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Abstract 
 
The movement of ionic solutions is an essential part of biology and technology. Fluidics, from nano- to 

micro- to microfluidics, is a burgeoning area of technology which is all about the movement of ionic 

solutions, on various scales. Many cells, tissues, and organs of animals and plants depend on osmosis, as 

the movement of fluids is called in biology. Indeed, the movement of fluids through channel proteins (that 

have a hole down their middle) is fluidics on an atomic scale. Ionic fluids are complex fluids, with energy 

stored in many ways. Ionic fluids flow driven by gradients of concentration, chemical and electrical 

potential, and hydrostatic pressure. Each flow is classically described by its own field theory, independent 

of the others, but of course, in reality every gradient drives every kind of flow to a varying extent. 

Combining field equations is tricky and so the theory of complex fluids derives the equations, rather than 

assumes their interactions. When field equations are derived, rather than assumed, their variables are 

consistent. That is to say all variables satisfy all equations under all conditions with one set of parameters. 

Here we treat a classical osmotic cell in this spirit, using a sharp interface method to derive interface 

boundary conditions consistent with all flows and fields. We allow volume to change with concentration, 

since changes of volume are a property of ionic solutions known to all who make them in the laboratory. 

We consider flexible and inflexible membranes. We show how to combine the energetics of the membrane 

with the energetics of the surrounding complex fluids. The results seem general but need application to 

specific situations of technological, biological and experimental importance before the consequences of 

consistency can be understood. 
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Introduction 

Osmosis moves ionic solutions throughout biology and technology. It is hard to find a more 

widespread phenomenon. All biology occurs in ionic solutions1, 2 that move on many scales, including 

atomic scales smaller than nanometers, and a great deal of chemistry involves ionic movement as well. 

The modern technology of fluidics—macro, micro and nano—usually moves water and ions and thus 

involves osmosis at every scale. Indeed, modern names “ *fluidics ” may be viewed as a renaming of 

a classical,3 if not ancient word4 into more modern language.  

Ionic solutions involve energy stored in many forms, pressure, concentration, electric and 

electrochemical potential, steric interactions, and chemical energy.1 Ionic solutions are idealized as 

perfect gases5 in elementary textbooks, whether biological,6 technological (polarography)7,8 or 

general.9-16 Ionic solutions idealized this way do not have stored energy. The idealizations also do not 

involve time (in most cases) so they cannot deal with flow or friction.  

Ionic solutions are complex fluids,17-19 not simple at all. 

Classical analysis of ionic solutions started with a thermodynamic and thus equilibrium analysis 

without flows.11, 16 Thermodynamics was dynamic in its historical importance as a turning point in the 

history of science20 but it was not dynamic—it did not involve time— in its physics or mathematics. 

Without time, it could not include flow or friction, at all. Flows occur in almost all living systems, and 

technological devices, so thermodynamics was extended ad hoc to deal with flows,21-24 often with great 

success.25-30  

The theory of complex fluids is a dynamic theory that always includes flows of many types, 

usually in a coherent consistent way. (‘Consistent’ means that all variables satisfy all equations and all  

boundary conditions with one set of parameters). In complex fluids like electrolytes, ions interact and 

move as components of complex fluids.18, 31-37 The solution itself flows more or less as water itself 

would move (without the ions). Water molecules and ions move (partly) by bulk flow, that is to say, 

they move (partly) by convection described classically by Navier Stokes equations. Water molecules 

and ions also move (partly) by diffusion. Ions move (partly) because of the electric field. Water also 

moves in an electric field because of dielectrophoresis38, 39 when the electric field is nonuniform i.e., 

|𝛻𝑬| > 0, where 𝑬 is the electric field. Each of these flows varies with location and is described by 

field equations—typically partial differential equations in space and time—along with boundary 

conditions, that idealize the physics of the particular setup in which the flows occurs. One example of 

these field equations are the Maxwell equations of electrodynamics.40-42 Few are more important41, 43. 

Most of our technology44-49 is built from the Maxwell equations, perhaps because they are so precise 

and universal.  

But even Maxwell’s equations need to be extended to deal with osmosis. The Maxwell’s equations 

do not involve hydrostatic pressure or concentrations of chemical species, for example, and so they give 

the same results, no matter what the pressure or concentration gradient. Thus, Maxwell’s equations in 

themselves cannot deal with many crucial phenomena in biology and technology. 

                                                      
1

 We define ‘chemical’ forces between atoms as those that significantly change the spatial distribution of electrons in the 

atoms. In this definition, dielectric interactions are not a chemical force. More precisely, force produced by the induced 

charge, that is proportional to the local electric field, is not a chemical force. Dispersion forces arise from the quantum 

fluctuations in induced (‘dielectric’) forces and so are not considered chemical in this definition. 
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Pressure and concentration are responsible for many phenomena, in the laboratory, in technology 

and in biology.21-24 Experiments show that gradients of hydrostatic pressure and concentration change 

flows a great deal, quantitatively and qualitatively in physical and living systems.11, 21-24, 50 Maxwell’s 

field equations cannot change with changes in hydrostatic pressure or flow because the field equations 

do not contain variables describing pressure or flow. Classical electrodynamics must be extended if it 

is to deal with the range of forces and flows so important in technology and life. 

Conservation laws easily define the field equations of osmosis when a single force is involved, 

with some help from constitutive laws and boundary conditions (that describe the experimental or 

natural setup, more than anything else).51, 52 But the situation is more complex when diffusion, and 

electrical migration, and bulk flow are all involved.53 Bulk flow moves ions and water. Diffusion 

changes electrical potentials, electrical migration changes diffusion, and potential and diffusion (even 

of nonelectrolytes and water itself) change and are changed by bulk flow. Technology and biology use 

ionic solutions in devices where bulk flow, diffusion, and electrical migration are important. A theory 

must then deal with most of these conditions, robustly with one set of parameters, if it is to be useful. 

Only robust theories can create technologies as powerful as our semiconductor electronics. We reach 

to that success54-56 as our goal. 

Coupled field equations that satisfy all conservation laws with one set of parameters are consistent 

equations. Writing consistent equations is difficult. Even choosing the appropriate variables causes 

problems: for example, the operational definition of appropriate variables for an infinitely dilute 

sodium chloride solution remains requires extensive discussion57 without definite resolution (after 

nearly a century of work).  

Field equations have different form when different variables are chosen. Equations are typically 

written in terms of the mass of each specific chemical species, for example in terms of the mass of 

sodium and the mass of chloride in a salt solution. But a linear transformation would allow the 

equations to be written in terms of total mass density and net charge density, instead of sodium and 

chloride concentrations. The equations, coupling terms, and boundary conditions would be different. 

Choosing the ‘right’ set of equations is difficult.  

Experimental results do not depend on how we define variables or formulate theories. The goal of 

theoretical analysis should be robust transferrable theories—that fit a range of data over a range of 

conditions with one set of parameters. The semiconductor technology which has remade our world is 

catalyzed by its successful theories. Similar robust theories of osmosis are likely to catalyze 

applications in biology and with substantial effects. 

The theory of complex fluids has developed consistent theories for many complex systems35, 58-60 

that are mixtures (or even ionic solutions) with components that store energy. Variational methods 

deal successfully with magnetohydrodynamics systems61, liquid crystals, polymeric fluids36, 37, 

colloids and suspensions58, 62 and electrorheological fluids63. Variational methods describe solid balls 

in liquids; deformable electrolyte droplets that fission and fuse58, 64; and suspensions of ellipsoids, 

including interfacial properties of these complex mixtures, such as surface tension and Marangoni 

effects of ‘oil on water’ and ‘tears of wine’.58, 62, 65, 66  

The Energetic Variational Approach (EnVarA) of Chun Liu, et. al., has been applied to ionic 

solutions of interest in references.19, 67-72 EnVarA combines the Least Action Principle of Hamiltonian 

dynamics with the Maximum Dissipation Principle of Onsager (who used the dissipation function of 
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Rayleigh) into a set of field equations, typically in Eulerian coordinates. Variations are taken with 

respect to two different variables, position and flow rate. The resulting field equations are written in 

one set of coordinates—usually Eulerian—with push-forward and pull-back methods.  

EnVarA is an approach, not a general method. An approach adapts to the experimental setup and 

questions of interest. It avoids the abstraction of a universal formulation that may prove hard to 

understand73-76 and hard to apply uniquely in specific cases. 

The theory of complex fluids requires models that describe the constraints put on the field 

equations by biology, technology or experiments, as well as the field equations themselves. It requires 

boundary conditions as well as field equations. The constraints and boundary conditions often are the 

dominant determinant of the dynamics of the whole system. Describing these constraints with 

mathematical boundary conditions can be challenging, as in the moving contact-line problem77-79 and 

when describing classical setups of the theory of stochastic processes.80-84 

Boundary (or interface boundary) constraints of the physical problem can be converted into 

mathematical boundary conditions using the energy variational method.78,79,85-87 The maximum 

dissipation principle (attributed to Onsager88, 89 20-22 developed from the work of Rayleigh 74,75,90,91) is 

often used to describe sharp interfaces.18-19 Here we combine the energy variational approach (to field 

equations) with the sharp interface approach to physical constraints and use the combination to analyze 

a classical osmotic cell3, 51, 92—two baths separated by a semipermeable membrane—with flows driven 

by electrical, diffusion, and pressure fields, neglecting for the moment the steric and chemical forces 

of non-ideal solutions, or heat driven flows. Liu and colleagues have had some success creating what 

we call ‘thermal dynamics’ that deals consistently with heat driven flows in the spirit of EnVarA and 

the theory of complex fluids.93-95  

The variational approach is widely used to analyze complex fluids because it derives field equa-

tions and boundary (or interface boundary) conditions, rather than assumes them. Once energy and 

dissipation functionals are defined by a physical model, the interaction terms in the field equations for 

each flow (bulk flow, diffusional flow, and electrical migration) are determined by algebra and analysis 

with minimal adjustable parameters. All variables satisfy all equations with one set of parameters when 

the analysis is done correctly. Results fit experiments, over a range of conditions with one set of pa-

rameters, if the original functional equations—from which the field equations are derived—are a cor-

rect enough model of the physics of the system, and the description of the constraints and boundary 

conditions is adequate. Results of the theory are then transferrable (using the language of chemis-

try96,97). Technology shows the importance of transferrable results. Our electronic/semiconductor tech-

nology would hardly exist if devices had different properties in each location in the remarkably diverse 

circuits they use.44 

It is important to understand that field equations and boundary (or interface) conditions written 

without variational methods are likely to be incomplete, truncated, and thus not transferrable. 

Mathematical models written without variational methods are likely to omit terms needed to satisfy all 

field equations and boundary (or interface) constraints with one set of parameters, particularly if they 

are written as equations with right hand sides equal to zero, as is often the custom. (Vanishing terms 

are easy to overlook when applying conservation principles!) When the omitted terms have important 

effects, the truncated field equations cannot satisfy all field equations with one set of parameters. They 
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are inconsistent. As the system is transferred from one set of conditions to another parameters must be 

changed to fit the data, and the new parameters are often only known by the data that is fit by them.  

Our analysis of osmotic flow is in the spirit of a variational approach, combining elements of 

EnVarA and a sharp interface analysis that itself uses variational ideas. We also deal explicitly with 

the variation of the density of a solution with concentration,98 responsible for the difference between 

molal and molar concentration units, taught to everyone who makes up solutions (from solid solutes) 

in a laboratory.11, 99 This density dependence may be important in some experimental setups and 

conditions.  

Our approach needs to be applied to each experimental setup before one knows its importance: 

different setups will emphasize different terms. Many theories are found to apply only in special setups 

and a particular range of conditions.7,8,100-102 Disagreements are found in the literature of osmotic 

flow—some are mentioned in the Historical Note of this paper. Perhaps some of these disagreements 

reflect the use of different inconsistent theories—which may omit different terms—to deal with 

different experimental setups and conditions. Many setups will be sensitive to density changes with 

concentration: molar vs. molal terms may be important quite generally. See our eq. (23)-(24). We are 

unaware of other consistent analyses of the density effect—that is so well known to chemists and 

biologists who have made solutions in their laboratories—although the literature is vast and so is our 

lack of knowledge of it all.  

