Poisson-Fermi modeling of ion activities in aqueous single and mixed electrolyte solutions at variable temperature

Jinn-Liang Liu1,a) and Bob Eisenberg2,b)

1Institute of Computational and Modeling Science, National Tsing Hua University, Hsinchu 300, Taiwan
2Department of Physiology and Biophysics, Rush University, Chicago, Illinois 60612, USA and Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois 60616, USA

(Received 4 January 2018; accepted 13 January 2018; published online 1 February 2018)

The combinatorial explosion of empirical parameters in tens of thousands presents a tremendous challenge for extended Debye-Hückel models to calculate activity coefficients of aqueous mixtures of the most important salts in chemistry. The explosion of parameters originates from the phenomenological extension of the Debye-Hückel theory that does not take steric and correlation effects of ions and water into account. By contrast, the Poisson-Fermi theory developed in recent years treats ions and water molecules as nonuniform hard spheres of any size with interstitial voids and includes ion-water and ion-ion correlations. We present a Poisson-Fermi model and numerical methods for calculating the individual or mean activity coefficient of electrolyte solutions with any arbitrary number of ionic species in a large range of salt concentrations and temperatures. For each activity-concentration curve, we show that the Poisson-Fermi model requires only three unchanging parameters at most to well fit the corresponding experimental data. The three parameters are associated with the Born radius of the solvation energy of an ion in electrolyte solution that changes with salt concentrations in a highly nonlinear manner. Published by AIP Publishing. https://doi.org/10.1063/1.5021508

I. INTRODUCTION

Thermodynamic modeling of aqueous electrolyte solutions plays an important role in chemical and biological sciences1–13 Despite intense efforts in the past century, robust thermodynamic modeling of electrolyte solutions still presents a difficult challenge and remains a remote ambition in the extended Debye-Hückel (DH) models due to the enormous number of parameters that need to be adjusted, carefully and often subjectively.11,13 For example, the Pitzer model requires 8 parameters for a ternary system and up to 8 temperature coefficients (parameters) for every Pitzer parameter in a temperature interval from 0 to about 200 °C.11,13 It is indeed a frustrating despair (frustration on p. 11 in Ref. 9 and despair on p. 301 in Ref. 1) that approximately 22 000 parameters for combinatorial solutions of the most important 28 cations and 16 anions in salt chemistry have to be extracted from the available experimental data for one temperature.11 The Pitzer model is still the most widely used DH model with unmatched precision for modeling aqueous electrolyte solutions over wide ranges of composition, temperature, and pressure.13

The Pitzer model and its variants13 are all derived from the Debye-Hückel theory14 that in turn is based on a linear Poisson-Boltzmann (PB) equation5 although potentials calculated from PB near ions (for example) are often far beyond the linear range of the potential near ions or interfaces. The PB equation treats ions as point charges without steric volumes and water molecules as a homogeneous dielectric medium without steric volumes either and with a constant dielectric constant that neglects ion-water and ion-ion correlations. These simplifications give rise to the elegant, simple, and useful DH theory. However, it is precisely because of the linearization and simplifications on steric and correlation effects that extended DH models have needed an explosion in the number of parameters in order to overcome the deficiencies (simplifications) of the classical Poisson-Boltzmann theory. The nonlinear PB equation was developed by Gouy and Chapman.15,16

In the past few years, we have intensively investigated these two effects in a range of areas from electric double layers17,18 and ion activities19 to biological ion channels18,20–24 and consequently developed an advanced theory—the Poisson-Fermi (PF) theory—that treats ions and water molecules as nonuniform hard spheres of any size with interstitial voids and includes many of the correlation effects of ions and water. We refer to our previous papers and references therein for a historical account of the literature of this theory. In Ref. 19, we proposed a PF model for calculating activity coefficients of individual ions in aqueous single NaCl and CaCl\textsubscript{2} electrolyte solutions at the temperature 298.15 K. The model is further tested in this paper for eight 1:1 electrolytes (LiCl, LiBr, NaF, NaCl, NaBr, KF, KCl, and KBr), six 2:1 electrolytes (MgCl\textsubscript{2}, MgBr\textsubscript{2}, CaCl\textsubscript{2}, CaBr\textsubscript{2}, BaCl\textsubscript{2}, and BaBr\textsubscript{2}), one mixed electrolyte (NaCl + MgCl\textsubscript{2}), one 1:1 electrolyte (NaCl) at various temperatures from 298.15 to 573.15 K, and one 2:1 electrolyte (MgCl\textsubscript{2}) at various temperatures from 298.15 to 523.15 K, for which the experimental data were compiled by Valiskó and Boda in Ref. 25 and Rowland \textit{et al.}13 in Ref. 13 from various experimental sources in Refs. 26–35.
The PF model is developed to calculate individual ion activities for which experimental measurements and determination, 10,36,37 interpretation of measurement data, 26,37-39 and comparison of different experimental methods 37,40 have been extensively investigated by Wilczek-Vera, Rodil, and Vera in the past two decades. PF results on mean activity coefficients can be compared with experimental measurements using the Debye-Hückel equation of individual ion activities.5

In contrast to the Pitzer model, we show that all experimental data sets of individual or mean activity coefficients as a function of variable concentration in single electrolytes or mixtures at various temperatures can be well fitted by the PF model with only 3 parameters at most for each activity-concentration data curve. The model is characterized by three different domains, namely, the Born ion, hydration shell, and remaining solvent domains in which the Born ion domain is most crucial because all activities around an ion are mainly governed by the singular charge of the ion located at the center of the domain. The Born ion domain is defined by the Born radius of the solvated ion, which is unknown and changes with salt concentrations in a highly nonlinear manner.

