
Open Access. © 2017 Bob Eisenberg et al., published by De Gruyter Open. This work is licensed under the Creative Commons
Attribution-Non-Commercial-NoDerivs 4.0 License.

Mol. Based Math. Biol. 2017; 5:78–115

Research Article Open Access

Bob Eisenberg*, Xavier Oriols, and David Ferry

Dynamics of Current, Charge and Mass
https://doi.org/10.1515/mlbmb-2017-0006
Received August 8, 2017; accepted September 12, 2017

Abstract: Electricity plays a special role in our lives and life. The dynamics of electrons allow light to �ow

through a vacuum. The equations of electron dynamics are nearly exact and apply from nuclear particles to

stars. TheseMaxwell equations include a special term, the displacement current (of a vacuum). The displace-

ment current allows electrical signals to propagate through space. Displacement current guarantees that cur-

rent is exactly conserved from inside atoms to between stars, as long as current is de�ned as the entire source

of the curl of the magnetic �eld, as Maxwell did. We show that the Bohm formulation of quantummechanics

allows the easy de�nition of the total current, and its conservation, without the di�culties implicit in the

orthodox quantum theory. The orthodox theory neglects the reality of magnitudes, like the currents, during

times that they are not being explicitly measured. We show how conservation of current can be derived with-

out mention of the polarization or dielectric properties of matter. We point out that displacement current is

handled correctly in electrical engineering by ‘stray capacitances’, although it is rarely discussed explicitly.

Matter does not behave as physicists of the 1800’s thought it did. They could only measure on a time scale

of seconds and tried to explain dielectric properties and polarization with a single dielectric constant, a real

positive number independent of everything. Matter and thus charge moves in enormously complicated ways

that cannot be described by a single dielectric constant, when studied on time scales important today for elec-

tronic technology and molecular biology. When classical theories could not explain complex charge move-

ments, constants in equations were allowed to vary in solutions of those equations, in a way not justi�ed by

mathematics, with predictable consequences.

Life occurs in ionic solutions where charge is moved by forces not mentioned or described in the Maxwell

equations, like convection and di�usion. These movements and forces produce crucial currents that cannot

be described as classical conduction or classical polarization. Derivations of conservation of current involve

oversimpli�ed treatments of dielectrics and polarization in nearly every textbook. Because real dielectrics

do not behave in that simple way—not even approximately—classical derivations of conservation of current

are often distrusted or even ignored. We show that current is conserved inside atoms. We show that current

is conserved exactly in any material no matter how complex are the properties of dielectric, polarization, or

conduction currents.

Electricity has a special role because conservation of current is a universal law.Mostmodels of chemical reac-

tions do not conserve current and need to be changed to do so. On themacroscopic scale of life, conservation

of current necessarily links far spread boundaries to each other, correlating inputs and outputs, and thereby

creating devices.We suspect that correlations created by displacement current link all scales and allow atoms

to control the machines and organisms of life. Conservation of current has a special role in our lives and life,

as well as in physics.

We believe models, simulations, and computations should conserve current on all scales, as accurately as

possible, because physics conserves current that way. We believe models will be much more successful if

they conserve current at every level of resolution, the way physics does. We surely need successful models as

we try to control macroscopic functions by atomic interventions, in technology, life, and medicine.

Maxwell’s displacement current lets us see stars. We hope it will help us see how atoms control life.
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1 Introduction
The dynamics of electrons allow us to hold a computer in our hand that detects signals of microvolts, from a

500 watt satellite source some 22,200 miles away. The computer in our hand makes logical decisions nearly

a billion times a second, using some 10

12

components, with hardly any errors.

The fundamental laws that govern these phenomena are Maxwell’s equations. These laws are so general

that they are often thought to have limited practical applicability: their application is often thought to de-

pend on precise knowledge of the detailed properties of matter, knowledge that is often unknown, always

hard to acquire. This paper is about a notable exception: conservation of current. Conservation of current
is true universally, on all scales, independent of the detailed properties of matter. Kirchho�’s current

law illustrates the importance of conservation of current. Kircho�’s laws use a set of currents and voltages

to predict the performance of systems operating with currents ranging from femtoamps to kiloamps, with

potentials frommicrovolts to hundreds of volts, in resistors ranging from tenths of an ohm to sometimes tens

of gigohms. Kircho�’s laws are simple, compact and easy to use. They are also exact in branched one dimen-

sional systems, when current is de�ned to include displacement current. Electrical systems follow Kircho�’s

current law exactly because conservation of current is universal.

Electricity is Di�erent because few physical systems follow simple and compact laws with such preci-

sion.

Electricity is familiar as well as di�erent because it is used so widely in our technology and life. Our

society of information (with its internet of everything) is a practical application of the dynamics of electrons.

Our technology would be impossible if Kircho�’s laws were not accurate and easy to apply. Electricity is so

widely used because it follows universal laws that can be easily applied.

Compact and simple laws, like Kirchho�’s laws, allow the use of mathematics to design devices with a

wide range of properties (Gray, Hurst et al. 2001, Cressler 2005, Horowitz and Hill 2015) with reasonable real-

ism. For example, themicrochip in your laptop computer requiresmanufacturing precision to sub-nanometer

accuracy across 300 millimeters of the semiconductor wafer in which the computer chip is formed. This ac-

curacy is an incredible feat of today’s technology.

Sciences that depend on less accurate, simple and compact laws are often forced to use models that

are not ‘transferrable’ (as the word is used by chemists). We mean by ‘transferable’ that the same law—with

the same numerical value of parameters—can be used in a multitude of conditions and systems and is not

constrained to a single system and set of conditions. Non-transferrable models use parameters that change

with conditions, often in ways that are hard to capture or predict. Devices become di�cult to use when their

parameters and properties vary in unpredictable ways.

Nearly all systems— particularly liquids and ionic solutions so important in chemistry and biology — in-

volve many types of forces and interactions. Interacting systems are particularly di�cult to capture in simple

and compact laws. Interactions make it di�cult to �nd transferrable models, with one set of unchanging

parameters valid for a large range of conditions. The simple and compact transferable models valid for typ-

ical electronic technology cannot be automatically applied to biological systems because of their complex

structure, but the electrical properties of individual nerve and muscle �bers can be expressed in terms of

Kircho�’s laws and little else, amazingly enough. (Hodgkin and Huxley 1952c, Hodgkin 1958, Hodgkin 1964,

Hodgkin 1992, Weiss 1996, Huxley 2000, Huxley 2002, Prosser, Curtis et al. 2009, Gabbiani and Cox 2010).

Even electrical syncytia like the heart, epithelia, lens of the eye, liver, and so on can be described quite well

with modest generalizations of Kircho�’s laws.(Tung 1978, Eisenberg, Barcilon et al. 1979, Mathias, Rae et al.

1979, Eisenberg and Mathias 1980, Mathias, Rae et al. 1981, Geselowitz and Miller 1983, Levis, Mathias et al.

1983)

Nerve andmuscle �bers live in salt solutions derived from seawater, as does nearly all of life. Many chem-

ical systems and a great deal of our chemical technology involve these salt solutions. Interactions abound in

salt solutions, and they occur between the di�erent types of ions, and ions with the water. Seawater �ows in

pressure and temperature gradients, so many types of forces are involved. Electric �elds are particularly im-
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portant in these systems and they pose particular problems because electric �elds are very strong and extend

a very long way, coupling atomic and macroscopic length scales with one set of physical laws.

Viewed physically, most biological systems of interest are macroscopic systems containing a huge num-

ber of fundamental particleswith a fantastic number of interactions betweenpairs of particles. Thenumber of

interactions is orders of magnitude larger than Avogadro’s number of particles per mole. Even small systems

contain millions of molecules, and larger systems contain 10

17

molecules, pairwise interactions can domi-

nate properties. The attempts to describe the system by computing the dynamics of each particle becomes,

in general, computationally impossible when these number of interactions are involved.

Some general properties of biological systems are controlled by a handful of atoms, as molecular biology

has so well shown us, and the role of those atoms must be understood at such an atomic level.(Alberts, Bray

et al. 1994) But that understanding does not require computation of all atoms or all interactions. In some

tissues, like nerve and muscle cells, and some syncytia, already described, electrical properties of cells and

tissues on the macroscopic scale are understood nearly completely from atomic properties and structures.

The link between atoms and cells is known and turns out to be a slight generalization of the same Kircho�’s

laws that are so important in the design of our technology.

In this paper, we show that electrical current satis�es a current conservation law exactly and universally

when it includes an additional component beyond the �ux of charge: the displacement current (Zapolsky

1987, Arthur 2008, Selvan 2009, Arthur 2013). The displacement current plays a crucial role in the practical

application of Kircho�’s laws.

The fact that the modeling of systems with charged particles has to include both particle current and

displacement current, rather than only particle current, is a main message of this paper.

At �rst sight, the message may seem trivial. It is clearly explained in most elementary textbooks. How-

ever, there is a surprisingly large amount of relevant work presently being published in biology, electronics,

chemistry, etc., where the dynamics of charged systems are described but the displacement current generated

by the movement of charge is ignored. Indeed, it was a surprise to �nd important work which ignores current

�ow altogether.(Eisenberg 2014a,b) It seems to us that emphasizing the importance of displacement current

is still necessary in the scienti�c community. And we hope that including displacement current will make

models more useful, transferable, and realistic.

1.1 The strength of the electric �eld in life

Electric forces are much stronger than other forces we deal with in ordinary life (e.g., in mechanical systems,

di�usion in liquids, and heat �ow). One per cent changes in concentration, or mass density or temperature

have little e�ects in ordinary life. One per cent errors in the computation of heat �ow, convection, or di�usion

are not very good, but are not a disaster either. But a one percent change in the source of the electric �eld

has dramatic e�ects: as Feynman says in the third paragraph of his textbook on electrodynamics (Feynman,

Leighton et al. 1963), one per cent of the charge in a person (at a distance of 1 meter) creates a force large

enough to lift the earth. Indeed, such forces are large enough to ionize the atoms around and in us, ionizing

them into a gaseous plasma, destroying us and our laboratories in a signi�cant explosion. In normal life,

most people have seen sparks at electrical outlets and have seen and heard lightning. It takes only an easy

calculation to learn that there is a tremendous amount of energy being dissipated from the clouds during

the storm. Life and biological experiments are compatible with only tiny changes in charge density, closer to

10

−15

than a 10

−2

fraction of all charges present. For example, a modern microcomputer in your cell phone

involves transistors that switchwith only about a thousand electrons (~10

−16

Coulombs), a vanishing fraction

of the total number of electrons in the transistor.

Electric forces are so strong that they change the shape of things, much as the gravitational force of the

moondistorts the shape of the earth bymoving our oceans and creating tides. Similarly, electric forces change

the distribution of charge, in a way called polarization. Indeed, early workers in electricity, Faraday, Maxwell

and JJ Thomson, (before he discovered the electron, see (Thomson 1893)) were aware of polarization and

only dimly aware of charge. The word “charge” does not appear anywhere in Thomson’s book (Thomson
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Table 1: Flux

Name Nickname Symbol units SI

Flux of Mass Flux Jmass kg s−1 m−2

Flux of Charge
Current of charge

or (sadly)
Current

JQ C s−1 m−2

Displacement Current ϵ
0
∂E/∂t JD C s−1 m−2

Total Current Total Current Jtotal C s−1 m−2

1893). Evidently, Thomson did not know of permanent charge independent of the electric �eld (Buchwald

1985) until he discovered the electron (Thomson 1898, Thomson 1906).

1.2 The current conservation law in electrical circuits

Computers as we know them are possible because Kircho�’s laws of electrical networks are robust subsets of

the universal laws of electrodynamics that accurately describe the properties of circuits. Our computers are

built almost entirely of circuits in which current �ows in one dimension in wires and devices (like resistors,

capacitors and �eld e�ect transistors). Circuits are almost always branched networks of one-dimensional

components. Currents at branch points (‘nodes’) add and subtract so total current is conserved exactly, al-

ways, at all times. Everything coming into a node goes out of the node, as described by Kircho�’s current law.

In Table 1, we have de�ned the four types of current discussed in this paper. The magnitude Jmass refers to

the �ux of mass. JQ is the �ux of charge. In Table 1, we also include the new displacement current:

JD = ϵ
0
∂E/∂t, (1.1)

where E is the electric �eld, ϵ
0
is a constant, the permittivity of a vacuum, that never changes with anything,

and t is time. Finally, the total current Jtotal is de�ned as the sum of the charge and displacement current:

Jtotal = JD + JQ . (1.2)

The total current Jtotal that enters a node, leaves it. Total current¹ Jtotal is exactly equal everywhere
at every time in every device in a series circuit, even though the charge transport (the �ux) JQ, can be very

di�erent in each device, as di�erent as charge transport in a wire is from that in seawater, or from the dis-

placement current in a ‘vacuum’ capacitor C ∂V∂t (coulombs per sec, SI o�cial name Cs

−1

) where V is potential

in volts (SI o�cial name V). The capacitance is in farads.²

Consider a circuit with a battery connected in series, through a wire, to a resistor and a capacitor. Al-

though the physics of charge movement is entirely di�erent in a battery, wire, resistor, or vacuum capacitor,

the total current is exactly equal at all times in all positions of the series circuit and under all conditions.

Eisenberg (2016c: Fig. 2) describes this reality in some detail.

The total current is Jtotal and it is hard to accept that this will be exactly conserved when so many mech-

anisms are involved over such a range of times and forces. Yet it is. How is it possible for current Jtotal to be

1 We assume that the cross-sectional area is constant in this paragraph so that we do not have to distinguish between current I
and current density J (or current per unit area).
2 Note that if the potential is a sinusoid, say, as V(t) = sinωt as it is in the enormous classical literature measuring polarization

currents and dielectric ‘constants’, the current through the capacitor is C ∂ sin ωt∂t = C sin(ωt − 90◦). The current through a perfect

capacitor is ‘ahead’ of voltage by a phase angle of 90

◦
.
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exactly conserved in a series circuit, independent of themechanismsof charge transport JQ, fromsay 10

−16

sec

to 10

2

sec, and from 10

−6

volts to 10

2

volts (and very much larger)? This conservation is just a consequence

of Maxwell’s equations as will be demonstrated in section 2.2. It can also be understood as a consequence of

a particle conservation law for particles if the particles have charge and therefore satisfy Gauss’ law. Without

electricity and Gauss’ law, particle �ux Jmass would be conserved in a series hydraulic circuit of (say) water

pipes. With electricity and Gauss’ law, particle �ux JQ is NOT conserved in a series circuit of say resistors.