A consistent theory should resolve differences, if the underlying physical model is correct.2 

(For us the underlying physical model is written in functional equations and boundary (or interface) 

constraints, e.g., eq. (1)-(2) that follow.) We hasten to add that none of us are physical chemists, let 

alone experimental physical chemists, and we are certainly aware that there are many experimental 

issues involved we do not know much about and that need to be included in applications of our work. 

The paper is organized as follows. The mathematical model for a semi-permeable membrane is 

developed in Section 1. The development depends on several unknown variables. In Section 2, those 

variables are developed for the case where solution density is a function of ion concentration. Those 

unknown variables are evaluated for the case of constant density in Section 3. A historical section and 

discussion conclude the paper.  

Note to the reader. Variational approaches have not been as widely used as they might be, perhaps 

because they involve a large amount of tricky mathematics that has to be done and checked. We present 

all steps in our analysis, hoping to make the approach easier to use. Apologies are extended to those 

who find the detail overwhelming, or irritating. 

                                                      
2
 For us the underlying physical model is written in functional equations and boundary (or interface) constraints, 

e.g., eq. (1)-(2) below. 
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Mathematical Model 

We consider the dynamics of a fluid with ions passing through a seim-permeable membrane in 

the traditional setup of physical chemists and biologists21-24, 50, 92, 103 following 104, 105. We use the sharp 

interface model77, 78, 85, 86, 106 to derive detailed specific conditions on the membrane. Let Ω± denote 

two compartments separated by a membrane Γ where  Ω = Ω+ ∪ Ω− . (see Fig. 1). 𝐃± is the electric 

displacement vector field of classical electrodynamics and 𝑐𝑖
±  is the distribution of the of 𝑖𝑡ℎ (𝑖 =

1, … , 𝑁)   species of ion in domain Ω±, respectively. 𝜌± and 𝐮± are the density and velocity of 

solutions in left and right compartments, respectively.  

Based on the Maxwell’s equations and conservation law for the mass of each ionic species, we have 

the following equations 

{
 
 
 
 
 

 
 
 
 
 

  

∇ ⋅ 𝐃± =∑

𝑖

𝑧𝑖𝑒𝑐𝑖
±,  𝑖𝑛 Ω±

𝜕𝑐𝑖
±

𝜕𝑡
+ ∇ ⋅ (𝑐𝑖

±𝒖±) = −∇ ⋅ 𝐣𝑖
±,  𝑖𝑛 Ω±

𝜌± (
𝜕𝒖±

𝜕𝑡
+ (𝒖± ⋅ 𝛻)𝒖±) = ∇ ⋅ (𝝈𝜂

± + 𝝈𝑒
±),  𝑖𝑛 Ω±

∂ρ±

∂t
+ ∇ ⋅ (ρ±𝐮±) = 0,  𝑖𝑛 Ω±

                     

𝑧𝑖  is the valence of the 𝑖𝑡ℎ  species, 𝑒 is the elementary charge, 𝐣𝑖
±  is the flux of the 𝑖𝑡ℎ  species 

𝝈𝜂
± is the viscous stress, and 𝝈𝑒

± is the electric stress in domain Ω±, respectively.  𝝈𝜂
± and 𝝈e

± are 

symetric tensors. 

If we neglect magnetic forces, there exists an electric field  𝐄±  and electrical potential 𝜙± 

such that the dielectric constant 𝐃± = 휀0휀𝑟
±𝐄± = −휀0휀𝑟

±∇𝜙±, where 휀0휀𝑟
± is in domain Ω±, 

respectively. We assume that the dielectric constant 휀𝑟
± (units: dimensionless) and the permittivity 

휀0휀𝑟
± (units: farads/meter) are each a single real number. 

(1) 

Figure 1: Schematic of a flexible membrane. Solid line 

is initial shape of membrane and the dashed line denotes 

the deformed membrane.  𝒏  is the normal vector of 

membrane Γ  from the left compartment Ω+  to the 

right compartment Ω−. 
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We do not deal with the nonideal properties of ionic solutions, despite our understanding of 

their significance, and the importance of nonideality in general.1, 43, 107, 108 We have to start somewhere 

and we have our hands full with the mathematics needed to deal consistently with the idealized cases. 

When we do reach to include nonideality, we anticipate difficulties. Even the proper formulation of 

the field equations (with flow) in the nonideal case remains an open question.If we neglect the 

magnetic forces, there exist an electric field 𝑬±  and electric potential 𝜙±  such that 𝑫± =

휀0휀𝑟
±𝑬± = −휀0휀𝑟

±𝛻𝜙± , where 휀0휀𝑟
±  is the dielectric constant in domain Ω± , respectively. We 

assume the dielectric constant 휀𝑟
±  (units: dimensionless) and the permittivity 휀0휀𝑟

±  (units: 

farads/meter) are each a single real number and do not deal with the nonideal properties of ionic 

solutions, despite our understanding of their significance, and the importance of nonideality in 

general1,43,107,108 We have to start somewhere and we have our hands full with the mathematics needed 

to deal consistently with these idealized cases. When we do reach to include nonideality, we anticipate 

difficulties. Even the proper formulation of the field equations (with flow) in the nonideal case remains 

an open question. 

For the interface condition of the surface Γ, also based on conservation law109, we assume that   

𝐴𝑙𝑙 𝑜𝑛 Γ 

{
 
 
 
 
 

 
 
 
 
 

  

𝑑𝐗

𝑑𝑡
= 𝒗,                                 

𝐃± ⋅ 𝐧 = 𝑄(𝑥),                         

ρ±𝐮± ⋅ 𝐧 − ρ±𝒗 ⋅ 𝒏 = 𝑄𝜌,                

𝒖± ⋅ 𝝉 = 𝒗 ⋅ 𝝉,                

[𝝈𝜂 + 𝝈𝑒] ⋅ 𝒏 − [𝑄𝜌𝒖] = 𝑭𝑚𝑏            

𝐣𝑖
± ⋅ 𝐧 + 𝑐𝑖

±(𝒖± − 𝒗) ⋅ 𝒏 =  𝐽𝑖(𝑥)          

                  

where  𝐗(⋅, t)  is the trajectories of points on the membrane, 𝒗 = 𝒗𝜏 + 𝑣𝑛𝒏  is the velocity of 

membrane with normal vector 𝒏 and tangential vector 𝛕, [𝑓] = 𝑓+ − 𝑓−  is the difference of 𝑓 

across the interface Γ . We also assume that 𝐮± = 𝒗 = 0  on ∂Γ , i.e., we assume the edge (or 

boundary) of membrane is fixed. Here Q(x),  Qρ(𝑥), and 𝐽𝑖(𝑥) are surface charge density, solution 

flux and ion flux on the interface, respectively. 𝑭mb is the membrane force induced by mechanical 

and dielectric properties of membrane.  

In the next section, we will derive the explicit forms of 𝐣𝑖
±, 𝝈𝑒

±, 𝑄(𝑥), 𝑄𝜌, 𝐽𝑖(𝑥) and 𝑭𝑚𝑏 

based on the second law of thermodynamics generalized to deal with flows driven by different forces. 

 

Remark  𝑭𝑚𝑏 is taken as a surface force for simplicity. However, it can include the other types of 

forces such as elastic force and/or dissipation force induced by friction inside of membrane.  

 

(2) 
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Total Energy Functional. In our case, and many others,58, 78, 85, 86, 106 the total energy functional is the 

sum of the kinetic energy part 𝐸𝑘𝑖𝑛(𝜌, 𝒖), internal energy 𝐸𝑖𝑛𝑡(𝑐𝑖, 𝜙) and surface energy 𝐸Γ(𝜙, 𝛾0). 

The internal energy is composed of the electrostatic energy part 𝐸𝑒𝑠(𝜙), and the Gibbs free energy of 

ions 𝐸𝑖𝑜𝑛(𝑐𝑖). The total energy functional is the precise statement of our field model (that is to say 

our physical model without boundary (∂Ω) constraints or conditions). And the total energy functional 

is given by 

Etot = 𝐸𝑘𝑖𝑛 + 𝐸𝑖𝑛𝑡 + 𝐸Γ 

= 𝐸𝑘𝑖𝑛 + 𝐸𝑒𝑠 + 𝐸𝑖𝑜𝑛 + 𝐸Γ 

= ∑

±

∫
Ω±
(𝑒𝑘𝑖𝑛
± + 𝑒𝑒𝑠

± + 𝑒𝑖𝑜𝑛
± )𝑑𝑥 + ∫(𝑒Γ + 𝛾0)𝑑𝑆

Γ

 

=∑

±

∫
Ω±
{
1

2
𝜌±|𝐮±|2 +

1

2
𝐄± ⋅ 𝐃± + 𝑘𝐵𝑇∑

𝑖

𝑐𝑖
±ln (

𝑐𝑖
±

𝑐0
)} 𝑑x   

   +∫
Γ

(
𝐶𝑚
2
[𝜙]2 + 𝛾0))𝑑𝑆                                      

where 𝑐0 is a characteristic ion density,  𝐶𝑚 is membrane capacitance, 𝛾0 is the membrane surface 

tension. In the following, square brackets always denote the jumps across the interface.  

∑± ∫Ω± 𝑓
±𝑑𝑥  = ∫

Ω+
𝑓+𝑑𝑥 + ∫

Ω−
𝑓−𝑑𝑥  is the sum of integration in left and right compartments 

weighted by the corresponding value of 𝑓. 

The dissipation functional is defined as   

𝛥 =∑

±

∫
𝛺±
2𝜂±|𝑫𝜂

±|
2
𝑑𝑥 +∑

±

∫
𝛺±
𝜆±|𝛻 ⋅ 𝒖±|2𝑑𝑥 +

1

𝑘𝐵𝑇
∑

±

∫
𝛺±
∑

𝑖

𝐷𝑖
±𝑐𝑖

±|𝛻𝜇𝑖
±|2𝑑𝑥 

+∫
Γ

𝐺1([�̃�𝑖])𝑑𝑆 + ∫
Γ

𝐺2(𝑄𝜌)𝑑𝑆 

 

Where 𝑫𝜂 = (𝛻𝒖 + (𝛻𝒖)𝑇)/2 is rate of strain,   𝜂± and 𝜆± are the two Lame constants109,  𝜇𝑖
± =

μ̃𝑖
±(𝑐𝑖

±, 𝜙±, 𝜌±) and 𝐷𝑖
± are the chemical potential and diffusion coefficient of 𝑖𝑡ℎion. The first three 

terms in dissipation functional are the dissipation induced by fluid friction, volume change and ion 

diffusion in the bulk region. The last two terms are the dissipation induced by irreversible osmosis .on 

the membrane. The forms of 𝐺1(𝑥) ≥ 0 and 𝐺2(𝑥) ≥ 0, for any 𝑥, will be discussed later. 

 

(4) 

(3) 
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Derivation: Density Depends on Concentration 

We start with fluid density as a function of ion density 𝜌 = �̂�(𝑐1
±, 𝑐2

±, ⋯ 𝑐𝑁
±). Based on the biological 

applications, here we consider the case that ρ weakly depends on the the ion concentration. 

Permeable 𝐚𝐧𝐝 Flexible Membranes 

In this section, we consider the membrane is deformable (see Fig. 1). We first present a 

generalized Reynolds transfer formula110, 111 when the membrane is permeable   

𝑑

𝑑𝑡
∑

±

∫
Ω±(𝑡)

𝑓𝑑𝑥 =∑

±

∫
Ω±(𝑡)

∂𝑓±

∂𝑡
𝑑𝑥 + ∫

Γ

[𝑓]𝒗 ⋅ 𝐧𝑑𝑆   

           =   ∑

±

∫
Ω±(𝑡)

(
𝑑𝑓±

d𝑡
+ 𝑓±∇ ⋅ 𝒖±)𝑑𝑥 − ∫ [

𝑓

𝜌
]𝑄𝜌𝑑𝑆

Γ

−∫ 𝑓±𝒖± ⋅ 𝒏
𝜕𝛺

𝑑𝑆,  

where ∫ 𝑓±𝑑𝑆 = ∫ 𝑓+𝑑𝑆
𝜕𝛺∩�̅�+𝜕𝛺(𝑡)

+ ∫ 𝑓−𝑑𝑆
𝜕𝛺∩�̅�−

. 

