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Abstract of Paper 

Our digital technology depends on mathematics to compute current flow and design the 
devices we use so much everyday. The mathematics of digital devices describes current flow 
as the flux of electrons and idealizes its flow by Kirchoff’s law: ‘all the electrons that flow into 
a node flow out’, crudely speaking. Circuit/network theory makes these ideas precise and 
generalizes them to branched one dimensional circuits, and beyond that. However, the 
idealizations of ‘current as flux’ and Kirchoff’s law describe measurements from actual circuits 
only when stray capacitances are included in the circuit, as is well documented in engineering 
practice and literature. Motivated by Maxwell’s equations, we propose that current in 

Kirchoff’s law be re-defined as    𝐉𝑡𝑜𝑡𝑎𝑙 = 𝐉̃ + 𝜀0 𝜕𝐄 𝜕𝑡⁄ .  𝐉𝑡𝑜𝑡𝑎𝑙  combines the flux 𝐉̃ of charge 

that has mass with Maxwell’s (vacuum) displacement current 𝜀0 𝜕𝐄 𝜕𝑡.⁄  𝐉̃ includes the 
polarization of dielectrics as well as the flux of electrons. Stray capacitances add 
(𝜀𝑟 − 1)𝜀0 𝜕𝐄 𝜕𝑡⁄  to the vacuum displacement current 𝜀0 𝜕𝐄 𝜕𝑡,⁄  when the strays behave 

ideally. When capacitances behave badly, their nonideal currents appear in the 𝐉̃ term. 
 𝐉𝑡𝑜𝑡𝑎𝑙 is also the source of the (curl of the) magnetic field in Maxwell’s equations. With this 
definition of current, Kirchoff’s law for circuits is not an approximation. Kirchoff’s current law 
is as exact as Maxwell’s equations themselves.  
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Our digital technology depends on mathematics to compute current flow and design its 
devices. Mathematics describes current flow by an idealization, Kirchoff’s current law: all the 
electrons that flow into a node flow out is a crude statement of that law. Engineering practice and 
textbooks make clear that this idealization needs to be supplemented with the reality of ‘stray 
capacitance’.[14,16,23] Kirchoff’s law, in which current is the flux of ions, describes the observed 
properties of real circuits only when stray capacitances are included in the circuit.  

Motivated by Maxwell’s equations, we propose that current in Kirchoff’s law be defined as 

 𝐉𝑡𝑜𝑡𝑎𝑙 = 𝐉̃ + 𝜀0 𝜕𝐄 𝜕𝑡,⁄  where 𝐉̃ describes all the movement of charge with mass, for example, the 
polarization of dielectrics as well as the movement of electrons. This definition has been used 
previously, for example, ref. [19] p. 276, eq.16-148. Kirchoff’s law is not an approximation when 
current is defined this way, as we shall see. Kirchoff’s current law in circuits is then as exact as 
Maxwell’s equations themselves.  

Current flow through a resistor. It seems best to approach this question with a simple example, the 
definition of current flow through a resistor, that can then be easily generalized using the powerful 
techniques of circuit[6] and network[26] theory. 

Kirchoff’s current law applied to a resistor seems straightforward. Electrons carry charge 
(and mass) as they enter or leave the resistor. All the electrons that enter an ideal resistor, leave it. 

 

 

This view has difficulties dealing with the accumulation of charge that is needed to produce 
an electric field. All the electrons that flow in, flow out. Only electrons carry charge. So all the charge 
that flows in, flows out. Then, how can charge accumulate to produce the potential? [Note: this 
verbal discussion can be replaced by a precise mathematical formulation with time integrals of 
current, etc., but there seems no point to do so.] 

Conflicting idealizations. The difficulties arise from two conflicting idealizations. (1) The first 
idealization is “the use of  Kirchoff’s current law with current equal to flux of electrons.” (2) The 
second idealization is the “ideal resistor 𝑟”. The conflict is traditionally resolved by changing the 
model of a resistor—from Fig.1 to Fig.2. An additional circuit element is added, the idealized 
capacitor 𝑐.  

Organization of the paper. Here we show how to resolve the conflict of idealizations another way, 
by changing the definition of current in Fig. 1, retaining the definition of the idealized resistor 𝑟. We 
then point out that this revised definition can be used in Kirchoff’s law in general. And in fact we 
recognize that the revised definition has a natural place in Maxwell’s equations, as well, so a single 

𝐼1 → 𝐼2 → 

Idealized Resistor 𝑟 
 

Fig. 2 
Fig. 1 
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revised definition of ‘current’ can be used in both Kirchoff’s law and Maxwell’s equations. Kirchoff’s 
law for circuits then becomes as exact as Maxwell’s equations themselves. 

