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A B S T R A C T

In traditional hydrodynamic theories for ionic fluids, conservation of mass and linear momentum is not
properly taken care of. In this paper, we develop hydrodynamic theories for viscous, ionic fluids of N ionic
species enforcing mass and momentum conservation as well as considering the size effect of the ionic
particles. The theories developed are quasi-incompressible in that the mass-average velocity is no longer
divergence-free whenever there exists variability in densities of the fluid components, and the theories are
dissipative. We present several ways to derive the transport equations for the ions, which lead to different
rates of energy dissipation. The theories can be formulated in either number densities, volume fractions or
mass densities of the ionic fluid components. We show that the theory with the Cahn-Hilliard transport
equation for ionic species reduces to the classical Poisson-Nernst-Planck (PNP) model with the size effect
for ionic fluids when the densities of the fluid components are equal and the entropy of the solvent is
neglected. It further reduces to the PNP model when the size effect is neglected. A linear stability analysis
of the model together with two of its limits, which are the extended PNP model (EPNP defined in the text)
and the classical PNP model (CPNP) with the finite size effect, on a constant state and a comparison among
the three models in 1D space are presented to highlight the similarity and the departure of this model from
the EPNP and the CPNP model.

© 2018 Published by Elsevier B.V.

1. Introduction

Phase field models have been used successfully to study a
variety of multiphasic phenomena like equilibrium shapes of vesi-
cle membranes [13,14], blends of polymeric liquids [2,3,17,49-51],
multiphase fluid flows [1,19,25,34,35,38,42,54-56,58,60], dentritic
growth in solidification, microstructure evolution [21,28,40], grain
growth [9], crack propagation [10], morphological pattern forma-
tion in thin films and on surfaces [36,45], self-assembly dynamics
of two-phase monolayers on an elastic substrate [37], a wide
variety of diffusive and diffusion-less solid-state phase transitions
[11,53], dislocation modeling in microstructure, electro-migration
and multiscale modeling [46]. Multiple phase-field methods can be
devised to study multiphase materials [54]. Recently, phase field
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models are applied to study liquid crystal drop deformation in
another fluid, liquid films, polymer nanocomposites, biofilms and
cells [18,19,25,32,34,35,38,52,54-56,58,59,61-64].

Comparing to other mathematical and computational technolo-
gies available for studying multi-phase materials, the phase-field
approach exhibits a clear advantage in its simplicity in model formu-
lation, ease of numerical implementation, and the ability to explore
essential interfacial physics at the interfacial regions, etc. Comput-
ing the interface without explicitly tracking the interface is the most
attractive numerical feature of this modeling and computational tech-
nology. Since the pioneering work of Cahn and Hilliard in the 50’s of
the last century, the Cahn-Hilliard equation has been the foundation
for various phase field models [7,8]. It arises naturally as a model for
multiphase material mixtures should the entropic and mixing energy
of the mixture system be known.

While modeling immiscible binary fluid mixtures using phase field
theories, one commonly uses a labeling or a phase variable (also
known as a volume fraction or an order parameter) 0 to distinguish
between distinct fluid phases. For instance 0 = 1 indicates one fluid
phase while 0 = 0 denotes the other fluid phase in an immiscible
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binary mixture. The interfacial region is tracked by 0 < 0 < 1. For
historical more than logical reasons, most mixing energies are calcu-
lated in terms of the volume fraction instead of the mass fraction in
the literature [20,12]. Consequently, the system free energy including
the entropic and mixing contribution has been formulated in terms
of the volume fraction as well [20,12], given in the form F[0, ∇0, · · ·].
A transport equation for the volume fraction 0 along with the conser-
vation equation of momentum and the continuity equation constitute
the essential part of the governing system of hydrodynamic equations
for the binary fluid mixture, where the volume fraction serves as an
internal variable for the fluid mixture.

In this formulation, the material incompressibility is often identi-
fied with the continuity equation

∇ • v = 0. (1.1)

This assumption is plausible and indeed consistent with the fluid
incompressibility (1.1) only if the two fluid components in the mix-
ture are either completely separated by phase boundaries when their
densities are not equal or possibly mixed when the densities are
identical. Otherwise, there is a potential inconsistency with the con-
servation of mass as well as conservation of linear momentum. This
inconsistency has been identified in [38], but ignored by many practi-
tioners using phase field modeling technologies for hydrodynamical
systems. We note that this inconsistency occurs only in the mixing
region of the two incompressible fluids, where the incompressibility
condition (1.1) is no longer valid, indicating the mixture is no longer
incompressible despite that each fluid component participating in
mixing is. This type of fluids is referred to as quasi-incompressible
in [38]. A systematic fix to this problem for mixtures of incom-
pressible viscous fluids was given by two of the authors in [31],
where the divergence free condition is modified to accommodate the
quasi-incompressibility.

In modeling of ionic fluids, one recognizes that the size of ions
matters in most ionic solutions, in particular in the ionic solu-
tions in which life occurs, in the ocean, and of course in the very
crowded conditions found in and near electrodes in batteries and
electrochemical cells, in and around enzymes, ionic channels, trans-
porters, and nucleic acids, both DNA and RNA [65]. Ionic solutions
are hardly ever ideal: ionic size is almost always important. In mul-
tispecies ionic fluids above a certain concentration or under certain
length scales, the size of the ions matters so that the same incon-
sistency issue in the models for ionic solutions arises again. That
is one can not simply use the solenoidal condition in the veloc-
ity field as a proxy for the material incompressibility. A theory for
multispecies ions of incompressible fluid flows that respects the
material’s mass conservation and momentum conservation needs to
be developed.

This paper aims exactly at developing such a theory for a mixture
of ionic fluid flows of multiple ionic species, in which the ionic den-
sities are unmatched and different from that of the solvent, and their
size effects are non-negligible. We require the theory to be dissipative
while conserving mass and momentum. One targeted application of
this theory is in ion channel modeling [15,16,26]. Ion channels provide
enough data to distinguish between theories because measurements
are available over a wide range of conditions [5,6]. Hundreds of chan-
nel types are studied every day because of their biological and clinical
significance [65]. Concentrations and electrical potentials are con-
trolled in experiments and these provide sets of values for boundary
conditions of mathematical models. Fitting the entire set with one
set of structural parameters allows robust solutions of the inverse
problem [5,6] and thus allows models to be distinguished. Other
applications of the model include electrolyte fluids, biological fluids
with charged bio-species, etc. This theory will be consistent with the

mass and momentum conservation and demonstrates energy dissi-
pation. In principle, a variety of transport equations can be developed
for the ionic species should one knows the system’s energy dissipa-
tion rate. In this paper, we propose two types of transport equations
based on a generalized Onsager principle [57]. These two choices
yield two types of species transport equations and corresponding
energy dissipation rates. Their relations with respect to the existing
electrolyte fluid models will be discussed in the text in details.

The derivation follows the generalized Onsager principle approach
[31,57], leading to two types of transport equations for each ionic
species in the form of Cahn-Hilliad and Allen-Cahn type equations,
respectively. Apparently, these correspond to two distinct energy
dissipation rates. Their applicability to real material systems can only
be confirmed if one could measure the systems’ energy dissipation
rates. However, such measurements have not yet been made, as far as
we know. So in most cases, people adopt one particular formulation
over the others simply based on the leap of faith.

For the new model, together with its limits in the extended
Poisson-Nernst-Planck (EPNP) and the classical PNP with the size
effect (CPNP), we will study their linearized stability on constant
steady states. Instability of the PNP class of models is of direct biolog-
ical interest. Actual biological channels invariably produce unstable
currents [41] that switch ‘ instantaneously’ between open and closed
levels in a random telegraph process called single channel gating
[24]. Instability in the models of this paper may turn into gating
when the models are extended to include noise sources and are
focused on the behavior of just one channel protein. However, we
will not pursue the complicated issue in this paper; instead, we
will focus on introducing the modeling framework and presenting a
set of thermodynamically and hydrodynamically consistent theories,
and discuss their predictions in a simple 1-D case to highlight the
departure of several previously used PNP type models from the new
model.