Based on the results in, 77, 112, 113 we have the following formula for surface defined function 𝑓,   

𝑑

𝑑𝑡
∫
𝛤(𝑡)

𝑓𝑑𝑆 = ∫
𝛤(𝑡)

(𝑓̇ + 𝑓𝛻𝛤 ⋅ 𝒗)𝑑𝑆 = ∫
𝛤(𝑡)

(
𝜕𝑓

𝜕𝑡
+ 𝒗 ⋅ 𝛻𝑓 + 𝑓𝛻𝛤 ⋅ 𝒗) 𝑑 

          = ∫
𝛤(𝑡)

(
𝜕𝑓

𝜕𝑡
+ 𝑣𝑛𝜕𝑛𝑓 + 𝒗𝝉 ⋅ 𝛻𝛤𝑓 + 𝑓𝛻𝛤 ⋅ 𝒗) 

          = ∫
𝛤(𝑡)

𝜕𝑓

𝜕𝑡
+ 𝑣𝑛𝜕𝑛𝑓𝑑𝑆 + ∫

𝜕𝛤(𝑡)

𝑓𝒗𝝉 ⋅ 𝒏𝑚𝑑𝑙 − ∫
𝛤(𝑡)

𝑓𝐻𝒏 ⋅ 𝒗𝑑𝑆 

          = ∫
𝛤(𝑡)

(
𝑑𝑛𝑓

𝑑𝑡
) 𝑑𝑆 − ∫

𝛤(𝑡)

𝑓𝐻𝒏 ⋅ 𝒗𝑑𝑆                

where ∇Γ= ∇ − 𝒏(𝒏 ⋅ ∇) is the surface gradient operator, �̇� =
𝜕𝑓

𝜕𝑡
+ 𝒗 ⋅ ∇𝑓 is the material derivative 

on the membrane,
𝑑𝑛𝑓

𝑑𝑡
=

𝜕𝑓

𝜕𝑡
+ 𝑣𝑛𝜕𝑛𝑓 is the normal time derivative, 𝒏𝑚 is the unit outward normal 

vector of membrane at the edge ∂Γ, i.e. 𝒏𝑚 ⋅ 𝒏 = 0, 𝒏𝒎 ⋅ 𝑑𝒍 = 0 and 𝐻 = −∇ ⋅ 𝒏  is the mean 

curve of membrane Γ. Here we used the fact that 𝒗 = 𝟎 on ∂Γ in our model. 

The following useful lemma states that the normal time derivative of normal vector on the surface 

only depends on normal component of membrane velocity. 

(5) 

(6) 
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Lemma Let 𝒏  and 𝒗 = 𝑣𝑛𝒏 + 𝒗𝜏  be the outward normal vector and velocity of membrane Γ, 

respectively. Then we have the following result 

𝑑𝑛𝒏

𝑑𝑡
=  −∇Γ𝑣𝑛. 

The proof of Lemma is presented in Appendix A. 

Now we begin to derive the full model. If we take the derivative of the energy (3),  

𝑑𝐸𝑡𝑜𝑡

𝑑𝑡
=
𝑑𝐸𝑘𝑖𝑛
𝑑𝑡

+
𝑑𝐸𝑒𝑠
𝑑𝑡

+
𝑑𝐸𝑖𝑜𝑛
𝑑𝑡

+
𝑑𝐸Γ
𝑑𝑡

= 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4               

For the first term 𝐼1, by using the last two equations in Eq. (1), third interface condtion in (2)  

and Eq. (5), we have   

𝐼1 =
𝑑

𝑑𝑡
∑

±

∫
𝛺±

1

2
𝜌±|𝒖±|2𝑑𝑥  

=∑

±

∫
𝛺±

|𝒖±|2

2

𝑑𝜌±

𝑑𝑡
𝑑𝑥 +∑

±

∫
𝛺±
𝜌±
𝑑𝒖±

𝑑𝑡
⋅ 𝒖±𝑑𝑥 − ∫

𝛤

[
|𝒖|2

2
]𝑄𝜌 

  +∑

±

∫
𝛺±

1

2
𝜌±|𝒖±|2∇ ⋅ 𝒖±𝑑𝑥 − ∫

𝜕𝛺

𝑒𝑘𝑖𝑛
± 𝒖± ⋅ 𝒏𝑑𝑆   

= −∑

±

∫
𝛺±
𝝈𝜂
±: ∇𝒖±𝑑𝑥 −∑

±

∫
𝛺±
𝝈𝒆
±: 𝛻𝒖±𝑑𝑥 + ∫

𝛤

[𝒏 ⋅ (𝝈𝜂 + 𝝈𝑒) ⋅ 𝒖]𝑑𝑆 

   −∫
𝛤

[
|𝒖|2

2
]𝑄𝜌𝑑𝑆 + 𝐼1𝑏. 

= −∑

±

∫
𝛺±
𝝈𝜂
±: ∇𝒖±𝑑𝑥 −∑

±

∫
𝛺±
𝝈𝒆
±: 𝛻𝒖±𝑑𝑥 + ∫

𝛤

[(𝒏 ⋅ (𝝈𝜂 + 𝝈𝑒) − 𝑄𝜌𝒖) ⋅ 𝒖]𝑑𝑆 

+∫
𝛤

[
𝑢𝑛
2

2
]𝑄𝜌𝑑𝑆 +∑

±

∫ 𝑝𝑐
± (∑

𝜕𝑖𝜌
±

𝜌±
(𝛻 ⋅ 𝒋𝑖

± + 𝑐𝑖
±𝛻 ⋅ 𝒖±) − 𝛻 ⋅ 𝒖±

𝑖

)
𝛺±

𝑑𝑥 + 𝐼1𝑏. 

where we used the notation 𝜕𝑖𝜌
± =

𝜕�̂�

𝜕𝑐𝑖
(𝑐𝑖
±), the decompostion 𝒖 = 𝑢𝑛𝒏 + 𝒖𝝉, 𝒖𝝉 is continuous on 

the membrane and 

  𝐼1𝑏 = ∫𝜕𝛺 ((𝝈𝜂
± + 𝝈𝑒

±) ⋅ 𝒏) ⋅ 𝒖±𝑑𝑆 − ∫
𝜕𝛺
𝑒𝑘𝑖𝑛
± 𝒖± ⋅ 𝒏𝑑𝑆.  

The colon : represents the double dot of two tensors 𝐀:𝐁 ≡ ∑ 𝐴𝑖𝑗𝒊𝒋 𝐵𝑖𝑗. 

(7) 

(8) 
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A Lagrange multiplier 𝑝𝑐 is introduced to assure mass conservation, when solution density is a 

function of ion density.  

The second and third terms in Eq. (7) are , with the help of first two equations in (1) and last 

two equations in (2), given by  

𝐼2 + 𝐼3 =
𝑑

𝑑𝑡
∑

±

∫ 𝑒𝑒𝑠
±𝑑𝑥 +

𝛺±

𝑑

𝑑𝑡
∑

±

∫ 𝑒𝑖𝑜𝑛
±

𝛺±
𝑑𝑥 

=∑

±

∫
𝜕

𝜕𝑡
(
1

2
 𝑬± ⋅ 𝑫±) 𝑑𝑥 +∑

±

∫
𝜕

𝜕𝑡
 (∑𝑘𝐵𝑇𝑐𝑖

± ln
𝑐𝑖
±

𝑐0
𝑖

)𝑑𝑥
Ω±Ω±

+∫[𝑒𝑒𝑠 + 𝑒𝑖𝑜𝑛]𝒗 ⋅ 𝒏 𝑑𝑆
Γ

 

=∑

±

∫
𝛺±
∑(𝑧𝑖𝑒𝜙

± + 𝑘𝐵𝑇 (ln (
𝑐𝑖
±

𝑐0
) + 1))

𝑖

𝜕𝑐𝑖
±

𝜕𝑡
𝑑𝑥 

−∫ (𝜙±
𝜕𝑫±

𝜕𝑡
⋅ 𝒏)

∂Ω

𝑑𝑆 − ∫ [𝜙
𝜕𝑫

𝜕𝑡
⋅ 𝒏]

Γ

𝑑𝑆 + ∫[𝑒𝑒𝑠 + 𝑒𝑖𝑜𝑛]𝒗 ⋅ 𝒏 𝑑𝑆
Γ

 

=∑

±

∫
𝛺±
∑𝜇𝑖

±

𝑖

(−∇ ⋅ 𝒋𝒊
± − ∇ ⋅ (𝑐𝑖

±𝒖±)) 𝑑𝑥 

  −∫ (𝜙±
𝜕𝑫±

𝜕𝑡
⋅ 𝒏)

∂Ω

𝑑𝑆 −∫ [𝜙
𝜕𝑫

𝜕𝑡
⋅ 𝒏]

Γ

𝑑𝑆 + ∫[𝑒𝑒𝑠 + 𝑒𝑖𝑜𝑛]𝒗 ⋅ 𝒏 𝑑𝑆
Γ

  

=∑

±

∫
𝛺±
∑∇𝜇𝑖

± ⋅ 𝒋𝒊
±

𝑖

𝑑𝑥 + ∑

±

∫
𝛺±
∑𝑐𝑖

±(∇𝜇𝑖
±) ⋅

𝑖

𝒖± 𝑑𝑥 

  −∫ [∑𝜇𝒊(𝒋𝒊 ⋅ 𝒏 + 𝑐𝑖𝒖 ⋅ 𝒏)

𝑖

] 𝑑𝑆
Γ

 

  −∫ [𝜙
𝜕𝑫

𝜕𝑡
⋅ 𝒏]

Γ

𝑑𝑆 + ∫[𝑒𝑒𝑠 + 𝑒𝑖𝑜𝑛]𝒗 ⋅ 𝒏𝑑𝑆
Γ

+ 𝐼21𝑏 

=∑

±

∫
𝛺±
∑∇𝜇𝑖

±

𝑖

⋅ 𝒋𝑖
±𝑑𝒙 + ∑

±

∫
𝛺±
∑𝑐𝑖

±(∇𝜇𝑖
±)

𝑖

⋅ 𝒖± 𝑑𝑥                   

−∫∑[𝜇𝑖]𝐽𝑖
𝑖

𝑑𝑆 − ∫ [𝜙
𝜕𝑫

𝜕𝑡
⋅ 𝒏]

Γ

𝑑𝑆 + ∫ [(𝑒𝑒𝑠 + 𝑒𝑖𝑜𝑛 −∑𝜇𝑖𝑐𝑖
𝑖

)] 𝒗 ⋅ 𝒏𝑑𝑆
ΓΓ

+ 𝐼21𝑏  

where 𝜇𝑖
± = 𝑧𝑖𝑒𝜙

± + 𝑘𝐵𝑇 (ln (
𝑐𝑖
±

𝑐0
) + 1) and  

(9) 
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I21b = −∫ (𝜙±
𝜕𝑫±

𝜕𝑡
⋅ 𝒏)

∂Ω

𝑑𝑆 − ∫ 𝜇𝑖(𝒋𝑖
± + 𝑐𝑖

±𝒖±) ⋅ 𝒏
𝜕Ω

𝑑𝑆. 