Current Jtotal is conserved but not particle �ux JQ. Currents are exactly equal in a series circuit because total

current Jtotal has another component beyond the �ux of charge JQ (coulombs per second) associated with the

�ux of mass Jmass (units kilograms per second per m

2

). The other component of the conserved total current

Jtotal is Maxwell’s displacement current JD = ϵ
0
∂E/∂t of Eq. (1.1). The displacement current JD depends only

on ∂E/∂t. It does not depend on the properties ofmatter or its dielectric coe�cient ϵr (dimensionless) because

we use ϵ
0
in the de�nition of displacement current. The displacement current we de�ne does not depend on

properties of matter. JD is di�erent from Jtotal and from Jmass. Displacement current is determined only by

the rate of change of the electric �eld and not by any property of matter whatsoever. JD is not produced by

the mechanisms that determine JQ and Jmass. Indeed, it must be clearly understood that the �ux of charge or

mass inside a capacitor is zero.

Inside a capacitor︷ ︸︸ ︷
JQ = 0; Jmass = 0; Jtotal = JD (1.3)

(Zapolsky 1987, Arthur 2008, Selvan 2009, Arthur 2013) have particularly useful discussions of displacement

current JD, and we will discuss it in great detail below.

We see then that the electric �eld changes to ensure perfect equality of total current everywhere
in everything at every time in a series circuit, as a solution of Maxwell’s equations of electrodynamics.

Biological systems are usually modelled in a three dimensional physical space. The one dimensional model

is applicable to the nerve andmuscle cells already discussed and easily generalized to syncytia like the heart.

In any case, we will see in section 2 that the conclusions mentioned above about the importance of the to-

tal current (with particle and displacement components) can be directly extrapolated to three dimensional

systems in general.

The charge density carried by mass density can be a complex function re�ecting the multifaceted distri-

bution of charge in matter on all scales and so is described by many parameters and variables, all of which

can interact with each other. Amodel and theory of matter and its charge is needed to relate mass and charge

density. The theory must include dynamics to derive the movement of charge JQ from the movement of mass

Jmass.Many componentsmaybe involved, of di�erent chemical species, concentration, andmolecular/atomic

charge per chemical species (i.e., ‘valence’ of atomic ormolecular ion). The dynamics of each componentmay

depend onmany types of forces and �elds, electrical and convection to be sure, but also di�usional, thermal,

and gravitational for example. Most importantly, the dynamics of one component is usually coupled to the

dynamics of another. If the components are charged, they are coupled by the electric �eld. If the compo-

nents have �nite size, they are coupled by steric forces because a certain number of �nite size components

�ll space. Components interact so they cannot over�ll space. Interactions are not local; indeed, electrical

interactions always involve spatial boundary conditions because they are described by partial di�erential

equations, �eld theories that in general extend to in�nity sometimes with unexpected results (Mertens and

Weeks 2016). Steric forces are not local, although they need not reach in�nity or extend to far boundaries. In

general ‘everything interacts with everything else’ in many ways and by many interactions speci�c to each

system of interest.

In spite of the fact that the four Maxwell’s equations, together with the dynamical laws of movement,

can be compactly written in a small piece of paper, it is obviously impossible to solve them all to have a

general model and theory of matter and its charge. We shall see however that the fundamental principles of

conservation of total current Jtotal and charge Q can be applied to all matter, no matter what the relation of

themovement of charge JQ and themovement ofmass Jmass. Application of these principles leads to practical

results important in the understanding and design of engineering and biological systems.
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1.3 Polarization Charge and Current

The charge density ρQ carried by mass density³ can be a complicated function re�ecting the multifaceted

distribution of charge in matter on all scales (from nuclear to atomic to molecular to macroscopic, includ-

ing interface conditions and boundary conditions) and so is described by many parameters and variables,

all of which can interact with each other. A model and theory of matter and its charge is needed to derive

ρQ from ρ. The theory must include dynamics to derive the movement of charge JQ from the movement of

mass Jmass. Many components may be involved, of di�erent chemical species, concentration, and molecu-

lar/atomic charge per chemical species (i.e., the charge number of atomic or molecular ions nicknamed ‘va-

lence’ in classical chemistry). And the dynamics of each componentmay depend onmany types of forces and

�elds, electrical and convection to be sure, but also di�usional, thermal, and gravitational for example. Most

importantly, the dynamics of one component is usually coupled to the dynamics of another. If the compo-

nents are charged they are coupled by the electric �eld. If the components have �nite size, they are coupled

by steric forces because a certain number of �nite size components �ll space.

Of course, some of that movement of mass and its charge in a resistor is much more complicated. In an

atom, for example (or a molecule), the bound electrons can move di�erently from the nucleus. The electrons

carry negative charge while the nuclei carry positive charge. This can result in a displacement between the

positive and negative charge, either permanently or in response to the electric �eld. The displacement will be

very di�erent at di�erent times and locations. This kind of movement is conventionally called polarization

or more exactly polarization current. Polarization current can be called dielectric displacement current if it

behaves ‘well’ and follows the physical law (ϵr − 1)ϵ0∂E/∂t with ϵr being a real positive constant called the

dielectric constant (> 1), independent of time and E. Such idealized dielectric constants and polarization

currents exist in textbooks and models. They do not exist in matter and assuming that matter behaves in this

naïve (and often unrealistic) way can lead to serious errors and misunderstandings.

Polarization currents have a large and striking dependence on time in almost all materials, even in the

solid phase, and is a main subject of classical work (Debye and Falkenhagen 1928, Fuoss 1949, Fröhlich 1958,

Van Beek 1967, Nee and Zwanzig 1970, Böttcher, van Belle et al. 1978, Barthel, Buchner et al. 1995, Kurnikova,

Waldeck et al. 1996, Buchner andBarthel 2001, Heinz, vanGunsteren et al. 2001, Kremer and Schönhals 2003,

Rotenberg, Dufre Che et al. 2005, Kuehn, Marohn et al. 2006, Angulo-Sherman andMercado-Uribe 2011). The

practical importance of the time dependence is well known to the engineers who design solid state devices

that work. Ch. 6 of (Hall and Heck 2011) gives a clear description of polarization in real materials, showing

that the classical approximation of a dielectric constant (as a single real number) is of little use. Their analysis

of a harmonic element of a classical harmonic oscillator—a charged mass on a spring with dashpot (Fig. 6-5

p. 258)—is particularly revealing. No one would approximate the location of a mass on a spring as a time

independent constant if they could avoid it. Obviously, the mass and its charge will move in most situations,

creating charge density and �ux of charge, an electric current that varies with time, or frequency.

Most systems cannot be described by a single harmonic oscillator. Combinations of harmonic oscillators

have more complex properties. First consider a parallel combination of oscillators, in which each oscillator

is independent of the others and depends on �elds (and everything else) exactly as a single oscillator does.

Combinations of independent harmonic elements will have a distribution of time dependent properties that

is more or less the sum of each element if the forces on one element are independent of the location and

parameters of the other elements. For example, if one measures the total current of elements in parallel, the

current will be the sum of the distribution of currents of each element. The properties of each element and

of the distribution of elements will however produce complex time dependent currents not describable by

the properties of a single harmonic oscillator, or (in the frequency domain) by a single dielectric constant.

3 It is unfortunate that the same symbol is normally used for two di�erent quantities—mass density and charge density, but we

shall try to be speci�c at the various points where confusion may arise. They must both appear as it is possible that some of the

mass is, in fact, charge neutral and will not appear in the equations for charge.
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Indeed, if these harmonic oscillators are coupled, as they usually are, they can produce one of the most

chaotic systems known to mathematics or science.

Most systems contain elements that are not independent. Each element (of a mass with charge on a

spring) will exert force on its neighbors and the properties of the whole system will not be the sum of the

individual (isolated) elements. These interactions cannot be described by a single potential �eld that is the

same for all the independent oscillators. A potential �eld acting on one elementwill depend on the properties

of the other elements and so the function describing the potential �eldwill be di�erent for each element. Even

the potential �eld produced by a perturbation (say a perturbation applied by electrodes at the boundaries as

experiments are usually done) will depend on the properties of other elements. The perturbing potential will

create an applied �eld that will move each element and that change in location will change the force on ev-

ery other element. The applied �eld acting on one element will not be a function of just the perturbation

potential. Combinations of interacting masses (with charge) are likely to have properties that di�er qualita-

tively from the properties of individual (isolated) elements or a distribution of isolated elements. Hence, this

system is now an interacting many-body system, and becomes one of the most di�cult problems to solve in

either classical or quantum physics or chemistry.

The harmonic oscillator discussed by Hall and Heck is not an arti�cial example. The classical harmonic

oscillator is used throughout theoretical physics from Planck’s treatment of quantized light, arising from

an ensemble of such oscillators, even in studies of the quantum vacuum (Milonni 2013) through quantum

mechanics (e.g., (McIntyre, Manogue et al. 2013). It is not an exaggeration to say that study of the harmonic

oscillator is the starting point of most of many body physics (Ch.1 of (Mahan 1993)).

Chemical compounds are a hierarchy of partially coupled charged oscillators. Each bond oscillates as

electric �elds change. And bonds are electrical objects (distributions of electrons) linking atoms that usually

have signi�cant charge. Groups of atoms together form units (‘moieties’ is a name commonly used) that move

together, more or less—more rather than less in many important cases. These compounds form a hierarchy of

nested oscillators, one building on another, that make a compound pendulum look simple. Compound pen-

dulums have remarkably complexmotions. Chemical compounds consisting of a hierarchy of nested charged

oscillators will clearly not be describable by a single harmonic oscillator, let alone a single dielectric coe�-

cient, even if they are in solids, or in an ideal gas.

In liquids, polarization ismore complexandhard todescribe in ageneralwaybecause liquids are farmore

deformable than solids. In liquids,matter and chargemove inways rarely found in solids. Longdistance �ows

ofmass and charge driven by non-uniformboundary conditions are characteristic of liquids and not of solids,

although of course �elds of quasi-particles in solids (like holes and electrons of semiconductors) �ow much

like ionic liquids. Movements of charge are often driven by nonelectric forces like di�usion or convection.

Description of polarization in such systems must include the �eld equations of di�usion or convection and

their coupling to the �eld equations of electricity, along with the boundary conditions that are an integral

unavoidable part of the de�nition of such �elds that can have important practical consequences (Mertens

and Weeks 2016).

Many experiments have shown the complexity of polarization in liquids. Polarization has been studied

extensively in the ionic solutions derived from sea water in which life occurs and in which much of chemical

experimentation is performed. Experiments show that polarization currents cannot be approximated by a

dielectric coe�cient that is a real positive constant over any reasonable range of conditions or scales (Oncley

1942, Nee and Zwanzig 1970, Macdonald 1992, Barthel, Buchner et al. 1995, Barthel, Krienke et al. 1998a,

Barthel, Krienke et al. 1998b,Buchner andBarthel 2001, Kremer andSchönhals 2003,Oncley 2003,Barsoukov

andMacdonald 2005). Themagnitude of the e�ective dielectric coe�cient (as usually de�ned in experiments

in the frequency domain) varies by a factor of 40× and the current and voltage are not even approximately in

phase: delays abound and the delays depend dramatically on frequency, concentration of ion, and types of

ions present. (A glance of the extensive data in Barthel (Barthel, Buchner et al. 1995) is instructive.) Worse,
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under such circumstances, polarization current must be described by convolution-type integrals⁴ that do not

easily �t into the formalism of Maxwell’s constitutive D �eld (Abraham and Becker 1932, Purcell and Morin

2013) that depends on a constant dielectric coe�cient, a single real number.

1.4 Historical Note

Readers may jump over this note without losing the general trend of the paper, if they wish.

Despite the overwhelming experimental evidence, and theoretical understanding of the enormous com-

plications in properly de�ning polarization, the complexity is not recognized in many areas of science and

most treatments of electrodynamics and Maxwell’s equations. The implications of complex dielectric behav-

ior for transient properties is not apparent in the classical approach focused on sinusoids at one frequency.
In the present world, we are interested in atomic motions which are nearly white noise, more or less the sum

of sinusoids of all frequencies, with an extraordinarily large numbers of reversal of directions in even and

so the simpli�cations of sinusoidal analysis at one frequency are not of much help. We hope the following

discussion makes clear how confusion arose and so makes it easier to move towards reality and whatever

clarity it permits.

Textbooks have used a single time independent dielectric coe�cient (a real positive number) since

at least 1893, as described in histories (Holton 1967, Mehra 2001, Arthur 2013) and by physicist and textbook

authors Max Abraham and Richard Becker whose early texts (Abraham and Becker 1932, Becker and Sauter

1964; with editions going back to Abraham-Föppl, 1905) were the foundation for so many others. Textbook

treatments of dielectrics tend to be built on each other, rather than on the actually observed properties of real

materials.

The appropriate mathematical generalization for variable dielectric coe�cients is not found in the refer-

ences cited. They almost all use a frequency dependent (i.e., variable) dielectric coe�cient (that is a complex

number with real and imaginary parts, not a real number or real constant) and concentrate on the frequency

domain case. Analysis beginswith constant dielectric coe�cients in the di�erential equations and then turns

that constant into a variable in the use of the solution of those equations. Whatever help this may be in deal-

ingwith sinusoids of one frequency disappearswhen dealingwith transient responses even to step functions,

let alone to (nearly) white noise of atomic motion. At best one must perform inverse Laplace transforms of

considerable di�culty to extend to the time domain. These nearly always lead to complex convolutions in

expressions that do not �t comfortably into the usual D �eld formulation of Maxwell’s equations. Often the

inverse Laplace transforms cannot be performed because the system is nonlinear or the mathematics is too

di�cult. In biological systems and condensed phases, the system is nearly always driven by forces not in-

cluded in Maxwell’s equations, so a much more general treatment is needed, that bene�ts from variational

methods designed to combine di�erent forces consistently.

The mathematically obvious needs to be restated because all scientists are human. It is only human to

try to extend ideas, to see how far we can go, to see what happens if we stretch a constant into a variable.

