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Abstract: We present a nonlocal electrostatic formulation of nonuniform ions and water molecules with in-
terstitial voids that uses a Fermi-like distribution to account for steric and correlation e�ects in electrolyte
solutions. The formulation is based on the volume exclusion of hard spheres leading to a steric potential and
Maxwell’s displacement �eld with Yukawa-type interactions resulting in a nonlocal electric potential. The
classical Poisson-Boltzmann model fails to describe steric and correlation e�ects important in a variety of
chemical and biological systems, especially in high �eld or large concentration conditions found in and near
binding sites, ion channels, and electrodes. Steric e�ects and correlations are apparent when we compare
nonlocal Poisson-Fermi results to Poisson-Boltzmann calculations in electric double layer and to experimen-
tal measurements on the selectivity of potassium channels for K+ over Na+.
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1 Poisson-Fermi Theory
Continuum electrostatic theory is a fundamental tool for studying physical and chemical properties of elec-
trolyte solutions in awide range of applications in electrochemistry, biophysics, colloid science, and nano�u-
idics [1–8]. For over a century, a great deal of e�ort has been devoted to improving the Poisson-Boltzmann
(PB) theory of continuummodels for a proper description of steric (or �nite size) and correlation (or nonlocal
screening, polarization) e�ects in electrolytes [9–24]. We present a continuum model with Fermi-like distri-
butions and global electrostatic screening of nonuniform ions and water molecules to describe the steric and
correlation e�ects, respectively, in aqueous electrolyte solutions.

For an electrolytic system with K species of ions, the entropy model proposed in [20] treats all ions and
water of any diameter as nonuniform hard spheres and regards the water as the (K + 1)th species. It then
includes the voids between these hard spheres as the (K + 2)th species so that the total volume V of the
system can be calculated exactly by the identity

V =
K+1∑
i=1

viNi + VK+2, (1)

where VK+2 denotes the total volume of all the voids, vi = 4πa3i /3 that gives the volume of each sphere
with radius ai, and Ni is the total number of the ith species particles. In the bulk solution, we have the bulk
concentrations CB

i = Ni
V and the bulk volume fraction of voids ΓB = VK+2

V . Dividing the volume identity (1)
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by V, ΓB = 1 −
∑K+1

i=1 viC
B
i is expressed in terms of nonuniform vi and CB

i for all particle species. If the sys-
tem is spatially inhomogeneous with variable electric or steric �elds, as in most biological and technological
systems, the bulk concentrations then change to concentration functions Ci(r) that vary with positions, and
di�er from their constant values CB

i at location r in the solvent domain Ωs. Consequently, the void volume
fraction becomes a function Γ(r) = 1 −

∑K+1
i=1 viCi(r) as well.

For an electrolyte in contact with electrodes or containing a charged protein, an electric �eld E(r) in the
solvent domain Ωs is generated by the electrodes, ionic (free) charges with a displacement �eld D(r), and
bound charges of polar water with a polarization �eld P(r). In Maxwell’s theory, these �elds form a constitu-
tive relation

D(r) = ϵ0E(r) + P(r) (2)

that yields the Maxwell’s equation ∇ · D(r) = ρI(r) =
∑K

i=1 qiCi(r), ∀r ∈ Ωs, where ϵ0 is the vacuum permit-
tivity and qi is the charge on each i species ion [25, 26]. The electric �eld E(r) is thus screened by water (in
what might be called Bjerrum screening) and ions (in Debye screening) in a correlatedmanner that is usually
characterized by a correlation (screening) length λ [4, 12, 27]. The screened force between two charges in ionic
solutions (at r and r′ in Ωs) has been studied extensively in classical �eld theory and is often described by the

screening kernel G(r − r′) = e−|r−r′|/λ
4π|r−r′| [1], which is called a Yukawa-type kernel in [4, 24, 28, 29], and satis�es

the partial di�erential equation (PDE) [24, 28, 29]

−∆G(r − r′) + 1
λ2 G(r − r

′) = δ(r − r′), r, r′ ∈ R3 (3)

in the whole space R3, where ∆ = ∇ ·∇ is the Laplace operator with respect to r and δ(r− r′) is the Dirac delta
function at r′. The potential ϕ̃(r) de�ned in D(r) = −ϵsϵ0∇ϕ̃(r) thus describes a local potential of free ions
according to the Poisson equation