The three parameters characterize three orders of approximation of the Born radius in terms of ionic concentrations. Parameter 1 describes a correction of the experimental Born radius of a single ion in pure water without any other ions. Parameter 2 describes an adjustment of the unknown Born radius in electrolyte solution that accounts for the Debye screening effect, which is proportional to the square root of the ionic strength of the solution. Parameter 3 is an adjustment in the next order approximation beyond the DH treatment of ionic atmosphere. The physical origin of these parameters is clear unlike that of most parameters in the Pitzer method.11,41 It may even be possible in later work to calculate some of these parameters from more detailed versions of our model.

Our approach to partition the free energy domain of a solvated ion into the above three sub-domains yields a better approximation to calculate the free energy since these sub-domains are determined by the experimental data of solvation and thus separate short- and long-range interactions of the ion in a more accurate way. This approach nevertheless incurs more complicated numerical methods for solving the nonlinear partial differential equations of the PF model in different domains with suitable interface conditions.17 We therefore present numerical methods in detail for future verification and development of the present work.

II. THEORY

For an aqueous electrolyte solution with \(K \) species of ions, the Poisson-Fermi theory proposed in Refs. 18 and 21 treats all ions and water of any diameter as nonuniform hard spheres with interstitial voids between these spheres. The activity coefficient \(\gamma_i \) of an ion of species \(i \) in the solution describes the deviation of the chemical potential of the ion from ideality (\(\gamma_i = 1 \)). The excess chemical potential \(\mu_i^{ex} \) in the solution can be calculated by19,42

\[
\mu_i^{ex} = \Delta G_i - \Delta G_i^0, \quad \Delta G_i = \frac{1}{2} \gamma_i \phi(0), \quad \Delta G_i^0 = \frac{1}{2} q_i \phi^0(0),
\]

where \(k_B \) is the Boltzmann constant, \(T \) is an absolute temperature, \(q_i \) is the ionic charge of the hydrated ion (also denoted by \(i \)), \(\phi(\mathbf{r}) \) is a potential function of spatial variable \(\mathbf{r} \) in the domain \(\Omega = \Omega_B \cup \Omega_{sh} \cup \Omega_s \), shown in Fig. 1. \(\Omega_B \) is the spherical domain occupied by the ion \(i \), \(\Omega_{sh} \) is the hydration shell domain of the ion, \(\Omega_s \) is the remaining solvent domain, \(\Omega \) denotes the center (set to the origin) of the ion, \(\phi(\mathbf{0}) \) is the value of \(\phi(\mathbf{r}) \) at \(\mathbf{r} = \mathbf{0} \), and \(\phi^0(\mathbf{r}) \) is a potential function when the solvent domain \(\Omega_s \) does not contain any ion at all with pure water only. The potential function \(\phi(\mathbf{r}) \) can be found by solving the Poisson-Fermi equation18

\[
\left(\frac{\mathbf{I}}{\epsilon_0} \nabla^2 - 1 \right) \nabla \cdot \epsilon(\mathbf{r}) \nabla \phi(\mathbf{r}) = \rho(\mathbf{r}),
\]

\[
\epsilon(\mathbf{r}) = \begin{cases}
\epsilon_s = \epsilon_w \epsilon_0 in \Omega_{sh} \cup \Omega_s, & r_i = \frac{1}{2} \mathbf{a}_j in \Omega_{sh} \cup \Omega_s, \\
\epsilon_i = \epsilon_{ion} \epsilon_0 in \Omega_i, & 0 in \Omega \end{cases}
\]

\[
\rho(\mathbf{r}) = \begin{cases}
\rho_s(\mathbf{r}) = \sum_{k=1}^{\infty} q_k C_k(\mathbf{r}) in \Omega_s, & \\
0 in \Omega_{sh}, & \\
\rho_i(\mathbf{r}) = q_i \delta(\mathbf{r} - \mathbf{0}) in \Omega_i \end{cases}
\]

\[
C_k(\mathbf{r}) = C_k^{B} \exp \left(- \beta_k \phi(\mathbf{r}) + \frac{\psi_k}{\epsilon_0} \right) \delta(\mathbf{r}) in \Omega,
\]

\[
S^{nc}(\mathbf{r}) = \ln \left(\frac{\Gamma(\mathbf{r})}{\Gamma^{B}} \right) in \Omega,
\]

where \(\epsilon_0 \) is the vacuum permittivity, \(\epsilon_w \) is the dielectric constant of bulk water, \(\epsilon_{ion} \) is a dielectric constant in \(\Omega_i \), \(a_j \) is the radius of a counterion of the ion \(i \), and \(\delta(\mathbf{r} - \mathbf{0}) \) is the delta function at the origin.

The concentration function \(C_k(\mathbf{r}) \) is described by a Fermi distribution (5), where \(C_k^{B} \) is a constant bulk concentration for all \(k = 1, \ldots, K \), \(q_k \) \(k \) + 1 = \(\frac{4\pi a_j^3}{3} \), \(v_k = \frac{\psi_k}{\epsilon_0} \), \(v_0 = \frac{\sum_{k=1}^{\infty} v_k}{K + 1} \) is the average volume of all kinds of hard spheres, \(S^{nc}(\mathbf{r}) \) is called the steric potential, \(\Gamma^{B} = 1 - \frac{C_k^{B}}{C_k^{B} - \sum_{k=1}^{\infty} v_k C_k^{B}} \) is a constant void fraction, \(\Gamma(\mathbf{r}) = 1 - \frac{v_k C_k(\mathbf{r})}{C_k(\mathbf{r})} \) is a void fraction function, and \(K + 1 \) denotes water.