In fact, one of the standard methods of solving di�erential equations presumably arose from an attempt to

stretch constants into variables. It is called ‘variation of constants’ or ‘variation of parameters’ for that reason

(Tenenbaum and Pollard 1963, Arnol’d 2012). This method produces terms, however, that are not present

in the solution of equations with constant inhomogeneous terms. The variation of parameters produces a

di�erent form of the solution of the di�erential equations. If the constants in the solution were turned into

variables, these additional terms would not be present and so the ‘solution’ involving only the terms of the

original di�erential equation would no longer satisfy the di�erential equation (with variable coe�cients).

4 Such convolutions occur throughout physics. They commonly arise in systems that are far from equilibrium, possess several

di�erent “time constants” and so cannot easily bewritten as a scalarMarkov process. (Karlin and Taylor 1975,Schuss, 1980, Schuss

2009).
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The full treatment ‘variation of constants’ is needed to solve di�erential equations because mathematics

does not allow self-contradiction. A constant in part of a derivation must remain a constant in the whole

derivation, including the result of the derivation. A constant cannot become a variable. This statement is

obvious, but dielectric constants (real positive numbers) have been turned into variables (complex frequency

dependent variables) as common practice, throughout the literature of dielectric coe�cients for more than a

century. And so this and the surrounding paragraphs are needed, we fear, if we are to be absolutely explicit

and convincing, so we can change a common practice so deeply embedded in our history.

If one assumes a constant dielectric coe�cient in a di�erential equation, and solves the equation with

that assumption, it is incorrect mathematics to extend the solution into a new formula by allowing a parame-

ter to become a variable. Imagine that the variable dielectric coe�cientwere included in a second generalized

di�erential equation. That revised equationwould have a di�erent solution from the extended formula. A for-

mula that is an extension of the solution (using a variable dielectric coe�cient)will not satisfy the generalized

di�erential equation that includes a variable dielectric coe�cient. The solution to the di�erential equations

are di�erent formulae.

1.5 Structure of the paper

In section 2, we provide an atomic scale discussion (at a fundamental level) about the intrinsic origins of the

particle and displacement currents. We deduce such currents from the trajectories of particles. We also show

in this section that all developments in terms of trajectories are fully compatible with quantum phenomena.

In section 3, we abandon the atomic level of description and develop macroscopic Maxwell equations when

a spatial average of the atomic magnitudes is warranted. There, we present the macroscopic particle and

displacement currents in idealized systems. Section 4 shows that a quite di�erent approach is needed to deal

with realistic systems, but that approach can provide crucial results. Conservation of current is a universal

law that can be derived independent of the polarization properties of matter, for example. Finally, we provide

some concluding remarks in section 5.

2 Atomistic particles and displacement currents
Ignoring the structure of the nucleus of atoms (which is far from the scope of the present work), we can

consider that electrons, atoms (or ions or molecules) are the fundamental particles of our system. We will

discuss the particle current and the displacement current assigning a trajectory to each of these particles. We

will also show that such trajectory-based understanding of the currents is also perfectly compatible for all

(non-relativistic) quantum phenomena. Hence, no real change in the understanding of the role of the electric

�elds occurs as we move from classical to quantum treatments.

2.1 The Particle Current

We consider a general system of particles. Each particle has amass and a charge (the charge can be a positive

or negative number, or even zero for neutral particles, but the mass is always a positive number). Each par-

ticle is de�ned by a trajectory xi(t) in three dimensional space. We will use normal symbols to de�ne scalar

values and bold symbols for vectors in this section. A set of N trajectories {xi[t]} with i = 1, . . . , N provides

a description of our system. The charge density of such system can be de�ned as:

ρQ ≡ ρQ(x, t) =
N∑
i=1

qiδ(x − xi[t]) (2)

where δ(x) is the Dirac delta function that speci�es the position at which the particle is located. In order to

simplify the notation, the dependence of x on twill not be explicitly indicated, unless necessary. Similarly, we

Unauthenticated
Download Date | 10/29/17 6:16 AM



Dynamics of Current, Charge and Mass | 87

will use x ≡ xi[t] without writing the explicit time dependence. The time dependence of such charge density,

because of the movements of the particles, can be evaluated as:

∂ρQ
∂t =

∂
∂t

N∑
i=1

qiδ(x − xi) =
N∑
i=1

qi∇∂(x − xi) ·
(
−

dxi
dt

)
= −

N∑
i=1

qivi ·∇δ(x − xi) = −∇ · (
N∑
i=1

qiviδ(x − xi))

(3)

where ∇ is the divergence operator acting on x and vi ≡ vi[t] = dxi[t]/dt is the velocity of particle i in the

three dimensional space. We de�ne now the particle current density of the N particles as,

jQ =

N∑
i=1

qiviδ(x − xi) (4)

The subindex Q just indicates that we are dealing with a �ux of particles at position x and time t as
indicated in Table 1. Then, Eq. (3) can be rewritten in the form of the well-known local conservation law:

∂
∂t ρQ +∇ · jQ = 0 (5)

This law is satis�ed by all systems that are composed of particles with a real mass, whether at a classical

or quantum level, and with or without charge. We notice that Eq. (5) forbids, for example, any model where

a particle disappears (instantaneously, without delay) from its original position and reappears (immediately,

without delay, at the same time it disappeared) at another point far away from its original location. From the

de�nition of the particle current density in Eq. (4), we see that a large particle current can imply either many

particles with small velocity or few particles with large velocity. This variety of dynamics is captured in most

hydrodynamic models of transport in chemistry and biology.

2.2 Displacement Current

When we are considering a system with charged particles, these particles must satisfy the requirements im-

posed by the interactions due to the charge. The charge and the particle current densities due to the motion

of that charge have to satisfy Maxwell’s laws. The �rst of these we call Gauss’s law:

ϵ
0
∇ · e = ρQ (6.1)

where e ≡ e(x, t) is the atomic scale electric �eld generated at the position and time by the set of particles

whose positions are {xi[t]}. We will use capital letters later for the macroscopic �elds. The term ϵ
0
is the

permittivity of free space (also de�ned as the vacuum permittivity, and introduced in the previous section).

In addition, the following equations also have to be satis�ed by our system of charged particles:

∇ · b = 0 (6.2)

∇ × e + ∂b∂t = 0 (6.3)

where b(x, t) is the atomic scale magnetic �eld. Finally, the fourth Maxwell equation is Ampere’s law with

Maxwell’s modi�cation:

∇ × b
µ
0

= jQ + ϵ0
∂e
∂t (6.4)

where µ
0
is commonly called the vacuum permeability, permeability of free space or magnetic constant. The

speed of light in free space c
0
can be de�ned as c

0
= 1/

√µ
0
ϵ
0
and is remarkably determined by electrical

and magnetic properties that can be measured entirely independent of light.
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By introducing Eq. (6.1) into Eq. (5) we get the following result:

∂
∂t (ϵ0∇ · e) +∇ · jQ = ∇ ·

(
ϵ
0

∂e
∂t + jQ

)
= 0 (7)

Identical results can be obtained from the divergence of (6.4). The �rst term on the right hand side of

Eq. (7) is a new type of current density related to the time-dependence of the electric �eld, and which we

have introduced already in eqn. (1). This term is non-zero at the position and time even when there is no

particle there. The new current term arises either from conservation law (5) and the electrostatic equation

(6.1) or from the magnetic �eld equation (6.4). Both derivations give the same result. Eq. (5) establishes a

local conservation of particles, while Eq. (7) establishes a local conservation of the total current.

In order to understand the implications of Eq. (7) in the description of the dynamics of a systemof charged

particles, let us consider a volume Ω limited by a closed surface S. The volume is totally arbitrary and can

include all the particles, some of them, or none at all, just by de�ning the volume itself. Then, by applying

the divergence theorem (or Gauss’s theorem),(Schey and Schey 2005) we get the result:∫
Ω

∇ ·
(
ϵ
0

∂e
∂t

)
d3x =

∫
S

(
ϵ
0

∂e
∂t + jQ

)
· ds = 0 (8)

with d3x a volumedi�erential and ds the di�erential surfacewhich is a vector locally perpendicular (pointing

outwards) to the surface S. From now on, we distinguish between current density and current itself, contrary

to the simpli�cation in Section 1.2. If we assume, for example, that the volume Ω is a parallelepiped with a

closed surface S = {S
1
, S

2
, . . . , S

6
}, then, we get:

6∑
i=1

∫
Si

(
ϵ
0

∂e
∂t

)
· dsi =

6∑
i=1

Ii(t) = 0 (9.1)

where we use the de�nition of total current following expressions (1.2) in subsection 1.2 as:

Ii(t) = Ii,Q(t) + Ii,D(t) (9.2)

Ii,D(t) =
∫
Si

ϵ
0

∂e(x, t)
∂t · dsi (10)

Ii,Q(t) =
∫
Si

jQ(x, t) · dsi (11)

where we have de�ned the displacement and particle current in general, and rewritten eq. (1) which was

written for a constant lateral area.

The conservation of the total current in Eq. (7) can be illustrated with the 2D example in Fig. 1. Parti-

cles move through each of the surfaces S
1
and S

2
. Such a transport of particles generates an electric �eld

everywhere. The intensity of the electric �eld is larger close to the particles and tends to become negligible

at locations far from where the particles are located. Therefore, we can assume that in the side surfaces (S
3

and S
4
in Fig. 1), there is no particle or displacement current. Then, the volume Ω behaves as a two termi-

nal device (Tuttle 1958, Weinberg 1975). Note the two terminal device can be a transmission line (Ghausi and

Kelly 1968) described by partial di�erential equations of the telegrapher type. These can be exactly described

by two port theory of electrical networks and simple analytical expressions involving the usual hyperbolic

trigonometric functions. The two port theory of transmission lines provides an interesting link between the

engineering world of electrical networks and themathematical world of �eld equations which deserves more

investigation.⁵

5 Inverse problems of network synthesis have been analyzed with great success, exploiting the theory of complex variables. In

particular, ill-posedness produced by structural redundancy—parallel resistors—has been separated from other parasitic sensi-

tivity (not enough data). It would be interesting to use the two port theory of transmission lines to try to extend this separation of

types of ill-posedness to the inverse theory of partial di�erential equations in general.
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Figure 1: A two terminal device with a correct selection of the simulation box Ω that allows a correct computation of the flux of
particles and the electric flux on S

1
, IS1(t), so that it coincides with the measured current in the ammeter, i.e. IS1(t) = IA(t).

Note that the condition in Eq. (9.1) can be rewritten here as I
1
(t) = −I

2
(t). The total current entering

into Ω through S
1
is equal at every instant of time to the current leaving it through S

2
. This is true even at

the particular moment when a particle leaves through S
1
, but no other particle enters through S

2
. In that

moment, continuity of current requires a change in the physical nature of current. The miracle of Maxwell’s

equations is that they apply nomatter what the physical nature of current, or to say the same thing a di�erent

way, they produce the exact displacement current needed to guarantee continuity of current at every time no

matter what physics governs the �ux of charges.

Electricity isdi�erent fromother forces in this respect. Other forces donot have an equivalent of vacuum

displacement current ϵ
0
(∂e(x, t)/∂t) to enforce exact continuity of (their equivalent of) total current under

all conditions, at all times, and in all locations of a series circuit.

The di�erence between particle current and total current is the displacement current. The equivalence

between the two currents moving through the surfaces holds for the total current. The particle currents are

not equal, nor are the displacement currents, only the total currents.

If we add another volume Ω

′

at the left side of the original one (see Fig. 1), we may then conclude that

IS1 = IS1′ (t). In particular, the total current measured in the ammeter of Fig. 1 is equal to the total current

computed on the surface of the original volume Ω, that is IS1 = IA(t). Again, this argument holds only for the

total current and not for only the particle current by itself, nor for the displacement current by itself.

An even more surprising example of the relevance of Eq. (7) appears in a two-terminal capacitor. In the

capacitor, there is transport of total current along all points of the capacitor without any passage of parti-

cles through the volume of the capacitor. There, the external particle current is matched by the internal dis-

placement current. If we consider another example where three surfaces have non-negligible total current,

as in a transistor, then we get a three terminal device with a conservation law for the total current written as

I
1
(t) + I

2
(t) + I

3
(t) = 0.

In fact, if one considers a series arrangement of typical laboratory devices connected by wires, devices

like resistors, capacitors, batteries and diodes (Fig. 2 of (Eisenberg 2016c) it is clear that currents in each

device arise in very di�erent ways, that vary a great deal with time, yet the current in each device is exactly

equal at all times, no matter what the physical origin of the current. The displacement current arranges itself
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to satisfy Maxwell’s equations and make this happen—eq. 4 of (Eisenberg 2016b) shows one way this can

happen—in all devices at all times, no matter how the currents arise from the motion of charged particles.

2.3 Particle and Displacement Currents in Quantum Systems

In the previous sections, our discussions about particle and displacement currents may have been viewed

as applicable only to classical systems (Zapolsky 1987, Arthur 2008, Selvan 2009, Arthur 2013). This is not

true. All of our discussion about the two components of the total currents can be directly applied to (non-

relativistic) quantum systems. In classical systems, the particle motion arises from the Hamiltonian, or total

energy. This is still true in quantum systems although new quantum potentials/forces supplement the clas-

sical Hamiltonian (Kennard 1928, Bohm 1951). The trajectory of each quantum particle is associated with a

quantum (Bohm) trajectory, xi[t]. Certainly,we could try amore orthodoxdescription of particle anddisplace-

ment currents in quantum systems without trajectories, but treatment of current and displacement current

becomes more di�cult, in our view.

We believe that the trajectory-based description of quantummechanics (whichwewill explain here) pro-

vides a much simpler treatment of particle and displacement currents, even almost trivially, than the ortho-

dox one. After all the orthodox approach must consider the ‘measurement problem’ of orthodox quantum

mechanics for both particle current and displacement current. And however one thinks of measurement in

orthodox quantum mechanics, one must admit that it is not simple. The Bohm treatment is simpler because

the measurement problem does not require explicit discussion beyond the de�nition of the treatment itself

(Oriols and Mompart 2012, Dürr, Goldstein et al. 2013, Benseny, Albareda et al. 2014)

Yet we admit that explanations of quantum phenomena in terms of quantum trajectories and waves are

not as popular as explanations with waves alone. Hence, we �rst give a brief discussion of the empirical

equivalence between di�erent quantum theories as they are pertinent here. (Readers may jump over this

history, to eq. (12), without losing the general trend of the paper, if they wish).

