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ABSTRACT: Experiments measuring currents through single
protein channels show unstable currents, a phenomena called
the gating of a single channel. Channels switch between an
“open” state with a well-defined single amplitude of current
and “closed” states with nearly zero current. The existing
mean-field theory of ion channels focuses almost solely on the
open state. The physical modeling of the dynamical features of
ion channels is still in its infancy and does not describe the transitions between open and closed states nor the distribution of the
duration times of open states. One hypothesis is that gating corresponds to noise-induced fast transitions between multiple
steady (equilibrium) states of the underlying system. In this work, we aim to test this hypothesis. Particularly, our study focuses
on the (high-order) steric Poisson−Nernst−Planck (PNP)−Cahn−Hilliard model since it has been successful in predicting
permeability and selectivity of ionic channels in their open state and since it gives rise to multiple steady states. We show that this
system gives rise to a gatinglike behavior, but that important features of this switching behavior are different from the defining
features of gating in biological systems. Furthermore, we show that noise prohibits switching in the system of study. The above
phenomena are expected to occur in other PNP-type models, strongly suggesting that one has to go beyond overdamped
(gradient flow) Nernst−Planck type dynamics to explain the spontaneous gating of single channels.

■ INTRODUCTION

Ion channels are protein molecules that conduct ions (such as
Na+, K+, Ca2+, and Cl− that might be named bioions because of
their universal importance in biology) through a narrow pore of
fixed charge formed by the amino acids of the channel protein.
Membranes are otherwise quite impermeable to natural
substances, so channels are gatekeepers for cells and act as
natural nanovalves. Controlled ion permeation through ion
channels is one of the most important living processes,1,2

governing an enormous range of biological functions in health
and disease.3

Ion channels have been studied one at a time for nearly 40
years in a triumph of experimental science. For an overview of
these efforts, see, e.g., the book of Nobel laureates Sakmann and
Neher.4 Measurements are now commonplace. They are made in
thousands of laboratories every week for hundreds of types of
channels.
But the commonplace has hidden the obvious. Single channels

are unstable devices. They stochastically switch between two
current levels in a process called gating. One current level is the
main conductance state, and the second current level is nearly
zero, corresponding to a closed channel. Some subconductance
states are seen as well. Gating in a wide range of ionic channels
has specific well-known characteristics, observed and studied in
thousands of papers.4 The current versus time switches between
a level close to zero to an open level (very different for different
types of channels, from 1 to 100 pA); see, e.g., Figure 1.
Switching is abrupt, faster than 1 or 2 μs. While the channel is in

the process of opening, bizarrely diverse behavior is observed,
resembling the trajectories of Brownian motion,5,6 but once the
channel is open, the mean current is independent of time and the
open channel noise is well behaved.7−9 Channel opening occurs
at stochastic times: the duration of the channel opening is
stochastic. Closed and open duration histograms are often nearly
single exponential functions.
The universal phenomena of single-channel gating, observed

in so many types of channels with such different structures, can
be described (in all likelihood) by a single model that depends on
one main process that is common to all channels and does not
depend on specific properties of each channel. Most theoretical
studies of gating consider Markov Models or kinetic models; see,
e.g., refs 2, 4, 10 and references within. Although these models
describe the dependence of single-channel openings (duration,
open probability, and occasionally latency) on time in one set of
conditions, the models do not describe dependence on
concentrations or electrical potentials nor do they conserve
current.11 In what follows, we consider continuummodels for ion
channels derived by the energetic variational (EnVarA) approach
that allows a self-consistent description of the system while
conforming with physical conservation laws; see, for example,
refs 12, 13. Self-consistent means that all variables satisfy all
differential equations and boundary conditions with one set of
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parameters under all experimental conditions. Nontransferrable
models are examples of inconsistent descriptions that require
different parameters under different conditions. Markov models
of single-channel gating (and much else) are often inconsistent
because their parameters change as experimental conditions
(voltages or ion concentrations) change. Poisson−Nernst−
Planck (PNP) models of semiconductors,14,15 and Fermi−
Poisson models of open calcium channels are examples of
consistent models16,17 because they fit data under a range of
conditions with one set of parameters. Continuum mean-field
theories of electrolytes, which are generalizations of Poisson−
Nernst−Planck (PNP) models, have been widely used in studies
of ion channels during the last two decades; for reviews, see refs
18−20 and references within. Correlations introduced by the
finite size of the ions play a crucial role in determining the
permeability and selectivity of ion channels. Accordingly, PNP
equations with steric effects, and in particular the PNP-steric
model,13 have been successful in predicting permeability and
selectivity of ionic channels in its open state. Real channels,
however, are closed a substantial fraction of their time, and their
switching behavior is an important determinant of biological
function. Nevertheless, the existing models focus almost solely
on characterization of open channels.18−20 Namely, they
consider a conditioned experimental system in which the
channel is open and conducting current. Thus, notwithstanding
recent advances,21,22 theoretical modeling of the dynamical
features of ion channels is still in its infancy and does not describe
the transitions between open and closed states nor the
distribution of the duration times of open states.
The Poisson−Nernst−Planck (PNP) equation itself and a