−ϵsϵ0∇ ·∇ϕ̃(r) = ρI(r), ∀r ∈ Ωs, (4)

where ϵs is a dielectric constant in the solvent domain. This local potential does not deal with the long range
correlations between di�erent ions or between ions and polarwater in high �eld or crowded conditions under
which the size and valence of ions and the polarization of water play signi�cant roles [4, 7, 12, 18–21, 27]. We
introduce a global electric potential ϕ(r) of the screened electric �eld E(r) to deal with the correlation and
polarization e�ects in electrolyte solutions. It is written as a convolution of the local potential ϕ̃(r′) with the
global screening kernel G(r − r′), i.e.,

ϕ(r) =
∫
R3

1
λ2 G(r − r

′)ϕ̃(r′)dr′. (5)

However, it would be too expensive to calculate ϕ(r) using this equation.Multiplying Eq. (3) by ϕ̃(r′) and then
integrating over R3 with respect to r′ [24, 28, 29], we obtain

−λ2∆ϕ(r) + ϕ(r) = ϕ̃(r), r ∈ Ωs , (6)

a PDE that approximates Eq. (5) in a su�ciently large domain Ωs with boundary conditions ϕ(r) = ϕ̃(r) = 0
on ∂Ωs and describes the relation between global ϕ(r) and local ϕ̃(r) electric potentials. From Eqs. (4) and
(6), we obtain the fourth-order PDE

ϵsϵ0λ2∆(∆ϕ(r)) − ϵsϵ0∆ϕ(r) = ρI(r), r ∈ Ωs. (7)

Thus, when we set E(r) = −∇ϕ(r), we can use Eq. (2) to �nd the polarization �eld

P(r) = ϵsϵ0λ2∇(∆ϕ(r)) − (ϵs − 1)ϵ0∇ϕ(r). (8)

If λ = 0, we recover the standard Poisson equation (4) and the approximate polarization P = ϵ0(ϵs − 1)Ewith
the electric susceptibility ϵs −1 (and thus the dielectric constant ϵs) if water is treated as a time independent,
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isotropic, and linear dielectric medium [26]. In this case, the �eld relationD = ϵsϵ0Ewith the scalar constant
permittivity ϵsϵ0 is an approximation of the exact relation Eq. (2) due to the simpli�cation of the dielectric
responses of the medium material to the electric �eld E.

We introduce a Gibbs free energy functional for the system as

F(C, ϕ) = Fel(C, ϕ) + Fen(C), (9)

Fel(C, ϕ) =
1
2

∫
Ωs

ρIϕdr =
1
2

∫
Ωs

ρIL−1ρIdr,

Fen(C) = kBT
∫
Ωs

{K+1∑
i=1

Ci(r)
(
ln Ci(r)

CB
i
− 1
)
+ Γ(r)v0

(
ln Γ(r)ΓB − 1

)}
dr,

where Fel(C, ϕ) is an electrostatic functional, Fen(C) is an entropy functional,C =
(
C1(r), C2(r), · · · , CK+1(r)

)
,

v0 =
(∑K+1

i=1 vi
)
/(K + 1) an average volume, and L−1 is the inverse of the self-adjoint positive linear operator

L = ϵsϵ0λ2∆∆ − ϵsϵ0∆ [24, 28, 29]. Taking the variations of F(C, ϕ) at ϕ gives Eq. (7). Taking the variations of
F(C, ϕ) at Ci(r) [24, 28, 29] yields Fermi-like distributions

Ci(r) = CB
i exp

(
−βiϕ(r) +

vi
v0
Strc(r)

)
, Strc(r) = ln

(
Γ(r)
ΓB

)
, (10)

for all i = 1, · · · , K +1 (ions and water), where βi = qi/kBT with qK+1 = 0, kB is the Boltzmann constant, and
T is an absolute temperature. The distribution is of Fermi type since it saturates. All concentration functions
Ci(r) < 1

vi [20], i.e., Ci(r) cannot exceed the maximum value 1/vi for any arbitrary (or even in�nite) potential
ϕ(r) in the domain Ωs. In these Fermi distributions, it is impossible for a particle volume vi to be completely
�lled with particles, i.e., it is impossible to have viCi(r) = 1 (and thus Γ(r) = 0) since that would yield Strc(r) =
−∞ and hence viCi(r) = 0, a contradiction. For this reason, we must include the void as a separate species
if water and ions are all treated as hard spheres [20]. Here we do represent water and ions as spheres. Our
approach allows other shapes to be used as well but that is not done here.