TheCopenhagen interpretation (Born,Heisenberg et al. 1925, Born and Jordan 1925, Born 1926), Bohmme-

chanics (de Broglie 1925, Bohm 1951), consistent histories (Gri�ths 1984, Omnes 1988, Gell-Mann and Hartle

1990) , and instantaneous collapse theories (Ghirardi, Rimini et al. 1986) are just a few of the various interpre-

tations of quantum phenomena that give identical empirical results for all experiments, while being di�erent

ontological theories. To better understand the di�erences between empirical and ontological planes of a the-

ory, we brie�y enter into the discussion of what is a physical theory. Kant was the �rst to divide scienti�c

knowledge into three parts: appearance, reality and theory (Herbert 1987). Appearance is the content of our

sensory experience of natural phenomena, i.e. the empirical outcome of an experiment. It might be called

the estimator of reality if we used the language of statistical inference and estimation theory (Sorenson 1980,

Efron 1982, Stengel 1994, Tarantola 2005), where the di�erence between estimators and reality is a central

subject, of great practical importance. Reality is what lies behind all natural phenomena. A theory is a hu-

man model that tries to mirror both appearance and reality. The particular reality invoked (e.g., predicted)

by a theory is referred as the ontology of the theory. Empiricists believe only in experimental outcomes (what

Kant called appearance) and refuse to speculate about what deeper reality the theory implies. On the other

hand, realists believe that good physical theories explain, or at least provide clues about, the reality of our

comprehensible world.

The Copenhagen interpretation, for example, assumes that the reality of a quantum system is somehow

unde�ned until a measurement on the system is done (Heisenberg 1925). The wave function solution of the

Schrödinger equation is not viewed as providing a description of the reality of an individual experiment,

but only provides a compact description of the probabilities associated to all possible experiments/realities

(Heisenberg 1927). According to the Copenhagen interpretation, one particle, for example an electron, is

sometimes a wave and other times (when a position measurement is done) is a particle. The di�culties in

properly understanding how a unique quantum entity can be a wave or a particle reality, and change be-

tween the two when a collapse occurs, just shows the di�culty in accepting the (somehow schizophrenic)

ontology of the Copenhagen interpretation.
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As we have said, there are other quantum interpretations, which also have total agreement with experi-

mental results, while invoking a di�erent understanding (ontology) of reality. In particular Bohmmechanics

explains, in a trivial way, the dual role of an electron as both a wave and as a point-particle (the fact that

a light photon was required to have this duality was known as early as 1909 (Taylor 1909). The theory uses

two objects, one wave and one point-particle, to describe just one electron. Then, the wave-particle duality

is understood with Bohmmechanics as easily as we understand a classical (point-particle) electron which is

being guided by an (wave) electric �eld. Moreover, this interpretation allows us to clearly identify trajectories

which are quite similar to those in classical physics. As mentioned above, the particles in these trajectories

obey Hamiltonian mechanics, just as classical particles do, but in addition respond to additional quantum

potentials (Kennard 1928).

The �rst element in the Bohm theory for a describing the system of N particles mentioned previously is

thewave functionΨ ≡ Ψ(x
1
, . . . , xN , t) in themulti-dimensional con�guration space, andwhich is a solution

of the many-particle Schrödinger equation:

i~∂Ψ∂t =

{
−

N∑
i=1

~2∇2

i
2mi

+ u
}
Ψ (12)

where∇2

i is the Laplacian operator acting on xi. The potential energy u ≡ u(x1, . . . , xN , t) re�ects the interac-
tion between the N particles among themselves aswell as any external potentials. For example, it can include

the Coulomb interaction among particles. We emphasize that the wave function is de�ned in the con�gura-

tion space, not in the ordinary three dimensional real space—the con�guration space has three dimensions

for each particle so that the total dimension is 3N. However, our intuition is developed for the three dimen-

sional physical space and this explains why some quantum phenomena like non-local correlation between

distant particles (what Albert Einstein de�nes as “spooky action at a distance”) becomes counter-intuitive

(and, in fact, unnecessary in a realist viewpoint (Ferry, 2018)). Our concept of distance between two objects

is valid for a three dimensional physical space, but it loses its meaning in the 3N dimensional con�gura-

tion space. We notice that scalar potential energy u(x
1
, . . . , xN , t) in (12) is also a non-local potential and is

also de�ned in this huge 3N dimensional con�guration space. Neglecting relativistic e�ects, one reasonable

solution for the potential is:

u(x
1
, . . . , xN , t) =

N∑
i=1

N∑
j>i

1

4πϵ
0

qiqj
|xi − xj|

(13)

In principle, one can also include the magnetic interaction among charged particles in Eq. (12) by adding the

vector potential in the de�nition of the momentum operator.

We have assumed a closed quantum system in the sense that the set of N particles are properly described

by a pure state, not by a reduced density matrix. Open systems can be modelled by a closed one by adding

all the rest of the particles of the environment or by connecting with appropriate boundary conditions, and

other �eld equations, as appropriate. Indeed, much of condensed matter physics, engineering, and biology

is devoted to open systems and we spend much time on open systems later in this paper.

At this point, we notice that Eq. (12) contains a local conservation law for the quantumprobability density

ρq = |Ψ |2:

dρq
dt +

N∑
i=1
∇i · ji = 0 (14)

where ji ≡ ji(x1, . . . , xN , t) is the (ensemble value of the) quantum current density and ∇i the divergence

vector on the position xi (Landau and Lifshitz 1958). We have used Eq. (3) and (4), written with trajectories

to deduce a conservation law in (14). The inverse reasoning has been used by many scientists to suggest

that quantum trajectories are, in fact, hidden in Eq. (14) or that a trajectory-based interpretation of quantum

phenomena is possible within Eq. (12). Many scientists have noticed the analogy with Langevin trajectories

and Fokker Planck equations describing the density of those trajectories.(Karlin and Taylor 1975, Karlin and

Taylor 1981, Schuss 2009)
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The second element of the Bohm theory when describing a j-experiment is a set of well-de�ned tra-

jectories in the normal three dimensional physical space {xj
1

[t], . . . , xjN [t]}. The superindex j speci�es that

the Bohm de�nition of the quantum state refers only to one j-experiment. The velocity of each particle for

k = 1, . . . , N is de�ned from the wave function as:

vjk[t] =
dxjk[t]
dt =

Jk(x
j
1

[t], . . . , xjN [t], t)
|Ψ(xj

1

[t], . . . , xjN [t], t)|2
(15)

By time-integrating Eq. (15), the trajectory of each particle can be computed trivially as:

xjk[t] = x
j
k[0] +

t∫
0

vjk[t
′

]dt′ (16)

To get the exact trajectory, we have to specify the initial position of each particle in the experiment. Con-

trary to classical mechanics (where the measurement of the initial positions of a system is considered un-

problematic), the initial position of the Bohm particles cannot be measured (unless the many particle initial

wave function is close to a delta function for each position). In general, in quantum mechanics, only prob-

abilities of the di�erent outputs of experiments can be predicted. There is an unavoidable uncertainty in

quantum phenomena. In the Bohm theory, the quantum uncertainty is implicit in the uncertainty of the
initial positions. Experiments are modelled many times, j = 1, . . . ,M → ∞, with the same wave function

Ψ(x
1
, . . . , xN , y, t), but with di�erent initial positions for each set of N trajectories. The probability distribu-

tion of the set of trajectories in di�erent experiments is given by

|Ψ(x
1
, . . . , xN , t)|2 =

1

M

M∑
j=1

δ(x
1
− xj

1

[t]) . . . δ(xN − xjN [t]) (17)

The construction of the Bohm trajectories through Eqs. (15)–(16) ensures that if a large ensemble of exper-

iments j = 1, . . . ,M →∞with N trajectories {xj
1

[t], . . . , xjN [t]} in each experiment are selected in agreement

with (17) at a particular time t = 0, then, the distribution |Ψ(x
1
, . . . , xN , t)|2 will be satis�ed by those set of

trajectories at any other time. The reason why the Bohm and Copenhagen theories are empirically equivalent

is due to this equivariance condition implicit in (17) (Oriols and Mompart 2012, Dürr, Goldstein et al. 2013,

Benseny, Albareda et al. 2014).

Contrary to the wave function that ‘lives’ in the 3N dimensional con�guration space, the Bohm trajecto-

ries {xj
1

[t], . . . , xjN [t]} in a single experiment ‘live’ without problem in the normal three dimensional physical

space. Therefore, in a single experiment, the charge density at the point in the physical space due to the other

particles {xj
1

[t], . . . , xjN [t]} can be trivially de�ned as:

ρjQ(x, t) =
N∑
i=1

qiδ(x − xji[t]) (18)

where the superindex j means that this charge density corresponds only to the j-experiment. In another ex-

periment, the charge can be di�erent due to the intrinsic quantum uncertainty in the selection of the initial

positions. From ρjQ(x, t) and the Poisson equation, we can de�ne the potential vj(x, t) as the potential created
at the point x in the physical space due to the presence of charges at the �xed positions {xj

1

[t], . . . , xjN [t]} as:

∇2vj(x, t) = −
ρjQ(x, t)
ϵ
0

(19)

The boundary conditions in our particular system,where thenumber of particles include all relevant particles

of the closed system, will be vj(x→ ±∞) = 0, which are compatible with the typical Coulomb law. In fact, the

solution of (19) gives a potential given by

vj(x, t) =
N∑
i=1

1

4πϵ
0

qj
|x − xi[t]|

(20)
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Once we get this potential, we can compute the electrical �eld from ej(x, t) = ∇vj(x, t) or fromGauss’ law

as ϵ
0
∇ej(x, t) = ρjQ(x, t) as mentioned in (6.1). Both expressions give the electric �eld at the position x due to

the N particles as

ej(x, t) = 1

4πϵ
0

N∑
i=1

qi
|x − xji[t]|3

(x − xji[t]) (21)

Once we know the electrical �eld at any position x, we can compute the displacement current at the

points x ∈ Si as done in Eq. (10). On the contrary, the particle current density of electrons described by Bohm

trajectories at the position x can be easily formulated from Eq. (11). It can be easily shown that the ensemble

values obtained from Eq. (17) are exactly identical to the ensemble values obtained from the Copenhagen in-

terpretation (Albareda, Traversa et al. 2012). The fundamental advantage of the Bohm theory is that the
total current is well-de�ned, at any time, with orwithout discussing itsmeasurement. In the present con-

text which is focused on the meaning and properties of ‘current’ this is a signi�cant advantage over versions

of quantum mechanics in which current must involve a whole theory of measurement in which current is

only a real entity when ameasurement is done. The reader is probably aware that scientists do not all use the

same quantum theory of measurement.

Another point that requires a clari�cation is just how we can extract the information I j(t) from such sys-

tems. Such information requires ameasurement of the system. In the Bohm theory, themeasurement requires

the introduction of a pointer (for example the arrow of an analog ammeter) whose position y indicates the

value of the measurement of the displacement current. Therefore, we have to introduce a new degree of free-

dom y in Eq. (12) and also consider the interactions between y and the rest of particles in the Hamiltonian

of Eq. (14) so that there is a good correlation between y and I j(t). Since the degree of freedom y is present

in the Schrödinger equation (12), we accept that y is a�ected by {x
1
, . . . , xN}, but we also consider that

{x
1
, . . . , xN} are a�ected by y. In other words, the evolution of {x

1
, . . . , xN} with or without the ammeter

will be di�erent because the solution of (12) will be di�erent. Therefore, the wave function of the quantum

systems su�ers a back-action due to themeasurement. Classically, one accepts (at least theoretically) that one

can get information of the particle system without distorting the system. One can imagine an ampli�er, for

example, with an in�nite input impedance that draws no current from its surrounds. In a quantum system

the measurement-without-distortion is not possible. It has been demonstrated quite recently by one of the

authors that measurement of the displacement current in a quantum system can be considered as a type of

weak measurement (Marian, Zanghi et al. 2016). This implies that a good measuring apparatus will provide

a value yj[t] ≈ I j(t) + η(t) where η(t) is a (very) high frequency noise with ensemble value equal to zero (when

integrated over di�erent experiments) and that decays rapidly to zero when time-integrated. In a classical-

like language, the physical origin of this extra noise due to the measurement can be attributed to plasmons

in the contacts, associated with the displacement current of the weak measurement.

Finally, we emphasize that the quantum reality suggested by each quantum interpretation (ontology) is

mainly a relevant topic for those devoted to a realistic understanding of our comprehensible world. Empiri-

cists bother less with the suggested reality as long as the interpretation is empirically correct.

In fact, most scientists are neither realists, nor empiricists; but a mix of both. Many people accept the

Copenhagen ontology because it provides a useful method to get practical predictions. The technical ad-

vantages in the computation of empirical outcomes is said to compensate somehow the digestive problems

implicit in that Copenhagen interpretation of the reality.

For the discussion of the displacement current in this paper, we argue that the Copenhagen interpreta-

tion has no technical advantage over the Bohm one, but just the opposite. Thus, for those who like the reality

suggested by the Bohm theory, the present description of the particle and displacement current in quantum

systems has been found quite simple and intuitive. Those who dislike this Bohm picture of explaining dis-

placement and particle currents in terms of well-de�ned quantum trajectories can just ignore such reality

and use Bohm mechanics as a useful computational tool that helps evaluate and discuss the particle and

displacement currents in quantum systems.