Due to the first equation in (1) and second equation in (2), the second term in Eq. (9) is rewritten  

∑

±

∫
𝛺±
∑𝑐𝑖

±∇μi
± ⋅ 𝒖±𝑑𝑥 =

𝑖

 

=∑

±

∫
𝛺±
∑𝑧𝑖𝑒𝑐𝑖

±∇ϕ± ⋅

𝑖

𝒖±𝑑𝑥 +∑

±

∫
𝛺±
∑𝑘𝐵𝑇∇𝑐𝑖

±

𝑖

⋅ 𝒖± 𝑑𝑥 

=∑

±

∫
𝛺±
(∇ ⋅ 𝑫±)(∇𝜙± ⋅ 𝒖±)𝑑𝑥 −∑

±

∫
𝛺±
∑𝑘𝐵𝑇𝑐𝑖

±

𝑖

∇ ⋅ 𝒖± 𝑑𝑥 

+∫ ∑𝑘𝐵𝑇𝑐𝑖
±𝒖± ⋅ 𝒏

𝑖

𝑑𝑆
∂Ω

+∫
Γ

[∑𝑘𝐵𝑇𝑐𝑖
𝑖

𝒖 ⋅ 𝒏] 𝑑𝑆 

= −∑

±

∫
𝛺±
𝑫± ⋅ (∇𝒖±) ⋅ ∇𝜙±𝑑𝑥 −∑

±

∫
𝛺±
𝑫± ⋅ (∇∇𝜙±) ⋅ 𝒖±𝑑𝑥 + ∫[𝑄∇𝜙 ⋅ 𝒖] 𝑑𝑆

Γ

 

  +∫ (𝑫± ⋅ 𝒏)(∇𝜙± ⋅ 𝒖± )𝑑𝑆
∂Ω

 

−∑

±

∫
𝛺±
∑𝑘𝐵𝑇𝑐𝑖

±

𝑖

∇ ⋅ 𝒖±𝑑𝑥 + ∫ ∑𝑘𝐵𝑇𝑐𝑖
±𝒖± ⋅ 𝒏

𝑖

𝑑𝑆
∂Ω

+∫
Γ

[∑𝑘𝐵𝑇𝑐𝑖
𝑖

𝒖 ⋅ 𝒏] 𝑑𝑆 

=∑

±

∫
𝛺±
𝜖0𝜖𝑟

±(∇𝜙±⊗∇𝜙±): ∇𝒖±𝑑𝑥 +∑

±

∫
𝛺±

𝜖0𝜖𝑟
±

2
(∇|∇𝜙±|2) ⋅ 𝒖±  𝑑𝑥 

  +∫[𝑄∇𝜙 ⋅ 𝒖]𝑑𝑆
Γ

 + ∫ (𝑫± ⋅ 𝒏)(∇𝜙± ⋅ 𝒖± ) 𝑑𝑆
∂Ω

 

 −∑

±

∫
𝛺±
∑𝑘𝐵𝑇𝑐𝑖

±

𝑖

∇ ⋅ 𝒖±𝑑𝑥 + ∫ ∑𝑘𝐵𝑇𝑐𝑖
±𝒖± ⋅ 𝒏

𝑖

𝑑𝑆
∂Ω

+∫
Γ

[∑𝑘𝐵𝑇𝑐𝑖
𝑖

𝒖 ⋅ 𝒏] 𝑑𝑆 

= ∑

±

∫
𝛺±
𝜖0𝜖𝑟

± (∇𝜙±⊗∇𝜙± −
|∇𝜙±|2

2
𝑰) : ∇𝒖±𝑑𝑥 −∑

±

∫
𝛺±
∑𝑘𝐵𝑇𝑐𝑖

±

𝑖

∇ ⋅ 𝒖± 𝑑𝑥 

 +∫[𝑒𝑒𝑠𝒖 ⋅ 𝒏]𝑑𝑆
Γ

+∫[𝑄∇𝜙 ⋅ 𝒖]𝑑𝑆
Γ

+∫
Γ

[∑𝑘𝐵𝑇𝑐𝑖𝒖 ⋅ 𝒏

𝑖

] 𝑑𝑆 + 𝐼22𝑏 ,          
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where 

𝐼22𝑏 = ∫ 𝑒𝑒𝑠
±𝒖± ⋅ 𝒏𝑑𝑆

∂Ω

+∫ (𝑫± ⋅ 𝒏)(∇𝜙± ⋅ 𝒖± )𝑑𝑆
∂Ω

+∫ ∑𝑘𝐵𝑇𝑐𝑖
±𝒖 ⋅ 𝒏

𝑖

𝑑𝑆.
∂Ω

 

By using the Lemma on the interface 𝛤(𝑡), we have  

𝑑𝑛𝑄

𝑑𝑡
=
𝑑𝑛𝑫

𝑑𝑡
⋅ 𝒏 +

𝑑𝑛𝒏

𝑑𝑡
⋅ 𝑫 =

∂𝑫

∂t
⋅ 𝒏 + 𝑣𝑛𝜕𝑛𝑫 ⋅ 𝒏 − ∇Γ𝑣𝑛 ⋅ 𝑫, 

which yields  

∂𝑫

∂t
⋅ 𝒏 =

𝑑𝑛𝑄

𝑑𝑡
+ ∇Γ𝑣𝑛 ⋅ 𝑫 − 𝑣𝑛𝜕𝑛𝑫 ⋅ 𝒏 =

𝑑𝑛𝑄

𝑑𝑡
− 𝜖0𝜖𝑟∇Γ𝑣𝑛 ⋅ ∇Γ𝜙 − 𝑣𝑛𝜕𝑛𝑫 ⋅ 𝒏. 

Then the fourth term in (9) could be rewritten as 

∫ [𝜙
𝜕𝑫

𝜕𝑡
⋅ 𝒏]

Γ

𝑑𝑆 = ∫[𝜙]
𝑑𝑛𝑄

𝑑𝑡Γ

𝑑𝑆 − ∫[𝜖0𝜖𝑟𝜙∇Γ𝑣𝑛 ⋅ ∇Γ𝜙 + 𝜙𝑣𝑛𝜕𝑛𝑫 ⋅ 𝒏]
Γ

𝑑𝑆 

 = ∫[𝜙]
𝑑𝑛𝑄

𝑑𝑡Γ

𝑑𝑆 + ∫[𝜖0𝜖𝑟∇Γ ⋅ (𝜙∇Γ𝜙)]𝑣𝑛
Γ

𝑑𝑆 − ∫[𝜙𝜕𝑛𝑫 ⋅ 𝒏]𝑣𝑛
Γ

𝑑𝑆.    

Combining (9), (10) and (11) yields 

𝐼2 + 𝐼3 = 

=∑

±

∫
𝛺±
∑∇𝜇𝑖

±

𝑖

⋅ 𝒋𝒊
±𝑑𝑥 + ∑

±

∫
𝛺±
𝜖0𝜖𝑟

± (∇𝜙±⊗∇𝜙± −
|∇𝜙±|2

2
𝑰) : ∇𝒖±𝑑𝑥 

−∑

±

∫
𝛺±
∑𝑘𝐵𝑇𝑐𝑖

±

𝑖

∇ ⋅ 𝒖±𝑑𝑥 + ∫
Γ

[(𝑒𝑒𝑠 +∑𝑘𝐵𝑇𝑐𝑖
𝑖

)𝒖 ⋅ 𝒏] 𝑑𝑆 + ∫[𝑄∇𝜙 ⋅ 𝒖]𝑑𝑆
Γ

 

  −∫∑[𝜇𝑖]𝐽𝑖
𝑖

𝑑𝑆 − ∫[𝜙]
𝑑𝑛𝑄

𝑑𝑡Γ

𝑑𝑆 
Γ

 

  −∫ [∇Γ ⋅ (∇Γ (
𝜖0𝜖𝑟
2
𝜙2))] 𝒗 ⋅ 𝒏𝑑𝑆

Γ

+∫[𝜙𝜕𝑛𝑫 ⋅ 𝒏]𝒗 ⋅ 𝒏
Γ

𝑑𝑆 

  +∫[𝑒𝑒𝑠 + 𝑒𝑖𝑜𝑛 − 𝑐𝑖𝜇𝑖]𝒗 ⋅ 𝒏𝑑𝑆
Γ

 + 𝐼2𝑏         

where I2b = 𝐼21𝑏 + 𝐼22𝑏. 

For the last term in Eq. (7), by using the surface Reynolds formula (6), we obtain 

𝐼4 = ∫ 𝐶𝑚[𝜙]
𝑑𝑛

𝑑𝑡
([𝜙])

𝛤

𝑑𝑆 − ∫((𝑒𝛤 + 𝛾0)𝐻𝒏) ⋅ 𝒗𝑑𝑆
𝛤

.              

(11) 

(13) 

(10) 

(12) 



 

14 

Combining Eqs.(8), (12) and (13), we have 

𝑑𝐸𝑡𝑜𝑡

𝑑𝑡
= 

= −∑

𝑖

∫
𝛺±
𝝈𝜂
±: ∇𝒖±𝑑𝑥 

−∑

±

∫
𝛺±
(𝝈𝑒

± − 𝜖0𝜖𝑟
± (𝛻𝜙±⊗𝛻𝜙± −

|𝛻𝜙±|2

2
𝑰)) : 𝛻𝒖±𝑑𝑥 

  +∑

±

∫
𝛺±
∑∇𝜇𝑖

±

𝑖

⋅ 𝒋𝒊
±𝑑𝑥 −∑

±

∫
𝛺±
∑

𝑖

𝑘𝐵𝑇𝑐𝑖
±𝛻 ⋅ 𝒖±𝑑𝑥 

  +∑

±

∫ 𝑝𝑐
± (∑

𝜕𝑖𝜌
±

𝜌±
(𝛻 ⋅ 𝒋𝑖

± + 𝑐𝑖
±𝛻 ⋅ 𝒖±) − 𝛻 ⋅ 𝒖±

𝑖

)
𝛺±

𝑑𝑥 

 +∫
𝛤

 [(𝒏 ⋅ (𝝈𝜂 + 𝝈𝑒) − 𝑄𝜌𝒖) ⋅ 𝒖]𝑑𝑆 + ∫
Γ

[(𝑒𝑒𝑠 +∑𝑘𝐵𝑇𝑐𝑖
𝑖

)𝒖 ⋅ 𝒏] 𝑑𝑆 

 +∫ [𝑄∇𝜙 ⋅ 𝒖]𝑑𝑆
Γ

−∫∑[𝜇𝑖]𝐽𝑖
𝑖

𝑑𝑆
Γ

−∫[𝜙]
𝑑𝑛𝑄

𝑑𝑡Γ

𝑑𝑆 

 −∫  [ ∇Γ ⋅ (∇Γ (
𝜖0𝜖𝑟
2
𝜙2))] 𝒗 ⋅ 𝒏𝑑𝑆 + ∫[𝜙𝜕𝑛𝑫 ⋅ 𝒏]𝒗 ⋅ 𝒏

Γ

𝑑𝑆
Γ

 

   +∫  [ (𝑒𝑒𝑠 + 𝑒𝑖𝑜𝑛 −∑𝜇𝑖𝑐𝑖
𝑖

)]𝒗 ⋅ 𝒏𝑑𝑆
Γ

+∫
𝛤

[
|𝑢𝑛|

2

2
]𝑄𝜌𝑑𝑆        

   +∫ 𝐶𝑚[𝜙]
𝑑𝑛

𝑑𝑡
([𝜙])

𝛤

𝑑𝑆 − ∫(𝑒𝛤 + 𝛾0)𝐻𝒗 ⋅ 𝒏 𝑑𝑆
𝛤

+ 𝐼1𝑏 + 𝐼2𝑏 

 

By using the fact that  

∑

±

 ∫ (𝑝𝑐
±∑

𝜕𝑖𝜌
±

𝜌±
𝛻 ⋅ 𝒋𝑖

±

𝑖

)
𝛺± 

𝑑𝑥 = 

= −∑

±

∫ 𝛻(𝑝𝑐
±∑

𝜕𝑖𝜌
±

𝜌±
𝑖

)
𝛺±

⋅ 𝒋𝑖
±𝑑𝑥 + ∫ [(𝑝𝑐∑

𝜕𝑖𝜌

𝜌
𝑖

) 𝒋𝒊 ⋅ 𝒏 ] 𝑑𝑆
Γ

 

  +∫ (𝑝𝑐
±∑

𝜕𝑖𝜌
±

𝜌± 
𝑖

) 𝒋𝒊
± ⋅ 𝒏 𝑑𝑆

∂Ω

 

= −∑

±

∫ 𝛻(𝑝𝑐
±∑

𝜕𝑖𝜌
±

𝜌±
𝑖

)
𝛺±

⋅ 𝒋𝑖
±𝑑𝑥 + ∫ [𝑝𝑐∑

𝜕𝑖𝜌

𝜌
(𝐽𝑖 −

𝑐𝑖
𝜌
𝑄𝜌)

𝑖

]  𝑑𝑆
Γ

 

(14) 
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   +∫ (𝑝𝑐
±∑

𝜕𝑖𝜌
±

𝜌± 
𝑖

) 𝒋𝒊
± ⋅ 𝒏 𝑑𝑆

∂Ω

 

= −∑

±

∫ 𝛻(𝑝𝑐
±∑

𝜕𝑖𝜌
±

𝜌±
𝑖

)
𝛺±

⋅ 𝒋𝑖
±𝑑𝑥 + ∫ [ ∑𝑝𝑐

𝜕𝑖𝜌

𝜌
𝑖

] 𝐽𝑖  𝑑𝑆
Γ 

 

−∫ [ ∑𝑝𝑐
𝜕𝑖𝜌

𝜌

𝑐𝑖
𝜌

𝑖

]𝑄𝜌 𝑑𝑆
Γ 

 + ∫ (𝑝𝑐
±∑

𝜕𝑖𝜌
±

𝜌± 
𝑖

) 𝒋𝒊
± ⋅ 𝒏 𝑑𝑆

∂Ω

.              