The paper is organized as follows. First we present the mathe-
matical formulation of hydrodynamic phase field theories for mul-
tispecies ionic fluid flows and various plausible formulations of the
transport equations giving rise to the total energy dissipation. Then,
we examine the theory in 1D geometry to compare the theory
with some existing PNP models with and without the size effect
[15,16,26]. Finally, we provide a concluding remark.

2. Quasi-incompressible hydrodynamic models for ionic fluids

We develop hydrodynamic models for a viscous, multispecies
ionic fluid in an isothermal condition, in which mass, momentum
conservation and the total free energy dissipation are preserved. The
governing system of equations in the model includes the transport
equations for all the ions, the Poisson equation for the electric poten-
tial, and the conservation equation for mass and linear momentum
of the fluid, respectively.

2.1. Mass and momentum conservation equations

We first present the mass and momentum conservation equation.
We consider the transport of viscous, ionic fluids made up of N dif-
ferent ionic species, each of which consists of a type of ionic particles
of the identical size. Here, we tacitly assume the viscous solvent par-
ticle is a type of ions with a zero charge [4,29,30,47]. We denote the
number density for each type of ions by ni, i = 1, · · · , N. The elec-
tric potential generated by these ionic particles is denoted by V. We
denote the volume of each individual ionic particle by vi and the
mass by mi for i = 1, · · · , N, respectively. Then, there is a constraint∑N

i=1 nivi = 1, which states that the excluded volume of the ions is
a constant before and after the mixing. We identify i = a as the
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solvent component which is neutral. The total density of the mixture
is defined by

q =
N∑

i=1

mini. (2.1)

We denote the intrinsic density of the ith species by qi = mi/vi,
which is a constant. Then, it follows that

q =
N∑

i=1

qinivi =
N∑

i=1

0iqi, (2.2)

where 0i = nivi is the volume fraction of the ith ion in the mixture.
We introduce the mass averaged velocity v. Then, the total mass and
the linear momentum conservation yield

∂q

∂t
+ ∇ • (qv) = 0,

q

(
∂v
∂t

+ v •∇v
)

= ∇ •t + F(e), (2.3)

where t = −p0I + tv is the total stress tensor, p0 is the hydrostatic
pressure, tv is the extra stress tensor and F(e) is the interfacial force
that yields the Ericksen stress for the mixture fluid system. We next
turn to the derivation of the transport equations for the ions.

2.2. Transport equations for the ions

The free energy of the system is prescribed as F =
∫
Yf [n1,

· · · , nN]dx, where Y is the material volume, and the density of the
free energy functional is defined by [43,44]

f [n1, · · · , nN] =kBT
∑N

i=1

ni

Ni
(ln ni − 1) + qe

(
1
2
Vn + Ve

)

+
∫

K(x − y)G
(
{ni}N

i=1(x), {ni}N
i=1(y)

)
dy, (2.4)

where kB is the Boltzmann constant, T is the absolute temperature,
Ni is a generalized polymerization index for the ith ionic particle
(Na = 1), qe = e0 +

∑N
i=1 zieni is the total charge density, zi is the

valence for type i ion and also denotes its sign (for solvent, we note
that za = 0), e is the unit charge, e0 is the permanent charge density
in the system, Vn is the electric potential generated by the total
charge, Ve is a given external electric potential which is independent
of the total charge and the total electric potential is V = Vn + Ve.
The first group in the sum represents the entropic contribution of the
ionic particles to the free energy, the second part gives the electrical
energy density of the system, and the third part gives the interaction
of the excluded volume effect and the long-range interaction among
the ions of finite sizes.

The electrical energy density in the given external electric field is
qeVe and in the electric field generated by the charges is 1

2q
eVn. The

equations for the electric potentials Vn and Ve are

{
∇ • (e∇Vn) = − (e0 +

∑
izieni) ,

Vn|∂Y = 0,
and

{
∇ • (e∇Ve) = 0,

Ve|∂Y = V0(∂Y),

(2.5)

where e is the dielectric constant, V0 is a given boundary function.
Here the boundary condition is Dirichlet BC, it can be changed to
other type boundary conditions. The external electric potential Ve is
determined by the boundary condition with zero charge source. If
V0 = 0, there is no external electric potential. Vn is determined by

the charge source with homogenous boundary condition and it can
be expressed by using the Green’s function G(x, x′) as

Vn(x) = −
∫
Y

(
G (x, x′)

(
e0 (x′) +

∑
i
zieni (x′)

))
dx′. (2.6)

Then the variation of the electrical energy Fe =
∫
Yq

e
(

1
2Vn + Ve

)
dx

with the ion density ni is

dFe

dni
= zie0n + zie0e = zieV. (2.7)

The equation for the total electric potential is

{
∇ • (e∇V) = − (e0 +

∑
izieni) ,

V|∂Y = V0(∂Y).
(2.8)

The third part of the free energy density can be approximated via
expansions in a differential form

∫
K(x − y)G

(
{ni}N

i=1(x), {ni}N
i=1(y)

)
dy ≈ g[n1, · · · , nN]

= g
(
{ni}N

i=1, {∇ni}N
i=1

)
. (2.9)

One specific form of the function g accounting for the size effect of
the ions is given by

g = kBT
[∑N

i,j=1

nij

2
ninj +

∑N

i=1

ci

2
‖ ∇ni‖2

]
, (2.10)

where the coefficient matrix nij is symmetry. The first part in the
energy density represents a repulsive interaction due to the finite
size effect while the second part is the conformation entropy asso-
ciated with the heterogeneous distribution of the ions in space. This
approximate function represents the lowest order approximation to
the interaction potential with the long-range interaction, for which
we will adopt in the rest of the paper. The chemical potential for the
ith ionic particle is then given by

li =
dF
dni

= kBT
[

1
Ni

(ln ni) +
∑

j
nijnj − ci∇2ni

]
+ eziV. (2.11)

Assuming there is no annihilation of charges between positive
and negative ionic particles, each species’ charge and the total charge
in the system is supposed to be conserved under the flux free
boundary condition,

∫
Y

nidx = Ci, i = 1, · · · , N,
∫
Y

(
N∑

i=1

zini

)
dx = C = const, (2.12)

where Ci, i = 1, · · · , N and C are constants and C = 0 is called
charge neutral. Indeed, annihilation can occur in biological systems
and ordinary bulk ionic solutions when weak acids and bases (like
acetic acid, i.e., vinegar, or sodium bicarbonate, i.e., baking soda)
are involved as components of the solution or as side chains of
the protein that forms the ion channel. Such effects are significant
in some cases, but they form a separate field of investigation, in
theory, experiment, and indeed in medical practice, where they are
particularly important. In this paper, we ignore those effects.

We propose the transport equation for the ith ion as follows

∂ni

∂t
+ ∇ • (vni) = Bi, i = 1, · · · , N, (2.13)
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where Bi is going to be determined from the total free energy dissipa-
tion in the following. We note that there are two constraints of Bi as
follows, due to the constraint of ni and the total mass conservation,
respectively. Using

∑N
i=1 nivi =

∑N
i=1 0i = 1, we have

∂t

(
N∑

i=1

nivi

)
+ ∇ •

(
N∑

i=1

vnivi

)
=

N∑
i=1

Bivi. (2.14)

It implies that

∇ • v =
∑N

i=1
Bivi =

∑N

i=1
Bi

mi

qi
. (2.15)

This gives us the first constraint on the B′
is.

In addition, from the total mass conservation and q =
∑N

i=1 mini,
we obtain

N∑
i=1

miBi = 0. (2.16)

This yields the second constraint on the B′
is. The constraints war-

rant that the transport equations for each species are not completely
independent. We next discuss two distinct ways to derive the trans-
port equations for the ions and solvent following the generalized
Onsager principle [57].

