,and > = E°°)»2

In b10molecu1ar ‘simulations, length is measured in
angstroms (A), and ¢; is in moles per liter. Thus, we need
to convert ¢; to the number concentration (i.e., the number of
ions per cubic angstroms) by

¢; moles per liter = c[NAlO_27/A3.

We then reformulate both I'(r) and I'? as follows:

47TNA n+1

r'r)=1- T 107 Za ci(r), (35a)
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+1
47Ny — 5,

b _
r _1_3><1027 a;c;.
i=1

(35b)
Furthermore, by the variable changes,

€c
kgT

u =

’

the nonlocal Poisson-Fermi model (34) can be reformulated
into the dimensionless form,

n

eNA

_ eSA[u — lczAu] eokBT10‘7 Z Zic; in  Q,

u(s) = _81(5) Au(s) = —gz(S)
seBQ, (36)

subject to the n + 1 nonlinear algebraic equations:

3 3
A P = In (c?) — A,
Vo Vo
(37
for i =1,2,...,n+1 in Q. Here, I'(r) and '’ are given
in (35), ¢; and cib are in moles per liter, and u gives an
electrostatic potential in units of e, /(kgT).

From the definition of each algebraic equation of (37) it
can be seen that both I'’ and I'(r) must be positive. By a
proper selection of bulk concentrations, the requirement that
'’ > 0 can be easily satisfied. However, ensuring that I'(r) >
0 in an approximation method for solving the Poisson-Fermi
model (36) is of great concern, which may cause numerical
stability problems in practical implementation.

As initial study, we obtain a sufficient condition that
guarantees I'(r) > 0 to hold for each r in 2 as follows:

Ziu + In(c;) —

3 x 107

_, Ln+1. (38)
4JTNA Z:H—ll (13

0<cjr) < j=12,..

To get a boundedness condition for the potential function
u under the above condition, we reformulate each algebraic
equation of (37) as

4ra} 4ra}
¢i(r) = C?(beW (C(r)) 0 ¢~ %M,

Since I'(r) < 1, from the above identity we can get another
upper bound of ¢; in terms of u,

47{0?
ci(r) < ()"0 e A,
showing that a value range of each ionic concentration function
is mainly determined by the value range of potential function.
Hence, a combination of (38) with (39) results in a sufficient
condition for u to satisfy,

i=12,...,n, (39)

3 x 10% .
<——— . =12
4r Ny Y @}

(40)
to ensure that I'(r) > 0. The above condition can be used
to estimate a value range of potential function under the
requirement that I'(r) > 0 in the solvent domain 2.

cib(Fb)_ Ty o~ Zik <
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VI. NUMERICAL TESTS

The boundedness conditions (38) and (40) are particularly
valuable in the study of numerical stability for an iterative
algorithm used to compute electrostatic potential function and
ionic concentrations. To illustrate this issue, we compare the
nonlocal Poisson model (11) and Poisson-Fermi model (36) for
aNaClelectrolyte in terms of their solution ranges. The smaller
the range of the potential function is, the better the model,
since the model with a smaller solution range can satisfy the
boundedness conditions (38) and (40) relatively easier.

Figure 2 shows that the value range of convolution function
W in the bottom plot is

—0.4363 < W(r) < —0.2273, re Q,

which is considerably smaller than that of potential function
@ as shown in the top plot:

—37.7190 < ® < —1.2484, re Q.

Here, @ is a solution of a nonlocal Poisson test model (called
Model 1 in Xie et al.’s recent work [88]), and W is the
convolution of ® with the Yukawa-like kernel Q.

We also calculated the bounds of conditions (38) and (40)
for the NaCl electrolyte. Here, we set n =2, Z, =1, Z, =
—1,a;, =0.95, a, = 1.81, and a3 = 1.4 as the radii of Na™,
C1™, and water molecule H,O, respectively [46]. By (38), an
upper bound for all the three concentrations was found as

0<ci(r)y <416, re, for i=1723. 41

Using (40), we then found a value range of u as
—48 <u <14, 42)

for the case that '’ = 0.2, vy = 10, and c’l’ = c’z’ =0.2.

As shown in Sec. III, our nonlocal Poisson-Fermi model
is a convolution of the corresponding nonlocal Poisson
model. Hence, the above numerical results illustrate that a
Poisson-Fermi model can be better than its corresponding
Poisson model.