Eq. (14) can be written as  

𝑑𝐸𝑡𝑜𝑡

𝑑𝑡
= −∑

𝑖

∫
𝛺±
𝝈𝜂
±: ∇𝒖±𝑑𝑥 

−∑

±

∫
𝛺±
(𝝈𝑒

± − 𝜖0𝜖𝑟
± (𝛻𝜙±⊗𝛻𝜙± −

|𝛻𝜙±|2

2
𝑰)) : 𝛻𝒖± 𝑑𝑥 

+∑

±

∫
𝛺±
∑ ∇�̃�𝑖

±

𝑖

⋅ 𝒋𝒊
±𝑑𝑥  − ∫   ∑[𝜇𝑖]𝐽𝑖

𝑖

𝑑𝑆
Γ

 

+∑

±

∫
𝛺±
(−∑

𝑖

𝑘𝐵𝑇𝑐𝑖
± − 𝑝𝑐

± (1 −∑
𝜕𝑖𝜌

±

𝜌±
𝑐𝑖

𝑖

))𝛻 ⋅ 𝒖± 𝑑𝑥 

+∫ [ ((𝝈𝜂 + 𝝈𝑒) ⋅ 𝒏 − 𝑄𝜌𝒖 + (𝑒𝑒𝑠 +∑𝑘𝐵𝑇𝑐𝑖
𝑖

)𝒏 + 𝑄∇𝜙) ⋅ 𝒖] 𝑑𝑆
Γ 

 

+∫ [ 𝑒𝑒𝑠 + 𝑒𝑖𝑜𝑛 −∑𝜇𝑖𝑐𝑖
𝑖

+ 𝜙𝜕𝑛𝑫 ⋅ 𝒏−∇Γ ⋅ (∇Γ (
𝜖0𝜖𝑟
2
𝜙2))]

Γ 

𝒗 ⋅ 𝒏 𝑑𝑆 

+∫  [ −𝑝𝑐∑
𝜕𝑖𝜌

𝜌2
𝑐𝑖

𝑖

+
|𝑢𝑛|

2

2
 ] 𝑄𝜌𝑑𝑆

Γ

 

 +∫[𝜙]
𝑑𝑛

𝑑𝑡
(𝐶𝑚[𝜙] − 𝑄)

𝛤

𝑑𝑆 − ∫(𝑒𝛤 + 𝛾0)𝐻𝒗 ⋅ 𝒏 𝑑𝑆
𝛤

+ 𝐼𝑏 

= −∑

𝑖

∫
𝛺±
𝝈𝜂
±: ∇𝒖±𝑑𝑥 −∑

±

∫
𝛺±
(𝝈𝑒

± − 𝜖0𝜖𝑟
± (𝛻𝜙±⊗𝛻𝜙± −

|𝛻𝜙±|2

2
𝑰)) : 𝛻𝒖± 𝑑𝑥 

  +∑

±

 ∫
𝛺±
 ∑  ∇𝜇𝑖

±

𝑖

⋅ 𝒋𝒊
±𝑑𝑥  − ∫  ∑ [𝜇𝑖]𝐽𝑖

𝑖

𝑑𝑆
Γ

 

+∑

±

∫
𝛺±
(−∑

𝑖

𝑘𝐵𝑇𝑐𝑖
± − 𝑝𝑐

± (1 −∑
𝜕𝑖𝜌

±

𝜌±
𝑐𝑖

𝑖

))𝛻 ⋅ 𝒖± 𝑑𝑥 

(15) 
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+∫ { [(𝝈𝜂 + 𝝈𝑒) ⋅ 𝒏−𝑄𝜌𝒖 + (𝑒𝑒𝑠 +∑𝑘𝐵𝑇𝑐𝑖
𝑖

)𝒏 + 𝑄∇𝜙 ] } ⋅ 𝒗𝝉 𝑑𝑆
Γ 

 

+∫ [ ((𝝈𝜂 + 𝝈𝑒) ⋅ 𝒏 − 𝑄𝜌𝒖 + (𝑒𝑒𝑠 +∑𝑘𝐵𝑇𝑐𝑖
𝑖

)𝒏 + 𝑄∇𝜙) ⋅ 𝒏𝑢𝑛] 𝑑𝑆
Γ 

 

+∫  [𝑒𝑒𝑠 + 𝑒𝑖𝑜𝑛 −∑𝜇𝑖𝑐𝑖
𝑖

+ 𝜙𝜕𝑛𝑫 ⋅ 𝒏−∇Γ ⋅ (∇Γ (
𝜖0𝜖𝑟
2
𝜙2))]

Γ

𝒗 ⋅ 𝒏 𝑑𝑆 

+∫  [−𝑝𝑐∑
𝜕𝑖𝜌

𝜌2
𝑐𝑖

𝑖

+
|𝑢𝑛|

2

2
]𝑄𝜌𝑑𝑆

Γ

 

 +∫  [𝜙]
𝑑𝑛

𝑑𝑡
(𝐶𝑚[𝜙] − 𝑄)

𝛤

𝑑𝑆 − ∫(𝑒𝛤 + 𝛾0)𝐻𝒗 ⋅ 𝒏 𝑑𝑆
𝛤

+ 𝐼𝑏 

= −∑

𝑖

∫
𝛺±
𝝈𝜂
±: ∇𝒖± 𝑑𝑥 

−∑

±

∫
𝛺±
(𝝈𝑒

± − 𝜖0𝜖𝑟
± (𝛻𝜙±⊗𝛻𝜙± −

|𝛻𝜙±|2

2
𝑰)) : 𝛻𝒖± 𝑑𝑥 

  +∑

±

∫
𝛺±
∑∇�̃�𝑖

±

𝑖

⋅ 𝒋𝒊
±𝑑𝑥  − ∫ ∑ [𝜇𝑖]𝐽𝑖

𝑖

𝑑𝑆
Γ 

 

+∑

±

∫
𝛺±
(−∑

𝑖

𝑘𝐵𝑇𝑐𝑖
± − 𝑝𝑐

± (1 −∑
𝜕𝑖𝜌

±

𝜌±
𝑐𝑖

𝑖

))𝛻 ⋅ 𝒖± 𝑑𝑥 

+∫(𝑭𝑚𝑏 + [𝑄∇𝜙]) ⋅ 𝒗𝝉𝑑𝑆
Γ

 

+∫  [ 
((𝝈𝜂 + 𝝈𝑒) ⋅ 𝒏 − 𝑄𝜌𝒖 + (𝑒𝑒𝑠 +∑ 𝑘𝐵𝑇𝑐𝑖𝑖 )𝒏 + 𝑄∇𝜙)

𝜌
 ] ⋅ 𝒏𝑄𝜌 𝑑𝑆

Γ

 

+∫ (𝑭𝑚𝑏 + [(𝑒𝑒𝑠 +∑𝑘𝐵𝑇𝑐𝑖
𝑖

)𝒏 + 𝑄∇𝜙] ) ⋅ 𝒏𝑣𝑛 𝑑𝑆
Γ 

 

+∫  [ 𝑒𝑒𝑠 + 𝑒𝑖𝑜𝑛 −∑𝜇𝑖𝑐𝑖
𝑖

+ 𝜙𝜕𝑛𝑫 ⋅ 𝒏−∇Γ ⋅ (∇Γ (
𝜖0𝜖𝑟
2
𝜙2)) ]

Γ

𝑣𝑛 𝑑𝑆 

+∫  [ −𝑝𝑐∑
𝜕𝑖𝜌

𝜌2
𝑐𝑖

𝑖

+
|𝑢𝑛|

2

2
 ] 𝑄𝜌 𝑑𝑆

Γ

 

 +∫[𝜙]
𝑑𝑛

𝑑𝑡
(𝐶𝑚[𝜙] − 𝑄)

𝛤

𝑑𝑆 − ∫(𝑒𝛤 + 𝛾0)𝐻𝑣𝑛 𝑑𝑆
𝛤

+ 𝐼𝑏 
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= −∑

𝑖

∫
𝛺±
𝝈𝜂
±: ∇𝒖± 𝑑𝑥 

−∑

±

∫
𝛺±
(𝝈𝑒

± − 𝜖0𝜖𝑟
± (𝛻𝜙±⊗𝛻𝜙± −

|𝛻𝜙±|2

2
𝑰)) : 𝛻𝒖± 𝑑𝑥 

  +∑

±

∫
𝛺±
∑∇𝜇𝑖

±

𝑖

⋅ 𝒋𝒊
±𝑑𝑥  − ∫∑[𝜇𝑖]𝐽𝑖

𝑖

𝑑𝑆
Γ

 

+∑

±

∫
𝛺±
(−∑

𝑖

𝑘𝐵𝑇𝑐𝑖
± − 𝑝𝑐

± (1 −∑
𝜕𝑖𝜌

±

𝜌±
𝑐𝑖

𝑖

))𝛻 ⋅ 𝒖± 𝑑𝑥 

+∫(𝑭𝑚𝑏 + [𝑄∇𝜙]) ⋅ 𝒗𝝉𝑑𝑆
Γ

 

+∫(𝑭𝑚𝑏 ⋅ 𝒏 + [𝐹𝑛] − (𝑒Γ + 𝛾0)𝐻)𝑣𝑛𝑑𝑆
Γ

 

 +∫ [
𝐹𝜌

𝜌 
] 𝑄𝜌𝑑𝑆

Γ

+∫[𝜙]
𝑑𝑛

𝑑𝑡
(𝐶𝑚[𝜙] − 𝑄)

𝛤

𝑑𝑆 − 𝐼𝑏              

where 𝜇𝑖
±  = 𝜇𝑖

± − 𝑝𝑐
± 𝜕𝑖𝜌

±

𝜌±
, 𝐼𝑏 = 𝐼1𝑏 + 𝐼2𝑏 + ∫ (𝑝𝑐

±∑
𝜕𝑖𝜌

±

𝜌± 𝑖 ) 𝒋𝒊
± ⋅ 𝒏 𝑑𝑆

∂Ω
 

𝐹𝑛   =  𝑄∇𝜙 ⋅ 𝒏 + (∑ 𝑘𝐵𝑇𝑐𝑖𝑖 + 2𝑒𝑒𝑠 + 𝑒𝑖𝑜𝑛 − ∑ 𝑐𝑖𝜇𝑖𝑖 )−∇Γ ⋅ (∇Γ (
𝜖0𝜖𝑟

2
𝜙2)) + 𝜙(𝜕𝑛𝑫 ⋅ 𝒏)  

     = 𝑄 ∂n𝜙 + (2𝑒𝑒𝑠 −∑𝑐𝑖𝑧𝑖𝑒𝜙

𝑖

)−∇Γ ⋅ (∇Γ (
𝜖0𝜖𝑟
2
𝜙2)) + 𝜙(𝜕𝑛𝑫 ⋅ 𝒏)   

     = Q𝜕𝑛𝜙 + (𝜖0𝜖𝑟|𝛻𝛤𝜙|
𝟐 + 𝜖0𝜖𝑟|𝜕𝑛𝜙|

2 −∑𝑐𝑖𝑧𝑖𝑒𝜙

𝑖

) 

        −(𝜖0𝜖𝑟|∇Γ𝜙|
2 + 𝜖0𝜖𝑟𝜙ΔΓ𝜙) + 𝜙(𝜕𝑛𝑫 ⋅ 𝒏)  

     =  −(∑𝑐𝑖𝑧𝑖𝑒𝜙

𝑖

+ 𝜖0𝜖𝑟𝜙ΔΓ𝜙 − 𝜙𝜕𝑛𝑫 ⋅ 𝒏)      

     =  −(𝜙∇ ⋅ 𝑫 + 𝜖0𝜖𝑟𝜙ΔΓ𝜙 −  𝜙𝜕𝑛𝑫 ⋅ 𝒏)       