2.3. Formulation 1

We denote the ath component (the solvent component) as the
non-vanishing component in the mixture and then it follows from
Eq. (2.16)

Ba = − 1
ma

∑
i�=a

miBi. (2.17)

The total free energy E =
∫
Y

( q
2 ‖ v‖2) dx+F of the system consists of

two parts: the kinetic energy and the Helmholtz free energy F. Now,
we compute the total free energy dissipation rate as follows:

dE
dt

=
d
dt

∫
Y

[
q

2
‖ v‖2 + f

]
dx

= −
∫
Y

[
∇v : t − v • F(e) −

∑N

i=1
li

∂ni

∂t

]
dx +

∫
∂Y

n •
(∑N

i=1

∂ f
∂∇ni

∂ni

∂t

)
dS

= −
∫
Y

[
∇v : t − v • F(e) +

∑N

i=1
li(∇ • vni + v • ∇ni) −

∑N

i=1
liBi

]
dx

= −
∫
Y

{
∇v : tv +

∑N

i=1

[
(−p)mi

(
1
qi

− 1
qa

)
− li +

mi

ma
la

]
Bi

}
dx,

(2.18)

where ∂Y is the surface of the material volume Y, n is the unit
external normal, the elastic force is identified as follows

F(e) =
N∑

i=1

li∇ni, (2.19)

and the total pressure is given by

p = p0 −
N∑

i=1

lini. (2.20)

In the last step, constraint Eq. (2.17) is used. We also set the boundary
condition

n •
∂ f

∂∇ni
= 0, (2.21)

so that the surface integration is zero, i.e.,
∑N

i=1
∫
∂Yn • ∂ f

∂∇ni

∂ni
∂t ds = 0.

Next, we identify two forms of Bi following the generalized
Onsager principle to warrant energy dissipation of the system [57].
They are associated with two famous transport equations: the Cahn-
Hilliard and the Allen-Cahn equation, respectively.

2.3.1. Cahn-Hilliard dynamics
In the first case, we choose Bi as follows

Bi = −
∑N

k=1
∇ •kik∇

[
(−p)mk

(
1
qk

− 1
qa

)
− lk +

mk

ma
la

]
, for i �= a,

(2.22)

where the mobility coefficient matrix (kij, i, j �= a) is symmetric and
nonnegative definite. Then, using integration by parts, the energy
dissipation rate is given by

dE
dt

= −
∫
Y

{
∇v : tv +

∑N

i,k=1
∇
[

(−p)mi

(
1
qi

− 1
qa

)
− li +

mi

ma
ma

]
•kik

∇
[

(−p)mk

(
1
qk

− 1
qa

)
− lk +

mk

ma
la

]}
dx + surface term ≤ 0 (2.23)

provided ∇v : tv ≥ 0 and the surface term is zero. For viscous fluids,
the viscous stress tensor is given by

tv = 2g
[

D − 1
3

tr(D)I
]

+ mtr(D)I, (2.24)

where D = 1
2

(∇v + ∇vT
)

is the strain rate tensor, I is the identity
tensor, g is the shear viscosity and m is the bulk viscosity. Then ∇v :
tv = 2gD : D +

(
m − 2

3g
)

(tr(D))2 ≥ 0 is satisfied so long as g > 0

and m − 2
3g > 0. The zero surface term is warranted by the following

no-flux boundary condition:

n •

{∑N

k=1
kik∇

[
(−p)mk

(
1
qk

− 1
qa

)
− lk +

mk

ma
la

]}
= 0. (2.25)

We summarize the governing system of equations in this model
in the following:

∂ni

∂t
+ ∇ • (vni) = −

∑N

k=1
∇ •kik∇

[
(−p)mk

(
1
qk

− 1
qa

)
− lk +

mk

ma
la

]
,

for i �= a,

∇ • v = −
∑N

i,k=1
mi

(
1
qi

− 1
qa

)
∇ •kik∇

[
(−p)mk

(
1
qk

− 1
qa

)
− lk +

mk

ma
la

]
,

q
dv
dt

= ∇ •
[
−
(

p +
∑N

i=1
lini

)
I + tv

]
+
∑N

i=1
li∇ni

= ∇ • (−pI + tv) −
∑N

i=1
ni∇li, (2.26)

and the equation for the electric potential is

∇ • (e∇V) = −
(

e0 +
∑

i
zieni

)
. (2.27)

where e is the dielectric constant. This model is not incompressible
since ∇ • v �= 0 when densities are not identical. It is known as the
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quasi-incompressible model [67]. This model is different from the
previous models for ionic fluids.

We remark that the previous models for ionic fluids assume
the incompressible condition ∇ • v = 0. This is valid only when
qi = qj, i, j = 1, · · · , N. In this case, we end up with a self-consistent
model as follows:

∂ni

∂t
+ ∇ • (vni) =

∑N

k=1
∇ •kik∇[lk − la], for i �= a,

∇ • v = 0,

q
dv
dt

= ∇ • (−pI + tv) −
∑N

i=1
ni∇li,

∇ • (e∇V) = −
(

e0 +
∑

i
zieni

)
. (2.28)

In this model, the energy dissipation rate is given by

dE
dt

= −
∫
Y

⎧⎨
⎩∇v : tv +

∑
i,k�=a

∇[li − la] •kik∇ [lk − la]

⎫⎬
⎭ ≤ 0. (2.29)

For the above two model equation systems, the following
boundary conditions are used:

n •
∂ f

∂∇ni
= 0,

n •

{∑N

k=1
kik∇

[
(−p)mk

(
1
qk

− 1
qa

)
− lk +

mk

ma
la

]}
= 0. (2.30)

Together, they warrant that there is no boundary contribution to
the energy dissipation and the constraints on the charge conserva-
tion in the system imposed by Eq. (2.12) are satisfied. The boundary
condition for the electric potential is the Dirichlet boundary condi-
tion which is equal to a specified surface potential, and the boundary
condition for the velocity field is the no slip boundary condition.

2.3.2. Allen-Cahn dynamics
Alternatively, we choose Bi as follows

Bi =
∑N

k=1
kik

[
(−p)mk

(
1
qk

− 1
qa

)
− lk +

mk

ma
la

]
, for i �= a,

(2.31)

where kik is the mobility coefficient, we obtain an Allen-Cahn type
transport equation for the ith ion

∂ni

∂t
+∇ • (vni) =

∑N

k=1
kik

[
(−p)mk

(
1
qk

− 1
qa

)
− lk +

mk

ma
la

]
, for i �= a.

(2.32)

The other equations are given by

∇ • v = −
∑N

i,k=1
mi

(
1
qi

− 1
qa

)
kik

[
(−p)mk

(
1
qk

− 1
qa

)
− lk +

mk

ma
la

]
,

q
dv
dt

= ∇ •

[
−
(

p +
∑N

i=1
lini

)
I + tv

]
+
∑N

i=1
li∇ni = ∇ • (−pI + tv)

−
∑N

i=1
ni∇li,

∇ • (e∇V) = −
(

e0 +
∑

i
zieni

)
. (2.33)

The boundary condition for this equation system is Eq. (2.21). The
energy dissipation rate is given by the following

dE
dt

= −
∫
Y

{
∇v : tv +

∑N

i,k=1

[
(−p)mi

(
1
qi

− 1
qa

)
− li +

mi

ma
ma

]

×kik

[
(−p)mk

(
1
qk

− 1
qa

)
−lk +

mk

ma
la

}]
dx ≤ 0, (2.34)

provided (kij) ≥ 0.
In the Allen-Cahn model, the charge conservation imposed by

Eq. (2.12) may not be upheld. In order to impose the constraint
approximately, we have to augment the free energy by adding a
penalizing term

L1

N∑
i=1

(∫
Y

ni − Ci

)2

+ L2

(∫
Y

N∑
i=1

zinidx − C

)2

, (2.35)

where L1,2 are large positive numbers. An alternative approach is to
enforce the constraints directly by using Lagrange multipliers in the
free energy,

L1

N∑
i=1

(∫
Y

ni − Ci

)
+ L2

(∫
Y

N∑
i=1

zinidx − C

)
, (2.36)

where L1,2 are two Lagrange multipliers. These are common
practices when one uses Allen-Cahn model to study multiphase fluid
dynamics. We note that their physical validity is not widely accepted
in the research community though.