wide family of generalized PNP equations give rise to a unique
steady state23 and therefore are unlikely to be able to describe
gating without the addition of specific time-dependent features,
like a voltage sensor.24 In contrast, PNP equations involving
multiple regions of piecewise constant permanent charge were
shown to give rise to multiple steady states.25,26 Some of these
solutions were found to be stable, giving rise to a bistable
model.27 Similarly, the PNP-steric equation with spatially
constant permanent charges (which successfully describes the
permeation in an open current-conducting single channel13) was
shown to give rise to multiple steady states.28 These solutions,
however, turned out to be unstable and in fact, reveal that the
PNP-steric equation is ill-posed in the regime of high ionic
concentrations where it gives rise tomultiple steady states.29 This
work29 led to a PNP equation with high-order steric effects (also
known as the steric PNP−Cahn−Hilliard or PNP−CH model)
which is well-posed at high ionic concentrations and,
furthermore, gives rise to bistable behavior.29 The fundamental
question facing all of these investigators was:30 Does gating

correspond to noise-induced fast transitions between multiple
steady (equilibrium) states of the underlying system? In this
study, we see if a class of models describes the gating phenomena
seen in a vast number of single-channel experiments. Particularly,
we address the question whether switching behavior in PNP
equations with high-order steric effects has the universal features
of gating in biological ion channels.
The article is organized as follows: We first present the

Poisson−Nernst−Planck−Cahn−Hilliard (PNP−CH) model
for ion channels and focus on its steady states and their stability.
In particular, as expected, we show that the equation describes a
bistable model which reflects a competition between multiple
cationic species inside the channel. In the preceding section, we
consider the dynamics of the bistable model. We show that the
model can describe a switching behavior, albeit under rather
specific conditions, and in the absence of noise. Unexpectedly,
we find that the introduction of noise prohibits switching. A
detailed comparison between the switching behavior of the
model and gating behavior in biological ion channels, shows that
the switching behavior described by the model does not have the
defining features of gating in biological systems. We are,
therefore, drawn to conclude that the hypothesis that gating
phenomena is described by noise-induced fast transitions
between multiple steady (equilibrium) states of PNP-type
equations is incorrect. Possible alternative paradigms for gating
are presented in the Discussion section.

■ MATHEMATICAL MODEL
We follow the unified energetic variational framework for ionic
solutions, formulated by Liu, more than anyone else, that treats
ions as solid charged spheres of finite size:13,31−36 The functional
form37 describing a system with N species with concentrations ci
and valences zi, where i = 1,..., N, is given by
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where ϕ is the electric potential, c = (c1,..., cN), z = (z1,..., zN), q is
the unit of electrostatic charge, kB is Boltzmann’s constant, T is
the temperature, ε is the relative dielectric constant, assumed to
be uniform, and ρ0(x) is permanent charge. Energy of the
repulsion of the ions, treated as solid spheres of size a = (a1,...,
aN), is included in as Lennard-Jones forces. The Lennard-
Jones potential term ψ(c,a) is a convolution integral with a