The radii of \(\Omega_s \) and the outer boundary of \(\Omega_{sh} \) are denoted by \(R_{B}^{Born} \) and \(R_{sh}^{Born} \), respectively, whose values will be determined by experimental data. It is natural to choose the Born radius \(R_{B}^{Born} \) (not the ionic radius \(a_j \)) as the radius of \(\Omega_i \).42 We consider both first and second shells of the ion.43,44
The potential \(\phi^0(\mathbf{r}) \) [in Eq. (1)] of the ideal system is obtained by setting \(\rho_i(\mathbf{r}) = 0 \) in (4), i.e., all particles in \(\Omega_i \) do not electrostatically interact with each other since \(q_k = 0 \) for all \(k \).

The domain \(\Omega \) is chosen to be sufficiently large so that \(\phi(\mathbf{r}) = 0 \) on the boundary of the domain \(\partial \Omega \). The ideal potential \(\phi^0(\mathbf{r}) \) is then a constant, i.e., \(\Delta G_i^0 \) is a constant reference chemical potential independent of \(C_i^B \).

The distribution (5) is of Fermi type since all concentration functions have an upper bound, i.e., \(C_i^L < 1/v_k \) for all particle species with any arbitrary (or even infinite) potential \(\phi^L(\mathbf{r}) \) at any location \(\mathbf{r} \) in the domain \(\Omega_i \). The Poisson-Fermi equation (2) and the Fermi distribution (5) reduce to the Poisson-Boltzmann equation and the Boltzmann distribution when \(\ell_i = S_i^0 = 0 \), i.e., when the correlation and steric effects are not considered. The Boltzmann distribution \(C_i^L = C_i^B \exp(-\beta_k \phi^L(\mathbf{r})) \) would however diverge if \(\phi^L(\mathbf{r}) \) tends to infinity. This is a major deficiency of the PB theory for modeling a system with strong local interactions that involve L-J potentials or even truncated versions expensive and unstable to compute numerically.

The potential \(\phi^0(\mathbf{r}) \) is chosen to be sufficiently large so that \(\phi^0(\mathbf{r}) \) is found by solving (11).

with the boundary condition

\[
\phi^L(\mathbf{r}) = \phi^0(\mathbf{r}) \text{ on } \partial \Omega_i.
\]

The evaluation of Green’s function \(\phi^0(\mathbf{r}) \) on \(\partial \Omega_i \) always yields finite numbers and thus avoids the singularity in the solution process. The desired solvation energy \(\Delta G_i^0 \) in Eq. (1) (and thus the individual ionic activity coefficient \(\gamma_i \)) is then evaluated by

\[
\Delta G_i = k_B T \ln \gamma_i = \frac{1}{2} \rho_i \left[\phi(0) + \phi^0(0) \right].
\]

Since the interface \(\partial \Omega_i \) is a sphere centered at the origin, the Laplace potential \(\phi^0(\mathbf{r}) = q_i/(4 \pi \varepsilon R_i^\text{Born}) \) is a constant in \(\Omega_i \), i.e., Eq. (11) has been exactly solved.

The Poisson-Fermi equation (8) is a nonlinear fourth-order partial differential equation (PDE) in \(\Omega_i \). Newton’s iterative method is usually used for solving nonlinear problems. We seek a sequence of approximate solutions \(\left\{ \phi_m(\mathbf{r}) \right\}_{m=1}^M \) by iteratively solving the linearized PF equation

\[
\left(\frac{\partial^2 \nabla^2 - 1}{\varepsilon_i} \nabla \cdot \varepsilon_i \nabla \phi_m - \rho_i(\phi_{m-1}) \phi_m \right)
\]

until a tolerable potential function \(\phi_{m-1} \) is reached, where \(\phi_0(\mathbf{r}) \) is a given initial guess potential function. \(\rho_i(\phi_{m-1}) = \sum_{k=1}^K q_k C_k^{m-1}(\mathbf{r}) \) is the sum of the ionic activities associated with the ionic species in \(\Omega_i \).

\[
\rho_i(\phi_{m-1}) = \sum_{k=1}^K \rho_k C_k^{m-1}(\mathbf{r}),
\]

and

\[
\phi'(\phi) = \frac{d}{d\phi} \rho_i(\phi).
\]

Note that the differentiation in \(\phi'(\phi) \) is performed only with respect to \(\phi \), whereas \(S_i^\text{onc} \) is treated as another independent variable although \(S_i^\text{onc} \) depends on \(\phi \) as well. Therefore, \(\phi'(\phi) \) is not exact implying that this is an inexact Newton’s method.

The fourth-order problem can be resolved by transforming Eq. (14) into two second-order PDEs

\[
\varepsilon_i \left(\nabla^2 - 1 \right) \Psi(\mathbf{r}) = \rho(\phi_{m-1}) \nabla \phi_m(\mathbf{r}),
\]

by introducing a density like variable \(\Psi = \nabla^2 \phi \) for which the boundary condition is

\[
\Psi(\mathbf{r}) = 0 \text{ on } \partial \Omega_i.
\]
Equations (9), (15), and (16) are coupled together in the entire domain \(\Omega \) with the jump conditions in (10). Note that linear PDEs (14)–(16) converge to the nonlinear PDE (8) if \(\tilde{\phi}_M \) converges to the exact solution \(\tilde{\phi} \) of Eq. (8) as \(M \to \infty \), i.e., the approximate potential \(\tilde{\phi}_M(x) \) is sufficiently close to the exact potential \(\tilde{\phi}(x) \) for all \(x \in \overline{\Omega}_{sh} \cup \Omega \), if the iteration number \(M \) is sufficiently large (\(M \approx 5–37 \) for this work with error tolerance \(10^{-3} \)).