Note that Allen-Cahn and Cahn-Hilliard equations represent two
different types of transport for scalar phase variables in a dissipative
system [39]. Higher order transport equations are also possible, but
are rarely used. Thus, we will not pursue them in this study.

2.4. Formulation 2

By using constraint Eq. (2.17), we rewrite the energy dissipation
rate as follows

dE
dt

= −
∫
Y

{
∇v : tv +

∑N

i=1

[
(−p)

mi

qi
− li

]
Bi

}
dx

= −
∫
Y

{
∇v : tv +

∑N

i=1

[
(−p)

mi

qi
− li − Lmi

]
Bi

}
dx, (2.37)

where L is a Lagrange multiplier, which is a function of the space and
time. If we adopt the Cahn-Hilliard equation for the ionic species, the
right hand term Bi is chosen as

Bi = −
∑N

j=1
∇ •kij∇

[
(−p)

mj

qj
− lj − Lmj

]
, i = 1, · · · , N, (2.38)

where kij is the mobility coefficient matrix. The constraint∑N
i=1 miBi = 0 implies

N∑
i,j=1

∇ •kij∇
[

(−p)
mj

qj
− lj − Lmj

]
mi = 0. (2.39)

It yields an elliptic equation for the Lagrange multiplier L:

∑N

i,j=1
mimj∇ •kij∇L =

∑N

i,j=1
∇ •kij∇

[
(−p)

mj

qj
− lj

]
mi. (2.40)

The Lagrange multiplier L is a solution of the elliptic equation. If the
coefficient is a positive definite matrix, L is solvable in principle. In
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a special case where kij are constants, the Poisson equation can be
rewritten into

∇2L =

⎡
⎣ N∑

i,j=1

kijmimj

⎤
⎦

−1
N∑

i,j=1

∇ •kij∇
[

(−p)
mj

qj
− lj

]
mi. (2.41)

Here, we don’t need to know the specific solution form for L. Then
we have

Bi = −
∑N

k=1
∇ •kik

⎧⎨
⎩∇

[
(−p)

mk

qk
− lk

]
−
∑N

i,j=1 kijmimj∇
[
(−p) mk

qj
− mk

mj
lj

]
∑N

i,j=1 kijmimj

⎫⎬
⎭

= −
∑N

k=1
∇ •kikGk. (2.42)

The flux terms Gk are given by

Gk = (−∇p)

(
mk

qk
−
∑N

j=1 wjmk/qj∑N
j=1 wj

)
− ∇lk +

∑N
j=1 wjmk∇lj/mj∑N

j=1 wj

,

k = 1, 2, . . . , N. (2.43)

The terms wj =
∑N

i=1 kijmimj, j = 1, 2, . . . , N act as weighting
factors. The difference between this model and the model derived in
formulation 1 is that the correction factors are the weighted average
terms.

In a dilute solution, the solvent density is much larger than the
other components, that is na 	 nj for j �= a. If we assume the
mobility parameters kij ∼ kinidij, where ki is a constant, then wj =∑N

i=1 kijmimj ∼ kjnjm2
j . Thus wa 	 wj for j �= a when mj and ma

are not far apart, and this formulation reduces to the Cahn-Hilliard
model derived in the previous subsection because

∑N
j=1 wjmk/qj∑N

j=1 wj

≈ mk

qa
,

∑N
j=1 wjmk∇lj/mj∑N

j=1 wj

≈ mk

ma
∇la , Ga ≈ 0.

(2.44)

For the solvent component, the governing equation of the density
na is

∂na

∂t
+ ∇ • (vna) = −∇ •kaaGa ≈ 0. (2.45)

Then we can drop the equation of the solvent component in our
system and instead only consider the ionic components in this
formulation.

If we adopt the Allen-Cahn equation, the Bi is chosen as follows

Bi =
∑

j
kij

[
(−p)

mj

qj
− lj − Lmj

]
, (2.46)

where kij is the mobility coefficients. The constraint
∑N

i=1 miBi = 0
implies

∑N
i,j=1 kij

[
(−p)

mj
qj

− lj − Lmj

]
mi = 0. Thus, the Lagrange

multiplier L can be solved as follows

L =
[∑N

i,j=1
kijmimj

]−1 ∑N

i,j=1
kij

[
(−p)

mj

qj
− lj

]
mi. (2.47)

The transport equation for the ith ion is given by

∂ni

∂t
+ ∇ • (vni) =

∑N

k=1
kik

[
(−p)

(
mk

qk
−
∑N

j=1 wjmk/qj∑N
j=1 wj

)

−lk +

∑N
j=1 wjmklj/mj∑N

j=1 wj

]
. (2.48)

Using the same argument, if we assume the mobility parameters
kij ∼ kinidij, then wj =

∑N
i=1 kijmimj ∼ kjnjm2

j . Thus, wa 	 wj for
j �= a, which implies

∑N
j=1 wjmk/qj∑N

j=1 wj

≈ mk

qa
,

∑N
j=1 wjmklj/mj∑N

j=1 wj

≈ mk

ma
la , (2.49)

and the governing equation of the solvent density na is

∂na

∂t
+ ∇ • (vna) ≈ kaa

[
−p

(
ma

qa
− ma

qa

)
− la + la

]
= 0. (2.50)

This formulation reduces to the Allen-Cahn model derived in
formulation 1.

If (kij) is a dense matrix, the two formulations are apparently
different. However, if kij = kdij, the Cahn-Hilliard equation derived
in formulation 2 reduces to

∂ni

∂t
+ ∇ • (vni) = −k∇2

[
−p

mk

qk
+

p∑N
i=1 m2

i

∑N

i=1

m2
i mk

qi
− lk

+
1∑N

i=1 m2
i

∑N

i=1
mimkli

]
. (2.51)

If mi = m, i = 1, · · · , N, it further reduces to

∂ni

∂t
+ ∇ • (vni) = k∇2

[
lk − 1

N

∑N

i=1
li

]
. (2.52)

Likewise, the Allen-Cahn equation reduces to

∂ni

∂t
+ ∇ • (vni) = −k

[
lk − 1

N

∑N

i=1
li

]
. (2.53)

Both of these have been used by some researchers in the past to
describe multiphase materials [38].

Apparently, formulation 2 is different from formulation 1 and it
seems to be a more general way of deriving the transport equations
for the ionic species. However, if we choose L such that

−p
ma

qa
− la − Lma = 0 (2.54)

and redefine

Ba = − 1
ma

N∑
i�=a

Bimi, (2.55)

we recover the model derived using formulation 1. This means that
the transport equation for na defined in reformulation 2 must be
modified in order to recover the transport equation in formulation 1.
However, this modification has no impact whatsoever on the energy
dissipation rate.

Another remark that we would like to make on these models is
that each model yields an energy dissipation of its own. The choice
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of the model should therefore be made based on which energy
dissipation rate best fits the real system to be modeled.

2.5. Model reformulation and reduction to existing models for
multispecies ionic fluids

The above models are formulated using number densities of the
components in the fluid mixture. We can reformulate the model
using the volume fraction 0i or the mass fraction ci since they
are functions of the number density functions, 0i = nimi, ci =
mini
q , i = 1, · · · , N, where mi and mi are constants, denoting the

volume and the mass of each individual ionic particle, respectively.
If qi = q0, i = 1, · · · , N, ∇ • v = 0 and, in addition, we remove

the entropic contribution of the solvent to the fluid mixture, i.e., we
drop na(ln na − na), where a corresponds to the solvent component,
from the free energy, the model reduces to the existing PNP model
with the finite size effect [26, 27, 33]. So, all the previous ionic fluid
models can be regarded as the model applied to the case where all
ions are of the same mass density and the solvent effect to the free
energy is neglected.

Next, we compare the new model with some of its limits and
some existing models.