Figure 1.Measurement of current vs time of an isolated RyR channel.1,4 The current switches abruptly between a level close to zero to an open level
(∼7.3 pA). The current remains at an open level for a stochastic duration. Significantly, the level of current once the channel is open is independent of
time, and no intermediate values of current are observed (but see the remark regarding the epiphenomena of “subconductance states”). Image adapted
from ref 1.
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singular kernel that imposes analytical and numerical difficulties.
These difficulties are particularly unfortunate because there is
only historical, not physical justification, for using the Lennard-
Jones formulation of interparticle interactions. The combining
rules for particles of different diameters are particularly hard to
justify. We note that recently Liu, Xie, and Eisenberg17 have used
a Yukawa formulation that works around some of these
problems. Approximation of the Lennard-Jones potential by a
band-limited function gives rise to the local approximation of the
form13,28,38

∑ψ ∇= + ∇ + ···( )c a c Gc c c( , )
1
2

1
2

( )T T
(2)

where G and ∑ are an N × N symmetric matrix with positive
entries gij and σij, respectively. The papers 13, 28, 38 focused on
the leading order approximation of the Lennard-Jones potential
ψ(c,a) (namely ψ ≈ c GcT1

2
). The resulting equation, however,

turned out to be ill-posed for highly concentrated electrolytes in
relevant parameter regimes.29,39 Therefore, it is necessary to also
account for high-order steric effects (∑ ≠ 0) to remedy the ill-
posed nature of earlier analyses. In what follows, we consider the
case ∑ = σI, which is sufficient to assure that the resulting
equation is well-posed.29

The electric field is required to be a critical point of , yielding
Poisson’s equation
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Taking the evolution of the ionic species results in the form of a
Nernst−Planck type equation yields
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where Di(x) is the diffusion coefficient of the ith species. No-flux
boundary conditions are implemented for both the ionic
concentration and potential at the side walls (orthogonal to
the direction of current flow). The arising steric Poisson−
Nernst−Planck−Cahn−Hilliard (steric PNP−CH) system
accounts for the various interactions between the components
in a self-consistent way, while satisfying the second law of
Thermodynamics, via Onsager’s relation
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where ci̅ is the bath concentration of species i. For simplicity, we
assume here that the left and right bath concentrations are equal,
i.e., ci̅ = c ̅ for i = 1, 2, ..., n. The corresponding nondimensional
parameters are
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Note that this scaling is standard, see, e.g., ref 13 except that time
is scaled by the characteristic diffusion coefficient of an ion inside
the channel asO(1), rather than by the bulk diffusion coefficient.
We note that despite the use of the usual scaling for time
(namely, the diffusion time of a charge across a Debye length),
the time unit seems absurdly small. Other scalings may provide
different perspectives on important phenomena and should be
investigated. Similarly, the diffusion length is scaled by the
characteristic diffusion coefficient of an ion inside the channel. In
what follows, we omit the tildes.
The three-dimensional geometry of the ion channel can be

well approximated40,41 by a reduced one-dimensional (1D)
problem along the axial direction z, with a cross-sectional area
factor42 A(z) included, as in, e.g., refs 13, 40, 41, 43−50; see
Figure 2

Figure 2. Illustration of model geometry and boundary conditions: zmeasures distance symmetrically through the channel from the left bath to the right
bath. The membrane walls are both flux-free and electrically insulating.
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Table 1 lists the values of the dimensional model parameters
considered in this work. Gating is a broad phenomenon, and we

do not expect that its study would require a careful choice of
parameters. The above parameters were chosen to be within a
reasonable magnitude to reflect biological conditions, while
remaining in a regime that enables numerical study. In particular,
we do not attempt to describe real channels. The nondimen-
sional problem parameters are taken to be

ρ= + =
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Note that from a modeling point of view, the choice of ρpermanent,
rather than the commonly used piecewise constant density, is
plausibly indifferent. That is to say, it is plausible that the choice
of description of the density will have no effect on our results.
The numerical problem, however, is easier to solve when
ρpermanent is smooth. The boundary conditions are
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where the electric potential of the left bath is chosen to be the
reference potentialϕ = 0. Since the bath concentrations are equal
on both sides, the current through the channel is driven in this
simplified model only by applied voltage difference ϕ+ between
the left and right bathing solutions. The electrochemical
potential difference reduces to

Table 1. Value of Dimensional Model Parameters

parameter description quantity

c ̅ bulk ionic concentrationa 0.1 M
ε dielectric constant 78ε0 ≈ 6.9 × 10−10 F/m
Di(0) diffusion coefficient of species i

inside the channela
0.8 × 104 cm2/s

g11, g12, g22 ion−ion interaction energy
parameters

[14.6, 13.07, 3.64] × 10−21 J

σ ion−ion high-order interaction
energy

6.08 × 10−22 J

λ debye length 0.97 nm
τ characteristic time 1.2 × 10−18 s
aAssumed equal for all species.