Conflict resolved by stray capacitance. The conflict of idealizations can be resolved without 
changing the definition of current if we add circuit elements to the idealization of Fig. 1. We can 
follow engineering practice and replace the idealized resistor 𝑟 of Fig. 1 with a more realistic resistor 
𝑹 that includes stray capacitance[14,16,23] as a separate circuit element.  

The circuit in Fig. 2 is described by the circuit equations  

 𝐼𝑟 = 
𝑣(𝑡)

𝑟
 (1) 

 𝐼𝑐 =  𝑐
𝜕𝑣(𝑡)

𝜕𝑡
 (2) 

 (3)
  

 𝐼1 = 
𝑣(𝑡)

𝑟
+ 𝑐

𝜕𝑣(𝑡)

𝜕𝑡
 (4) 

Now, we introduce a physical description of an idealized parallel plate capacitor with area 𝐴, spacing 
𝐿, filled with a vacuum with dielectric coefficient 𝜀𝑟 = 1 and permittivity of free space 
𝜀0 (units: farads∙meter -1). This is a one dimensional representation of the field equations for a 
capacitor, as shown in most textbooks. 

 𝑐 =
𝐴

𝐿
𝜀0 (5) 

Then, we can replace the circuit equations (2)-(4) with field equations  

 𝐼𝑐 = 
𝐴

𝐿
𝜀0

𝜕𝑣(𝑡)

𝜕𝑡
 (6) 

 
 (7) 

Fig. 2 
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The total current through the circuit of Fig. 2 is 

 𝐼1 = 
𝑣(𝑡)

𝑟
+
𝐴

𝐿
𝜀0

𝜕𝑣(𝑡)

𝜕𝑡
 (8) 

In words: the more realistic resistor 𝑹 of Fig. 2 has two parallel components instead of just 
one component 𝑟 found in the idealized circuit of Fig. 1. The more realistic resistor 𝑹 has an idealized 
resistor 𝑟 and an idealized capacitor 𝑐 = 𝜀0(𝐴 𝐿⁄ ) in parallel.  

The total current through the more realistic resistor 𝑹 has two components. One flows 
through the idealized resistor 𝑟 defined in Fig. 1. The other component 𝑐 𝜕𝑣(𝑡) 𝜕𝑡⁄  flows through a 
capacitance 𝑐 added in parallel to  𝑟 in Fig. 2, often called a stray or parasitic capacitance.[14,16,23] The 
new component—the capacitor labelled 𝑐—allows the circuit of Fig. 2 to describe many of the 
properties of real resistors, as measured in the laboratory. 

In the more realistic model of a resistor (Fig. 2), there is no conflict of idealizations, because 
of the charge on the capacitor. All the electrons and all the charge that enters the idealized resistor 
𝑟 leaves the resistor. But additional charge 𝑄1 flows onto the capacitor. That charge creates the 
electrical field. That is the charge not present in the idealized resistor 𝑟 defined in Fig. 1. 

Fig. 2 is of course not enough to describe all the properties of a real resistor. Real resistors 
are embedded in circuits in most cases, and then a complete description (useful on the 10 −9 sec 
time scale of modern digital circuits) requires analysis reaching to Maxwell’s equations in general, 
including effects of the magnetic field, and even radiation. In practical circuits, matter is present 
between the plates of the capacitor, and the capacitance of Fig. 2 is only a component of the total 
capacitance.  

The total capacitance 𝑐𝑡𝑜𝑡𝑎𝑙 in practical circuits has two terms, the ideal component 𝑐 =
𝜀0(𝐴 𝐿⁄ ) of Fig. 2 and another component dependent on the properties of matter. If the matter is 
an ideal dielectric, then the total capacitance is 

 𝑐𝑡𝑜𝑡𝑎𝑙 =   
𝐴

𝐿
𝜀0  ⏟  
𝑐0

+  
  𝐴

𝐿
(𝜀𝑟 − 1)𝜀0 ⏟        
𝑀𝑎𝑡𝑡𝑒𝑟

 (9) 

If the matter is not an ideal dielectric, its nonideal properties are include in the flux 𝐉̃ of charge with 
mass, discussed at length in the next pages.  

