Conservation of Current is Universal and Exact

in five slides

Bob Eisenberg

January 11, 2018
Department of Applied Mathematics
Illinois Institute of Technology Chicago

and

Department of Physiology and Biophysics
Rush University, Chicago
Maxwell’s Magnetism

\[\text{curl}(\mathbf{B}(x, t)/\mu_0) = \mathbf{J}(x, t) + \varepsilon_0 \frac{\partial \mathbf{E}(x, t)}{\partial t} \]

Current is Conserved

PERFECTLY

\[\text{div} \text{ curl} \equiv 0 \text{ is an identity} \]

\[\text{div} \left(\mathbf{J}(x, t) + \varepsilon_0 \frac{\partial \mathbf{E}(x, t)}{\partial t} \right) = 0 \]
‘Charge’ has Very different Physics in different systems

\[i = \frac{\partial E}{\partial t} \]

\[D = \text{permittivity} \times E \]

but Continuity of Current is Exact

No matter what carries the current!
Conservation of Current is Exact and Universal

\[
\text{div} \left(J(x, t) + \varepsilon_0 \frac{\partial E(x, t)}{\partial t} \right) = 0
\]

even though

Physics of Charge Flow
Varies Profoundly
Displacement Current is Different in Each Device because $E(x, t)$ is Different in every Device

so the

TOTAL Current is exactly equal

at every time in every location and every device

Total Current = Displacement Current + Device Current

\[
\text{div} \left(J(x,t) + \varepsilon_0 \frac{\partial E(x,t)}{\partial t} \right) = 0
\]
Electric Field takes on the Value that Conserves Current

\[E(x, t) = -\frac{1}{\varepsilon_0} \int J(x, t) \, dt \]

Specifically, \(E \) changes the displacement current \(\varepsilon_0 \frac{\partial E}{\partial t} \)

(that Maxwell called the polarization of the vacuum)

So total current \(J(x, t) + \varepsilon_0 \frac{\partial E}{\partial t} \) is always conserved

Details and PROOF
including quantum mechanics at
https://arxiv.org/abs/1609.09175