     =  −(𝜙𝜕𝑛𝑫 ⋅ 𝒏 + 𝜙∇Γ ⋅ 𝑫 + 𝜖0𝜖𝑟𝜙ΔΓ𝜙 −  𝜙𝜕𝑛𝑫 ⋅ 𝒏)    

     =  −( 𝜙∇Γ ⋅ 𝑫Γ −𝑫 ⋅ 𝒏 𝜙𝐻 + 𝜖0𝜖𝑟𝜙ΔΓ𝜙)  

     =  𝑄𝜙𝐻                            

and  

𝐹𝜌 = −𝑄𝜌𝑢𝑛 + 𝒏 ⋅ (𝝈𝜂 + 𝝈𝑒) ⋅ 𝒏 + (𝑒𝑒𝑠 +∑𝑘𝐵𝑇𝑐𝑖
𝑖

) + Q𝜕𝑛𝜙 −∑𝑝𝑐
𝜕𝑖𝜌

𝜌
𝑐𝑖

𝑖

 +
𝜌|𝑢𝑛|

2

2
  

(17) 

(18) 

(16) 
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Comparing with Eq. (4), by taking quadratic forms of 𝐺1 = ∑
𝑔𝑖

𝑒2
[𝜇𝑖]

2
𝑖  and 𝐺2 =

𝑄𝜌
2

𝐾(𝑥)
, we have  

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

𝒋𝑖
± = −

𝐷𝑖
±𝑐𝑖

±

𝐾𝐵𝑇
𝛻𝜇𝑖

±                                           𝑖𝑛 Ω±

𝝈𝜂
± = 2𝜂±𝑫𝜂

± + 𝜆±(𝛻 ⋅ 𝒖±)𝑰 − 𝑝𝑰                              𝑖𝑛 Ω±

𝝈𝑒
± = 휀0휀𝑟

±𝛻𝜙±⊗𝛻𝜙± − 0 𝑟
±

2
|𝛻𝜙±|2𝑰                         𝑖𝑛 Ω±

𝐽𝑖 =
𝑔𝑖

(𝑧𝑖𝑒)
2
[𝜇𝑖]                                              𝑖𝑛 Ω±

𝑝± = ∑𝑖 𝑘𝐵𝑇𝑐𝑖
± + 𝑝𝑐

± (1 − ∑
𝜕𝑖𝜌

± 

𝜌±
𝑐𝑖
±

𝑖 )                       𝑖𝑛 Ω±

𝑄 = 𝐶𝑚[𝜙]                                               𝑜𝑛 Γ

𝑄𝜌 = −�̅�
2𝐾(𝒙) {[

𝐹𝜌

𝜌
]}                                       𝑜𝑛 Γ

𝑭𝑚𝑏 ⋅ 𝒏 = (𝑒Γ + 𝛾0)𝐻 − [𝐹𝑛]                               𝑜𝑛 Γ

𝝉 ⋅ 𝑭𝑚𝑏 = −𝑄[∇Γ𝜙 ] ⋅ 𝝉                                     𝑜𝑛 Γ,

           

 

where 𝐾(𝑥) and 𝑔𝑖 are the permeability and conductance of the membrane, respectively.  

Remark  Here we took 𝐺1 and 𝐺2 as the simple qudratic functions, i.e. 𝐺1 = ∑ (𝑔𝑖 𝑒
2⁄ )[�̃�𝑖]

2
𝑖  and 

𝐺2 = 𝑄𝜌
2/𝐾(𝑥) . In fact, any flux 𝑱(𝒙) satisfying 𝑮(𝒙) = 𝒙𝑱(𝒙) ≥ 𝟎  could be used in order to 

maximize the dissipation. 

Then, we have  

[𝐹𝑛] =  𝑄[𝜙]𝐻 = 2𝑒Γ𝐻 𝑎𝑛𝑑 − 𝑄[∇Γ𝜙 ] = −∇Γ𝑒Γ        

which yields  

[(𝝈𝜂 + 𝝈𝑒)] ⋅ 𝒏 − [𝑄𝜌𝒖] = 𝑭𝑚𝑏 = (𝛾0 − 𝑒Γ)𝐻𝒏 − ∇Γ𝑒Γ .     

and  

[
𝐹𝜌

𝜌
] = [

1

𝜌
(𝒏 ⋅ (𝝈𝜂 + 𝝈𝑒) ⋅ 𝒏 + (𝑒𝑒𝑠 +∑𝑘𝐵𝑇𝑐𝑖

𝑖

) + Q𝜕𝑛𝜙 −∑𝑝𝑐
𝜕𝑖𝜌

𝜌
𝑐𝑖

𝑖

)  ]          

+ [
|𝑢𝑛|

2

2
−
𝑄𝜌𝑢𝑛

𝜌
]  

    = [
1

𝜌
(𝒏 ⋅ (𝝈𝜂) ⋅ 𝒏 + 𝑂 −∑𝑝𝑐

𝜕𝑖𝜌

𝜌
𝑐𝑖

𝑖

)]  + [
𝑄𝜌
2 + 2𝑄𝜌𝑣𝑛 

2𝜌2
−
𝑄𝜌

𝜌
  (
𝑄𝜌

𝜌
+ 𝑣𝑛)] 

(19) 

(20) 

(21) 

𝑖𝑛 Ω± 

𝑖𝑛 Ω± 

𝑖𝑛 Ω±𝑖𝑛 Ω± 

𝑖𝑛 Ω± 

𝑖𝑛 Ω± 

𝑜𝑛 Γ 

𝑜𝑛 Γ 

𝑜𝑛 Γ 

𝑜𝑛 Γ 
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   = [
1

𝜌
(𝒏 ⋅ (𝝈𝜂) ⋅ 𝒏 + 𝑂 −∑𝑝𝑐

𝜕𝑖𝜌

𝜌
𝑐𝑖

𝑖

)] − [
𝑄𝜌
2 

2𝜌2
]. 

Here we used the fact that 𝑣𝑛 is continous across the membrane.  

Model for fluid with variable density. To summarize, we have the following model for fluid with 

variable density passing through a deformable membrane   

{
 
 
 
 
 
 

 
 
 
 
 
 

  

−𝛻 ⋅ (휀0휀𝑟
±𝛻𝜙±) =∑

𝑖

𝑧𝑖𝑒𝑐𝑖
±,  𝑖𝑛 𝛺±

𝜕𝑐𝑖
±

𝜕𝑡
+ 𝛻 ⋅ (𝒖±𝑐𝑖

±) = 𝛻 ⋅ (𝐷𝑖
± (𝛻𝑐𝑖

± +
𝑧𝑖𝑒

𝑘𝐵𝑇
𝑐𝑖
±𝛻𝜙± −

1

𝑘𝐵𝑇
𝑐𝑖
±𝛻 (𝑝𝑐

±
𝜕𝑖𝜌

±

𝜌±
))) ,  𝑖𝑛 𝛺±

𝜌±
𝑑𝒖±

𝑑𝑡
= 𝛻 ⋅ (𝝈𝜂

±) + 𝛻 ⋅ (𝝈𝑒
± ),                                                                                        𝑖𝑛 𝛺±

dρ±

dt
+ ρ±∇ ⋅ 𝐮± = 0,                                                                                                             𝑖𝑛 𝛺±

𝜌 = �̂�(𝑐1
±, 𝑐2

±, ⋯ 𝑐𝑁
±)                                                                                                             𝑖𝑛 𝛺±

  

where viscosity shear stress is 

𝝈𝜂
± = 2𝜂±𝑫𝜂

± + 𝜆±(𝛻 ⋅ 𝒖±)𝑰 − (∑

𝑖

𝑘𝐵𝑇𝑐𝑖
± + 𝑝𝑐

± (1 −∑
𝜕𝑖𝜌

±

𝜌±
𝑐𝑖

𝑖

)) 𝑰 

and Maxwell stress 𝝈𝑒
± = 𝜖0𝜖𝑟

±(∇𝜙±⊗∇𝜙± − 1

2
|∇𝜙|2𝑰). with interface conditions on Γ   

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

  

𝑑𝑿

𝑑𝑡
= 𝒗

−휀0휀𝑟
±𝛻𝜙± ⋅ 𝒏 = 𝐶𝑚[𝜙],

𝒋𝑖
± ⋅ 𝒏 + 𝑐𝑖

±(𝒖± − 𝒗) ⋅ 𝒏 =
𝑔𝑖

(𝑧𝑖𝑒)2
([𝑘𝐵𝑇(ln(𝑐𝑖/𝑐0) + 1) + 𝑧𝑖𝑒𝜙 − 𝑝𝑐

𝜕𝑖𝜌

𝜌
]) ,

𝑄𝜌 = −�̅�
2𝐾(𝒙) {[

1

𝜌
(𝒏 ⋅ 𝝈𝜂 ⋅ 𝒏 + 𝑂 −∑𝑝𝑐

𝜕𝑖𝜌

𝜌
𝑐𝑖

𝑖

)] − [
1

2𝜌2
] 𝑄𝜌

2}

𝜌±(𝒖± − 𝒗) ⋅ 𝒏 = 𝑄𝜌 

[𝝈𝜂 + 𝝈𝑒] ⋅ 𝒏−[𝑄𝜌𝒖] = (𝛾0 − 𝑒Γ)𝐻𝒏 − ∇Γ𝑒Γ      

𝒖± ⋅ 𝝉 = 𝒗 ⋅ 𝝉

   

and some appropriate boundary conditions on ∂Ω. 

 

 

(22) 

(24) 

(23) 
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Remark.   Here it is easy to check that the model (23) with interface conditions (24) is Galilean 

invariant. For the transmembrane mass flux, note that (23) is a quadratic equation of 𝑄𝜌, which 

normally involves two solutions. If we denote δ = [1 2ρ2⁄ ] ≪ 1, one solution involves Qρ
2  as a small 

perturbation  

𝑄𝜌 = −�̅�
2𝐾(𝒙) { [ 

1

𝜌
(𝒏 ⋅ 𝝈𝜂 ⋅ 𝒏 + 𝑂 −∑𝑝𝑐

𝜕𝑖𝜌

𝜌
𝑐𝑖

𝑖

) ] } 

     +𝛿�̅�2𝐾(𝑥) { �̅�2𝐾(𝒙) [ 
1

𝜌
(𝒏 ⋅ 𝝈𝜂 ⋅ 𝒏 + 𝑂 −∑𝑝𝑐

𝜕𝑖𝜌

𝜌
𝑐𝑖

𝑖

) ] }

2

+𝑂(𝛿2), 

which means 𝑄𝜌 is maily driven by the hydro and osmotic pressure difference. 

The other candidate solution makes 𝑄𝜌 a large quantity 

𝑄𝜌 =
1

𝛿

1

�̅�2𝐾(𝑥)
− �̅�2𝐾(𝒙) { [ 

1

𝜌
(𝒏 ⋅ 𝝈𝜂 ⋅ 𝒏 + 𝑂 −∑𝑝𝑐

𝜕𝑖𝜌

𝜌
𝑐𝑖

𝑖

) ] } + 𝑂(𝛿), 

which means Qρ is mainly driven by the density difference and does not depend on the hydrostatic 

and osmotic pressure. The large Qρ solution is not reasonable for a semi-permeable membrane flux 

because the mass flux increases as density difference decreases (δ → 0). So the first solution will be 

chosen for our semi-permeable membrane mass flux.   

 

Remark Here we considered a simple membrane mechanical energy, only including the surface 

tension. The derivation could be generalized to more complicated membrane energy case, for 

example the Helfrich bending energy87, 114 and the neo-Hookean hyperelastic energy115, allowing 

models of fascinating biological phenomena like vesicle fusion116-118 to include the effects of ionic 

composition, membrane potential, and hydrostatic pressure that are known to have significant effects 

in experiment and life. Details are in the Appendix B. 