3. Binary ionic fluid model

We consider a mixture of two distinctive ionic components
(N = 3), where a = 3 corresponds to the solvent component,
known as the binary ionic fluid model. The other two components
in the fluid mixture are cations (positive ions) and anions (negative
ions). We adopt the Cahn-Hilliard dynamics for the transport of ions.
The governing system of equations is given by

∂ni

∂t
+ ∇ • (vni) = −∇ •kini∇

[
(−p)mi

(
1
qi

− 1
q3

)
− li +

mi

m3
l3

]
, i = 1, 2,

∇ • v = −
∑2

i=1
mi

(
1
qi

− 1
q3

)
∇ •kini∇

[
(−p)mi

(
1
qi

− 1
q3

)
− li +

mi

m3
l3

]
,

q
dv
dt

= ∇ • (−pI + tv) −
3∑

i=1

ni∇li,

∇ • (e∇V) = −
(

e0 +
∑

i

zieni

)
, (3.1)

Here, we assume the mobility matrix is kij = kinidij, the mobility of
each ion is only dependent on its own number density. The spatial
gradients of the chemical potentials are given by

∇l1 =
kBT

N1n1
∇n1 + ez1∇V + kBT

[
n12∇n2 + n11∇n1 − c1∇∇2n1

]
,

∇l2 =
kBT

N2n2
∇n2 + ez2∇V + kBT

[
n12∇n1 + n22∇n2 − c2∇∇2n2

]
,

∇l3 = kBT
−v1∇n1 − v2∇n2

1 − v2n2 − v1n1
. (3.2)

Where we assume that n3i = nj3 = c3 = 0, i.e., the interaction
between the ions is dominant. The entropic contribution only shows
up in the chemical potential of solvent (l3).

3.1. Nondimensionalization

We use a characteristic time scale t0, length scale l0, and mass
density scale q0 = q3, and the characteristic number density n0 to
non-dimensionalize the physical variables. The mass density scale

is chosen as the mass density of water here. Then, we denote the
corresponding volume scale as v0 = l30, mass scale m0 = q3v0. The
dimensionless variables are defined as follows:

ñi =
ni

n0
, t̃ =

t
t0

, x̃ =
x
l0

, ṽ =
t0

l0
v, p̃ =

t2
0

q0l20
p, l̃i =

t2
0

m0l20
li.

(3.3)

Then, the dimensionless parameters are given by

rv
i =

vi

v3
, rm

i =
mi

m3
, i = 0, 1, 2, q̃ =

q

q0
, q̃i =

qi

q0
, k̃i =

m0

t0
ki,

g̃ =
t0

q0l20
g, m̃ =

t0

q0l20
m,

k̃B =
Tt2

0

m0l20
kB, ñij = n0nij, c̃i =

n0

l20
ci, Ṽ =

t2
0e

m0l20
V, ẽ0 =

e0

en0
,

z̃i = zi, ẽ =
m0

e2t2
0n0

e. (3.4)

We set k̃B = 1 to obtain t0 =

√
m0 l20
kBT and also set n0v0 = 1 to obtain

n0 = 1
v0

. It’s easy to find that rm
i = q̃irv

i for i = 1, 2 and rm
0 = rv

0.
For simplicity, we drop the ∼ on the dimensionless variables and the
parameters. The system of governing equations for the binary ionic
fluid model in these dimensionless variables are given by

∂ni

∂t
+ ∇ • (vni) = −∇ •kini∇

[−Rip − li + rm
i l3

]
, i = 1, 2,

∇ • v = −
∑2

i=1
Ri∇ •kini∇[−Rip − li + rm

i l3] =
∑2

i=1
Ri

[
∂ni

∂t
+ ∇ • (vni)

]
,

q
dv
dt

= ∇ • (−pI + tv) −
∑3

i=1
ni∇li,

∇ • (e∇V) = −
(

e0 +
∑2

i=1
zini

)
, (3.5)

where the parameters Ri =
(

rm
i

rm
0

)(
1
qi

− 1
)

for i = 1, 2, the total

mass density q = 1 − R1n1 − R2n2, the solvent’s number density
n3 = rv

0 −rv
1n1 −rv

2n2. The spatial gradients of the chemical potentials
are

∇l1 =
1

N1n1
∇n1 + z1∇V + n12∇n2 + n11∇n1 − c1∇∇2n1,

∇l2 =
1

N2n2
∇n2 + z2∇V + n12∇n1 + n22∇n2 − c2∇∇2n2,

∇l3 =
−rv

1∇n1 − rv
2∇n2

n3
. (3.6)

In the following, we refer to the model as the full model, where the
word “full” means that the model respects all conservation laws and
accounts for the finite size effect and the solvent entropy.

3.2. Models at regimes of two distinct length scales

We examine the dimensionless full model at two distinct length
scales. If we choose the length scale l0 = 10−9m = 1nm, we have
the time scale t0 = 1.55 × 10−11s. If we choose the length scale
l0 = 10−7m = 100nm, we have the time scale t0 = 1.55 × 10−6s.

We set the first type ion is the positive ion with valence z1 = +1
and polymerization index N1 = 1; the second type ion is the neg-
ative ion with valence z2 = −1 and polymerization index N2 = 1.
The values of the ratios of the ions’ volume, mass and density are
tabulated in Table 1. The density ratio of the solvent and two ions is
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Table 1
The ratios of volume, mass and density.

Ratios q1 q2 rv
1 rv

2 rm
1 rm

2

Values 0.5 2 2 1 1 2

Ratios rv
0 = rm

0 R1 R2

Values (l0 = 1nm) 40 0.025 −0.025
Values (l0 = 100nm) 4 × 107 2.5 × 10−8 −2.5 × 10−8

q3 : q1 : q2 = 1 : 0.5 : 2, the volume ratio is v3 : v1 : v2 = 1 : 2 : 1.
The size differences of the three components are distinct. The param-
eters R1, R2 are O(10−2) in the smaller length scale l0 = 1nm. The
compressibility of the flow (∇ • v �= 0) in the full model cannot be
neglected.

If the densities of the three components are the same, i.e. q3 :
q1 : q2 = 1 : 1 : 1, we have R1 = R2 = 0, the flow becomes
incompressible. Furthermore, when the density differences are dis-
tinct, but the larger characteristic length scale l0 = 100nm is used
in the dimensionless system, the values of parameters R1, R2 are very
small, as in Table 1. If the corresponding terms of Ri are dropped
from the full model, the model reduces to a model that we call the
extended PNP model (EPNP), in which the flow is incompressible:

∂ni

∂t
+ ∇ • (vni) = −∇ •kini∇

[−li + rm
i l3

]
, i = 1, 2,

∇ • v = 0,

q
dv
dt

= ∇ • (−pI + tv) −
∑3

i=1
ni∇li,

∇ • (e∇V) = −
(

e0 +
∑2

i=1
zini

)
. (3.7)

Here the mass density, the stress tensor and the chemical potentials
are the same to those in the Full model.

Furthermore, if we neglect the entropic contribution of the
solvent to the fluid mixture, i.e., we drop na(lnna − 1),a = 3, from
the free energy, we get the classical PNP model with the finite size
effect (CPNP) [15, 16, 22, 23, 48]. This is equivalent to removing the
l3 terms from the equations of the above EPNP model. To be clear, we
note that the commonly used classical PNP model does not include
the finite size effect.

When the characteristic length scale used is l0 = 1nm, the
parameters R1, R2 are not small. So, the full model must be used. The
model is indeed different from the limiting PNP models even with
the finite size effect. Note that this is the length scale regime that is
applicable to the ion channel problem. The other model parameters
are listed in Table 2.