The nonlocal Poisson-Fermi (PF) Eqs. (7) and (10) have new features, of some importance.
(i) The Fermi-like distribution of uniform spherical ions with voids in ionic liquids was �rst derived in

[6, 12] using Bikerman’s lattice model [30]. The entropy functional in [12] involves a reciprocal of a minimum
volume v with a volume fraction Φ that is an empirical �tting parameter and may have to be unrealistically
large to �t experimental data in some applications [6]. It is shown in [20] that the entropy functional in [12]
does not directly yield classical Boltzmann distributions Ci(r) = CB

i exp
(
−βiϕ(r)

)
as v → 0. It can be easily

seen from (10) that the entropy functional Fen(C) in Eq. (8) yields Boltzmann distributions as vi → 0 for all
i. Our derivation of Fen(C) does not employ any lattice models but simply uses the volume equation (1). The
functional Fen(C) is a new modi�cation of that in [20], where the classical Gibbs entropy is now generalized
to include all species (ions, water, and voids) in electrolytes with the same entropy form. In fact, our Γ(r) is an
analytical extension of the void fraction 1 −Φ in Bikerman’s excess chemical potential [6], where all volume
parameters vi (including the bulk fraction ΓB) are physical not empirical. The adjustable parameter in our
model is the correlation length λ ≈ 2ai depending on the ionic species i of interest [17, 20]. The PFmodel was
�rst proposed in [6] without derivation and has been shown to produce results that are not only comparable
to molecular dynamics (MD) simulation or experimental data but also provide insight into nonlinear proper-
ties of concentrated electrolytes and ionic liquids [31–34]. Here, we formally derive the PF model for general
electrolytes using a hard-sphere instead of latticemodelwith the steric potential Strc(r) �rst introduced in [17].
As compared with lattice models in [6] and demonstrated, for example, in [18, 20, 35], hard-sphere models
signi�cantly improve the agreement between simulation and experiment.

(ii) The fourth-order PDE (7) is similar to those in [12, 27] used in previous papers [17, 20]. However, the
physical origin of the PDE is di�erent. In [27], the global convolution is performed only on the charge density
of point-like counter ions in contrast the convolution Eq. (5) to the potential ϕ̃(r) by Eq. (4) that is generated
by all spherical ions. In [12], a derivation for electrolytes or ionic liquids with steric e�ects is given from a
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free energy function of a gradient expansion of nonlocal electrostatic energy in terms of ∆ϕ̃. Here, the fourth-
order PDE is derived directly fromMaxwell’s equation with the Yukawa screening kernel. Our result does not
depend on the convergence properties of an expansion of nonlocal electrostatic energy. The use of Green’s
function as a kernel in all previous works and the present work is the same although the convoluted function
is quite di�erent. From the de�nition of the displacement, electric, and polarization �elds in Eq. (2), the
association of the displacement �eld and free charges as in Eq. (4) [25, 26], and our derivation leading to the
polarization �eld in Eq. (8), the new convolution formula (5) is more consistent with Maxwell’s theory since
our derivation ismore concisewithout using thedecomposition of long and short Coulomb interactions [27] or
the gradient expansion of non-local electrostatic energy [12]. The decomposition approach requires a mean-
�eld approximation and a strong-coupling expansion for the long-distance and short-distance interactions,
respectively [27]. The fourth-order PDE is only the �rst order approximation of the energy expansion [12].

(iii) Eq. (7) de�nes a dielectric operator ϵ̂ = ϵsϵ0
(
1 − λ2∆

)
that in turn implicitly yields a dielectric func-

tion ϵ̃(r) as an output of solving Eq. (7) [12, 20]. A physical interpretation of the operator was �rst introduced
in [12] to describe the nonlocal permittivity in a correlated ionic liquid. The exact value of ϵ̃(r) at any r ∈
Ωs cannot be obtained from Eq. (7) but can be approximated by the simple formula ϵ̃(r) ≈ ϵ0+ CH2O(r)(ϵs−
1)ϵ0/CB

H2O since the water density function CH2O(r) = CK+1(r) is an output of Eq. (10). This formula is only for
visualizing (approximately) the pro�le of ϵ̂ or ϵ̃. It is not an input of calculation. The input is the operator
ϵ̂ = ϵsϵ0

(
1 − λ2∆

)
(with its dependence on the input parameter the correlation length λ). Therefore, the PF

Eq. (7) accounts for electrostatic (ionic charges in Eq. (4)), correlation (λ in Eq. (5) and in ϵ̂), polarization (Eq.
(8)), nonlocal (Eq. (5)), and excluded volume (Eq. (1)) e�ects in electrolytes with Yukawa shielding with only
one parameter λ.