The standard 7-point finite difference (FD) method is used to discretize all PDEs (9), (15), and (16), where the jump conditions in (10) are handled by the simplified matched interface and boundary (SMIB) method proposed in Ref. 17. For simplicity, the SMIB method is illustrated by the following 1D linear Poisson equation (in x-axis):

\[
-\frac{d}{dx} \left[\epsilon(x) \frac{d}{dx} \tilde{\phi}(x) \right] = f(x) \text{ in } \Omega
\]

with the jump condition

\[
\left[\epsilon \tilde{\phi} \right] = -\epsilon_i \frac{d}{dx} \tilde{\phi}'(x) \big|_{x = \xi} = \partial \Omega_i \bigcap \partial \Omega_s,
\]

where \(\Omega = \Omega_i \cup \Omega_s \), \(\Omega_i = (0, \xi) \), \(\Omega_s = (\xi, L) \), \(f(x) = 0 \) in \(\Omega_i \), \(f(x) \neq 0 \) in \(\Omega_s \), and \(\tilde{\phi}' = \frac{d}{dx} \tilde{\phi} \). The corresponding cases to Eqs. (9), (15), and (16) in the \(y \)- and \(z \)-axis follow in a similar way. Let two FD grid points \(x_i \) and \(x_{i+1} \) across the interface point \(\xi \) be such that \(x_i < \xi < x_{i+1} \) and \(\xi = (x_i + x_{i+1})/2 \) with \(\Delta x = x_{i+1} - x_i = 1 \text{ Å}, \) a uniform mesh, for example, as used in this work. The FD equations of the SMIB method at \(x_i \) and \(x_{i+1} \) are

\[
\begin{align*}
\frac{\epsilon_i}{\Delta x^2} \tilde{\phi}_{i-1} - \frac{c_1}{\Delta x^2} \tilde{\phi}_i + \frac{c_2}{\Delta x^2} \tilde{\phi}_{i+1} &= f_i + \frac{c_0}{\Delta x^2}, \\
\frac{\epsilon_i}{\Delta x^2} \tilde{\phi}_{i+1} - \frac{c_1}{\Delta x^2} \tilde{\phi}_i + \frac{c_2}{\Delta x^2} \tilde{\phi}_{i+2} &= f_{i+1} + \frac{d_0}{\Delta x^2},
\end{align*}
\]

where

\[
\begin{align*}
c_1 &= \frac{\epsilon_i - \epsilon_s}{\epsilon_i + \epsilon_s}, \\
c_2 &= \frac{2 \epsilon_s}{\epsilon_i + \epsilon_s}, \\
c_0 &= -\epsilon_i \Delta x \left[\epsilon \tilde{\phi}' \right], \\
d_1 &= \frac{2 \epsilon_i}{\epsilon_i + \epsilon_s}, \\
d_2 &= \frac{\epsilon_s - \epsilon_i}{\epsilon_i + \epsilon_s}, \\
d_0 &= -\epsilon_i \Delta x \left[\epsilon \tilde{\phi}' \right],
\end{align*}
\]

\(\tilde{\phi}_i \) is an approximation of \(\tilde{\phi}(x_i) \), and \(f_i = f(x_i) \). Note that the jump value \(\left[\epsilon \tilde{\phi}' \right] \) at \(\xi \) is calculated exactly since the derivative of \(\tilde{\phi}' \) is given analytically.

Since the steric potential takes particle volumes and voids into account, the shell volume \(V_{sh} \) of the shell domain \(\Omega_{sh} \) can be determined by Eqs. (5) and (6) as

\[
S_{sh}^{OC} = \frac{v_0}{v_w} \ln \left(\frac{O_w}{V_{sh} C_i^{B}} \right) = \ln \left(\frac{V_{sh} - v_w O_w}{V_{sh} C_i^{B}} \right),
\]

where the occupancy (coordination) number \(O_w \) is given by experimental data.43,44 The shell radius \(R_{sh}^{B} \) of \(\Omega_{sh} \) is thus determined. Note that the shell volume depends not only on \(O_w \) but also on the bulk void fraction \(\Gamma_B \), namely, on all salt and water concentrations \(C_i^{B} \).

As discussed in Ref. 25, the solvation free energy of an ion \(i \) should vary with salt concentrations and can be expressed by a dielectric constant \(\epsilon(C_i^{B}) \) that depends on