3.3. Comparison of the full model with the limiting PNP models in 1D
space

We compare the full model with the EPNP and CPNP models in 1D
space, assuming the system is homogeneous in the (y, z) directions
and depends only on x and time t (i.e., the variables are functions of
(t, x).) The domain for x is assumed finite given by Y = [0, Lx]. The
governing equations of full model in 1D are given explicitly by

∂n1

∂t
+ (v1n1)′ = −{k1n1

[−R1(p)′ − (l1)′ + rm
1 (l3)′]}′,

∂n2

∂t
+ (v1n2)′ = −{k2n2

[−R2(p)′ − (l2)′ + rm
2 (l3)′]}′,

(v1)′ = R1

[
∂n1

∂t
+ (v1n1)′

]
+ R2

[
∂n2

∂t
+ (v1n2)′

]
,

q

(
∂v1

∂t
+ v1(v1)′

)
= −(p)′ +

(
4
3
g + m

)
(v1)′′ − [n1(l1)′ + n2(l2)′ + n3(l3)′] ,

q

(
∂v2

∂t
+ v1(v2)′

)
= g(v2)′′ ,

q

(
∂v3

∂t
+ v1(v3)′

)
= g(v3)′′ ,

(V)′′ = −
[

e0 +
2∑

i=1

zini

]
/e, (3.8)

where ( • )′ = ∂( • )
∂x , ( • )′′ = ∂2( • )

∂x2 , and the gradients of the chemical
potentials are

(l1)′ =
1

N1n1
(n1)′ + z1(V)′ + n12(n2)′ + n11(n1)′ − c1(n1)′′′,

(l2)′ =
1

N2n2
(n2)′ + z2(V)′ + n12(n1)′ + n22(n2)′ − c2(n2)′′′,

(l3)′ =
−rv

1(n1)′ − rv
2(n2)′

n3
. (3.9)

The unknowns are n1, n2, p, v1, v2, v3,V, which are fully coupled.
The 1D EPNP model is much simpler now. First, from the incom-

pressible condition (v1)′ = 0, we find that v1 = 0 due to the fixed
boundary condition of v. Then, the pressure p and v2, v3 are deter-
mined from the momentum equation. The independent unknowns
in the EPNP model are then n1, n2,V and the 1D governing equations
are given by

∂n1

∂t
= −{k1n1

[−(l1)′ + rm
1 (l3)′]}′,

∂n2

∂t
= −{k2n2

[−(l2)′ + rm
2 (l3)′]}′,

(V)′′ = −
[

e0 +
∑2

i=1
zini

]
/e, (3.10)

where the gradients of the chemical potentials are given by Eq. (3.9).

Table 2
Model parameters.

Symbol Parameter Value (unit) l0 = 1nm l0 = 100nm

g Shear viscosity 1 × 10−3 kgm−1s−1 15.54 155.4
m Bulk viscosity 2.75 × 10−3 kgm−1s−1 42.74 427.4
e Dielectric constant 7.08 × 10−10Fm−1 0.1145 11.45
V Electric potential 1V 38.65 38.65
c1 High order diffusion of 1st ion 1.6606 × 10−27 m5mol−1 10−4 10−14

c2 High order diffusion of 2nd ion 1.6606 × 10−27 m5mol−1 10−4 10−14

k1 Mobility of 1st ion 3.1083 × 1011 kg−1s 0.02 0.2
k2 Mobility of 2nd ion 3.1083 × 1011 kg−1s 0.02 0.2
n11 Self-interaction of 1st ion 1.6606 × 10−5 m3mol−1 1 10−6

n22 Self-interaction of 2nd ion 1.6606 × 10−5 m3mol−1 1 10−6

n12 Interaction of the two ions 1.6606 × 10−5 m3mol−1 1 10−6
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If we further remove the l3 terms from the 1D governing
equations of the EPNP model, we get the 1D equations of the classi-
cal PNP model with the finite size effect (CPNP). In the following, we
will compare these three models explicitly in 1D. First, we examine
their linear stability properties.

3.4. Linear stability of the constant state

If we assume e0 = 0 (namely, the system does not have
a permanent charge present), there exists a constant solution
of the full model, which is a solution of all limiting models,
n1 = n2 = n0, v = 0, p = 0,V = 0, where n0 is constant such that

n0
3 = rv

0 − rv
1n0 − rv

2n0 > 0. (3.11)

This inequality isnecessarytoensurethatthesolventdensity isgreater
than zero. We perturb this constant solution as follows:

n1 = n0 + 4eat+ikxn0
1, n2 = n0 + 4eat+ikxn0

2,

v1 = 4eat+ikxv0
1, p = 4eat+ikxp0, V = 4eat+ikxV0. (3.12)

Here 4 � 1 is a small parameter, a is the growth rate and k is
the wave number. First, we point out that the velocity components
v2, v3 are decoupled from the rest of the system in the linearized
equations and they do not contribute instability in this problem; so,
we only consider the coupled system involving the remaining vari-
ables: p0,V0, v0

1, n0
1, n0

2. The linearized eigenvalue problem for the Full
model is given in the Appendix. The asymptotical analysis in the small
wave number regime shows that the instability can incur only when
n12 is negative enough. But, nij > 0 in the model. So this mode of insta-
bility is absent from the full model and its limits. The system is stable
for long wave (small wave number) perturbation. It is easy to find
that the system is also stable for short wave (large wave number) per-
turbation. From the numerical studies, we find that the intermediate
wave instability appears when n12 is sufficiently large. The analytical
result of the intermediate wave instability is hard to obtain from the
full model, but easy from the EPNP model. We thus focus on the linear
stability of the limiting EPNP model in the following.

The linearized eigenvalue problem is given in the Appendix. The
instability condition is A < 0, where

A = k1k2(n0)2

{
ak2 + bk4 +

[
c2

(
1

N1n0
+ n11 +

rv
1rm

1

n0
3

)

+c1

(
1

N2n0
+ n22 +

rv
2rm

2

n0
3

)]
k6 + c1c2k8

}
< 0. (3.13)

Here, the parameters a, b are defined by

a =

[
1

N1n0
+

1
N2n0

+ n11 + n22 + 2n12 +
1
n0

3

(rv
1 + rv

2)
(
rm

1 + rm
2

)] 1
e

,

b =
c1 + c2

e
+

1
N1N2(n0)2

+

(
n11 +

rv
1rm

1

n0
3

)
1

N2n0
+

(
n22 +

rv
2rm

2

n0
3

)
1

N1n0

+
rv

1rm
1 n22 + rv

2rm
2 n11

n0
3

+ n11n22 − n2
12 − rm

1 rv
2 + rm

2 rv
1

n0
3

n12.

Because k1,k2,c1,c2, n11, n22 are all positive, so the coefficients of
k8, k6 are all positive. It implies that A > 0 for large wave numbers.
This means that the system is stable for short waves. For long waves
(small wave numbers), since the parameter a > 0, then A > 0 for

small |k|. So, the solution is stable. Analogously, the mode of insta-
bility is absent from the CPNP model, which is a limit of the EPNP
model, at both long and short waves.

For intermediate waves, we notice a possible instability if b is
negative, i.e.,

a > 0, b < 0. (3.14)

In certain parameter regimes, the growth rate a1 (given in the
Appendix) can be negative for a very small |k|, becomes positive for
some intermediate values of |k|, and then turns to negative again at
large |k|. Assuming c1 = c2 = d � 1, we obtain the roots of A = 0
asymptotical. Then, we obtain the cutoff wave numbers. We denote
c = 1

N1n0 + n11 +
rv
1rm

1
n0

3
+ 1

N2n0 + n22 +
rv
2rm

2
n0

3
, then we have

A/(k1k2(n0)2k2) = a + bk2 + cdk4 + d2k6.