Figure 3. (A) Solution norm ∥u∥, see eq 8, as a function of cpermanent. (B) J1′ (blue), J2′ (red) and J3′ (black) as a function of cpermanent. (a−c) Solution profiles
corresponding to points in (A) and (B). Equation parameters areϕ+ = 0, z1 = z3 = 1, and z2 =−2, σ = 0.1, g11 = 2.4, g12 = 2.15, g22 = 0.6, g13 = 2.3, g23 = 0.2,
g33 = 0.1. The dotted curve marks the channel region.
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where the last equality is obtained by isolating δ
δci

in eq 4c.

■ STEADY-STATE SOLUTIONS
The steady-state equations satisfy

δ
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where λi is a Lagrange multiplier associated with charge
conservation. The boundary conditions 5 at z = −∞ imply
that λi = 0 for i = 1,..., N. Furthermore, by eq 6, the steady-state
equations take the form
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coupled with Poisson’s eq 4a. To map the steady-state solutions
of eq 4a, we solve eq 7 with ϕ+ = 0 using continuation with
pde2path,51,52 where the density of permanent charge is the
continuation parameter. The computational domain is taken to
be [−L, L], where L = 50, for which we numerically verify that
finite-domain effects are negligible (data not shown). The
resulting bifurcation diagram of eq 7 is presented in Figure 3A.
Each point on the curve (cpermanent, ∥u∥) (branch) represents a
solution u of eq 7 with a corresponding parameter cpermanent and
where the solution norm is defined as

∫ ϕ= + + +
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in an aim to provide a measure that helps differentiate between
two steady states in the equation. Solid branches correspond to
solutions that are stable with respect to the dynamics of eq 4a,

whereas dashed branches correspond to unstable solutions.
Thus, for cpermanent ≈ 7.5−10, the system gives rise to multiple
steady states, which lie on two stable branches and one unstable
connection branch. The properties of the different branches
differ because of the different ionic species that enter the channel
in the different cases, Figure 3a−c. For example, in state “a”, c1 is
the dominant species inside the channel, whereas in state “c”, the
other cationic species c3 dominates over c1. The unstable state “b”
reflects a more balanced situation where both cationic species
enter the channel.
We had expected that the permanent charge would be roughly

balanced by mobile charge inside the channel domain. We often
find, however, that the permanent charge is also balanced by
lobes of mobile charges at the channel ends.
It is the competition between two cationic species in the

channel region that gives rise to multiple steady states. In the case
of a single cation species (counterbalanced by an anion), there is
no competition, and accordingly, we do not observe multiple
steady states in the system of study (data not shown).
To identify the opened and closed states, it is instructive to

monitor the ionic flux of the solutions along the branches. The
flux of ionic species ci is given by, see eq 6

∫
ϕ

= +
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∞Ji s
D s A s c s

d
( ) ( ) ( )i i

Here, however, we consider the case of zero applied voltage ϕ+ =
0, where all solutions correspond to zero ionic flux Ji = 0.
Accordingly, in Figure 3B, we monitor the flux derivatives (slope
“conductance”) at ϕ+ = 0

∫ϕ
=

ϕ+ = −∞
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+

Jd

d
1i

s
D s A s c s0

d
( ) ( ) ( )i i

which is proportional to the ionic fluxes for a small enough
applied voltage, |ϕ+|≪ 1. Particularly, we observe that for |ϕ+|≪
1, state “a” is a conductive state for species c1 but subconductive

Figure 4. Hysteresis loop in the system of Figure 3.
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for species c3, whereas state “c” is a subconductive or closed state
for species c1 but conductive for species c3. The negative
correlation between the conductance of the cationic species is an
implication of the competition between them.