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_B)</td>
<td>Boltzmann constant</td>
<td>1.38 x 10(^{-23})</td>
<td>J/K</td>
</tr>
<tr>
<td>(T)</td>
<td>Temperature</td>
<td>Table II</td>
<td>K</td>
</tr>
<tr>
<td>(e)</td>
<td>Proton charge</td>
<td>1.602 x 10(^{-19})</td>
<td>C</td>
</tr>
<tr>
<td>(\epsilon_0)</td>
<td>Permittivity of vacuum</td>
<td>8.85 x 10(^{-14})</td>
<td>F/cm</td>
</tr>
<tr>
<td>(\epsilon_{ion}, \epsilon_w)</td>
<td>Dielectric constants</td>
<td>1, Table II</td>
<td></td>
</tr>
<tr>
<td>(l_c = 2a_j)</td>
<td>Correlation length</td>
<td>(j = \text{C}_r), etc.</td>
<td>Å</td>
</tr>
<tr>
<td>(a_{M_{i+1}^, a_{M_{i+2}^}, a_{B_{i+2}^*}})</td>
<td>Radii</td>
<td>0.6, 0.95, 1.33</td>
<td>Å</td>
</tr>
<tr>
<td>(a_{M_{i+1}^, a_{C_{i+2}^}, a_{B_{i+2}^*}})</td>
<td>Radii</td>
<td>0.65, 0.99, 1.35</td>
<td>Å</td>
</tr>
<tr>
<td>(a_{M, a_{C_{i+1}^}, a_{B_{i+1}^}})</td>
<td>Radii</td>
<td>1.36, 1.81, 1.95, 1.4</td>
<td>Å</td>
</tr>
<tr>
<td>(R_{B_{i+1}^, R_{B_{i+2}^}, R_{B_{i+3}^*}})</td>
<td>Born radii in Eq. (24)</td>
<td>1.3, 1.618, 1.95</td>
<td>Å</td>
</tr>
<tr>
<td>(R_{B_{i+1}^, R_{B_{i+2}^}, R_{B_{i+3}^*}})</td>
<td>Born radii</td>
<td>1.424, 1.708, 2.03</td>
<td>Å</td>
</tr>
<tr>
<td>(R_{B_{i+1}^, R_{B_{i+2}^}, R_{B_{i+3}^*}})</td>
<td>Born radii</td>
<td>1.6, 2.266, 2.47</td>
<td>Å</td>
</tr>
</tbody>
</table>

The bulk concentration \(C_i^{B} \) of the ion. Therefore, the Born energy

\[
\Delta G_{i}^{\text{Born}} = \left[\frac{1}{\epsilon_i - 1} \right] \left[\frac{q_i^2}{8 \pi \epsilon_0 R_{i}^{B}} \right]
\]

with the Born radius \(R_{i}^{B} \) in pure water should be modified with the concentration-dependent dielectric constant \(\epsilon(C_i^{B}) \). Equivalently, the Born radius in electrolyte solutions can be modified from \(R_{i}^{B} \) by a simple formula

\[
\theta(C_i^{B}) = \alpha_1^i + \alpha_2^i \left(\overline{C}_i^{B} \right)^{1/2} + \alpha_3^i \left(\overline{C}_i^{B} \right)^{3/2},
\]

where \(\overline{C}_i^{B} = C_i^{B}/M \) is a dimensionless bulk concentration of type \(i \) ions, \(M \) is the molar concentration unit, and \(\alpha_1^i, \alpha_2^i, \) and \(\alpha_3^i \) are adjustable parameters for modifying the experimental Born radius \(R_{i}^{B} \) to fit experimental activity coefficients \(\gamma_i \) that change with the bulk concentration conditions \(C_i^{B} \) of the ion. The Born radii \(R_{i}^{B} \) in Table I are cited from Ref. 25, which are computed from the experimental hydration Helmholtz free energies of these ions given in Ref. 6. Numerical values in Tables I and II are all experimental data for which their values are kept fixed throughout calculations once chosen.

The three parameters in Eq. (24) have physical or mathematical meaning unlike many parameters in the Pitzer model.41 Any model or numerical method incurs errors to approximate a real system, i.e., it is impossible to obtain real Born radius \(R_{i}^{\text{Born}}(C_i^{B}) \) exactly. The first parameter \(\alpha_1^i \) is an adjustment of the experimental Born radius \(R_{i}^{B} \) when \(C_i^{B} = 0 \) for all \(i \). The second parameter \(\alpha_2^i \) is an adjustment of \(R_{i}^{\text{Born}}(C_i^{B}) \) that accounts for the real thickness of the ionic atmosphere (Debye length), which is proportional to the square root of the ionic strength \(\sqrt{I} \) in the Debye-Hückel theory.5 The third parameter \(\alpha_3^i \) is simply an adjustment in the

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T/K)</td>
<td></td>
<td>298.15</td>
<td>373.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>423.15</td>
<td>473.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>523.15</td>
<td>573.15</td>
</tr>
<tr>
<td>(\epsilon_w)</td>
<td></td>
<td>78.41</td>
<td>55.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44.04</td>
<td>38.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32.23</td>
<td>25.07</td>
</tr>
</tbody>
</table>
next order approximation beyond the DH treatment of ionic atmosphere.

We summarize the mathematical solution process for determining the activity of ionic solutions in the following algorithm.

1. Solve Eqs. (9), (10), and (16) for \(\tilde{\varphi} \) with \(\rho' = \Psi = 0 \) (in pure water), \(R_{i}^{\text{Born}} = R_{i}^{0}, \) and \(\phi_{i} = q_{i} / (4\pi \epsilon_{i} R_{i}^{0}) \) to obtain \(\Delta G_{i}^{0} \) by Eq. (13) and then set \(\tilde{\varphi}_{0} = \tilde{\varphi} \).
2. Solve Eqs. (15) and (17) for \(\Psi \) with \(R_{i}^{\text{Born}} \) in (24).
3. Solve Eqs. (9), (10), and (16) for \(\tilde{\varphi}_{m} \) with \(\phi_{L} = q_{i} / (4\pi \epsilon_{i} R_{i}^{\text{Born}}) \) and then set \(\tilde{\varphi}_{m} - 1 = \tilde{\varphi}_{m} \). Go to 2 until convergence.
4. Obtain the activity coefficient \(\gamma_{i} \) by Eq. (13).