 



 

21 

Permeable and Inflexible Membranes 

In this section, we assume that the membrane is inflexible 𝒗 = 𝟎 and the total energy and 

dissipation functional are same as in Eqs. (3) and (4). The flux interface conditions are reduced 

to  ρ±𝐮± = Qρ𝐧 and 𝐣𝑖
± ⋅ 𝐧 + 𝑐𝑖

±𝒖± ⋅ 𝒏 = 𝐽𝑖(𝑥), 𝑜𝑛 Γ . By using the similar calculation with the 

reduced interface conditions , Eq. (16) is reduced to 

𝑑𝐸𝑡𝑜𝑡

𝑑𝑡
= −∑

±

∫
𝛺±
𝝈𝜂
±: ∇𝒖± 𝑑𝑥  

      −∑

±

∫
𝛺±
(𝝈𝑒 − 휀0휀𝑟

±(𝛻𝜙±⊗𝛻𝜙± −
1

2
|𝛻𝜙±|2𝑰)) : 𝛻𝒖𝑑𝑥 

     +∑

±

∫
𝛺±
∑

𝑖

(𝛻𝜇𝑖
±) ⋅ 𝒋𝑖

±𝑑𝑥 − ∫
𝛤

∑

𝑖

[𝜇𝑖]𝐽𝑖𝑑𝑆 

     +∑

±

∫
𝛺±
(−∑

𝑖

𝑘𝐵𝑇𝑐𝑖
± − 𝑝𝑐

± (1 −∑
𝜕𝑖𝜌

±

𝜌±
𝑐𝑖

𝑖

))𝛻 ⋅ 𝒖±𝑑𝑥 

     +∫
𝛤

[𝜙]
𝜕

𝜕𝑡
(𝐶𝑚[𝜙] − 𝑄)𝑑𝑆 + ∫

𝛤

[
𝐹𝜌

𝜌
]𝑄𝜌𝑑𝑆 + 𝐼𝑏 . 

Comparing with the dissipation functional (4), we obtain the same results as in Eq. (19) without the 

last two equations for force balance on the membrane. 

Model for an inflexible semi-permeable membrane. To summarize, when the density of solution is 

a function of ion concentration, we obtained the following model for fluid passing through an inflexible 

semi-permeable membrane   

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

  

−𝛻 ⋅ (휀0휀𝑟
±𝛻𝜙±) =∑

𝑖

𝑧𝑖𝑒𝑐𝑖
±,       𝑖𝑛 𝛺±

𝜕𝑐𝑖
±

𝜕𝑡
+ 𝛻 ⋅ (𝒖±𝑐𝑖

±) = 𝛻 ⋅ (𝐷𝑖
± (𝛻𝑐𝑖

± +
𝑧𝑖𝑒

𝑘𝐵𝑇
𝑐𝑖
±𝛻𝜙± −

1

𝑘𝐵𝑇
𝑐𝑖
±𝛻 (𝑝𝑐

±
𝜕𝑖𝜌

±

𝜌±
))) ,       𝑖𝑛 𝛺±

𝜌±
𝑑𝒖±

𝑑𝑡
= 𝛻 ⋅ (𝝈𝜂

±) + 𝛻 ⋅ (휀0휀𝑟
±𝛻𝜙±⊗𝛻𝜙± −

휀0휀𝑟
±

2 |𝛻𝜙±|2) ,                              𝑖𝑛 𝛺±

dρ±

dt
+ ρ±∇ ⋅ 𝐮± = 0,                                                                                                            𝑖𝑛 𝛺±

𝜌 = �̂�(𝑐1
±, 𝑐2

±, ⋯ 𝑐𝑁
±)

 

                                                                                                                 𝑖𝑛 𝛺±

  

(26) 

(25) 
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with interface conditions on Γ   

{
 
 
 
 
 

 
 
 
 
 

 

−휀0휀𝑟
±𝛻𝜙± ⋅ 𝒏 = 𝐶𝑚[𝜙],

𝒋𝑖
± ⋅ 𝒏 + 𝑐𝑖

±𝒖± ⋅ 𝒏 =
𝑔𝑖

(𝑧𝑖𝑒)2
([𝑘𝐵𝑇(ln(𝑐𝑖/𝑐0) + 1) + 𝑧𝑖𝑒𝜙 − 𝑝𝑐

𝜕𝑖𝜌

𝜌
]) ,

𝑄𝜌 = −�̅�
2𝐾(𝒙) {[

1

𝜌
(𝑂 + 𝒏 ⋅ 𝝈𝜂 ⋅ 𝒏 −∑

𝜕𝑖𝜌

𝜌
𝑝𝑐𝑐𝑖

𝑖

)] − [
1

2𝜌2
] 𝑄𝜌

2}

𝜌±𝒖± = 𝑄𝜌𝒏,

       

and some appropriate boundary conditions on ∂Ω. 

 

Remark Comparing with the results for flexible membrane in Eqs. (23)-(24), we find the only 

difference is that there is no force balance equation for the inflexible membrane. The inflexible 

membrane has an unknown external force that maintains the position of membrane. Only the Dirichlet 

interface condition is used to describe the solvent velocity passing through the inflexible membrane. 

In the case that the membrane is non-permeable for fluid, an equation of osmotic velocity is not needed. 

In this case, the membrane moves with the fluid, i.e., 𝑄𝜌 = 0 (i.e. 𝐮± = 𝒗); only the force balance 

equation [𝝈𝜂 + 𝝈𝑒] ⋅ 𝒏 = (𝛾0 − 𝑒Γ)𝐻𝒏 − ∇Γ𝑒Γ on the membrane is needed when the membrane is 

non-permeable for fluid.  

 

Model with Constant Solution Density 
For the normal biological problem, where the bulk ion concentration is in the range of 

1~300𝑚𝑀, the density of solution has small variation. Concentrations are very much larger in and 

near ion channels, charged lipid membranes, binding proteins, enzyme active sites, and nucleic acids. 

In those situations solutions are also quite nonideal and so a different treatment is needed.  

In the bulk, we can take the zero order approximation, i.e. 𝜌± = 𝜌0,  where 𝜌0 is a constant. 

Then the fourth equation in (1) is reduced to the imcompressiblility condition ∇ ⋅ 𝒖 = 0. The kinetic 

energy functional is reduced to be 𝐸𝑘𝑖𝑛 = ∑± ∫𝛺±
1

2
𝜌0|𝒖±|2𝑑𝑥 . The second term in dissipation 

functional vanishes. The interface conditions are reduced to  

𝑜𝑛 Γ 

{
 
 
 
 
 

 
 
 
 
 

 

𝑑𝐗

𝑑𝑡
= 𝒗,                               

𝐃± ⋅ 𝐧 = 𝑄(𝑥),                         

𝐮± ⋅ 𝐧 − 𝒗 ⋅ 𝒏 = 𝑈,         

𝐣𝑖
± ⋅ 𝐧 + 𝑐𝑖

±(𝒖± − 𝒗) ⋅ 𝒏 = 𝐽𝑖(𝑥),         

[𝝈𝜂 + 𝝈𝑒] ⋅ 𝒏 = 𝑭𝑚𝑏                    

𝒖± ⋅ 𝝉 = 𝒗 ⋅ 𝝉                            

   

(28) 

(27) 
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Here the main difference between Eq. (2) and Eq. (29) is that the velocity on the membrane is 

continuous since the density is continuous. Here we replaced 
𝑄𝜌

𝜌0
 by new variable 𝑈. 

Permeable 𝐚𝐧𝐝 Flexible Membranes 

We also first assume that the membrane is flexible. Then by using a similar calculation with 

interface conditions (28) and incompressibility, Eq. (16) is reduced to    

𝑑𝐸𝑡𝑜𝑡

𝑑𝑡
= −∑

𝑖

∫
𝛺±
𝝈𝜂
±: ∇𝒖±𝑑𝑥 

−∑

±

∫
𝛺±
(𝝈𝑒

± − 𝜖0𝜖𝑟
± (𝛻𝜙±⊗𝛻𝜙± −

|𝛻𝜙±|2

2
𝑰)) : 𝛻𝒖±𝑑𝑥 

 +∑

±

∫
𝛺±
∑∇𝜇𝑖

±

𝑖

⋅ 𝒋𝒊
±𝑑𝑥 − ∫∑[𝜇𝑖]𝐽𝑖

𝑖

𝑑𝑆
Γ

   

+∫(𝑭𝑚𝑏 + [𝑄∇𝜙]) ⋅ 𝒗𝝉𝑑𝑆
Γ

 

+∫(𝑭𝑚𝑏 ⋅ 𝒏 + [𝐹𝑛] − (𝑒Γ + 𝛾0)𝐻)𝑉𝑛𝑑𝑆
Γ

 

 +∫ [𝐹𝜌 
]𝑈𝑑𝑆

Γ

+∫[𝜙]
𝑑𝑛

𝑑𝑡
(𝐶𝑚[𝜙] − 𝑄)

𝛤

𝑑𝑆 + 𝐼𝑏           

 𝐼𝑏 = 𝐼1𝑏 + 𝐼2𝑏, chemical potential 𝜇𝑖 reduces to 𝜇𝑖;   𝐹𝑛 = 𝑄𝜙𝐻 is the same as in Eq. (17); and  

𝐹𝜌 =  𝒏 ⋅ (𝝈𝜂 + 𝝈𝑒) ⋅ 𝒏 + (𝑒𝑒𝑠 +∑𝑘𝐵𝑇𝑐𝑖
𝑖

+ 𝑄 ∂n𝜙).     

Model for a deformable membrane. To summarize, the model for fluid passing through a deformable 

membrane is  

{
 
 
 
 
 

 
 
 
 
 

 

−𝛻 ⋅ (휀0휀𝑟
±𝛻𝜙±) =∑

𝑖

𝑧𝑖𝑒𝑐𝑖
±,  𝑖𝑛 𝛺±

𝜕𝑐𝑖
±

𝜕𝑡
+ 𝛻 ⋅ (𝒖±𝑐𝑖

±) = 𝛻 ⋅ (𝐷𝑖
±(𝛻𝑐𝑖

± +
𝑧𝑖𝑒

𝑘𝐵𝑇
𝑐𝑖
±𝛻𝜙±)),  𝑖𝑛 𝛺±

𝜌0
𝑑𝒖±

𝑑𝑡
+ 𝛻𝑝± = 𝛻 ⋅ (2𝜂±𝑫𝜂

±) + 𝛻 ⋅ (휀0휀𝑟
±𝛻𝜙±⊗𝛻𝜙± −

휀0휀𝑟
±

2
|𝛻𝜙±|2𝑰),  𝑖𝑛 𝛺±

𝛻 ⋅ 𝒖± = 0,  𝑖𝑛 𝛺±

   

(29) 

(30) 

(31) 
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where the viscous stress for incompressible fluid is  

𝝈𝜂
± = 2𝜂±𝑫𝜂

± − 𝑝±𝑰, 

and pressure 𝑝 is introduced as a Lagrange multiplier of imcompressiblity. 

By taking ρ̅ = 𝜌0,  the interface boundary conditions on Γ  are  

{
 
 
 
 
 

 
 
 
 
 

 

𝑑𝑿

𝑑𝑡
= 𝒗

−휀0휀𝑟
±𝛻𝜙± ⋅ 𝒏 = 𝐶𝑚[𝜙],

𝒋𝑖
± ⋅ 𝒏 + 𝑐𝑖

±(𝒖± − 𝒗) ⋅ 𝒏 =
𝑔𝑖

(𝑧𝑖𝑒)2
([𝑘𝐵𝑇(ln(𝑐𝑖/𝑐0) + 1) + 𝑧𝑖𝑒𝜙]),

𝒖± − 𝒗 = 𝑈𝒏,

𝑈 = −𝐾(𝑥)[𝑂 + 𝒏 ⋅ 𝝈𝜼 ⋅ 𝒏],

[𝝈𝜂 + 𝝈𝑒] ⋅ 𝒏 = (𝛾0 − 𝑒𝛤)𝐻𝒏 − 𝛻𝛤𝑒𝛤,

     

and some appropriate boundary conditions on ∂Ω describing the experimental setup in a reasonably 

realistic, but idealized way. Note that the system (31) with interface condition (32) are same as the 

previous results106. 

 

Remark Other formulations could be used for the membrane of course. Even the tradtional Goldman–

Hodgkin–Katz flux106 

𝐽𝑖 = 𝑃𝑖𝑓(𝑧𝑖𝑒[𝜙]/𝑘𝐵𝑇)𝑐𝑖
−(𝑒[𝜇𝑖]/𝑘𝐵𝑇 − 1) with 𝑓(𝑥) =

𝑥

𝑒𝑥−1
≥ 0, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥, 

could be used to replace the Hodgkin-Huxley flux 𝐽𝑖 =
𝑔𝑖

(𝑧𝑖𝑒)
2 [𝜇𝑖].  