If we pursue this subject in more detail, we recognize that the full quantum state (including the active

region, the contacts, the batteries, etc.) is computationally inaccessible. A computationally accessible solu-
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tion deals only with the degrees of freedom of a smaller subsystem, referred as the open system (our active

device region), while the other degrees of freedom (the environment) are not explicitly simulated (Breuer and

Petruccione 2002). The well-known Lindblad master equation (Lindblad 1976) describes the evolution of the

reduced density matrix for Markovian systems (when the role of the environment is highly predictable and

memoryless). In the description of the dynamics of quantum systems at the very high frequencies that we

are interested in, we can hardly say that the system is Markovian. The orthodox extensions of the Lindblad

type of solutions based on the reduced density matrix beyond Markovian dynamics are still challenging. The

stochastic Schrödinger equation (SSE) is another technique to deal with non-Markovian systems dynamics

with states (Diósi, Gisin et al. 1998, Strunz, Diósi et al. 1999). It is based on the continuous measurement

theory that allows the de�nition of a wave function of the open system conditioned on one monitored value

associated with the environment. However, it is well-known that the physical interpretation of themonitored

value (for example the measured total current in our case) cannot be given to the solutions of the SSE for

non-Markovian systems. It was demonstrated byWiseman and Gambetta that a SSE-type solution of an open

systemwith a physical interpretation of the monitored value as the output of a continuous measurement has

to be based onBohmmechanics (Gambetta andWiseman 2002, Gambetta andWiseman 2003). Apractical im-

plementation of this type of computational approach showing the technical advantage of the Bohmapproach

in some cases is explained in a recent work of one of the authors using a Bohm conditional wave functions

(Oriols 2007, Marian, Zanghi et al. 2016, Colomés, Zhan et al. 2017). In these papers, quantum trajectories do

not only provide a comfortable theory to understand the displacement current, but also to compute it. A gen-

eral discussion of the approach to open quantum systems can be found in (Barker and Ferry 1980a, Barker

and Ferry 1980b). One such open quantum system coupled to a complex environment is the open “quantum

dot” in which coupling to the “dot” is by normal transport, and not by tunnelling. This system illustrates the

complexities of the system/environment coupling, and has been the subject of several experimental (Bird et
al., 1997, 2003) and theoretical reviews (Ferry, Burke et al. 2011, Brunner, Ferry et al. 2012, Ferry, Akis et al.

2015) The Coulomb blockade in ionic channels is closely related to this open quantum system.(Grabert and

Devoret 1992, Kaufman, McClintock et al. 2015, Feng, Liu et al. 2016)

3 Idealized macroscopic description of the currents
As we have already commented, any attempt to describe all fundamental charged or uncharged particles

with such an atomic scale dynamical description is generally computationally unfeasible. Therefore, most

macroscopic descriptions give up any atomic scale spatial resolution of the discrete particles and deal with a

supposedly continuous charge and mass density. From a stochastic viewpoint, the continuous functions are

measures of the underlying stochastic processes of atomic motion (Karlin and Taylor 1975, Karlin and Taylor

1981, Schuss 2009), for example, a spatial average. From the scienti�c point of view, the functions aremodels

of some of the properties of the underlying stochastic processes of atomic motion.

3.1 Macroscopic Charge Density and Gauss’ Law in Isolated Idealized Systems

The following discussion is of idealized isolated systems that permit spatial averaging. More general open

systems are discussed later. We present the idealized equilibrium derivation to connect with the widely read

textbook literature (Jackson 1999) and to provide enough detail so others may learn to extend the derivation

to the non-equilibrium case relevant to devices and other systemswith long-range current �ow, driven by (for

example) spatially inhomogeneous boundary conditions, with (for example) di�erent potentials at di�erent

locations on their boundaries. Temporal averaging is another approach, under intensive study by Chun Liu

and associates (Ma, Li et al. 2016a, Ma, Li et al. 2016b).

Here, itwill be useful to distinguish between someparticles that canbe grouped together into small stable

entities (likemolecules) and other particles thatmove alone.We assume that there are i = 1, . . . , Ne particles
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moving alone (for example electrons) eachone located at xi[t].Wealso consider that there are n = 1, . . . , Nmol
stable entities (molecules) and that eachmolecule has in = 1, . . . ,Mn particles inside. Therefore, the position

of the particles that form the molecule can be written as xin [t] = ∆xin [t] + xn[t] with xn[t] is the position of the

center of mass of the molecule. The charge density in (2) can be written as

ρp(x, t) =
Ne∑
i=1

qiδ(x − xi[t]) +
Nmol∑
n=1

ρn(x, t) (22)

where ρn(x, t) =
∑Nn

in qinδ(x−xin [t]−xn[t]) is the charge density of the n-thmolecule. For simplicity, hereafter,

since it will be evident that we are talking about charge density, the subindex Q will be avoided.

The macroscopic version of the particle and current densities in idealized systems will be obtained by

spatial averaging (Russako� 1970, Jackson 1999). This type of spatial averaging does not allow the extended

e�ects of �nite size particles (Eisenberg 2012, Eisenberg 2013a), for example, and worse, it does not allow the

in�nite range correlations that occur when spatially nonuniform boundary conditions drive �ow. Indeed, it

is not clear how to include long range electrical currents that �ow from one boundary to another in a spatial

distribution function (as they do in the devices of our electronic technology).⁶

It is important to note that any equation for this locally averaged W(x) will depend on boundary prop-

erties, boundary potential, or charge, and may not visibly depend on current �ow at all. Surely the spatial

distribution function W(x) must vary with current �ow if such exists. In general, the distribution function

and the �elds must be analyzed and computed self-consistently with the various �ows.

For an isolated idealizedmacroscopic system, andanyatomic scalemagnitude a(x, t), suchas the electric

ormagnetic �elds, or the charge or particle current densities, we can obtain a continuousmagnitude A(x, t) =
〈a(x, t)〉 by spatial averaging the atomistic magnitude over a localized region, following

A(x, t) ≡ 〈a(x, t)〉 =
∫
d3x′W(x′)a(x − x′, t) (23.1)

where

W(x) = Ne−
r2
R2 (23.2)

with r2 = x2 + y2 + z2 and R speci�es the radius of the small spherical volume over which the spatial average

takes place. The value N is a normalization constant. If R is larger than the atomic scale separation between

particles, the magnitude 〈a(x, t)〉 becomes a continuous function.

Here we use a spatial distribution function W(x) that is inspired by equilibrium analysis of simple sys-

tems, akin to a perfect or ideal gas (Rowlinson 1963, Berry, Rice et al. 2000). In systems with extended cor-

relations, any Markovian equation for this locally averaged quantity is inadequate (Jacoboni and Lugli 1989,

Hess 1991, Ferry 2000, Singer, Schuss et al. 2004, Vasileska, Goodnick et al. 2010). For example, it is clear that

the Gaussian cannot exist adjacent to a hard wall boundary which is impenetrable to the particles. Electri-

cal boundary conditions that de�ne the inputs, outputs, and power supplies of devices are unlikely to have

Gaussian distributions nearby. The properties of inputs and outputs are the essential features of devices and

so use the use of Gaussians limits applications.

With the Gaussian approximation, charge densities in Eq. (22) can be spatially averaged from Eq. (23) as

ρ(x, t) ≡ 〈ρp(x, t)〉 =
Ne∑
i=1

qiW(x − xi[t]) +
Nmol∑
n=1
〈ρn(x, t)〉 (24)

6 Electronic devices are de�ned by their inputs and outputs and their relationship. Inputs and outputs are at di�erent locations

on boundaries of the system: boundary conditions are spatially nonuniform. Most devices also require some locations (usually

on boundaries) to be maintained at speci�ed potentials by auxiliary devices called power supplies. Spatially nonuniform bound-

ary potentials drive currents throughout the system that change the properties of the system in useful ways. That is why power

supplies are used. The currents driven by the spatially nonuniform boundary potentials satisfy conservation laws and so produce

correlations reaching to boundaries. Averaging treatments that do not depend on current cannot easily describe devices that have

spatially distinct inputs, outputs, and power supplies.
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with the charge of eachmolecule ρn(x, t) de�ned just below (22). Now, since a ∆xin [t] is small in comparison to

xn[t], a Taylor expansion of ρn(x, t) around the position x−xn comes fromTaylor expansion ofW(x−∆xin −xn)
as

W(x − ∆xin − xn) = W(x − xn) − ∆xin ·∇W(x − xn) + · · · (25)

where we have neglected the third (unwritten) term of the Taylor expansion (related to the quadrupole mo-

ment). ⁷

By putting expression (25) into (24), we can wrote ρ(x, t) ≡ 〈ρp(x, t)〉 as

ρ(x, t) =
Ne∑
i=1

qiW(x − xt[t]) +
Nmol∑
n=1

qnW(x − xn[t]) −
Nmol∑
n=1

Pn ·∇W(x − xn[t]) + · · · (26)

We have de�ned the polarization vector of the nth molecule as pn ≡
∑Nn

in=1 qin∆xin and charge of each

molecule as qn ≡
∑Nn

in qin . The macroscopic polarization P(x, t) is

P(x, t) =
Nmol∑
n=1

pnW(x − xn[t]) =
Nmol∑
n=1
〈pnδ(x − xn[t])〉 (27)

Finally, we can rewrite the total charge as

ρ(x, t) ≡ 〈ρ(x, t)〉 = 〈ρfree(x, t) −∇ · P(x, t)〉 (28)

and the Gauss (or �rst of Maxwell’s) equation(s) (6.1) become

ϵ
0
∇ · E(x, t) = 〈ρfree(x, t)〉 −∇ · P(x, t) (29)

wherewehave de�ned ρfree(x, t) =
∑Ne

i=1 qiδ(x−xi[t])+
∑Nmol

n=1 qnδ(x−xn[t]).Wehave de�nedE(x, t) = 〈e(x, t)〉
with the obvious property that 〈∇ · e(x, t)〉 = ∇ · 〈e(x, t)〉. Then, by de�ning the electric displacement �eld as

D(x, t) = ϵ
0
E(x, t) + P(x, t) (30)

the macroscopic version of the Gauss’s law can be rewritten as

∇ · D(x, t) = 〈ρfree(x, t)〉 (31)

Note that the classical vector �eldD depends on a constitutive law that does not describe actual experiments

on matter. When the classical vector �eld D is used, polarization is described by a single real number, the

dielectric constant ϵr. As we have documented in some detail previously, the polarization of matter cannot

be described that way; indeed, the polarization of simple models of matter (as harmonic oscillators) cannot

either.

It may be helpful to follow Lorrain and Corson 1970 and de�ne a vacuum displacement �eld

D
0
(x, t) = ϵ

0
E(x, t) + P

0
(x, t) (31.1)

along with

∇ · D
0
(x, t) = 〈ρeverything(x, t)〉 = ρQ (31.2)

The vacuum displacement vector �eld D
0
and the companion polarization P

0
�eld does not involve the

properties of matter. It does not involve a constitutive law. These �elds are as fundamental and universal as

theMaxwell equations themselves (Mansuripur and Zakharian 2009).We call ρeverything by the name ρQ later

in this paper.

7 While this is undoubtedly a reasonable procedure from the physical point of view, it should clearly be understood that these

termsmay not be an adequate approximation to the Taylor series. There aremany independent variables and parameters involved

and uniform convergence has not been examined, nor errors of approximation. Evaluating the accuracy of approximations like

this is not a mathematical nicety. It is necessary if the approximations are to be used reliably. Onemust never forget the hundreds

or thousands of terms needed in a classical multipole expansion (of Coulomb’s law in radial coordinates, for example) when the

observation point is close to the source point as it usually is in computations of chemical bonds and molecular dynamics.
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3.2 The Macroscopic Current Density and Ampere’s Law

The particle charge densities in Eq. (4) can be spatially averaged from Eq. (23) as

Jp(x, t) ≡ 〈jp(x, t)〉
Ne∑
i=1

qiνi[t]W(x − xi[t]) +
Nmol∑
n=1
〈jn(x, t)〉 (32)

with 〈jn(x, t)〉 =
∑Nn

in=1 qin νin [t]W(x − xin [t] − xn[t]) which implies a de�nition of the current of a molecule as

jn =
Nn∑
in=1

qin νinδ(x − ∆xin − xn) (33)

Using the same Taylor expansion ofW(x − ∆xin − xn) in (25), we can rewrite the spatial average of (33) as

〈jn〉 =
Nn∑
in=1

qin (∆νin + νn)W(x − xn) −
Mn∑
in=1

qin (∆νin + νn)∆xin ·∇W(x − xn) + · · · (34)

We have de�ned the velocity of the center of mass of the molecule and its relative motion as νn[t] =
dxn[t]/dt and ∆νin [t] = d∆xin [t]/dt. As in the charge density, keeping only the �rst two terms in the Taylor

expansion, we get

〈jn〉 =
Nn∑
in=1

qin νnW(x − xn) +
Nn∑
in=1

qin∆νinW(x − xn) −
Mn∑
in=1

qin νn∆xin ·∇W(x − xn)

−

Mn∑
in=1

qin∆νin∆xin ·∇W(x − xn) . . . (35)

The �rst term

∑Nn
in=1 qin νnW(x−xn) = 〈qn nunδ(x−xn)〉 is just the spatial average current of the molecule

as if it were a point charge qn ≡
∑Nn

in=1 qin . We notice that the second term gives

∑Nn
in=1 qin∆νinW(x − xn) =

∂
∂t 〈pnδ(x − xn)〉 + (νn ·∇)〈pnδ(x − xn)〉. The third term can be easily rewritten as −

∑Mn
in=1 qin νn∆xin ·∇W(x −

xn) = −νn∇ · 〈pnδ(x − xn)〉. Neglecting again the fourth order term, we can write the fourth term as

−

∑Mn
in=1 qin∆νin∆xin ·∇W(x − xn) = ∇W × (1

2

∑Mn
in=1 qin∆xin × ∆νin ). We de�ne the magnetic dipole moment of

the n-molecule as

mn =
1

2

Mn∑
in=1

qin∆xin × ∆νin (36)

Rewrite the fourth term as −

∑Mn
in=1 qin∆νin∆xin ·∇W(x − xn) = ∇ × 〈mnδ(x − xn)〉.

Finally, putting all the terms together, and noting that part of the second term and the whole third term

become negligible, we get

Jp(x, t) ≡ 〈jp(x, t)〉 = 〈jfree(x, t) +∇ ×M +

∂P(x, t)
∂t 〉 (37)

Similarly to the de�nition of the macroscopic polarization P(x, t) in Eq. (27), we have de�ned the macro-

scopic magnetic dipole moment as

M(x, t) =
Nmol∑
i=1
〈mnδ(x − xn[t])〉 (38)

Now, we rewrite the Ampere law in (6.4) as

∇ × 〈b(x, t)〉
µ
0

= 〈jfree(x, t)〉 +∇ ×M +

∂P(x, t)
∂t + ϵ

0

∂〈e(x, t)〉
∂t (39)
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Using the previous de�nition D(x, t) = ϵ
0
E(x, t) + P(x, t) and a new de�nition of the magnetic �eld in-

tensity H(x, t) = B(x,t)
µ
0

−∇ ×M, we arrive at a macroscopic version of the Ampere law in (6.d) as

∇ ×H(x, t) = 〈jfree(x, t)〉 +
∂D(x, t)
∂t (40)

The integration in Eq. (23) depends on t of a(x, t) and on the variable x’ but not on the x so it can be easily

demonstrate that 〈∇×b(x, t)〉 = ∇×〈b(x, t)〉 = ∇×B(x, t). By the same reasoning 〈 ∂e(x,t)∂t 〉 =
∂
∂t 〈E(x, t)〉 =

∂E(x,t)
∂t .