IV. RESULTS

The PF results of ionic activity coefficients for eight 1:1 electrolytes, six 2:1 electrolytes, one mixed electrolyte, and one 1:1 electrolyte at various temperatures, and one 2:1 electrolyte at various temperatures agree with the experimental data26–35 as shown in Figs. 2–6, respectively. The empirical parameters used to fit the experimental data are \(\alpha_{i}^{1}, \alpha_{i}^{2}, \) and \(\alpha_{i}^{3} \) in Eq. (24), whose values are given in Table III from which we observe that the PF model requires only one to three parameters to fit those data.

The mean activity coefficient \(\gamma_{\text{PosNeg}} \) of a salt \(\text{Pos}_{x}\text{Neg}_{y} \) is calculated via the formula \(\ln \gamma_{\text{PosNeg}} = \frac{p}{p_{eq}} \ln \gamma_{\text{Pos}} + \frac{q}{q_{eq}} \ln \gamma_{\text{Neg}} \), where \(\gamma_{\text{Pos}} \) and \(\gamma_{\text{Neg}} \) are individual activity coefficients obtained by Eq. (13) for each \(i = \text{Pos} \) and \(\text{Neg} \). For the mean activity coefficients of either ternary (Fig. 4) or binary (Figs. 5 and 6) systems, we only need to adjust 3 parameters of one cation (not all ions) as shown in Table III.

The activity coefficients by the PF model are quite successful over a large range of temperatures and concentrations as shown in Figs. 4–6. We used the code of the density model developed by Mao and Duan52 to convert the concentration unit from molality (mol Kg-1) to molarity (M = mol dm-3) by the standard formula as given in Ref. 52, where the density model has been compared with thousands of measurements at high accuracy. The pressure values needed in the code at the corresponding temperatures were set to \(P = (a) \) 1.01, (b) 1.01, (c) 15.48, (d) 39.59, and (e) 80.50 bars for Fig. 5 and (a) 1.01, (b) 1.01, (c) 4.73, and (d) 39.50 bars for Fig. 6. In Fig. 4, the ionic strength \(I = \sum_{i} C_{i}^{z_{i}} \) and the ionic strength fraction \(\gamma_{\text{MgCl}} = 3m_{\text{MgCl}}/(3m_{\text{MgCl}} + m_{\text{NaCl}}) \) with \(m_{\text{MgCl}} \) and \(m_{\text{NaCl}} \) being the molalities of MgCl\textsubscript{2} and NaCl.
in the mixture, respectively, where z_i is the valence of type i ions.

We observe from Table III that the approximate $R_{ij}^\text{Born}(C_i^B)$ (with salts) deviates from R_{ij}^B (without salts) only in the second to fourth decimal place, i.e., numerical values of γ_i are very sensitive to the decimal order of α_i^1, α_i^2, and α_i^3 because the Born radius $R_{ij}^\text{Born}(C_i^B)$ is very close to the origin θ at which the singular charge in $\rho_i(r) = q_i \delta(r - \theta)$ is infinite. The approximation of the shell radius R_{ij}^sh [or the coordination number O_{ij}^sh in Eq. (22)], on the other hand, is much less significant than that of R_{ij}^Born because the electric potential $\phi_i^\text{PF}(r)$ diminishes exponentially in the hydration shell region Ω_{sh} as shown by

the profile of $\phi_i^\text{PF}(r)$ in Fig. 7. The values of α_i^1, α_i^2, and α_i^3 for each activity-concentration curve were obtained by first tuning three values of $\theta(C_i^B)$ in Eq. (24) to match three data points ($\sqrt{C_i^B}$, $\ln \gamma_i$) with three different concentrations C_i^B, $j = 1, 2, 3$, and then solving the three unknowns α_i^1, α_i^2, and α_i^3 using three known $\theta(C_i^B)$ values. For example, for the $i = \text{Li}^+$ curve in Fig. 2(a), the selected experimental data points are ($\sqrt{C_i^B}$, $\ln \gamma_i$) = (0.315, -0.192), (1, -0.007), and (1.577, 0.57) and the corresponding tuned $\theta(C_i^B)$ are 0.9996, 1.0013, and 1.0043.

The PF model can provide more physical details near the solvated ion (Ca$^{2+}$, for example) in a strong electrolyte ($\text{CaCl}_2 = 2M$) such as (1) the dielectric function $\tilde{\epsilon}(r)$ with its varying permittivity, (2) variable water density $C_{H_2O}(r)$, (3) concentration of counterion $C_{Cl}^-(r)$, (4) electric potential $\phi_i^\text{PF}(r)$, and (5) the steric potential $S_{trc}(r)$ all shown in Fig. 7. The steric potential is small because the configuration of particles (voids between particles) does not vary too much from the solvated region to the bulk region. Nevertheless, it has significant effect on the variation of mean-field water densities $C_{H_2O}(r)$ and hence on the dielectric function $\tilde{\epsilon}(r)$ in the hydration region. Note that $\tilde{\epsilon}(r)$ is an output, not an input of the model.