■ BISTABILITY ANDGATINGVIA AHYSTERESIS LOOP

The subcritical bifurcation in Figure 3A suggests that the system
undergoes hysteresis as the permanent charge varies; see
illustration in Figure 4. Hysteresis suggests a mechanism of
single-channel gating. For example, if the system is at point “a”
and driven toward higher permanent charge, the solution will
initially follow its branch with J1′(ϕ+) ≈ 1.75; see Figure 3B. If
permanent charge density, however, exceeds the bifurcation
point, the solution will switch to the lower branch with J1′(ϕ+ = 0)
≈ 0.033. Significantly, however, the bifurcation diagram and the
hysteresis loop (see Figures 3A and 4) describe only steady-state
solutions of eq 4a rather than transients. Therefore, gating
achieved by tracing the hysteresis loop as in Figure 4 requires
varying the permanent charge coefficient cpermanent much more

slowly than the relaxation time of eq 4a so that the system
remains close to equilibrium. Thus, although hysteresis implies a
mechanism of gating under slow changes in the system
parameters, it is not clear whether gating would occur for faster
changes, e.g., in noisy environments.
To study current dynamics under fast changes, we first

conduct a simulation of the steric PNP−CH (eq 4a),53 in which
the permanent charge is decreased and increased for relatively
short times during the simulation, see Figure 5B. As expected, as
the permanent charge density is pushed beyond the bifurcation
points for a sufficient period of time, the solution switches to a
different branch, leading to a new current level; see Figure 5A.
The resulting current versus time graph resembles (but see the
subsequent section for a detailed comparison) the experimental
measurements of gating; see Figure 1. The distinct current levels
observed correspond to different equilibrium solutions. Accord-
ingly, the switching time between the different current levels
corresponds to the relaxation time to the new equilibrium state.
We observe that the switching time is slower than the

Figure 5. A) Slope conductance Ji′(ϕ+ = 0) as a function of time for i = 1 (solid), i = 2 (dash-dotted), and i = 3 (dashed). (B) The permanent charge
density coefficient cpermanent as a function of time. The bifurcation point cpermanent

bif ≈ 7.4 is marked by a dotted line. Equation parameters are as in Figure 3.

Figure 6. (A) Flux derivative Ji′(ϕ+ = 0) as a function of time for i = 1 (solid), i = 2 (dash-dotted), and i = 3 (dashed). (B) The permanent charge density
coefficient cpermanent as a function of time. The bifurcation point cpermanent

bif ≈ 7.4 is marked by a dotted line. Equation parameters are as in Figure 3.
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characteristic time scale of the system and depends on the
direction of the transition. For example, the switching from
current level J3′ ≈ 0.78−3.32 (see the dashed curve in Figure 5A)
occurs in roughly 20 units of time, i.e., 20 times slower than the
characteristic time of ionic diffusion in the channel. In general, to
allow a system to relax to an equilibrium state, the noise in the
system must be sufficiently small over the full relaxation time.
Therefore, it is unlikely that single-channel gating would be
observed in the presence of noise in the system we are studying.
To demonstrate this, we solve the steric PNP−CH (eq 4a),

where Gaussian noise54 is introduced to the permanent charge
density coefficient; see Figure 6B. The permanent charge density
coefficient cpermanent frequently crosses the bifurcation point
(marked by a dotted line in Figure 6B) but remains below the
bifurcation point for brief periods of time that are typically much
shorter than the relaxation time of the system. Therefore, as
expected, no switching behavior is observed for the full
simulation time; see Figure 6A.
The numerical study presented in Figures 5 and 6 was confined

to the case of zero applied voltage ϕ+, which is easier to compute
and analyze. To show that our results are applicable to more
general conditions, we also present a simulation with ϕ+ = 1; see
Figure 7. As expected, the applied voltage does not change the
qualitative behavior of the system. All simulations of the steric
PNP−CH (eq 4a) are conducted using Comsol 5.3.