There are two positive roots of k2, corresponding to two cutoff
wave numbers kcutoff

1,2 , asymptotically:

(
kcutoff

1

)2
= − a

b
− a2c

b3
d+ O(d2),

(
kcutoff

2

)2
=

x0

d
+ x1 + O(d), (3.15)

where x0 = −c+
√

c2−4b
2 , x1 = −a

b+2cx0+3x2
0

. We only retain the

first two terms in the asymptotic roots. The parameter A is neg-
ative when the wave number is between the two cutoff wave
numbers 0 < kcutoff

1 < k < kcutoff
2 . The growth rate a1 is pos-

itive in this intermediate wave number regime. This instability
depends strongly on the interaction parameter n12, the instability
condition is satisfied for a sufficiently large n12. We fix the parameter
N1 = N2 = 1,k1 = k2 = 0.02,c1 = c2 = 10−4, n11 = n22 = 1,
n0 = 1 in the length scale l0 = 1nm regime, and vary the param-
eter n12. When n12 > 2.06, b < 0, the intermediate wave instability
incurs. In Fig. 1 (a), we show the curves of the two cutoff wave
numbers as a function of n12. The smaller cutoff wave number kcutoff

1
is decreasing and the larger cutoff wave number kcutoff

2 is increas-
ing as n12 increases from 2.046. The unstable wave number regime(

kcutoff
1 , kcutoff

2

)
widens as n12 increases.

When d → 0, we have kcutoff
1 →

√
− a

b and kcutoff
2 → +∞. The

unstable wave regime is k > kcutoff
1 . The system is unstable for

large wave numbers (short waves), which is known as the Hadamard
instability. Hence, the high order diffusion coefficients c1,c2 have
the effect to suppress the short wave instability.

This intermediate wave instability is also dependent of the con-
stant state n0. When the interaction parameter n12 = 2.2 is fixed,
but n0 is varying, we find that b is positive for small n0 and nega-
tive for large n0. That means the system is stable for dilute solution
but unstable for rich solution. We also plot the cutoff wave numbers
as functions of n0 with fixed n12 = 2.2 in Fig. 1(b). The instabil-
ity appears when n0 > 0.87, and the unstable wave number regime(

kcutoff
1 , kcutoff

2

)
widens as n0 increases.

This intermediate wave instability is a feature of these
three models. Through a numerical investigation, we confirm
that this instability property can occur in all three models.
In the following example (Fig. 2), we use parameter values
N1 = N2 = 1,k1 = k2 = 0.02,c1 = c2 = 10−4, n11 = n22 = 1,
n12 = 2.2, n0 = 1in the length scale l0 = 1nm regime. The
instability condition (3.14) is satisfied. The two asymptotical cutoff
wave numbers of EPNP model are kcutoff

1 = 9.24 and kcutoff
2 = 45.23,

respectively, when length scale l0 = 1nm. For the three models,
the relation between the length scale and the growth rate follows
a simple scaling law: we denote the two length scales as l(1)

0 , l(2)
0 ,

the corresponding growth rates as a
(1)
1 ,a(2)

1 , and the cutoff wave
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Fig. 1. Cutoff wave numbers as functions of n12 with n0 = 1 and as functions of n0 with n12 = 2.2.

numbers as k(1), k(2), respectively. If
l(2)
0

l(1)
0

= K, then the cutoff wave

number ratio follows k(2)

k(1) = K while the growth rate ratio follows
a

(2)
1 (Kk)

a
(1)
1 (k)

= K2.5. This can be inferred from the definition of time scale

t0 =

√
m0 l20
kBT ∼ l2.5

0 ,
(
m0 ∼ l30

)
. The numerical results in Fig. 2 also

confirm this analysis.
The analysis and numerical results show that the growth rates

can be positive in some intermediate wave number regime depicted
in Fig. 2, instead of near the zero wave number range. In this case,
the growth rate of the Full model is the smallest while the EPNP
model’s is the highest. From the linear stability analysis, we notice
that this instability is associated with a large interaction parameter
n12, a consequence of the finite size effect. A positive n12 means that
the interaction between different species due to their steric effects is
repulsive. The analysis and numerical results tell us that the interme-
diate wave instability appears when the repulsive effect is sufficiently
strong in the three models. This also can be obtained from the interac-
tion free energy density g. The repulsive interaction due to the finite
size effect is represented by kBT

2

(
n11n2

1 + 2n12n1n2 + n22n2
2

)
, which

can be rewritten as kBT
2

((√
n11n1 + n12√

n11
n2

)2

+
(
n22 − n2

12
n11

)
n2

2

)
.

When n12 is sufficiently large, n11n22 − n2
12 < 0, this quadratic form

is hyperbolic type without lower bound. In the next nonlinear sim-
ulations, we only consider the cases n11n22 − n2

12 > 0, with out the
intermediate wave instability.

3.4.1. Discussion on the finite size effect
The hard sphere repulsion characterizes the finite-size effect of

ions, witch keeps ions apart. The free energy density due to the finite-
size effect is

∫
K(x − y)G({ni}N

i=1(x), {ni}N
i=1(y))dy =

∫ N∑
i=1

N∑
j=1

eij

2
(ai + aj)12

|x − y|12
ni(x)nj(y)dy,

(3.16)

where ai and aj are the radii of ion i and j, and eij is the energy cou-
pling constant between ion i and j. Thus, in the free energy function,
we have the convolution integral with the following form

∫ ∫
1

|x − y|12
ni(x)nj(y)dydx. (3.17)

We can approximate the above convolution integral by truncating
the kernel 1

|x−y|12 with the cutoff length d. As discussed in the paper
[66], when the cutoff length d goes to zero, this convolution integral
can be approximated by the integral

Sd

∫
ni(x)nj(y)dx, (3.18)
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Fig. 2. The growth rates of the full model and the two PNP models with length scale l0 = 1, 10, 100nm, respectively, in the parameter regime of intermediate wave number
instability. The values of growth rates increase as the length scale l0 increases. The two cutoff wave numbers of the EPNP model in the length scale l0 = 1nm regime are 9.24 and
45.23, respectively. The full model is more stable than the other two models in this regime.
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with Sd ≈ d−12+d, where d is the dimension. The free energy density
due to the finite-size effect can be written as

∑N

i,j=1

eij

2
(
ai + aj

)12Sdni(x)nj(x) = kBT
∑N

i,j=1

nij

2
ninj, (3.19)

with nij = 1
kBT eij(ai + aj)12Sd. We add the conformational entropy

in terms of the derivative form to compensate for the approxi-
mation error, then the energy density for the finite-size effect is
approximated by

g = kBT
[∑N

i,j=1

nij

2
ninj +

∑N

i=1

ci

2
‖ ∇ni‖2

]
, (3.20)

where ci is a small parameter, witch can be zero. In the paper [66],
the following eij values for the cross hard-sphere potential terms for
some familiar ions (Na+, Cl−, Ca2+) are used:

eNa,Na : eCl,Cl : eCa,Ca : eNa,Cl : eNa,Ca : eCl,Ca = 1 : 1 : 1 : 0.955 : 1 : 0.961.

(3.21)

Also in the paper [66], the ratios of the interaction coefficients nij are
given for some familiar ions (Na+, Cl−, Ca2+) as follows

nNa,Na : nCl,Cl : nCa,Ca : nNa,Cl : nNa,Ca : nCl,Ca

= 1 : 2280 : 1.64 : 42.2 : 0.642 : 50.4. (3.22)

It is easy to verify that n11n22 − n2
12 > 0 for two of the three ions.

For the familiar ions, the interaction coefficients nij are in the stable
regime. That is the reason we only consider the stable cases in the
nonlinear simulations next.

3.5. Nonlinear dynamics

We next explore nonlinear dynamics of the models in the linearly
stable regime. We use the characteristic length scale l0 = 1nm
and set the domain as x ∈ [0, 10]. The values of the interaction
parameters are chosen as n11 = n22 = 1, n12 = 0.8, satisfying
n11n22 − n2

12 > 0. We also set diffusion coefficients c1 = c2 = 0.
The boundary conditions for the number densities n1, n2 are no-flux
boundary conditions (2.25); for the velocity v1, the boundary con-
ditions are set at v1|x=0,10 = 0, and for the electric potential V,
they are set at V|x=0 = 0,V|x=10 = V0, where V0 is the elec-
tric potential at the right boundary x = 10. We set V0 = 1
in the following simulations. The initial conditions are given by

n1 = n2 = n0 = 1, v1 = 0, p = 0,V = V0x/10. The given exter-
nal electric potential is Ve = V0x/10. The dimensionless mobilities
are given as k1 = k2 = 0.02. We compute the ionic number den-
sities using the Full model, the EPNP model and the CPNP model,
respectively.