Finally, some details of the protein tests for Fig. 2 are given
here. The protein was downloaded from the Protein Data Bank
(PDB, http://www.rcsb.org) with the PDB ID: 2LZX. The
solvent region Q = (-2, — 2)*\ D, with D, = {r | [r| < 1}.
The 488 atomic charges from the protein were scaled to the
unit ball D, such that each charge position had a length less
than 0.8. The potentials ® and W were calculated by using
their series expressions given in [88], approximately, as a
partial sum of the series with 20 terms, which was found
to have a relative error O(107>) with respect to the partial
sum calculated by using 100 terms. In the tests, we set e, = 2,
€; = 80, €5 = 1.8,and A = 10. The physical parameter values
of €y, e., T, and kp given in [88] were used.

VII. CONCLUSIONS

Ions always interact in water solutions, because ions are
charged and water has strong electric fields (although the net
charge of a water molecule is zero). In chemical language,
ions interact in polar solvents (like water), which have a
nonvanishing dipole moment. The interactions of ions and
water and the interactions of ions with each other have
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been studied extensively, first treating ions as point charges.
Recently, the finite size of ions has been dealt with successfully
in models that are easy to compute, both in flow and in
mixtures, with a Fermi distribution coupled to a Poisson
equation using the Santangelo equation to link electric field
near and far from ions. The Fermi distribution describes the
main difference between points and finite size ions. Finite size
ions cannot overfill space. Points can fill space to any density
including “infinity.”

In this work, we propose a new Poisson-Fermi model for
ionic solvent using Xie et al.’s nonlocal Poisson dielectric
theory. Its solution is found to be a convolution of the solution
of a nonlocal Poisson dielectric model with a Yukawa-like
kernel function. It also remarkably leads to a new decom-
position of an electrostatic potential with one component
function for nonlocal dielectric effects and the other for ionic
size effects. We then obtain a new formula for estimating
the nonlocal parameter A in the spirit of the Debye length,
which depends on (and varies with) the ionic strength and
individual concentrations of ions present in ionic mixtures like
biological solutions and seawater. This is very different from
Santagelo’s model [71] in which the parameter is a correlation
length that is not specifically related to ionic strength and
hence does not change with ionic concentrations in the bulk
solution. Furthermore, we construct a new electrostatic free
energy and prove it to have a unique minimizer. After the
minimization of this electrostatic free energy, we derive a
new nonlocal Fermi distribution for a mixture of spherical
ions and water molecules with different radii. Our Fermi
distribution and the corresponding free energy functional are
different from those derived by Liu and Eisenberg even though
they similarly use the specific ionic radii associated with a
steric potential and the interstitial voids among bio-ions and
water molecules. A combination of our Poisson-Fermi model
with this new Fermi distribution leads to our new nonlocal
Poisson Fermi model for computing both the convolution of
electrostatic potential and ionic concentrations. In addition, we
find that ionic concentrations have a limited range when they
are placed in the Fermi-Poisson model. They cannot overfill
space. This treatment of saturation of concentration well
illustrates why the Poisson-Fermi approach is more favorable
than the classic Poisson approach: Ionic concentrations are
very large, approaching saturation, in many biological and
technological applications involving ionic solutions. The new
approach may also improve stability and convergence as
we implement the model numerically for real applications,
involving nonuniform sizes, nonlocal dielectric properties,
and nearly saturating concentrations in crucial locations, and
much smaller concentrations elsewhere. Our numerical results
indeed show that the Poisson-Fermi approach is numerically
more stable. They encourage us to further study the nonlocal
Poisson-Fermi model theoretically and numerically in the
future. Following what was done in [45,46], we plan to validate
our nonlocal Poisson-Fermi model using experimental data on
bulk solutions and later on ion channels.

Later work will examine how well the nonlocal Poisson
Fermi model fits experimental data. Moreover, this new
model will be adopted to the study of biomolecules (e.g.,
nucleic acids and proteins, including ion channels,) and
biological applications that involve ionic flows and concen-
trated ionic mixtures, and will be compared to Liu and
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Eisenberg’s Poisson-Fermi and Poisson-Nernst-Planck-Fermi
(PNPF) models, which themselves did surprisingly well
describing bulk solutions [46], and the gramicidin and L-type
calcium channels [45].
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