■ RELEVANCE TO GATING PHENOMENA IN
BIOLOGICAL CHANNELS

We have shown that the steric PNP−CHmodel (eq 4a) gives rise
to switching behavior, albeit under customized conditions, and in
the absence of noise. These conditions are so different from those
in biological channels that we conclude our model does not
describe the spontaneous gating of single channels observed
experimentally. Indeed, ionic channels are exposed to thermal
fluctuations that can be very significant in such a nanoscaled
system, as obvious in any simulation of molecular dynamics,
particularly if one remembers the strength of Coulomb’s law.
Therefore, ionic channels operate in a fluctuating noisy
environment of large magnitude, where noise is manifested in
various ways, including the distribution of fixed charge, domain
of the ion channel, location of the free ions themselves, etc.

One of the goals of this article is to define the problem of
interest and set up criteria that will allow future work to
determine whether an observed switching behavior begins to
describe the spontaneous gating of single channels. Accordingly,
we now ask whether the switching behavior of the steric PNP−
CH model, observed, e.g., in Figure 5, captures the essential
features of gating in biological ion channels. The steric PNP−CH
switching mechanism has the following characteristics:

1. Switching occurs due to transitions between multiple
steady states. The characteristic duration of switching is
determined by the relaxation time of the system, which, as
expected, is observed to be much longer than the
characteristic ionic transport time in the system.

2. Switching is induced when an effective parameter crosses a
critical value (bifurcation point) for a sufficient duration of
time. This duration of time is tightly related to the
relaxation time of the system.

3. Multiplicity of steady states is observed in narrow
parameter regimes.

4. Opened channel and zero (subconductance) currents are
not sharply determined by the system. We observed, for
example, that noise in cpermanent leads to comparable noise
in the resulting currents through the channel.

5. Multiplicity of steady states stem from the competition
between multiple cationic species in the channel region.
Consequently, a system with a single cationic species will
not give rise to multiple solutions and will not be able to
describe gating via the mechanism of study.

6. Since each steady state represents a different balance
between cationic species in the channel region, correlation
between the fluxes of different cationic species is observed.
For example, upon switching, the channel may “close” for
sodium ions but at the same time would “open” for
potassium ions. Although this kind of behavior is not what
we seek here, it might be of great importance in the
sequential changes in selectivity that define transporters
versus ion channels. Ref 55 gives a taste of this complexity
in a modern physical context.

The above features are at odds with the characteristics of
gating in biological ion channels. Indeed, gating in channel is a

Figure 7. Simulation of the steric PNP−CH (eq 4a) withϕ+ = 1 and σ = 5× 10−3. Rest of the equation parameters are as in Figure 3. (A, C) Fluxes Ji as a
function of time for i = 1 (solid), i = 2 (dash-dotted), and i = 3 (dashed), where the corresponding permanent charge density coefficient cpermanent as a
function of time is presented as (B) and (D), respectively. The bifurcation point cpermanent

bif ≈ 7.4 is marked by a dotted line.
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generic and wide-spread phenomena. It can occur in a channel
dominated by single cationic species,1,2,56 and therefore it is not a
consequence of competition between multiple cationic species.
Currents are either (nearly) zero or at a definite level,
independent of time and surprisingly insensitive to the vast
thermal fluctuations that change the location of charges in the
channel protein and its pore by substantial amounts, once the
channel is open.
Future work addressing this problem must take into account

the defining properties of gating in single channels:

1. Gating is universal, observed in many types of channels
with very different structures.

2. The sudden (∼1 μs) switching from nearly zero to a
definite value, often between 10 and 1000 Pa; temporal
resolution of the switching event at a 100 ns time scale
reveals stochastic variations in pore current of great
diversity, including graded, stepwise, and oscillatory
variations.5,6

3. The rectangular nature of the wave form; the amplitude of
the single-channel current is independent of time once the
channel is open and independent of the duration of the
opening from some 50 μs to even tens of seconds in
favorable experimental situations.