We define an ideal dielectric as one with a dielectric constant that is a positive real number, 
a constant independent of time, electric field, and other variables that change as the circuit is used. 
Few materials[2] or ionic solutions[3] (e.g., electrolytes) have such characteristics. None that we know 
of have that characteristic on the time scale of ionic solutions (~10−7sec), electronics (~10−9sec) 
or the time scale of atomic motion (~10−15sec) that accompanies the atomic scale of distance 
needed to understand proteins. The formulation of eq. (9) is an idealization that cannot be used in 
general and must be used with caution.[9,11] 
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Another definition of current, motivated by Maxwell. The charge stored in the stray capacitor of 
Fig. 2 can be described in another way if we use Maxwell’s version[5,19] of Ampere’s law to define 
current as the source of (the curl of) the magnetic field, as suggested previously (see ref. [19] p. 276, 
eq.16-148). Note that 𝐉̃ includes all movements of charge, including the dielectric properties of 
matter. Movements of charge in dielectrics are traditionally described by separate terms like 
(𝜀𝑟 − 1)𝜀0 𝜕𝐄 𝜕𝑡⁄ , where 𝜀𝑟 is the dimensionless dielectric constant, approximately 80 for water at 
room temperature. Those dielectric terms, along with nonideal properties of dielectrics and matter, 

are included in 𝐉̃ in our formulation, details in [9,11,19]. 

 Maxwell’s Equation: 𝟏

𝝁𝒐
 𝐜𝐮𝐫𝐥 𝐁 =  𝐉̃ + 𝜀0 

𝜕𝐄(𝑥, 𝑡)

𝜕𝑡
 (10) 

The term 𝜀0 𝜕𝐄 𝜕𝑡 ⁄ is sometimes called (vacuum) displacement current; it exists in a vacuum and 
allows light to propagate as waves in the space between stars, even though that space is a vacuum 
that contains (almost) zero mass[5,19] and cannot conduct current 𝐉̃ associated with mass. In a 
vacuum like outer space, electric and magnetic fields are components of an electromagnetic wave 
supported by the displacement term 𝜀0 𝜕𝐄 𝜕𝑡⁄ . The displacement current term arises from a 
Lorentz transformation of Gauss’s law (see[19] p. 275), using the fact that charge is relativistically 
invariant, i.e., charge does not change with velocity (see [13]. p. 13-8 and [19] Section 5.20, starting on 
p. 228), unlike mass, distance, or time.  

The 𝜀0 𝜕𝐄 𝜕𝑡⁄  term is a source of the (curl of the) magnetic field 𝐁, as is 𝐉̃. It seems natural 
then to define current as the entire right hand side of eq. (10). 

 Definition: Current ≜ 𝐉̃total ≜ 𝐉̃ + 𝜀0 
𝜕𝐄(𝑥,𝑡)

𝜕𝑡
 (11) 

The divergence of the curl is always zero, so eq. (1) implies conservation of current:[11] 

 𝐝𝐢𝐯 (𝐉̃ + 𝜀0 
𝜕𝐄(𝑥,𝑡)

𝜕𝑡
 ) = 0 (12) 

Most of our technology depends on one dimensional branched circuits. The essential features of 
such circuits is illustrated by a simple unbranched series arrangement of components, so we 
consider that next. The generalization to branched circuits is a straightforward application of the 
well known, powerful theory of linear networks and circuits.[6,26] 

Conservation of current in a one dimensional series circuit implies equality of current in all parts 

of the series circuit at all times under all conditions. The total current 𝐉̃total = 𝐉̃ + 𝜀0 𝜕𝐄(x, t) 𝜕𝑡⁄  is 
equal in every component (everywhere at every time) even though the physical mechanisms 
producing the current differ profoundly in each component. The mechanisms can be as different as 
the current flow in a wire, in a semiconductor, current flow in vacuum capacitor, or current flow in 
a (imperfect) insulator (Details are found in and near Fig. 2 of reference[12]).  

The remarkable equality of currents in a series circuit is a consequence of eq. (10). Maxwell’s 
equation (10) produces a (vacuum) displacement current 𝜀0 𝜕𝐄 𝜕𝑡⁄  that makes the total current  

 𝐉𝑡𝑜𝑡𝑎𝑙 = 𝐉̃ + 𝜀0 𝜕𝐄(x, t) 𝜕𝑡⁄  the same in every component in series even though the flux of mass 
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(with charge) 𝐉̃ can be very different indeed in components as different as a wire, capacitor, or 
(imperfect) insulator. 