(iv) The factor vi/v0 multiplying Strc(r) in Eq. (10) is a modi�cation of the unity used in our previous
work [20]. The steric energy − viv0 S

trc(r)kBT [20] of a type i particle depends not only on the emptiness (Γ(r) =
1−
∑K+1

i=1 viCi(r)) (or equivalently crowding) at r but also on the volume vi of each type of particle. If all vi are
equal (and thus vi = v0), then all particle species at any location r ∈ Ωs have the same steric energy and the
uniform particles are indistinguishable in steric energy. The steric potential is a mean-�eld approximation of
Lennard-Jones (L-J) potentials that describe local variations of L-J distances (and thus empty voids) between
every pair of particles. L-J potentials are highly oscillatory and extremely expensive and unstable to compute
numerically. This dependence isworse than anuisance. The L-J potentials are notwell de�ned experimentally
(e.g., the combining rules are not well de�ned, whether Lorentz-Berthelot or Kong rules are used). They are
likely to depend on ionic species, concentration and perhaps other variables. It is dangerous to have a model
that depends sensitively on parameters that are unknown experimentally.

(v) The global convolution in Eq. (5) may seem similar to those in [4, 24, 28, 29] but it is not. The Poisson
equation (4) takes the place of the Fourier-Lorentzian (FL) equation — an integro-di�erential equation — in
the previous work [4, 24, 28, 29] in which the local potential ϕ̃(r′) in Eq. (5) is replaced by a global electric
potential Φ(r′). Moreover, the factor 1/λ2 in Eq. (5) is replaced by (ϵs − ϵ∞)/λ2, where ϵ∞ and λ are both
adjustable parameters. The choice of three parameters ϵs, ϵ∞, and λ in the FL model is reduced to only one λ
here.

2 Results
The nonlocal PF model is �rst compared with the modi�ed PB model (mPB) of Borukhov et al. [36] in which
ions are treated as cubes without considering void and correlation e�ects. The classical PB model (with λ =
vi = 0 for all i, i.e., no size, void, and correlation e�ects) produces unphysically high concentrations of anions
near the chargedwall at x = 0 as shown by the dashed curve in Fig. 1. The surface charge density is 1e/(50Å2)
in contact with a 0.1 M C4A aqueous electrolyte, where the radius of both cations and anions is a = 4.65 Å in
contrast to an edge length of 7.5 Å of cubical ions in [36], e is the proton charge, and ϵs = 80. The multivalent
ions A4− represent large polyanions adsorbed onto a charged Langmuir monolayer in experiments [36]. The
dotted curve in Fig. 1 is similar to that of mPB in [36] and was obtained by the PF model with the size e�ect
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but without voids and correlations, i.e., λ = 0, VK+2 = 0 (no voids), and vK+1 = vH2O = 0 (water is volumeless
and hence ΓB = 1 −

∑K
i=1 viC

B
i is the bulk water volume fraction). The voids (VK+2 ≠ 0) and water molecules

(vH2O ≠ 0) have slight e�ects on A4− concentration (because of saturation) and electric potential (because
water and voids have no charges) pro�les as shownby the thin solid curves in Figs. 1 and 2, respectively, when
compared with the dotted curves. However, correlations (with λ = 1.6a [12]) of ions have signi�cant e�ects
on ion distributions as shown by the thick solid and dash-dotted curves in Fig. 1, where the Stern like layer
is on the order of ionic radius a [37] and the overscreening layer [12] (CA4− (x) ≈ 0) of excess coions (CC+ (x) >
CB
C+ = 0.4M) is about 18Å in thickness. The Stern like boundary layer is an output (not a prescribed condition)