4. Closed and open duration histograms often can be fit very
well (but not perfectly) with single exponential functions.

■ DISCUSSION
In this study, we have addressed the question whether gating
occurs due to noise-induced fast transitions between multiple
steady (equilibrium) states on an ion channel. We have
considered this question by studying the switching behavior in
PNP equations with high-order steric effects. We have shown
that for two cationic species, the equation does produce
switching between multiple solutions for rather narrow ranges
of ion−ion interaction parameters and permanent charge
densities in the channel region and in the absence of noise.
The observed switching behavior, however, does not have the
essential defining properties of gating in biological channels.
The noise we consider is a rapid fluctuation, independent of its

history (similar to white noise), in the effective permanent charge
density (residue) concentration. Importantly, rapid means much
faster than the relaxation time of the model. A key observation of
this study is that noise does not induce switching, at least of the
type studied here. Indeed, to allow a system to relax to a new
equilibrium state, the noise needs to exceed a certain threshold
and remain in some range above this threshold over the full
relaxation time of the model. This, however, is an unlikely
event.57 This observation is of a general nature. Indeed, in
overdamped models (gradient flow), the relaxation time is nearly
always longer than the characteristic time of change in the model.
Therefore, it is unlikely that noise will induce gating in such
models. Of course, we can only discuss noise of the type and
structures we have computed. Channels have larger structures,
both long and short lasting, which might move cooperatively and
create single-channel gating. Indeed, the conformation changes
of classical biophysics are of this type and deserve to be studied in
physical representations that are more realistic than traditional
chemical kinetics.
The observed switching behavior reflects a competition

between multiple cationic species such that each steady state
represents a different balance between cationic species in the
channel regions. This kind of behavior is not characteristic of

gating. It has, however, an important characteristic found in
transporters that have structure similar to channels or branched
channels. Transporters allow different ions to flow in their
different states and in that sense have state-coupled selectivity.
The switching behavior observed here also has different
selectivities in different states because each state has a different
balance between cationic species. We will present a study of
transporters in further publications.
Gating is a universal phenomena, observed in many types of

channels with such different structures, and therefore should be
described in rather generic models of ion channels, we suppose.
In accordance, we focus in this work on electrolyte structure and
dynamics and do not make a careful choice of parameters, take
into account protein-specific details, or protein response
(polarization). Specifically, our study focuses on the 1D-reduced
version of the steric PNP−CH model because it has been
successful in predicting permeability and selectivity of ionic
channels in their open state and because it gives rise to multiple
steady states. Within the steric PNP−CH model, we further
assume a simplified geometry and uniform fixed charge
distribution within the channel and consider effective ion−ion
interaction parameters that give rise to multiple steady states.58

Thus, our model is a phenomenological representation of an ion
channel. It is important to realize that all models and simulations
of ion channels are phenomenological. For example, many of the
hundreds of parameters used in simulations of molecular
dynamics are determined from macroscopic measurements in
spatially homogeneous systems (as they should be in our
opinion, we hasten to add). Simulations will thus be
phenomenological until scientists learn how to compute the
parameters of molecular dynamics a priori from quantum
mechanical analysis of electrolyte solutions. Even then, the
question will remain whether the parameters are appropriate for
the special conditions within an ionic channel, with its >10 M
ionic strength. These issues become particularly vivid when we
realize the sensitivity of biological results (of selectivity, for
example) to the choice of combining rules for atoms of unequal
charge or properties.
In this study, we have considered Gaussian noise. Given the

definite picture arising from this study, we do not believe that
other types of noise will induce gating or change the qualitative
picture and accordingly, we have not extended our study to
consider noise with different characteristics. We do not believe,
on the other side, that Gaussian noise describes accurately the
noise environment in a channel. Rather, it is plausible that various
charged and noncharged components of the channel would
fluctuate in a cooperative, coordinated motion, giving rise to
unique noise characteristics.
The open question of gating is interlinked with an open

question regarding the robustness of ion channels: A biological
ion channel is subject to enormous noise, and thus it seems more
than implausible that its outputs are well-defined currents that
are independent of time, as pointed out long ago.30 Yet, this is the
experimental picture; the observed currents of biological ion
channels reflect only a tiny part of the noise in the system (while
they are opened or closed). Thus, it seems necessary to imagine a
sort of “eigen state” in which current can flow only when the
channel has particular spatial distributions of mobile and
permanent charge, i.e., when the channel has particular
conformations of charge (not mass), and these produce potential
profiles that allow current flow. The existence of Coulomb
blockade in simulations of calcium and sodium in channels59,60
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supports this view. We will address these issues in further
publications.
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