Changing the definition of current. We now rewrite the more realistic model of a resistor 𝑅 by 
recognizing that eq. (11) is itself the analog of eq. (4). We abandon the definition of current as the 
flux of electrons (that had been used in Fig.1 and in many traditional treatments of Kirchoff’s law) 
but we retain the definition of the ideal resistor 𝑟.   

In the language of equations,  𝐉̃𝑡𝑜𝑡𝑎𝑙 is defined by eq. (11) and 𝑟 is defined by 

 𝐉̃𝑟 = 
𝒗(𝒙,𝒕)

𝒓
  (13) 

The Maxwell-motivated definition of current eq. (11) (also used by Lorrain and Corson [19], 
p.276, and probably many others we do not know of) gives the same results as the conventional 
circuit description Fig. 2: 

 𝐉̃𝑐𝑎𝑝 = 𝜀0 
𝜕𝐄(𝑥,𝑡)

𝜕𝑡
=

𝐴

𝐿
𝜀0

𝜕𝑣(𝑥,𝑡)

𝜕𝑡
;       𝑐0 = 

𝐴

𝐿
𝜀0 (14) 

Note: The electric field 𝐄𝒄𝒂𝒑(𝑥, 𝑡) implied by eq. (14) is that of a parallel plate capacitor 

 𝐄𝒄𝒂𝒑(𝑥, 𝑡) =
𝐴

𝐿
(𝑣(𝐿, 𝑡) − 𝑣(0, 𝑡))     (15) 

Then the total current 𝐉̃𝑡𝑜𝑡𝑎𝑙 through the more realistic resistor of Fig. 2 becomes  

 𝐉̃𝑡𝑜𝑡𝑎𝑙 = 𝐉̃𝑟 + 𝐉̃𝑐𝑎𝑝 =
𝑣(𝑥,𝑡)

𝑟
 + 𝜀0 

𝜕𝐄(𝑥,𝑡)

𝜕𝑡
 =  

𝑣(𝑥,𝑡)

𝑟
 +   𝜀0

𝐴

𝐿
  ⏟  

𝑐0

𝜕𝑣(𝑥,𝑡)

𝜕𝑡
 (16) 

which we recognize as eq. (4). The 𝜀0 𝜕𝐄 𝜕𝑡 ⁄  term of the Maxwell defined current  𝐉̃𝑡𝑜𝑡𝑎𝑙 of eq. (11) 
provides the current  𝜀0(𝐴 𝐿⁄ )(𝜕𝑣(𝑥, 𝑡) 𝜕𝑡⁄ ) that flows through the stray capacitance 𝑐 in Fig. 2. 

Comparing circuit and Maxwell formulations. The more realistic resistor described by Fig. 2 stores 
charge in different ways in the circuit representation and the Maxwell formulation. In the circuit 
representation (of Fig. 2; eq. (1)-(8)), charge is stored in a physical element, the capacitor 𝑐. In the 
Maxwell formulation (of eq. (10)-(16)) charge is stored in the electric field itself, by the 𝜀0 𝜕𝐄 𝜕𝑡⁄  

term that helps create the magnetic field (see [13]. p. 13-8 and [19] Section 5.20, starting on p. 228). 
No physical capacitor is needed to store charge.1 The charge is stored as a result of the relativistic 
invariance of charge, i.e., of the Lorentz transformation of Gauss’ law (see[19] p. 275). 

Conflict of idealizations resolved, with revised definition of current. The same definition of current 

can be used in Maxwell’s equations and Kirchoff’s law 𝐉̃𝑡𝑜𝑡𝑎𝑙 = 𝐉̃ + 𝜀0 𝜕𝐄 𝜕𝑡,⁄  where 𝐉̃  is the flux of 

all charge with mass. 𝐉̃𝑡𝑜𝑡𝑎𝑙   is the source of the (curl of the) magnetic field. It is also the current that 
flows through the ideal resistor. 

Conclusion: derivation of Kirchoff’s Current Law. Kirchoff’s current law is not approximate. It is as 
exact in circuits as Maxwell’s equations are in general, when 𝐉̃𝑡𝑜𝑡𝑎𝑙 is the current. 