The strong electric potential $\phi_i^\text{PF}(r)$ in the Born cavity Ω_i (with $R_{ij}^\text{Born}(C_i^B) = 1.7130 \text{ Å}$) and the water density $C_{H_2O}(r)$ in the hydration shell Ω_{sh} (with $R_{Ca}^{sh} = 5.0769 \text{ Å}$) are the most important factors allowing the PF results to match the experimental data. The ion and shell domains are the crucial region to study ion activities. For example, Fraenkel's theory is entirely based on this region—the so-called smaller-ion shell region. The steric energy of water molecules modified by the factor v_{g+1}/v_0 in Eq. (5) leads to significant changes of $C_{H_2O}(r)$ and $\tilde{\epsilon}(r)$ profiles in Fig. 7 as compared with those in Fig. 5 in our previous paper.24

FIG. 4. Mean activity coefficients of mixed electrolytes. Comparison of PF results (curve) with experimental data (symbols) compiled in Ref. 13 (a) from Ref. 33 on mean activity coefficients γ of NaCl as a function of the ionic strength (I) fraction γ_{MgCl_2} of MgCl$_2$ in NaCl + MgCl$_2$ mixtures at $I = 6 \text{ mol Kg}^{-1}$ and $T = 298.15 \text{ K}$ and (b) from Ref. 34 (circles) and Ref. 35 (squares) on γ of NaCl as a function of the MgCl$_2$ molality in NaCl + MgCl$_2$ mixtures at [NaCl] = 6 mol Kg$^{-1}$ and $T = 298.15 \text{ K}$.

FIG. 5. Mean activity coefficients of 1:1 electrolyte at various temperatures. Comparison of PF results (curves) with experimental data (symbols) compiled in Ref. 13 from Refs. 27–29 on mean activity coefficients γ of NaCl in [NaCl] from 0 to 6 mol Kg$^{-1}$ at $T = (a) 298.15$, (b) 373.15, (c) 473.15, (d) 523.15, (e) 573.15 K.

FIG. 6. Mean activity coefficients of 2:1 electrolyte at various temperatures. Comparison of PF results (curves) with experimental data (symbols) compiled in Ref. 13 from Refs. 30–32 on mean activity coefficients γ of MgCl$_2$ in [MgCl$_2$] from 0 to 6 mol Kg$^{-1}$ at $T = (a) 298.15$, (b) 373.15, (c) 423.15, (d) 523.15 K.
TABLE III. Values of α_i^1, α_i^2, and α_i^3 in Eq. (24).

<table>
<thead>
<tr>
<th>Figures</th>
<th>i</th>
<th>α_i^1</th>
<th>α_i^2</th>
<th>α_i^3</th>
<th>Figures</th>
<th>i</th>
<th>α_i^1</th>
<th>α_i^2</th>
<th>α_i^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2(a)</td>
<td>Li$^+$</td>
<td>0.99913</td>
<td>0.00069</td>
<td>0.00009</td>
<td>3(c)</td>
<td>Ca$^{2+}$</td>
<td>0.99886</td>
<td>0.00046</td>
<td>0.00011</td>
</tr>
<tr>
<td>2(a)</td>
<td>Cs$^+$</td>
<td>0.99893</td>
<td>-0.00008</td>
<td>0.00015</td>
<td>3(c)</td>
<td>Cl$^-$</td>
<td>0.99877</td>
<td>-0.00060</td>
<td>0.00012</td>
</tr>
<tr>
<td>2(b)</td>
<td>Li$^+$</td>
<td>0.99958</td>
<td>-0.00019</td>
<td>0.00001</td>
<td>3(d)</td>
<td>Ca$^{2+}$</td>
<td>0.99886</td>
<td>0.00099</td>
<td>0.00017</td>
</tr>
<tr>
<td>2(b)</td>
<td>Br$^-$</td>
<td>0.99822</td>
<td>0.00007</td>
<td></td>
<td>3(d)</td>
<td>Br$^-$</td>
<td>0.99920</td>
<td>-0.00198</td>
<td>0.00016</td>
</tr>
<tr>
<td>2(c)</td>
<td>Na$^+$</td>
<td>0.99910</td>
<td>3(e)</td>
<td>0.99844</td>
<td>0.00011</td>
<td>0.00010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2(c)</td>
<td>F$^-$</td>
<td>0.99923</td>
<td>-0.00029</td>
<td></td>
<td>3(e)</td>
<td>Cl$^-$</td>
<td>0.99887</td>
<td>-0.00058</td>
<td>0.00001</td>
</tr>
<tr>
<td>2(d)</td>
<td>Na$^+$</td>
<td>0.99927</td>
<td>0.00026</td>
<td>0.00004</td>
<td>3(f)</td>
<td>Ba$^{2+}$</td>
<td>0.99851</td>
<td>0.00054</td>
<td>0.00008</td>
</tr>
<tr>
<td>2(d)</td>
<td>Cs$^+$</td>
<td>0.99840</td>
<td></td>
<td>0.00126</td>
<td>0.00118</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2(e)</td>
<td>Na$^+$</td>
<td>0.99962</td>
<td>-0.00038</td>
<td>0.00010</td>
<td>4(a)</td>
<td>Na$^+$</td>
<td>1.00581</td>
<td>-0.00013</td>
<td></td>
</tr>
<tr>
<td>2(e)</td>
<td>Br$^-$</td>
<td>0.99870</td>
<td>-0.00017</td>
<td>0.00004</td>
<td>4(a)</td>
<td>Na$^+$</td>
<td>1.00527</td>
<td>0.00042</td>
<td>0.00019</td>
</tr>
<tr>
<td>2(f)</td>
<td>K$^+$</td>
<td>0.99934</td>
<td>-0.00010</td>
<td>0.00007</td>
<td>5(a)</td>
<td>Na$^+$</td>
<td>0.9981</td>
<td>0.00001</td>
<td></td>
</tr>
<tr>
<td>2(f)</td>
<td>F$^-$</td>
<td>0.99904</td>
<td>0.00013</td>
<td>0.00004</td>
<td>5(b)</td>
<td>Na$^+$</td>
<td>0.9971</td>
<td>0.0003</td>
<td>0.0001</td>
</tr>
<tr>
<td>2(g)</td>
<td>K$^+$</td>
<td>0.99929</td>
<td>-0.00012</td>
<td>0.00003</td>
<td>5(e)</td>
<td>Na$^+$</td>
<td>0.9945</td>
<td>-0.0007</td>
<td>0.0001</td>
</tr>
<tr>
<td>2(g)</td>
<td>Cl$^-$</td>
<td>0.99897</td>
<td>-0.00012</td>
<td>0.00003</td>
<td>5(e)</td>
<td>Na$^+$</td>
<td>0.9925</td>
<td>-0.0028</td>
<td>0.0001</td>
</tr>
<tr>
<td>2(h)</td>
<td>K$^+$</td>
<td>0.99931</td>
<td>0.00013</td>
<td></td>
<td>5(e)</td>
<td>Na$^+$</td>
<td>0.9870</td>
<td>-0.0042</td>
<td>0.0010</td>
</tr>
<tr>
<td>2(h)</td>
<td>Br$^-$</td>
<td>0.99945</td>
<td>-0.00075</td>
<td>0.00006</td>
<td>6(a)</td>
<td>Mg$^{2+}$</td>
<td>0.9988</td>
<td>0.0002</td>
<td>0.0002</td>
</tr>
<tr>
<td>3(a)</td>
<td>Mg$^{2+}$</td>
<td>0.99818</td>
<td>0.00044</td>
<td>0.00011</td>
<td>6(b)</td>
<td>Mg$^{2+}$</td>
<td>0.9989</td>
<td>-0.0004</td>
<td>0.0003</td>
</tr>
<tr>
<td>3(a)</td>
<td>Ca$^{2+}$</td>
<td>0.99893</td>
<td>-0.00051</td>
<td>0.00010</td>
<td>6(c)</td>
<td>Ca$^{2+}$</td>
<td>0.9983</td>
<td>-0.0014</td>
<td>0.0005</td>
</tr>
<tr>
<td>3(b)</td>
<td>Mg$^{2+}$</td>
<td>0.99910</td>
<td>0.00063</td>
<td>0.00015</td>
<td>6(d)</td>
<td>Mg$^{2+}$</td>
<td>0.9961</td>
<td>-0.0020</td>
<td>0.0003</td>
</tr>
<tr>
<td>3(b)</td>
<td>Br$^-$</td>
<td>0.99888</td>
<td>-0.00065</td>
<td>0.00018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default values: $\alpha_1^1 = 1$, $\alpha_2^1 = 0$, and $\alpha_3^1 = 0$.