3.3 The Macroscopic Particle Conservation Law and the Total Current Density

In Section 3.1 we divided the charge density in Eq. (28) between what we call free charge that includes the

electron and molecules (as a point particle) charge 〈ρfree(x, t)〉 plus the terms 〈ρnot free(x, t)〉 = −∇ · P(x, t).
In Section 3.2, we divided the current density in Eq. (37) into two parts, the free current 〈jfree(x, t)〉 and
〈jnot free(x, t)〉 = ∇ × M ∂P(x,t)

∂t . The distinction between free and bound currents is discussed later in this

paper where it is found to be of limited use in the study of liquids.

It is interesting to realize that the not free terms satisfy their own continuity equation

∂
∂t 〈ρnot free(x, t)〉 +∇ · 〈jnot free(x, t)〉 = −

∂∇ · P(x, t)
∂t +∇ ·

(
∇ ×M +

∂P(x, t)
∂t

)
= 0 (41)

Since the total charge (either quantum or classical) also satis�es a continuity equation (5), we conclude

that the free charge (due to electrons and the molecules understood as point charges) satis�es its own equa-

tion of motion

∂
∂t 〈ρfree(x, t)〉 +∇ · 〈jfree(x, t)〉 = 0 (42.1)

These results just show that the approximation developed in Sections 3.1 and 3.2 for the macroscopic

charge and current densities are consistent among themselves. As expected, it con�rms that our model of

free particles does not create or destroy particles locally.

Such separation between free and not free dynamics, cannot be translated into a separation between

free and not free displacement current. The divergence of Eq. (40) gives

∇ ·
(
〈jfree(x, t)〉 +

∂D(x, t)
∂t

)
= ∇ · (〈jfree(x, t)〉 + ϵ0

∂E(x, t)
∂t +

∂P(x, t)
∂t ) (42.2)

Therefore, in a two terminal device like the one in Figure 1, we conclude that on some surfaces perpendic-

ular to the transport direction, the total current is basically particle current, on other surfaces it is basically

displacement current due to the time-dependent variations of the macroscopic E(x, t), while on still other

surfaces it is basically due to time dependent variations of the polarization P(x, t), etc. Onmany surfaces, the

current is just a mix of the three terms. In any case, this is the relevant message, the total current through any

surface perpendicular to the transport direction of a two terminal device is equal.

This separation of particle current (�owing from one end of a device—say a resistor—to the other) and

surface displacement current from the surface of the resistor conforms to time honored engineering practice.

Physical resistors are typically represented as idealized Ohm’s law resistances with an additional separate

circuit element representing the sum of (1) the stray capacitance and (2) the displacement current on the

(nonterminal) surfaces of the physical resistor⁸. Stray capacitors do not appear explicitly in descriptions of

electronic circuits (Horowitz and Hill 2015) but they are always implied and their practical importance is

great, as is well explained on p. 581 of (Horowitz and Hill 2015). Successful devices depend on the proper

control of stray capacitance (Johnson and Graham 2003, Scherz and Monk 2006).

8 A clear example is the ever popular metal �lm resistor, which is anything but a resistor at high frequencies due to its inherent

inductive nature.
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‘Stray capacitance’ sounds as if it is a capacitance that could be removed if we were only clever enough

to know how to do so. This is not the case, and no amount of work can reduce it beyond a minimum value.

Stray capacitance is an unavoidable property of the electric �eld, describing the displacement current that

is always present from the surface of real resistors. One might say stray capacitor holds the charge that is the

“overhead”, the price we must pay to create the potential across an ideal resistor. This overhead limits the

speed in many practical devices, for example, it limits the refresh speed of the digital screens of our (large)

televisions and computer terminals.

4 Realistic macroscopic description of the currents
We move now to realistic descriptions of macroscopic systems. When Maxwell wrote his equations, technol-

ogy did not allow measurement of time dependence at speeds faster than seconds and so delays between

polarization and electric �elds were essentially unknown. It was sensible then to begin study of the electric

�eld by assuming that polarization was proportional to the electric �eld, with a single time independent con-

stant embodied by a dielectric constant that is a positive number, a constant. Polarizationwas supposed to be

a local variable, independent of time or frequency, independent of the parameters and boundary conditions

and even the positions of the boundaries and independent of the structure of the system.

It is remarkable that the formulation of Maxwell that was developed entirely in a macroscopic
context applies exactly also at the deep quantum level (Albareda, Traversa et al. 2012, Marian, Zanghi

et al. 2016) applied to atoms and within atoms to elementary particles, as shown in Section 2.3. One can

only imagine what would have happened if Maxwell had lived long enough to apply his electromagnetic �eld

equations to the statistical mechanics he was helping to create (Garber, Brush et al. 1986).

Our technology today allows routine measurements in times less than 10

−15

sec (Riek, Seletskiy et al.

2017), even in complex biological systems (Tsen and Tsen 2016), and our computations of atomic properties

start at 2 ×10

−18

sec (Ferry, Goodnick et al. 2009, Vasileska, Goodnick et al. 2010), so it should not be a sur-

prise that we resolve enormously more complex behavior of polarization charge than Maxwell. Indeed, it is

safe to say that in the time scales just mentioned, polarization is never found to be characterized by a single

dielectric constant (a single real positive number) in anymaterial. And inmost cases polarization depends on

the parameters of the system, the boundary conditions, and their positions, and of course on the structure of

the system. These are experimental facts known for nearly a century in many cases (Debye and Falkenhagen

1928, Debye 1929, Fröhlich 1958, Böttcher, van Belle et al. 1978, Buchner and Barthel 2001). It would seem

wise then to use a formulation of Maxwell’s equations that does not impose a �ction of a simple polariza-

tion property characterized by a dielectric constant that is a real positive number independent of time and

frequency.

A hint of the complexities involved in realmacroscopic systems can be found from the discussion of ideal-

ized harmonic oscillators given previously in this paper. Macroscopic systems involve myriads of interacting

harmonic oscillators, and so obviously cannot be described by a simple polarization function. Serious at-

tempts at derivation of polarization for simpli�edmodels of electron gases (Lundqvist andMarch 2013) show

enormous complexity and applications to ‘gases’ made of quasi-particles in semiconductors p. 468-475 of

(Mahan 1993) are hardly simpler.

Liquids have signi�cantly more complex behavior than the idealized systemsmentioned in the last para-

graph. Liquids move in many more ways than solids, and movement is driven by multiple forces, di�usion

and convection as well as temperature gradients, with di�usion being a crucial mechanism in most applica-

tions. Liquids are usually complex �uids and need to be analyzed by the mathematics of complex �uids, not

ideal �uids or gases.

Ionic solutions and liquids are much more complex yet than ‘uncharged’ liquids—without permanent

charge—because electric forces andmigration in the electric �eld are dominant determinants of motion. Sea-

water resembles an ideal Ohm’s law resistor much more than an uncharged liquid. Movements are driven by

all �elds in liquids and ionic solutions, everything is coupled to everything else, so polarization currents
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in these systems depend on all parameters and properties of all �elds, as well as on the structure and

boundary conditions that constrain them.

In these systems, the distinction between bound charge and mobile charge is hard to make in a con-

vincing way. Bound charge is found to have in phase components of current (in response to a sinusoidal

perturbation over a range of frequencies) as well as the out of phase components characteristic of ideal-

ized bound charge and idealized polarization. Mobile charge is found to have out of phase components (in

response to a sinusoidal perturbation over a range of frequencies) as well as the in phase components of ide-

alized mobile charge of perfect conductors. Even the early simple models of polarization (Debye and Falken-

hagen 1928, Debye 1929) have complex behavior. Polarization cannot be represented by a single dielectric

constant, a real positive number independent of time or frequency in these oversimpli�ed models. (See His-

torical Note early in this paper.) The (real positive) dielectric constant of the Maxwell equations becomes a

complex variable (with real and imaginary parts, magnitude and phase) in the Debye model of polarization.

As thesemodels are adapted to dealwith real systems, the approximation of polarization by a single dielectric

constant becomes worse and worse.

Looking at real systems from the point of view of the experimental scientist—who does not know ahead

of time what mechanism produces out of phase or in phase components of currents—it seems a daunting

task to determine whether an in-phase component of current arises from a lag in a nonideal polarization cur-

rent produced by complex movements of bound charge, or from a conduction current. It is di�cult and, in

our opinion, obviously arti�cial to make a distinction from experimental data alone, between nonideal prop-

erties of polarization current (of bound charges) and nonideal properties of conduction currents (of mobile

charges).

For these reasons we follow the lead of (Purcell and Morin 2013, section 10.4, p. 505-507) and abandon

the isolation of polarization current, but rather deal with any type of current at all, isolating only the vac-

uum displacement current (see eq. 31.1) that can in fact be characterized exactly by a single real constant the

permittivity of free space ϵ
0
. We write current in any material as it is written for a vacuum in most textbooks

of electrodynamics. We return to more traditional descriptions later to maintain contact with the traditional

literature.

We �nd that abandoning the traditional approach is disturbing to our colleagues, sowe think it necessary

to cite others who have this view. In the well-known textbook Purcell and Morin p. 507 of (Purcell and Morin

2013) write

“. . . . in the real atomic world the distinction between bound charge and free charge is more or less arbitrary, and so, there-

fore, is the concept of polarization density P. The molecular dipole is a well-de�ned notion only where molecules as such are

identi�able – where there is some physical reason for saying, ‘This atom belongs to this molecule and not to that.’ In many sub-

stances such an assignment is meaningless. An atom or ion may interact about equally strongly with all its neighbors; one can

only speak of the whole. . . .”

A liquid, or an ionic solution, �ts perfectly into Purcell and Morin’s discussion. The structure of liquids

(see Section 23.2 p. 629 of the de�nitive text (Berry, Rice et al. 2000)) ensures that “we cannot isolate any one

pair of molecules from interactions with other molecules” (p. 529). Everything interacts with everything else.

Analysis in terms of a single distribution function W(x) is not likely to be adequate in a system like that, a

liquid or an ionic solution.

Quotations aside, the reason to abandon the traditional approach is clear simply from the properties

of the distribution function used in classical analysis. The distribution function W(x) in Eq. (23) is written

with one functional dependence, only on x. It should be immediately obvious that a single function W(x)
with functional dependence only on x is unable to deal with the enormous range of dielectric properties

observed experimentally in equilibriummeasurements of linear dielectrics, for nearly a century, (Debye and

Falkenhagen 1928, Debye 1929, Onsager 1936, Oncley, Ferry et al. 1940, Oncley 1942, Fuoss 1955, Fröhlich 1958,

Van Beek 1967, Nee and Zwanzig 1970, Hubbard, Onsager et al. 1977, Böttcher, van Belle et al. 1978, Anderson

1994, Barthel, Buchner et al. 1995, Barthel, Krienke et al. 1998a, Buchner and Barthel 2001, Pitera, Falta et al.

2001, Oncley 2003, Prodromakis and Papavassiliou 2009). These measurements are now called impedance

or dielectric spectroscopy (Macdonald 1992, Kremer and Schönhals 2003, Barsoukov and Macdonald 2005).
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Their main topic is the complex functional dependence of dielectric behavior that cannot be described by a

single dielectric constant, a real positive number.

Non-equilibrium systems havemuch richer behavior than the equilibrium systems studied in impedance

or dielectric spectroscopy. Indeed, that is exactly whymost of the devices andmachines of our technology are

non-equilibrium, as are all of the systems of life. The polarization of non-equilibrium systems can also not

be described by theories involving a single distribution functionW(x) with functional dependence only on x.
Our technology and much of biology involve devices with well-de�ned inputs and outputs, as well as robust

input output relations. Devices obviously include variables and parameters to describe inputs and outputs.

These variables describe the essential function of devices. If the variables are not present in a description

of polarization at all, the description obviously cannot describe how polarization changes as the inputs and

outputs change.W(x) does not contain variables to describe inputs, outputs.

Itmight seemat this juncture that the situation is desperate and nothing useful can be said about systems

in general, because the properties of polarization are so diverse, and that would certainly be the appropriate

conclusion if only mechanical and steric forces were involved.

The remarkable result is that something can be said, and what can be said is very powerful indeed, be-

cause of the special properties of the electric �eld, because of Maxwell’s displacement current, that occurs in

electrical problems in a special way.

Conservation of current and thus Kircho�’s current law does not depend on any discussion of po-
larization. It is true at the fundamental quantum level as shown in Section 2.3 and it is true everywhere else

as well.

Kircho�’s current law is (nearly) enough to analyze and synthesize the linear and nonlinear networks of

electronic devices, passive and active because those circuits have simple structure. They are fundamentally

one dimensional systems with branches. Kircho�’s current law is (nearly) enough to analyze and synthesize

our electronic technology, digital andanalog, that has alloweda 10

9

improvement in functionality in 60years.

4.1 Mathematics Of Current Flow

A crucial property of the electric �eld can be derived without mention of polarization at the quantum level as

we have shown already and in general (Mansuripur and Zakharian 2009, Eisenberg 2016a, Eisenberg 2016b)

aswe shall see. Conservationof total current Jtotal and thusKircho�’s law for total current (in onedimensional

branched systems) can be derived without mention of polarization. The mathematical derivation is quite

succinct, although the physical meaning of that derivation seems to produce lengthy discussion.(Eisenberg

2016c)

The mathematical derivation depends on one of the key equations of electrodynamics, Ampere’s law,

as modi�ed by Maxwell.⁹ For easier reading, we rewrite equations (1.1) and (6.4) again here. We use capital

letters, but we understand them without the spatial average discussed in section 3.1. They are fundamental

and universal laws true on all scales, within and between atoms and true on macroscopic scales as well.