                                                           
1 The additional charge storage found in  capacitors filled with an ideal dielectric can be  included in eq. (16) as it was in 
eq.(9). Add an additional term (𝜀𝑟 − 1)𝜀0 (𝐴 𝐿⁄ ) that describes an ideal dielectric to the right hand side of eq. (16). This 
term is a quite poor representation of the properties of most materials and so we do not display it. We prefer to keep eq. 

(16) as exact as the Maxwell equations themselves. Nonideal currents are included as a component of 𝐉̃. 
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Supplementary Material 

Scope of paper. This paper is meant to motivate a more general definition of current flow—a 
definition used previously by Lorrain and Corson (see[19] p. 276)—that removes an apparent paradox 
and unites Kirchoff’s and Maxwell’s representations of current. 

This paper is not a general analysis of real resistors. That would require a full solution of 
Maxwell’s equations and would depend sensitively on the details of the fabrication of the resistor 
and how it is embedded in surroundings.[15,16,23] 

Redefinition of 𝐉̃. All movements of charge carried by or associated with mass are included in 𝐉̃. In 

many important applications, 𝐉̃ can contain movements of charge driven by fields and forces not 
present in the Maxwell equations, like diffusion or convection. Nearly all of biology, and most of 
chemistry, occurs in electrolyte (i.e., ionic) solutions in which diffusion and convection drive 
significant electrical currents. As mentioned previously, the movements of charge include those 
usually described as the polarization of dielectrics, as well as more complex nonlinear polarization 
and other charge movements, details in [9,11,19]. 

The other equations of Maxwell (e.g., the ‘first’ equation, more or less the Poisson equation) 
has an analogous reformulation, in which the 𝐃 field is discarded, and the total charge (of every sort 
whatsoever) on the right hand side is written as explicit function(al)s of appropriate variables. 
Classical dielectric polarization charge would be one component; ‘permanent’ charge, independent 
of the electric field would be another; other components might include convective, diffusive, or heat 
driven currents that are not part of classical electrodynamics at all.  

The crucial point is that an explicit functional or experimental dependence needs to be 

specified for all the components of ‘charge’, and for all the components of 𝐉̃. Of course, the 

components of charge must spread and move in a way that produces 𝐉̃ with its spatial spread and 

time dependence. 𝐉̃  and the components of charge must be consistent, and consistent with 
conservation of mass and its flow, as well. Together, the charge and flux of charged matter satisfy a 

continuity equation for 𝐉̃. 

Stray Capacitance.[14,16,23] The capacitor 𝑐 of Fig. 2 allows a circuit model including an idealized 
resistor 𝑟 to store charge 𝑄1 as it must in any more realistic model of a resistor 𝑹. The capacitor is 
required if current is defined as the flux of electrons (or other charge carriers with mass, like ions in 
sea water). 

The capacitor is often called parasitic or stray. It deserves to be called parasitic because the 
charge needed to change the potential is unavailable to flow or fan out of the (right hand terminal 
of) the circuit to the inputs of other devices. The capacitor is indeed a parasite because the stored 
charge is unavailable for other useful use. The capacitor 𝑐 does not deserve the name ‘stray’, in our 
opinion, because 𝑐 includes a component 𝑐0 = 𝜀0 𝜕𝐄 𝜕𝑡⁄  that cannot wander off, as strays often do.  

The unstray component 𝑐0  is the displacement current 𝜀0 𝜕𝐄 𝜕𝑡⁄  that is the universal 
‘polarization of the vacuum’,2 arising from the Lorentz transformation of Gauss’ law, also 

                                                           

2 as Maxwell called it, according to p. 228 and 416 of Darrigol[5].  
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responsible for the propagation of light. The vacuum displacement current may be a parasite, but 
the parasite cannot stray. 

Chemical Kinetic Models: Stray Capacitance and Born Energy. Chemical kinetic models are found 
throughout the literature of chemistry, physical and biochemistry. They use rate constants and the 
‘law of mass action’ to define the arrows that connect different states of chemical reactants, and 
are derived to satisfy conservation of mass, whether or not the mass carries charge. They, however, 
do not satisfy conservation of current, either in the steady-state[7,8], or transiently,[11,12] as they are 
usually written. (Of course, an additional constraint or restructuring of the equations may be 

possible that generalizes chemical kinetics and allows it to satisfy conservation of current 𝐉̃total .  See 
below paragraph for one possibility.) 

