### Conservation of Current is Universal and Exact in five slides

### **Bob Eisenberg**

January 11, 2018
Department of Applied Mathematics
Illinois Institute of Technology Chicago
and
Department of Physiology and Biophysics
Rush University, Chicago

### Maxwell's Magnetism

$$\mathbf{curl}(\mathbf{B}(x,t)/\mu_0) = \mathbf{J}(x,t) + \varepsilon_0 \frac{\partial \mathbf{E}(x,t)}{\partial t}$$

$$Current$$

## Current is Conserved PERFECTLY

**div curl**  $\equiv 0$  is an identity

$$\mathbf{div}\left(\int_{-\infty}^{\infty} J(x,t) + \varepsilon_0 \frac{\partial \mathbf{E}(x,t)}{\partial t}\right) = \mathbf{0}$$

$$\mathbf{Current}$$

#### 'Charge' has Very different Physics in different systems



## but Continuity of Current is Exact

No matter what carries the current!

#### **Conservation of Current is Exact and Universal**

$$\mathbf{div}\left(\underbrace{\mathbf{J}(x,t) + \varepsilon_0 \frac{\partial \mathbf{E}(x,t)}{\partial t}}\right) = \mathbf{0}$$

$$\mathbf{Current}$$

Physics of Charge Flow Varies Profoundly

Low Can that possion the possion that



# Displacement Current is Different in Each Device

because  $\mathbf{E}(x,t)$  is Different in every Device

so the

### **TOTAL Current is exactly equal**

at every time in every location and every device

Total Current = Displacement Current + Device Current

### Electric Field takes on the Value that Conserves Current

$$\mathbf{E}(x,t) = -\frac{1}{\varepsilon_0} \int \mathbf{J}(x,t) dt$$

Specifically,

**E** changes the displacement current  $\varepsilon_0 \partial E/\partial t$ 

(that Maxwell called the polarization of the vacuum)

So total current  $J(x, t) + \varepsilon_0 \partial E/\partial t$  is always conserved

Details and PROOF including quantum mechanics at https://arxiv.org/abs/1609.09175