What is really needed of course is a physical model of the water, mass, and electrical flux through the 

ensemble of channels, starting with atomic detail. That is not yet available, particularly because the 

macroscopic representation (of the ensemble of channels) needed here (i.e., in eq. (32)) should include 

time dependent gating phenomena that are not properties of a single permanently open channel. The 

Goldman-Hodgkin-Katz and Poisson Nernst Planck formulations are representations of the behavior 

of single permanently open channels. Those representations need to be supplemented by an explicit 

theory of time (and agonist or voltage) dependent opening and closing of both single channels and 

ensembles of single channels before they can sensibly be used in a model like eq. (32). Note two types 

of gating are involved, the stochastic open and closed gating of single channels, and the deterministic 

time dependent conductance called gating in the Hodgkin Huxley formulation of ensemble properties. 

 

(32) 
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Permeable 𝐚𝐧𝐝 Inflexible Membranes 

In this section, we further assume that the membrane is inflexible, i.e. 𝒗 = 𝟎. Similarly, the different 

between flexible and inflexible membrane is that we do not need the force balance equation on the 

interface. Then we could obtain the following model for fluid passing through a inflexible membrane   

{
 
 
 
 
 

 
 
 
 
 

  

−𝛻 ⋅ (휀0휀𝑟
±𝛻𝜙±) =∑

𝑖

𝑧𝑖𝑒𝑐𝑖
±,  𝑖𝑛 𝛺±

𝜕𝑐𝑖
±

𝜕𝑡
+ 𝛻 ⋅ (𝒖±𝑐𝑖

±) = 𝛻 ⋅ (𝐷𝑖
±(𝛻𝑐𝑖

± +
𝑧𝑖𝑒

𝑘𝐵𝑇
𝑐𝑖
±𝛻𝜙±)),  𝑖𝑛 𝛺±   

𝜌0
𝑑𝒖±

𝑑𝑡
+ 𝛻𝑝± = 𝛻 ⋅ (2𝜂𝐷𝜂

±) + 𝛻 ⋅ (휀0휀𝑟
±𝛻𝜙±⊗𝛻𝜙± −

휀0휀𝑟
±

2
|𝛻𝜙±|2𝑰),  𝑖𝑛 𝛺±

𝛻 ⋅ 𝒖± = 0,  𝑖𝑛 𝛺±

 

where the viscous stress for incompressible fluid is  

𝝈𝜂
± = 2𝜂±𝑫𝜂

± − 𝑝±𝑰 

with interface boundary conditions on Γ   

{
 
 
 
 

 
 
 
 

  

−휀0휀𝑟
±𝛻𝜙± ⋅ 𝒏 = 𝐶𝑚[𝜙],

𝒋𝑖
± ⋅ 𝒏 + 𝑐𝑖

±𝒖± ⋅ 𝒏 =
𝑔𝑖

(𝑧𝑖𝑒)2
([𝑘𝐵𝑇(ln(𝑐𝑖/𝑐0) + 1) + 𝑧𝑖𝑒𝜙]),

𝒖± = 𝑈𝒏,

𝑈 = −𝐾(𝒙)[𝑂 + 𝒏 ⋅ 𝝈𝜂 ⋅ 𝒏],

          

and some appropriate boundary conditions on ∂Ω.  

 

(33) 

(34) 
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Historical Comments 

 Osmosis occurs in so many contexts that no one, certainly not us, can grasp its totality. The 

temptation then is to discuss only what we have grasped and say nothing about what is beyond our 

reach. Because we do know something about some important applications—and think something is 

better than nothing—we write this section. We hope workers in different fields will learn of each 

other’s work, so they can benefit from each other’s knowledge, experience, and enthusiasm about 

osmosis. 

 It is important also to understand that at least in biology many of the most important issues in 

osmosis remain open. We believe, without proof, that some of these issues will be easier to resolve 

when ionic solutions are treated as complex fluids with mathematics that is consistent, with all 

variables satisfying all field equations and interface boundary conditions with one set of unchanging 

parameters. We understand, however, that no one can know the consequences of a consistent analysis 

until it is actually performed in the experimental, technological and biological systems of interest. 

Details matter! 

 An enormous amount of work is being done on the theory of technological osmosis, i.e., 

mathematics of fluidics. Our knowledge of fluidics is too modest to allow thoughtful citation here: 

fortunately these applications are easy to locate with literature search methods. A search today (June 

2, 2018) found two significant new papers just this week. 

 The classical biological literature is older, and in danger of being lost to modern generations, 

particularly those who know more of Navier Stokes and fluidics than of the kidney or epithelia. So we 

provide key references to interesting biological applications. It is important to understand that these 

areas are central to a wide range of biological research. They are not isolated special cases. 

 Much of classical physiology, described in detail in textbooks21-24 concerns organs that depend on 

osmosis. Mori106, 119 has started a consistent analysis of osmosis and our work should be viewed as an 

extension of his. 

The reviews of Boulpaep120, AE Hill121, and Pohl122 provide good entries to the field. Hill is 

particularly useful for showing the substantial controversies and their history. The analysis of osmosis 

in the lens, mostly from the laboratory of Richard Mathias, is notable for its success, combining field 

theory, molecular biology, structural biology, and measurements of hydrostatic pressure, electrical 

impedance, and fluxes to provide a coherent view of how the lens uses osmosis to stay alive.123-125 

That approach, expanded perhaps to explicitly use the theory of complex fluids, will help to resolve 

the many controversies we believe. 

A great deal of work has been done on fusion of vesicles to membranes, because of its wide 

biological role (e.g., in the ~1014 chemical synapses in our brains, with thousands of vesicles in each 

synapse) and medical importance in the entry of viruses into cells.116, 117, 126, 127 Most of that work only 

considers the elastic properties of membranes. We suggest that energy sources like diffusion, electrical 

potential, and convection should be included in the analysis of vesicle fusion—and membrane flow in 

general—to see if they are used by biology for its purposes. Experiments suggest they are.  

 Modern work in molecular biology and water flow is focused on the aquaporins that are thought 

to provide channels for water flow128, 129, or sensors controlling water flow130, 131. Some work seeks to 



 

27 

study osmosis in individual channels, but comparison with similar work studying current flow through 

channels suggests that much remains to be done. In our view, the full range of forces—electrical, 

diffusional, convective, steric, and chemical—are likely to be involved in flow through water channels 

and so must be included in models and simulations, at least to begin with, until we discover the 

variables that evolution uses to control water flow on the atomic scale in the channels of aquaporins. 

 Sadly, osmosis and fluid flow in plants is not an area we know enough about to cite intelligently. 

Osmosis/fluidics reaches its most impressive heights in trees (nearly 100 meters in redwoods). Water 

flow in the xylem of trees—from roots to leaves in the crown—certainly needs analysis with the theory 

of complex fluids, if that has not already been done. There are also innumerable examples of 

osmosis/fluidics we do not know enough about to even name. All the more reason for readers interested 

in complex fluids to learn their names and study how they work.  

In each case, it seems clear to us that treating osmosis as the movement of a complex fluid is 

likely to be useful, even necessary, in biology, and everywhere else. 
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Appendix A: Proof of Lemma  

 

Proof. By using the Batchelor’s method115, 132, we have  

      
𝑑

𝑑𝑡
(𝒏)𝑑𝑆 +

𝑑

𝑑𝑡
(𝑑𝑆)𝒏 =

𝑑

𝑑𝑡
(𝒏𝑑𝑆) = (𝛻 ⋅ 𝒗)𝒏𝑑𝑆 − (𝛻𝒗) ⋅ 𝒏𝑑𝑆 

      = (𝛻 ⋅ 𝒗𝒏 − (𝜕𝑛𝒗 ⋅ 𝒏)𝒏)𝑑𝑆 − ∇Γ𝒗 ⋅ 𝒏𝑑𝑆 = (∇Γ ⋅ 𝒗)𝒏𝑑𝑆 − ∇Γ𝒗 ⋅ 𝒏𝑑𝑠 

and 
𝑑

𝑑𝑡
𝑑𝑆 = 𝛻𝛤 ⋅ 𝒗 𝑑𝑆. 

Then we have 
𝑑𝒏

𝑑𝑡
= −𝛻𝛤𝒗 ⋅ 𝒏.  

Finally, by the definition of 
𝑑𝑛

𝑑𝑡
, we have  

      
𝑑𝑛𝒏

𝑑𝑡
=
𝑑𝒏

𝑑𝑡
− (𝒗𝜞 ⋅ 𝛻𝛤)𝒏 = −𝛻𝛤𝒗 ⋅ 𝒏 − (𝒗𝜞 ⋅ 𝛻𝛤)𝒏 

          = −∇Γ(𝒗𝒏𝒏 + 𝒗𝚪) ⋅ 𝒏 − 𝛻𝛤𝒏 ⋅ 𝒗𝛤 = −∇Γ𝑣𝑛 − ∇Γ(𝒏 ⋅ 𝒗𝚪) = −∇Γ𝑣𝑛. 

    Here we used the symmetry of curvature tensor 𝛻𝛤𝒏 and |𝒏|
2 = 1. 
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Appendix B: Membrane mechanical properties  

Membrane mechanical properties can be included in the analysis by modify Eq. (7). Assuming 

that 𝐸𝑚 is the energy induced by mechanical properties of the membrane, the fourth term of Eq. (7) 

 𝐼4 yields 

I4 =
d

dt
∫ (𝛾0 + 𝐶𝑚[𝜙]

2)𝑑𝑆 +
𝑑𝐸𝑚
𝑑𝑡

   
Γ(𝑡)

 

  = ∫ 𝐶𝑚[𝜙]
𝑑𝑛

𝑑𝑡
([𝜙])

𝛤

𝑑𝑆 − ∫((𝑒𝛤𝐻𝒏− 𝑭𝑚)) ⋅ 𝒗𝑑𝑆
𝛤

.    

 

where we used the results 87 
𝑑𝐸𝑚

𝑑𝑡
= ∫

𝛿𝐸𝑚

𝛿𝛤
⋅  𝒗𝑑𝑆

𝛤(𝑡)
 and denotes 𝑭𝑚 =

𝛿𝐸𝑚

𝛿𝛤
 

Then the rate of total energy change is  

  

𝑑𝐸𝑡𝑜𝑡

𝑑𝑡
 = −∑

𝑖

 ∫
𝛺±
𝝈𝜂
±: ∇𝒖±𝑑𝑥 

−∑

±

 ∫
𝛺±
(𝝈𝑒

± − 𝜖0𝜖𝑟
± (𝛻𝜙±⊗𝛻𝜙± −

|𝛻𝜙±|2

2
𝑰)) : 𝛻𝒖±𝑑𝑥 

 +∑

±

 ∫
𝛺±
∑∇𝜇𝑖

±

𝑖

⋅ 𝒋𝒊
±𝑑𝑥  − ∫∑[𝜇𝑖]𝐽𝑖

𝑖

𝑑𝑆
Γ

 

+∑

±

 ∫
𝛺±
(−∑

𝑖

𝐾𝐵𝑇𝑐𝑖
± + 𝑝𝑐

± (1 −∑
𝜕𝑖𝜌

±

𝜌±
𝑐𝑖

𝑖

))𝛻 ⋅ 𝒖±𝑑𝑥 

+∫(𝑭𝑚𝑏 − 𝑭𝑚 + [𝑄∇𝜙]) ⋅ 𝒗𝝉𝑑𝑆
Γ

 

+∫(𝑭𝑚𝑏 ⋅ 𝒏 + [𝐹𝑛] − (𝑒Γ𝐻 − 𝑭𝑚 ⋅ 𝒏))𝑣𝑛𝑑𝑆
Γ

 

 +∫ [ 
𝐹𝜌

𝜌 
 ] 𝑄𝜌𝑑𝑆

Γ 

+∫  [𝜙]
𝑑𝑛

𝑑𝑡
(𝐶𝑚[𝜙] − 𝑄)

𝛤

𝑑𝑆 − 𝐼𝑏        

Then we obtain the force balance equation on a membrane with mechanical properties. 

[𝝈𝜂 + 𝝈𝑒] ⋅ 𝒏 − [𝑄𝜌𝒖] = −𝑒Γ𝐻𝒏− ∇Γ𝑒Γ + 𝑭𝒎. 

(𝐵1) 

(𝐵3) 

(𝐵2) 