Chemical kinetic models are branched one dimensional systems reminiscent of the branched 
one dimensional circuits we have considered here. In particular, each reaction in chemical kinetics 
is reminiscent of the simple representation of an idealized resistor used in Fig. 1. As we have seen, 
adding an unstray component of capacitance into Fig. 1 creates the more realistic circuit of Fig.2 

that satisfies conservation of current 𝐉̃total. 

It seems possible that modifying the rate models of kinetic theory might be as productive as 
modifying idealized models of circuits. Perhaps adding an unstray capacitor, or equivalently 
redefining current in the chemical kinetic models, would allow these rate models to satisfy 

conservation of current  𝐉̃total .  

The unstray capacitor, storing charge 𝑄1 (see Fig. 2), is something like the capacitance of the 
Born energy terms found in many treatments of ions in solution, but connecting nodes of the rate 
models to each other, not to ‘infinity’. The dependence of rate (and flow) on concentration of 
reactants is often nonlinear in chemical kinetic models, so the analogy with linear resistors and 
capacitors of circuits is not precise. It seems worthwhile, nonetheless, to investigate explicitly what 
happens to the equations of chemical kinetics if a vacuum capacitance is included linking the nodes 
of the kinetic scheme. It seems worthwhile to investigate explicitly what happens if the definition 
of flux in the rate equations of the kinetic scheme is not the flux of mass, but the generalized flux 

𝐉̃total  of the Maxwell equation (10) that includes the universal displacement current 𝜀0 𝜕𝐄 𝜕𝑡.⁄   

Special nature of the electric field. The conservation laws of electrodynamics are exact and 
universal because of a special property of electrodynamics not shared by other fields, like heat 
flow, convection, or diffusion. The vacuum polarization term 𝜀0 𝜕𝐄 𝜕𝑡⁄  of the Maxwell equations 
allows the electric field to take on whatever value is necessary so the current 𝐉̃total (of eq.(11): 
that includes 𝜀0 𝜕𝐄 𝜕𝑡⁄ ) is exactly equal everywhere in a series circuit (see eq. (12) and eq. (4), 
Section 3, of ref [10]). No matter how mass carries charge, the vacuum displacement current 

𝜀0 𝜕𝐄 𝜕𝑡⁄  changes so the total current 𝐉̃total — that includes the vacuum displacement current 
𝜀0 𝜕𝐄 𝜕𝑡⁄ — is exactly the same everywhere in the series circuit at any time whatsoever. These 
issues are discussed in detail in references [11,12]. 

A field like magnetism and a term like 𝜀0 𝜕𝐄 𝜕𝑡⁄   are not found in field equations for 

convection, heat flow, and diffusion. Magnetism and the displacement current arise from the 
special relativistically invariant properties of charge (see [13]. p. 13-8 and [19] Section 5.20, starting 
on p. 228). Charge does not change with velocity, unlike mass, length and time. The Lorentz 
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transformation of a charge—with the magnitude of the charge itself independent of velocity—
produces the magnetic field.  

Convection, heat flow, and diffusion flows 𝐉̃  do not follow an equation like eq. (10) 
because those fields do not include an analog to displacement current. Matter cannot flow or 
polarize in a vacuum where it does not exist. 𝐉̃ does not exist in a vacuum. Electrical current 𝐉̃𝑡𝑜𝑡𝑎𝑙 

does exist in a vacuum; indeed, the electric field ‘polarizes the vacuum’, creates 𝐜𝐮𝐫𝐥 𝐁 through 
eq. (10), and thereby propagates electromagnetic waves.   

Properties of flux 𝐉̃. The flux 𝐉̃ involves all flows of matter. The flux 𝐉̃  can involve all the complex 
flows of fluid dynamics and all the flows, shock waves, and perhaps turbulence of the Navier-
Stokes equations. The flux 𝐉̃ —and its component the dielectric polarization—includes the 
intricate movements of charge that occur within molecules and between atoms, of molecules as 
large and complex as proteins—with their surface layers that move at slow speeds (~1 sec) and 
ionic atmospheres that move much faster (~10−8sec)—and as small as organic molecules that 
move quickly (~10−17sec) and even inorganic atoms with their electrons that move even faster. 
The flux occurs over time scales ranging from seconds (proteins) to say 10−17sec of ultraviolet 
light (to pick one possible cut off).  