1

µ
0

∇ × B = Jtotal = JD + JQ; JD = ϵ
0

∂E
∂t (43)

As already mentioned, JQ describes all movements of charge associated with matter, in this formulation

of Ampere’s law (see p. 276 of and Ch.3. of (Lorrain and Corson 1970)). JD describes properties of the vacuum—

i.e., free space—and is independent of the properties of matter. Polarization properties of matter are included

in JQ as advocated in the quotation cited above from p. 507 of (Purcell and Morin 2013). The historical dis-

cussion of (Arthur 2013) makes it easier to abandon traditional representations of polarization and D �elds

9 Historically, this equation was a fulcrum in the history of physics: it allows waves to propagate at a velocity c (units: meter/sec)

determined entirely by constants describing the strength of the magnetic �eld µ
0
(units: henry/meter) and the electric �eld ϵ

0

(permittivity of free space, farads/cm), namely c = 1/(µ
0
ϵ
0
)

1/2

. Measurements of electrical andmagnetic phenomena are enough

to correctly calculate the speed of light!
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because it makes clear that they were never based on experimental reality. Eisenberg (2016a, 2016b) uses

traditional representations of polarization to connect this approach to the traditional literature on linear di-

electrics, used to describe the complex behaviors of polarization and JQ found in experiments.

Universal Law. It is now a simple step to a universal law for current �ow true for any polarization property

at all. We apply the vector identity ∇ · (∇ × B/µ
0
) and derive conservation of total current using a realistic

description of macroscopic materials, as we did for atomic scale particles in expressions (7) and (8) in sec-

tion 2.2.

∇ · (Jtotal) = ∇ ·

JQ +
JD︷ ︸︸ ︷

ϵ
0

∂E
∂t

 = 0 (44)

Conservation of total current Jtotal is possible because the electric �eld E �eld changes according to Ampere’s

law. The key physical idea is that the E �eld is a variable that changes the displacement current JD so Jtotal is
conserved.

Conservation of Jtotal is universal, derivable for particles on the atomic scale (see Section 2.2) or for

macroscopic systems without mention of the polarization or dielectric properties of matter.

Wewrite a simple approximation derived from eq. (44) that shows oneway the electric �eld E can change

its shape—i.e., how it depends on time—to ensure conservation of current.

If the electric �eld changes according to the equation

E = −

t∫
0

(
JQ(t′, etc.)/ϵ0

)
dt′, (45)

current is conserved. Eq. (45) is obviously not a general statement. Eq. (45) implies eq. (44) but eq. (44) does

not imply eq.(45). An explicit general statement for howEmust change to satisfy Ampere’s law andMaxwell’s

equations is much more complicated.

4.2 Conservation of Charge

Conservation of current is closely connected to conservation of charge (see discussion in section 2.1),

through the continuity equation, whichwe nowderive using the Gauss equation of electrostatics, often called

Maxwell’s �rst equation in (6.1) rewritten here as:

∇ · E =

ρQ
ϵ
0

(46)

Here ρQ describes thedensity of all charge associatedwith thedensity ofmass. The chargedensity ρQ includes

(i) any chargedistribution independent of the electric �eld, (ii)polarization charge of perfect dielectrics (char-

acterized by a single dielectric constant that is a real positive unchanging number), and (iii) any other charge

that depends on the electric �eld, whether the dependence is simple as in the polarization charge, or more

complicated, depending (for example) on other �elds. The dependence of charge on other �elds is the key to

understanding many phenomena in complex �uids (Doi and Edwards 1988, Hou, Liu et al. 2009, Liu 2009,

Hyon, Kwak et al. 2010); electrorheology (Sheng, Zhang et al. 2008, Zhanfg, Gong et al. 2008), for example, of

the Marangoni e�ect (Velarde 2003, Hu and Larson 2005, Sun, Liu et al. 2009), and ‘tears of wine’ (Fournier

and Cazabat 1992) and ‘oil on water’ , studied by B. Franklin (Franklin, Brownrigg et al. 1774); electrodi�u-

sionmodels like the (Poisson) drift di�usion equations (Van Roosbroeck 1950, Gummel 1964, Macdonald and

Franceschetti 1978, Selberherr 1984, Markowich, Ringhofer et al. 1990, Jerome 1995) called Poisson Nernst

Planck (PNP) equations in electrochemistry and biophysics (Eisenberg and Chen 1993, Eisenberg 1996, Eisen-

berg 1999, Coalson and Kurnikova 2005, Ji, Liu et al. 2015).
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Now, we di�erentiate Gauss’ equation (46) with respect to time, and interchange order of di�erentiation

in time and space, on the way to deriving the continuity equation for charge density ρQ

∇ ·
(
ϵ
0

∂
∂tE

)
=

∂ρQ
∂t (47)

but from eq. (43)

∇ ·
(
ϵ
0

∂E
∂t

)
=

=0︷ ︸︸ ︷
∇ · (∇ × B/µ

0
) −∇ · JQ (48)

so we have the continuity equation relating the �ux of any mass carrying charge to the density of that mass.

∇ · JQ = −

∂
∂t ρQ (49)

Note the electrical �eld E and the displacement current JD = ϵ
0
∂E/∂t do not enter into the continuity

equation. Both the �ux JQ and the charge density ρQ describe all charge, whatever its origin.

We now describe some of the many forms of charge, hoping to connect the reader to the more classical

literature in this way and to motivate the reader to abandon the use of a dielectric �ction, namely a dielectric

constant that is a single real number independent of time, frequency, and all other variables and �elds.

(1) Perfect idealized dielectrics JD of a perfect dielectric includes polarization charge that is well described

by a constant that is a positive real number that never varies with anything. Perfect dielectrics possess the

idealized polarization charge of classical textbooks, reaching back to 1893, as described in (Becker and Sauter

1964), see (Abraham and Becker 1932). The idealization is an important aid in teaching and exploratory anal-

ysis of new systems, because it allows simpli�ed theories.

Perfect dielectrics have (1) zero current �ow when a steady voltage is applied and (2) 90 degree phase

di�erence between current and voltage at all frequencies when sinusoids are studied (3) phase of cur-

rent/voltage independent of frequency when sinusoidal voltage/current is applied.

(2) Perfect idealized conductors have zero phase di�erence between current and voltage at all frequen-

cies when sinusoids are studied. Current and voltage are proportional to each other, with a proportionality

constant that is a single real positive constant at all times.

It should be clearly understood, however, that matter never behaves as a perfect dielectric, with ideal-

ized polarization, or perfect conductor over the range of times and conditions of technological, biological, or

chemical interest, as documented at length previously in this paper. Real materials are neither dielectrics nor

conductors but rather a combination of both, with properties that always vary dramatically with time, and

often with many other variables.

(3) LinearDielectrics are linear in the electric �eld,meaning currents are strictly proportional to the strength

of the electric �eld at each time and position. The electrical potential (or current) can then be “divided out”

and the linear dielectric can be characterized by properties and parameters that do not depend on voltage or

current, parameters like conductance, resistance, capacitance, dielectric coe�cient, admittance, impedance,

and reactance. Linear dielectrics have properties that vary dramatically with frequency/time, composition,

and concentration of the chemical species that make up the dielectric as shown in measurements done for

nearly a century in a huge literature now called impedance spectroscopy (Debye and Falkenhagen 1928, De-

bye 1929, Onsager 1936, Oncley, Ferry et al. 1940, Fuoss 1955, Fröhlich 1958, Van Beek 1967, Nee and Zwanzig

1970, Hubbard, Onsager et al. 1977, Böttcher, van Belle et al. 1978, Anderson 1994, Barthel, Buchner et al. 1995,

Barthel, Krienke et al. 1998a, Buchner and Barthel 2001, Pitera, Falta et al. 2001, Barsoukov and Macdon-

ald 2005, Prodromakis and Papavassiliou 2009). The literature includes many special e�ects (Debye Falken-

hagen; Maxwell Wagner, for example) that highlight the complexity of phenomena. Every linear dielectric

has properties that change dramatically with time or frequency, without exceptions known to us.

(4)Materials in general. Inmostmaterials and all ionic solutions, chargemovement includes coupled, often

nonlinear properties that cannot be comfortably described by classical theory but seem to require a more

general description. In fact, the coupled properties of ionic solutions have not yet been successfully described

(Zemaitis, Clark et al. 1986, Barthel, Buchner et al. 1995, Barthel, Krienke et al. 1998a, Jacobsen, Penoncello
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et al. 2000, Myers, Sandler et al. 2002, Wilczek-Vera and Vera 2003, Lin, Thomen et al. 2007, Tresset 2008,

Kontogeorgis and Folas 2009, Fraenkel 2010, Hünenberger and Reif 2011, Eisenberg 2013b, Liu and Eisenberg

2015, Rowland, Königsberger et al. 2015, Kohns, Reiser et al. 2016, Wilczek-Vera and Vera 2016, Xie, Liu et al.

2016) over a range of compositions and concentrations found in seawater and living organisms (Kunz 2009,

Kunz and Neueder 2009) even at equilibrium (without �ows of any kind).

Nonlinear properties characterize most transport in biology (Cole 1972, Ruch and Patton 1973a, Ruch and

Patton 1973b, Weiss 1996, Keener and Sneyd 1998, Ashcroft 1999, Hille 2001, Jackson 2006, Boron and Boul-

paep 2008, Koeppen and Stanton 2009, Prosser, Curtis et al. 2009, Gabbiani andCox 2010, Zheng andTrudeau

2015) and cannot easily be described by generalizations of the permittivity (ϵr − 1)ϵ0 despite the attempts of

Cole (Cole and Curtis 1936, Cole and Curtis 1938, Cole and Curtis 1939, Cole 1947, Cole 1972, Huxley 1992). Cur-

rents in macroscopic biological systems (Hodgkin and Huxley 1952a, Hodgkin and Huxley 1952b, Hodgkin

and Huxley 1952c, Huxley 2000, Huxley 2002) and in the molecules producing and controlling the currents

(Armstrong and Bezanilla 1973, Bezanilla, Vergara et al. 1982, Bezanilla 1985, Vandenberg and Bezanilla 1991,

Sakmann and Neher 1995, Neher 1997, Bezanilla and Stefani 1998, Vargas, Yarov-Yarovoy et al. 2012, Horng,

Eisenberg et al. 2017) are described by nonlinear di�erential operators including terms quite di�erent from

(ϵr − 1)ϵ0∂E/∂t, called the Hodgkin Huxley equations when the currents are macroscopic (op. cit.). Quite

di�erent representations are needed for currents that �ow through single protein channels (Sakmann and

Neher 1995, Neher 1997).

Nonlinear chargemovements—some extremely nonlinear (Wegener 2005)—create nonlinear optics, stud-

ied initially as lasers (Sutherland 2003, Boyd 2008, Hill and Lee 2008). Extraordinary optical devices are pos-

sible if materials are built with spatial variations of displacement current on the atomic scale, creating the

exciting areas of photonics, quantum chiral optics (Lodahl, Mahmoodian et al. 2017) and cloaking devices

(Islam, Faruque et al. 2016, Zheng, Madni et al. 2016).

Spatially dependent nonlinear charge movements are creating several of the new �elds of science and

technology we read about in newspapers. Basov and Folger (Basov and Fogler 2017) write “High-temperature

superconductivity, unconventional magnetism, and charge-ordered states are examples of the spectacular

properties that arise in solids through many-body e�ects, a consequence of electrons strongly interacting

with one another andwith the crystal lattice” Lundeberg et al, point to the future (Lundeberg, Gao et al. 2017)

“The response of electron systems to electrodynamic �elds that change rapidly in space is endowedbyunique

features, including an exquisite spatial nonlocality.” Dielectric �ctions are left far behind in this work.

4.3 Flow of mass

The understanding of dynamics of charge movement JQ depends of course on the dynamics of mass Jmass.
A usable model requires explicit connection between the equations of motion of mass and charge, as for

example, in the charged harmonic oscillators discussed earlier (Hall and Heck 2011). We consider a number

of systems to get a feel for the issues involved.

Consider �rst the �ow of uncharged matter, the traditional subject of �uid mechanics, and theory of

complex �uids. If themass has no charge (of any kind under any conditions), its �ow is speci�ed by amixture

of conservation of mass and constitutive equations. In simple cases, �eld equations as complex as the Navier

Stokes equations arise. But mass is moved bymany forces, for example, pressure, and temperature gradients

depending on frictional dissipative processes. Jmass involves multifaceted interactions of various �elds and

di�erential equations, just as does JD. Each facet of the various �elds can interact with every other. Fitting

parameters appear in the numerous cross terms of the di�erential equations describing these interactions

and these are often determined poorly by experimental work.

A variational approach minimizes the number of �tting parameters and leads to transferrable models

useful in the design of devices. The variational treatment guarantees that results are mathematically consis-

tent, with all variables satisfying all �eld equations and boundary conditions, with a minimal set of �tting

parameters, that are in fact constant when the model �ts data successfully. The EnVarA formulation intro-

duced by Chun Liu, more than anyone else, is such an approach, including dissipation, as it must when
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condensed phases are involved (Ryham, Liu et al. 2006, Ryham 2006, Eisenberg, Hyon et al. 2010, Horng, Lin

et al. 2012, Forster 2013, Wu, Lin et al. 2014b, Wu, Lin et al. 2014a, Xu, Sheng et al. 2014, Wu, Lin et al. 2015,

Wang, Liu et al. 2016). Movements in any condensed phase involve strong atomic interactions on the 10

−17

sec

time scale (‘collisions‘) because condensed phases have little empty space, by their very de�nition. Friction

and dissipation are the macroscopic results of collisions. Treatments of condensed phases, including liquids

and ionic solutions, must include friction if they are to deal with �ow.

4.4 Flow of uniformly charged matter

This simple kind of matter has a constant density of charge (per density of matter). The charge density

is permanent, independent of the local electric �eld, and distributed uniformly in space. The description of

uniformly charged matter requires variational methods just as does the �ow of uncharged matter.

It is unusual—if not unheard of—for the charge density of matter to be constant independent of the local

electric �eld as we assume here. The electric �eld is so strong, as we have discussed, that it nearly always

distortsmatter, creating positive andnegative poles of charge, leading to the namepolarization for the change

in the spatial distribution of charge induced by the electric �eld.

Matter usually consists ofmolecules that have themselves asymmetrical permanent distributionof charge

produced by a combination of polar bonds and asymmetrical distribution of permanent charges like the acid

and base groups of amino acids, or other weak acids or bases. Asymmetrical polar molecules like these rotate

in electric �elds including the �uctuating �elds produced by thermalmotion of charged atoms andmolecules.