of our model and has no special signi�cance here, except historical. Boundary layers are found frequently
where physical properties change discontinuously or boundary conditions are imposed by mathematicians
or physical systems. The electric potentials ϕ(0) = 5.6 at x = 0 and ϕ(11.5) = -1.97 kBT/e in Fig. 2 obtained
by PF with voids and correlations deviate dramatically from those by previous models for nearly 100% at
x = 0 (in the Stern layer) and 70% at x = 11.5 Å (in the screening layer) when compared with the maximum
potential ϕ(0) = 2.82 kBT/e of previous models. The PF potential depth ϕ(11.5) = -1.97 kBT/e of the over-
screening layer is very sensitive to the value of the correlation parameter λ = 1.6a since the depth tends to
zero as a → 0. The parameter value can only be justi�edwith experimental or molecular dynamics (MD) data
[17, 18, 20, 21].

The computational domain
{
(x, y, z) : 0 ≤ x ≤ 40, − 5 ≤ y ≤ 5, − 5 ≤ z ≤ 5 Å

}
for the results shown in

Figs. 1 and 2 was chosen heuristically so that it is large enough to observe a zero Dirichlet boundary condition
for ϕ(r) at x = 40 Å within the accuracy to the third decimal place for �ve grid points near and at x = 40 Å for
all potential pro�les in Fig. 2. Zero Neumann boundary condition is given on the four walls adjacent to the
charged wall (x = 0) on which the condition is −ϵs∇ϕ · n = σ with n = 〈−1, 0, 0〉 and σ = 1e/(50Å2). The
resulting water density (not shown) from Eq. (10) is approximately equal to the bulk density C2H2O = 55.5 M
at those grid points.

In implementation, the fourth-order PF equation is reduced to two second-order PDEs in [17] where
boundary conditions for those equations can also be found. The computational e�ciency of the PF model
for solving linear systems is thus commensurable to that of standard or modi�ed PB models. However, since
the steric potential Strc(r) in Eq. (10) depends sensitively on the unknown electric potential ϕ(r) in a highly
nonlinear manner and is obtained by solving the PF equation (7) coupled with Eq. (10) using exact or inexact
Newton’s iterative method [17], the computational cost of the PF model for nonlinear solver to achieve self-
consistent convergence is in general much higher than that of PBmodels. For example, it took 42s of the CPU
time for the PB pro�le (dashed curve) in Fig. 2 comparing with 1h 22min 50s (about 118 times costly) for the
PF pro�le (thick solid curve) on a laptop with Intel Core i5-3230M CPU. The mesh size of the FD grid for this
example is 0.25 Å that yields a size of 270,641 for the matrix system. The error tolerance was set to 0.0001 and
0.005 for the linear and nonlinear solvers, respectively. It was very hard to converge for the PFmodel because
the surface charge density σ is very high resulting in the saturation (i.e., the void fraction function Γ(r) in Eq.
(10) is very close zero) of ionic concentrations as shown in Fig. 1 and the ion is very large resulting in strong
nonlinearity in terms of the correlation parameter λ. Obviously, there is much room to improve the numerical
method of the nonlinear solver used here and proposed in [17].

We next show the size e�ect of di�erent ions with voids in a biological system. One of the main uses of
ionic solution theory is the understanding of ions in protein channels that control a wide range of biological
functions [7, 38, 39]. We consider the crystal structure of the potassium channel KcsA (PDB [40] ID 3F5W
[41]) as shown in Fig. 3, where the spheres denote �ve speci�c cation binding sites (S0 to S4) [42]. The crystal
structure with a total of N = 31268 charged atoms is embedded in the protein domain Ωp while the binding
sites are in the solvent domain Ωs. The exquisite selectivity of K+ (with aK+ = 1.33 Å) over other cations such
as Na+ (aNa+ = 0.95 Å) by potassium channels is an intriguing quest in channology. It can be quanti�ed
by the free energy (G) di�erence of K+ and Na+ in the pore and in the bulk solution [42–45]. Experimental
measurements [43–45] showed that the relative free energy [42]

∆∆G(K+ → Na+) =
[
Gpore(Na+) − Gbulk(Na+)

]
−
[
Gpore(K+) − Gbulk(K+)

]
(11)
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Figure 1: Concentration pro�les of anions CA4− (x) and cations CC+ (x) obtained by various models in a C4A electrolyte solution
with a positively charged surface at x = 0.
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Figure 2: Electric potential pro�les ϕ(x).