The polarization components of 𝐉̃ are known in great detail thanks to measurements of 
dielectric properties, refractive indices, and other estimators of these induced charges. Various 

kinds of spectroscopy reveal the properties of 𝐉̃  in real materials. Spectroscopy at each time scale 
has a different name and technology: impedance[2-4,17]; molecular, (i.e., microwave)[1,22,24]; optical 
(light);, infrared; and ultraviolet spectroscopy are examples. All describe remarkably varied 

properties of 𝐉̃  of materials with great accuracy. It is worthwhile looking at a spectrum of an 
organic molecule to be impressed with just how diverse and complex can be the frequency 
dependence of polarization charge in real materials and how inadequate is the description of 
polarization by a single real dielectric constant. 

The properties of polarization charge of matter 𝐉̃ are in fact so diverse that general 
principles are hard to discern and so are not very useful. Matter is conserved but how does that 

change spectra? General properties of 𝐉̃ —or implications of mass conservation— are not easy to 
see in the infrared spectra of say the heme group of myoglobin or of organic molecules in 
general.[25] The spectra are of immense practical use as fingerprints to identify compounds, but 
their use is (nearly) as empirical as the use of fingerprints. General theoretical properties like 
conservation of mass are hard to exploit. 

General properties of the ‘current’ 𝐉̃𝑡𝑜𝑡𝑎𝑙 are much more useful as electrical engineers 
have shown us. They use Kirchoff’s current law to design high speed (~10−9 sec) circuits 
embedded in composites of materials with complex dielectric properties. 

Role of the continuity equation. It is often thought that conservation of current 𝐉̃total can be 

derived from, and is equivalent to the combination of the continuity equation for 𝐉̃ and Gauss law 
for the electric field 𝐄. This equivalence is certainly true in an important special case. If the 
polarization of the dielectric materials were so simple that a single real dielectric constant 
describes the system in question, the two descriptions are equivalent.  
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Mathematical idealizations assuming an ideal dielectric with a single real dielectric 
constant are of great historical importance because of their wide use in the 1800’s by Faraday, 
Maxwell, Hertz, and Heaviside (et al.), whose experimental systems were measured on time 
scales of seconds. Technological systems today work on a time scale of 10−9 sec where dielectric 
properties cannot be described by a single real constant. But the idealization of a single real 
dielectric constant is useful today in understanding the qualitative properties of complex material 
systems, and in theories and simulations of molecular dynamics, particularly the spatial 
dependence of properties. In those idealized systems, either (1) conservation of current or (2) 
continuity and Gauss’ law can be used: The choice depends on which is more helpful in 
computation and understanding.  

However, in real, not ideal systems the complex properties of 𝐉̃ have a profound 
consequence. They prevent the practical or general computation of the forces on charges. No 
more can be said about the forces in general in real matter than can be said about its dielectric 
polarization. Complete theories of the movement of matter and charge in electric (and 
sometimes other) fields are needed before the forces that move matter can be computed. Every 
force depends on the diverse and complex properties of polarization and one despairs of 

computing those in a general way. The combination of the continuity equation for 𝐉̃  and Gauss 
law for the electric field 𝐄 is not useful because it does not allow the computation of forces on 
charges in real materials. 

But conservation of current 𝐉̃𝑡𝑜𝑡𝑎𝑙 can be used for practical purposes because it is true 
generally and is valid in real materials, under any condition. Nothing needs to be known about 
matter to use Kirchoff’s law in the actual circuits of our computers, whereas everything needs to 
be known about the polarization of matter to compute forces using the continuity equation-

Gauss law. For example, current 𝐉̃𝑡𝑜𝑡𝑎𝑙   measured in any component in a series system, is the 
current in every component, no matter what the physics or structure of each component. 

Conservation of current 𝐉̃𝑡𝑜𝑡𝑎𝑙 and the continuity equation-Gauss law are not equivalent 
when applied to real materials. Only conservation of current is useful in general when dealing 
with real materials with unknown polarization.

Current in one dimensional systems has no spatial dependence. We are used to seeing the 
enormous variation in the position and motion of atoms in the wonderful movies of molecular 
dynamics. Such images have been in the minds eye of physicists for a very long time. And this 
enormous variation is certainly illustrated by the temporal variation of current in one dimensional 
systems. Thermal motions produce Brownian like motion in time in one dimensional systems. 

But there is no spatial variation of 𝐉̃𝑡𝑜𝑡𝑎𝑙 in one dimensional systems, thermal, Brownian 
or otherwise. Conservation of current is equality of current in one dimensional systems on all 
time scales. This was an unexpected finding for us, but it is an inescapable consequence of 

conservation of 𝐉̃𝑡𝑜𝑡𝑎𝑙, see eq. (12). 