V. CONCLUSION

A Poisson-Fermi model for calculating activity coefficients of aqueous single or mixed electrolyte solutions in a large range of concentrations and temperatures has been presented and tested by a set of experimental data. The model was shown to well fit experimental data with only three adjustable parameters at most for each activity-concentration curve. The adjustable parameters correspond to different orders of approximation of the unknown Born radius of solvation energy that depends on salt concentrations in a highly complex and nonlinear way. Nevertheless, the values of these parameters have been shown to deviate slightly in decimal digits from that of the experimental Born radius in pure water. These parameters are physically explained and can be easily verified in future studies for the same or different solutions of the present work. The model requires very few parameters because it is based on an advanced continuum theory that accounts for steric and correlation effects of ions and water with interstitial voids between nonuniform hard spheres. It also deals with short- and long-range interactions by partitioning the model domain into the ion, hydration shell, and the remaining solvent sub-domains. Numerical methods were also given to show how to solve different equations on different sub-domains that describe different physical properties of an ion in electrolyte solutions.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Science and Technology, Taiwan (No. MOST 105-2115-M-007-016-MY2 to J.-L.L.).

M. Gouy, “Sur la constitution de la charge electrique a la surface d’un elec-

J.-L. Liu, “Numerical methods for the Poisson-Fermi equation in electroly-

R. H. Busey, H. F. Holmes, and R. E. Mesmer, “The enthalpy of dilution of aqueous sodium chloride to 673 K using a new heat-flow and liquid-

R. N. Goldberg and R. L. Nuttall, “Evaluated activity and osmotic coeffi-

C. Christov, “Chemical equilibrium model of solution behavior and bishofoite (MgCl₂ · 6H₂O(cr) and hydrocarbonate (HCl·MgCl₂·7H₂O(cr)) solu-
bility in the MgCl₂ + H₂O and HCl·MgCl₂ + H₂O systems to high acid concentration at (0–100) °C,” *J. Chem. Eng. Data* 54, 2599–2608 (2009).

R. D. Lanier, “Activity coefficients of sodium chloride in aqueous three-

G. Wilczek-Vera and J. H. Vera, “The activity of individual ions. A concep-

B. Eisenberg, “Life’s solutions are complex fluids. A mathematical chal-

C. D. Santangelo, “Computing counterion densities at intermediate cou-

L.-L. Chern, J.-G. Liu, and W.-C. Wang, “Accurate evaluation of electro-

S. Mao and Z. Duan, “The P, V, T, x properties of binary aqueous chlo-