is greater than zero in the order of 5-6 kcal/mol unfavorable for Na+. The electric and steric potentials at the
binding site S2 (as considered in [42]) can be calculated on the atomic scale using the following algebraic
formulas

ϕS2 =
1

4πϵ0

1
6

6∑
k=1

N∑
j=1

qj
ϵp(r)|cj − Ak|

+ qS2
ϵbaS2

 , StrcS2 = ln
1 − vS2

VS2

ΓB , (12)

where S2 = Na+ or K+ (the site is occupied by a Na+ or a K+), qj is the charge on the atom j in the protein given
by PDB2PQR [46], ϵp(r) = 1 + 77r/(27.7 + r) [47], r = |cj− cS2|, cj is the center of atom j, Ak is one of six
symmetric surface points on the spherical S2, ϵb = 3.6, and VS2 = 1.5vK+ is a volume containing the ion at
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S2. The crucial parameter in (12) is the ionic radius aS2 = 0.95 or 1.33 Å (also in |cj − Ak|) that a�ects ϕS2
very strongly but StrcS2 weakly. We obtained ∆∆G = 5.26 kcal/mol in accord with the MD result 5.3 kcal/mol
[42], where Gpore(Na+) = 4.4, Gbulk(Na+) = −0.26, Gpore(K+) = −0.87, Gbulk(K+) = −0.27 kcal/mol, ϕNa+ = 7.5
kBT/e, vNa+

v0 S
trc
Na+ = 0.23, ϕK+ = −1.93 kBT/e, vK+v0 S

trc
K+ = −0.59, and CB

Na+ = CB
K+ = 0.4 M.

Figure 3: The crystal structure of the K+ channel KcsA (PDB ID 3F5W) [41] with �ve cation binding sites S0, S1, S2, S3, and S4
[42] marked by spheres.

For the above results, the bulk energies Gbulk(Na+) and Gbulk(K+) were obtained from the experimental
results in [48]. The pore energies Gpore(Na+) and Gpore(K+) were obtained by the formula Gpore(S2) = qS2ϕS2 −
vS2
v0 S

trc
S2 kBT, where S2 denotes Na+ or K+ and T = 298.15. The values of ϕS2 (i.e. ϕNa+ and ϕK+ ) and StrcS2 (StrcNa+

and StrcK+ ) in Gpore(S2) were obtained using the equations in (12) with aS2 = 0.95 (Na+) or 1.33 Å (K+). The
electric potential ϕS2 is generated by the charges qj of all N = 31268 atoms in the protein and the charge qS2
in the bound ion Na+ or K+ at S2. The steric potential StrcS2 depends on the volume of the bound ion Na+ or K+

and the assumed volume VS2 of the binding site, which is adjustable. However, a slight change of VS2 does
not a�ect signi�cantly the steric energy di�erence between Na+ and K+ as shown by the steric formula in (12).
Therefore, the change does not alter signi�cantly the selectivity result obtained from Eq. (11). Other values
(not shown) ofϕSi at other sites i = 0, 1, 3, and4 canbe calculated in the sameway. TheseϕSi values in the �lter
domain Ωf containing the �ve binding sites in Fig. 3 can be used as Dirichlet boundary data for the PFmodel
(7) in the rest of the solvent domain Ωs/Ωf [49] to obtain a continuous electric potential function ϕ(r) (not
shown) in the whole domain Ω = Ωs∪ Ωp, where Ωp denotes the domain of the protein and the membrane.
Note that another Poisson equation is de�ned in Ωp and some conditions for ϕ(r) should be imposed on
the interface ∂Ωp between Ωs and Ωp. We refer to [17, 49] for more details on the model formulation and
numerical methods.
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3 Conclusion
In summary, a nonlocal Poisson-Fermi model is proposed to describe global electrostatic and steric e�ects
that play a signi�cant role of ionic activities in electrolyte solutions especially in high �eld or large concen-
tration conditions. The model is based on Maxwell’s �eld theory and nonuniform hard spheres of all ions
and water molecules with interstitial voids. The Fermi-like distribution formula can describe the distribution
of nonuniform spherical ions and water molecules with interstitial voids. The steric potential is a mean-�eld
description of Lennard-Jones potentials between particles. Poisson’s equation is self-consistent with Fermi
distributions and global electrostatics. The present theory can be used to describe complex functions of bio-
logical or chemical structures on both atomic and macroscopic scales. Comparisons with experimental data
are promising but incomplete.
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