Theories of one dimensional systems need not work hard to include details of spatial 

dependence of electric current  𝐉̃𝑡𝑜𝑡𝑎𝑙 because there is no spatial dependence in one dimensional 

systems. Models of electric current  𝐉̃𝑡𝑜𝑡𝑎𝑙 should be dramatically simpler than models of other 

variables. Models of 𝐉̃𝑡𝑜𝑡𝑎𝑙 have much less need for partial differential equations including both 
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space and time. But how to take advantage of this simplification is not so obvious: the 

simplification is only in one dependent variable, the output electric current  𝐉̃𝑡𝑜𝑡𝑎𝑙. It is the only 
variable that has no variation in space. Other quantities fluctuate wildly in space, (nearly) as 
wildly as they do in time.  

The challenge to mathematics is how to construct approximations that exploit the unique 

spatial independence of electric current  𝐉̃𝑡𝑜𝑡𝑎𝑙 in one dimensional systems. The image of spatially 
smooth current is so different from the image of Brownian fluctuating flux that one can hope for 
dramatic advances in mathematically defined approximations. These might conceivably justify 
the highly reduced models of one dimensional systems that are so useful in biophysics and 
technology. 

One dimensional systems are important. One dimensional systems are not just mathematical 
idealizations. Ion channels of biological membranes are nearly one dimensional systems that 
control an enormous range of biological function and so are of considerable personal importance 
to most of us, in health and disease. Semiconductor diodes are one dimensional systems of 
technological importance. Current is the main output of these systems and so its lack of spatial 
dependence should help construct approximate but useful input/output models. 

Branched Circuits: FETs and Transporters. Conservation of electric current 𝐉̃𝑡𝑜𝑡𝑎𝑙 plays a more 
subtle role in circuits with three terminals (like the FET Field Effect Transistors that make up such 
a large part of our integrated circuits and computers). Kirchoff’s law guarantees very strong 
correlation between flows. Currents between say the source and drain, and gate and drain of 
FETs, should show coherence functions far from zero, with large effects, one imagines, on the 
qualitative performance and noise of these devices. Certainly, it would be unwise to assume 
independent properties for source-drain, and gate-drain noise in FETs, if this thinking is correct.  

Similar correlations may be found in those ionic channels that have three terminal Y 
structure, like those in many transporters.[18] Transporters can move one ionic species uphill, 
against the gradient of its own electrochemical potential, taking the energy from the coupled 
downhill movement of another ionic species, each perhaps moving in different parts (strokes) in 

the upper part of the Y structure.  

Correlations are likely to be important in a Y structure and have an important effect on 
the coupling of fluxes that makes active transport possible. Indeed, the coupling may arise from 
conservation of current, with the Maxwell equations changing the microscopic potential within 
the atomic machinery of the transporter to guarantee that the sum of currents through the 
transporter and membrane satisfy Kirchoff’s law, as described in Section 3 and eq. (4) of ref [10]. 
The work of Mathias[20], et al, (p. 9) points in that direction. They show that the circulation of the 
mammalian lens depends on the short circuit configuration of its sodium (Na/K) pump, so 
different from the open circuit configuration found in many other systems like epithelia. 
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Summary 

The Maxwell-Ampere equation (10) itself shows that conservation of current is as 
universal and exact as the Maxwell equations themselves. Conservation of electric current 

𝐉̃𝑡𝑜𝑡𝑎𝑙  depends on the mathematical identity 𝐝𝐢𝐯 𝐜𝐮𝐫𝐥( 𝐉̃ + 𝜀0 𝜕𝐄 𝜕𝑡⁄ ) = 0, which remains true, 
whatever the fluxes and properties of matter.  

Amazingly, conservation of electric current  𝐉̃𝑡𝑜𝑡𝑎𝑙 is true and useful over the entire range of 
existence of the electric/magnetic field. Perhaps, that is why our digital technology—that is so 
fast (10−9 sec) and yet requires near perfect reliability[21] in tiny devices made of handfuls of 
atoms—is built using Kirchoff’s law, namely, conservation of current in circuits.  

Our technology is a superstructure, even skyscraper, built on the firm foundation of Kirchoff’s 
law of conservation of current, which is shown here to be as exact as Maxwell’s equations 
themselves.  
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