Polar molecules have complex Brownian motion, involving rotation and translation, so the averaged distri-

bution of charge depends on frequency or time, temperature, and the electric �eld itself, as well as of course

any permanent charges, or ions with permanent charge that are present, as they usually are. More general

molecules have stretching motions as well as complex twisting motions, not easily described in a general

way, certainly not as elasticity. A brief look at the structure of nucleic acids and how they wind, unwind, as

they self-assemble into ribosomes or chromosomes shows how complex these motions can be. (Remember

that DNA and RNA are characterized by very large densities of acid groups, with their permanent negative

charge on carboxylates, as well as by the strongly polar bonds of their nucleobases, purines and pyrimidines

with large permanent partial charges, e.g., nearly −0.3e on the oxygen of carbonyls.)

The �ow of charged matter in general is thus very complex indeed. Charged molecules are polarized by

the electric �eld as just described. The charges of the molecules also help create the electric �eld of course.

Everything interacts with everything else and all relevant equations must be solved together. They must be

solved consistently, with all variables satisfying all equations under all conditions, with one set of unchang-

ing (and thus transferable) parameters.

The �ow of mass Jmass and the �ow of charge JD depend individually on the electric �eld in an intricate

way, as we have discussed. The variable that relates these �ows is the charge per mass, and that too has

complex properties, as charged molecules, stretch, rotate, and interact. ‘Everything depends on everything

else’ in these systems. Variational methods keep track of these interactions, in our view, and are particularly

useful because they guarantee that all the output (dependent) variables satisfy all equations and boundary

conditions.

The �ow of JQ is more complex than the �ow of uncharged matter because the electric �eld strongly

interacts with all the �elds and �ows of the variational treatment. The electric �eld is remarkably strong and

so the electrical terms are large—often dominant—even in systems that are uncharged on the average.

Consider an uncharged system like liquid argon (Hirschfelder, Curtiss et al. 1964). The �uctuations in

charge density in systems with zero mean charge like liquid argon produce dispersion forces (Israelachvili

1992, Parsegian 2006, Stone 2013)) that dominate the properties of the liquid argon and are of important

components of all intermolecular forces.

Consider the technologically important phenomenon of dielectrophoresis (Pohl 1978, Jones 2003) used

in the separation of chemically similar molecules. In dielectrophoresis, particles with zero permanent charge

can be transported by the electric �eld because the particles have induced polarization charge. That is to
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say, in formal terms,

∂2E
∂t2 ≠ 0 ⇒ �ow by dielectrophoresis. Phenomena like dielectrophoresis produce both

transport of Jmass and JQ even when the molecules involved have no net charge.

Each of these systems requires a separatemodel and entire professions are devoted to each type ofmodel.

Few universals exist, but where they exist they are most helpful in constructing and constraining models.

Conservation of charge, conservation of mass are such universals. We believe conservation of current is an-

other universal that will be helpful in constructing models.

Conservation of current has rarely been used as an independent constraint on models probably because

the current conserved is usually taken as the �ux of charge JQ that depends on the dielectric properties of

matter. See however (Mansuripur and Zakharian 2009) and other extensive discussions of displacement cur-

rent (Zapolsky 1987,Arthur 2008, Selvan 2009,Arthur 2013). Dielectric properties, andpolarization in general,

are drastically oversimpli�ed in usual treatments. Laws of current �ow that involve these over-simpli�cations

are distrusted, for good reason, and so investigators do not use those laws when they try to construct realistic

models of real matter.

We hope we have convinced the reader that conservation of electrical current Jtotal is an independent

constraint just as much as conservation of charge ρQ and conservation of mass. Jtotal is conserved because it

includes Maxwell’s displacement current. That current is not included in the usual descriptions of mass and

its �ow and so conservation of current Jtotal cannot be derived from the conservation laws of mass and its

�ow.

Conservation of current arises because of the special properties of the electric �eld and its displacement

currents. Ampere’s law eq. (6.4) guarantees that conservation of mass ρmass and its �ow Jmass does not imply

conservation of total current. We believe conservation of total current is a universal property of the electric

�eld, from atoms to animals, that does not involve polarization or its properties.

4.5 Conservation of current in electronic technology

In the branched one dimensional circuits of our electronic technology, conservation of Jtotal implies (Bhat

and Osting 2011) Kircho�’s ‘current’ law, where ‘current’ is Jtotal not JQ. All the that �ows into a node �ows

out, as described by Kircho�’s current law. Jtotal is never stored, not even a little bit, not at any time, not
at any place.

In contrast to the �ow of current, the �ow of charge is not described by Kircho�’s law. All of the current

JQ that �ows into a node does not �ow out. According to eq.(45), some of the current JQ is stored to create

E = −

∫ t
0

(JQ(t′, etc.)/ϵ0)dt′ and that E is exactly what is needed to enforce Kircho�’s ‘current’ law, where

‘current’ is Jtotal not JQ.
The stored charge taken from JQ can be said to be ‘stored in the capacitance of free space’ determined

by ϵ
0
and the geometry of the system. The stored charge taken from JQ does not appear explicitly in most

descriptions of electronic circuits (Horowitz and Hill 2015) because it is often viewed as a ‘parasitic’ stray

capacitance, something to be avoided and denied, like other stray parasites. But every engineer knows that

parasitic capacitance is important in the practical implementations of circuits p. 581 of (Horowitz and Hill

2015) and successful devices depend on the proper control of stray capacitance (Johnson and Graham 2003,

Scherz and Monk 2006).

Stray capacitance is clearly an unavoidable property of the electric �eld equation (1) that can produce

E = −

∫ t
0

(JQ(t′, etc.)/ϵ0)dt′ by storing charge. That stored charge and that E is exactly what is needed to

enforce Kircho�’s ‘current’ law, where ‘current’ is Jtotal. ‘Current’ is not JQ.
As we have carefully stated earlier, leaving the stray capacitance out of idealized circuits is a well-

motivated over-simpli�cation making it easier to teach circuit theory to newcomers who have not actually

built circuits. But that simpli�cation produces inconsistencies if Kircho�’s current law is mistakenly applied

to the current JQ. Kircho�’s law for Jtotal is consistent with Maxwell’s equations. Kircho�’s law for JQ is not

consistentwithMaxwell’s equations, if circuits omit the stray parasitic capacitance of free space that supports

displacement current ϵ
0
∂E/∂t.
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The conservationof current ismost striking in a series circuit. In a series circuit, Jtotal is equal everywhere,

no matter what the physics of current �ow in each component (see examples in Fig. 2 of (Eisenberg 2016c)).

Note the currents Jtotal are equal at any time, including at the atomic scale sec. Currents of JQ are certainly not

equal on the atomic scale because �eld �uctuations ∂E/∂t are so large on the atomic scale, producing huge

displacement currents JD = ϵ
0
∂E/∂t in any consistent simulation of atomic or molecular dynamics. See the

general review of computational electronics (Vasileska, Goodnick et al. 2010).

4.6 Conservation of current in chemistry

Chemical reactions are described as a series of reactions that obey the law of mass action. Reactions involv-

ing charged reactants produce current �ow. It was a surprise (Eisenberg 2014a,b) to �nd that models of series

chemical reactions A → B → C have unequal currents IAB ≠ IBC. The current A → B is not constrained to

equal the current B → C in classical chemical models. The models are usually not transferable. The descrip-

tions of chemical reactions typically require di�erent rate constants under di�erent experimental conditions

and so have limited utility. In future work, we will try to modify the description of chemical reactions so they

conserve current.

Chemical reactions involve charge storage as well as the �ux of charge. Maxwell’s equations, and their

displacement current, are needed to describe that storage of charge, as we have seen. In the chemical litera-

ture, stored charge is often described by the Born equation (Atkins andMacDermott 1982) for self-energy in an

idealized systemswithout boundary conditions. For example, the interactions of ions with water (‘solvation’)

are widely described by the Born equation, particularly in proteins and macromolecular systems (Bashford

and Case 2000). The Born equation does not allow current �ow, does not deal with displacement current in

general, and ignores the boundary conditions that can change the qualitative features of the electric �eld in

practically important ways (Mertens and Weeks 2016). The Born equation is a drastic approximation to the

complexities of current �ow in chemical reactions and systems.

Higher resolution analysis involving simulations on the atomic scale are performed widely in molecular

biology because of the wonderful structures (of more than 10

5

proteins, typically made of >10

5

of atoms)

available mostly from x-ray crystallography. The beauty and power of these structures has enormous appeal

to the mind’s eye, but that appeal makes it easy to overlook the other demands of the mind.

Protein structures do not include the electrical potentials and macroscopic concentrations that power

the currents that �ow throughout living systems, and therefore simulations are needed. Protein structure has

allowed us to identify and look at the atoms that make up the proteins of life but structures are not enough.

One can learn a great deal from snapshots of an automobile engine and its pistons. But one needs to study

the motions to know how the engine works.

Atomic resolution simulations extend our knowledge of protein structures in most important ways. But

they do not provide an easy extension from the atomic time scale 2×10

16

sec to the biological time scale of

gating currents that starts at 50×10

−6

sec and reaches 5×10

0

years and longer (we hope). Calculations of cur-

rents from simulations must average the trajectories of atoms that last 50×10

−3

sec and are sampled every

2×10

−16

sec) involving some 10

6

atoms all of which interact through the electric �eld to conserve charge and

current, while conserving mass. Simulations like molecular dynamics do not provide an easy treatment of

interactions. It is obviously impossible to simulate all the interactions of the tremendous number of particles

involved and their interactionswhich are so numerous that theword ‘tremendous’ seems quite inappropriate.

(Some 10

21

atoms are involved and interactions are not just pairwise, because of the crucial role of polariza-

tion. Polarization ensures that forces between any pair of atoms depend on the locations of all other atoms.

Thus, the total number of interactions is far larger than 10

21

factorial!)

It is di�cult to enforce continuity of current �ow in simulations of atomic dynamics because simulations

compute only local behavior while continuity of current is global, involving current �ow far from the atoms

that control the local behavior. It is impossible to enforce continuity of current �ow in calculations that as-

sume equilibrium (zero �ow) under all conditions. Current cannot be both zero and �nite. Periodic boundary

conditions are widely used in simulations. Such conditions take a box of material and replicate it identically,
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so the potential at the corresponding edges of the box are identical. If the potentials are identical, current will

not �ow. Periodic boundary conditions of this sort are incompatible with current �ow from one boundary to

the other. Voltage clamp experiments, and natural biological function involve current �ow from one bound-

ary to another. Atomic resolution simulations of current �ow are not feasible now nor is it likely they will ever

be feasible when trace ions (like Ca

++

) are involved, as they are in most biological systems. Too many water

molecules must be computed to determine the trace concentration of Ca

++

.

It seems to us that thewonderful resolution of structure and atomic simulationmust be combined in a hi-

erarchy ofmodels sowe can understand how changes in a handful of atoms control macroscopic current �ow

in proteins and biology. Continuummodels are needed to extend high resolution simulations to macroscopic

reality.

Continuummodels compute current �ow as it depends on a variety of conditions, namely di�erent elec-

trical potentials, di�erent concentrations and compositions of ionic solutions, and di�erent structures of con-

�ning systems. The quantities from computations/analyses of models can be compared directly with experi-

mental measurements of current. The quantitative models are dramatically reduced in complexity compared

to structures or simulations of structures in atomic detail, but they are precise. Such is the nature of most

physical models of condensed phases. Such must be the nature of physical models of biological function, in

our view.

5 Conclusion

Atomic Control And Displacement Current
A few atoms control the transistors of our computers. A few atoms control living systems, although these

atoms are billions of times smaller, and move thousands of millions of times faster than living things. Some-

how the atoms do manage macroscopic control. How is this possible?

We need experiments, models, mathematics and simulations to approach an answer to this question. No

single approachwill succeed itself, despite the near-sighted vision of scientistswho knowand seek to support

only their own approach. A nested hierarchy of models, at di�erent length and time scales, are needed to

connect the atoms to the macroscopic world of life and computer chips. Mathematics and simulations are

needed to compute what these models can do and compare the computations with experiments.

Implementing these ideas in our models is hard to do. Reaching to the macroscopic scale, we develop

models with lower resolution, and coarser grain, as presented in Sec. 3. But it is easy to lose signi�cant �ne

structure of the atomic scale by the very process of coarse graining. Some atomic details matter a great deal,

but most atomic details do not matter at all.

It is perhaps possible to construct the hierarchy of nested models one step at a time with exhaustive

experimentation accompanied by theory and simulation at every stage. Indeed, that is the approach used

(for the most part) in constructing the nested hieerarchy of transistors, integrated circuits, logic, arithmetic,

and memory management units that make our computers.

But much of science is analysis, not design. Much of science, and most of biology, is concerned with

the inverse problem of determining how something works, frommeasurements of inputs and outputs, using

independent knowledge of power supplies and structure. Such backwards engineering is made much easier

if there are principles and laws that apply widely in systems of diverse structure and scale.

The laws of electricity are true on all scales. The great majority of our technology, and all our informa-

tion technology, depend on these laws and their ability to transfer understanding developed on one scale to

other scales. The laws of electricity are true on all scales with one set of parameters that do not change. We

imagine that the universal nature of these laws allows atoms to control the macroscopic functions of life and

computers, although we are quite aware of the gap between our imagination and proven truth.

Conservation of current is a law we focus on here because that conservation law extends throughout

space and couples ‘everything to everything else’ in a more dramatic way than other conservation laws. It
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is true on the atomic scale, within atoms, and between stars. On the macroscopic scale of life, conservation

of current necessarily links far separated boundaries to each other, connecting inputs and outputs to one

another, and thereby creating devices.

We show that conservation of current is exact in systems with such complex charge movements that the

words dielectric and polarization are not useful. Displacement current remains de�ned precisely and exactly

even in such systems. Maxwell’s displacement current allows conservation of current to be true universally

from atoms to stars.We suspect thatMaxwell’s displacement current �ows from atomic tomacroscopic scales

and helps evolution �nd groups of atoms that can control machines and organisms, although our suspicion

is certainly not settled science. Our suspicion is a guess, a reach, far beyond our grasp.

We believe models, simulations, and computations should conserve current on all scales, as accurately

as possible, because physics conserves current that way. We believe models will be much more successful if

they conserve current at every level of resolution, the way physics does. We surely need successful models as

we try to control macroscopic functions by atomic interventions, in technology, life, and medicine.

Maxwell’s displacement current lets us see stars. We hope it will help us see how atoms control life.
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