Fig. 3 depicts the final steady states of the Full model
and the EPNP model, and the difference between them, where
n11 = n22 = 1, n12 = 0.8 in the stable regime. The states
of the number densities are almost identical in the middle of the
domain, while the visible differences appear near the two bound-
aries. Because the electric potential is positive at the right boundary
and zero at the left boundary, some negative ions gather at the right
side while positive ions gather at the left side due to the Coulomb
force, forming two visible boundary layers.

As shown in Fig. 3, the density differences between the two mod-
els are about O(1) × 10−2 near the boundaries. As a conclusion,
the compressibility of the flow in the full model plays relatively
important role, it impacts the aggregation effect of the ions near the
boundaries.

In the above example, the density ratio is chosen as q3 : q1 :
q2 = 1 : 0.5 : 2. By halving density q1 and doubling density
q2 to increase the density differences, we reset the density ratio
as q3 : q1 : q2 = 1 : 0.25 : 4 and q3 : q1 : q2 = 1 :
0.125 : 8, while maintaining the volume ratio unchanged at v3 :
v1 : v2 = 1 : 2 : 1, then the dimensionless parameters are
R1 = 0.0375, R2 = −0.075 and R1 = 0.04375, R2 = −0.175,
respectively. In these cases, the size differences of the three compo-
nents become larger. As shown in Fig. 4, the differences between the
Full model and the EPNP model become larger as the size differences
become larger. When we halve the density q1 and double the density
q2, the absolute maximum difference between the Full model and the
EPNP model is almost doubled. As a result, when the size differences
between the components are enlarged, the parameters R1, R2 are no
longer small so that the compressibility of the flow can no longer be
neglected.

We also compare the EPNP and the CPNP model in the stable
regime with n11 = n22 = 1, n12 = 0.8 in Fig. 5. The density ratio
q3 : q1 : q2 = 1 : 0.5 : 2 is used. The values of the param-
eters are set at rm

1 = 1, rm
2 = 2. The number density differences

between the two models are about O(1) × 10−2 near the bound-
aries. The differences near the boundaries in n2 are bigger than that
in n1. The reason is that in the CPNP model, the term rm

i l3 is dropped
in the ni transport equation. In this example, rm

2 > rm
1 , so the dif-

ferences near the boundaries of n2 are bigger. Consequently, the
solvent’s chemical potential l3 in the EPNP model plays a relatively
important role, it impacts the aggregation effect of the ions near the
boundaries.
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Fig. 3. Steady states of the ionic densities and the electric potential of the Full and the EPNP models with n11 = n22 = 1, n12 = 0.8 in the stable regime, respectively. The
differences appear near the boundary with absolute maximum difference 0.011. The curve of energy difference F(t) − F(0) is plotted with respect to time. The total free energy
F(t) decays to a constant when the final steady state is obtained.
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Fig. 4. Differences between the Full and the EPNP model with n11 = n22 = 1, n12 = 0.8 in the stable regime. (a) The density ratio is q3 : q1 : q2 = 1 : 0.5 : 2 and
R1 = 0.025, R2 = −0.025, the absolute maximum difference is about 0.011; (b) the density ratio is q3 : q1 : q2 = 1 : 0.25 : 4 and R1 = 0.0375, R2 = −0.075, the absolute
maximum difference is about 0.022; (c) the density ratio is q3 : q1 : q2 = 1 : 0.125 : 8 and R1 = 0.04375, R2 = −0.175, the absolute maximum difference is about 0.044.
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Fig. 5. Steady states of the ionic densities and electric potential of the EPNP and the CPNP model with n11 = n22 = 1, n12 = 0.8 in the stable regime. The difference appears at
the boundary layers near both ends of the domain.

Next, we consider ionic concentrations without the finite size
effect and compare them with ionic concentrations with the finite
size effect using the classical PNP model. In the following, the
OPNP means the classical PNP model without finite size effects (i.e.,
n11 = n22 = n12 = 0 and c1 = c2 = 0.) The differences also
appear in the areas near the two boundaries. As shown in Fig. 6, the
differences of the ionic density can reach up to O(1) × 10−1. The
finite size effect plays an important role in the system, it impacts the
aggregation effect of the ions near the boundaries, as studied in the
papers [26, 27, 33, 66].

Based on our numerical investigations and the linear analysis, we
conclude that the 1D steady states of the number densities are nearly
identical in the middle of the domain in all three models in the stable
regime. The differences lie in the areas near the boundaries. The com-
pressibility of the flow, the chemical potential of the solvent and the
finite size effect are three main reasons that lead to the differences.
So, our quasi-incompressible model (the full model) seems to be
more reasonable because the mass and momentum conservation
laws are preserved in the model while the other models don’t respect
the two fundamental physical conservation laws.
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Fig. 6. Steady states of ionic densities and the electric potential of the CPNP and the OPNP model. In the CPNP model n11 = n22 = 1, n12 = 0.8 in the stable regime. The
difference appears at the boundary layers near both ends of the domain.
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Further investigations in higher dimensions is necessary to eval-
uate the difference among the models, which will be conducted in a
sequel.

4. Conclusion

We have developed systematically a set of quasi-incompressible
theories for ionic fluids of multiple species that respect not only
momentum conservation but also mass conservation at the presence
of the ionic species. The previous PNP type models are approxi-
mations of the more general theories when densities of different
ionic species are distinct. In these theories, we consider the entropic
contribution from each ionic species together with the ion-ion inter-
action due to the finite size effect. The limiting cases include the
extended PNP, the classical PNP with the finite size effect, and the
classical PNP model without the finite size effect. At the length scale
larger than hundreds of nanometers, all models agree with the clas-
sical PNP model very well. At the length scale in a few nanometers,
the models can predict quite different stability behavior for homo-
geneous equilibrium states. In nonlinear dynamics, the ionic number
densities are nearly identical in the middle of the domain, but the
differences lie in the areas near the boundaries. Apparently, three
main factors in the compressibility of the flow, the chemical poten-
tial of the solvent and the finite size effect of the ions can lead to the
discrepancy in model predictions. We tend to believe that the new
model is more accurate since it obeys the two fundamental physical
conservation laws in mass and linear momentum while the others
don’t.
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Appendix A

The linearized eigenvalue problem for the Full model is formu-
lated as follows,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 R1a R2a

0 0 0 0 0
0 0 qka 0 0
0 0 0 a 0
0 0 0 0 a

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −ikqk 0 0
0 −k2 0 1

e − 1
e

ik 0 ( 4
3g + m)k2 B1 B2

R1k1n0k2 k1n0k2 ikn0 C1 C2

R2k2n0k2 −k2n0k2 ikn0 D1 D2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p0

V0

v0
1

n0
1

n0
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 0,

(5.1)

where the parameter values are given by n0
3 = rv

0 − rv
1n0 − rv

2n0 and
qk = 1 − R1n0 − R2n0. The other components in the matrix are
defined as follows

B1 = −ikrv
1 + ikn0

(
1

N1n0
+ n11 + n12

)
+ ik3n0c1,

B2 = −ikrv
2 + ikn0

(
1

N2n0
+ n22 + n12

)
+ ik3n0c2,

C1 = k1n0rm
1 rv

1
k2

n0
3

+ k1n0
(

1
N1n0

+ n11

)
k2 + k1n0c1k4,

C2 = k1n0rm
1 rv

2
k2

n0
3

+ k1n0(n12)k2,

D1 = k2n0rm
2 rv

1
k2

n0
3

+ k2n0(n12)k2,

D2 = k2n0rm
2 rv

2
k2

n0
3

+ k2n0
(

1
N2n0

+ n22

)
k2 + k2n0c2k4. (5.2)

Although the coefficient matrix is 5 × 5, the characteristic polynomial
of the coefficient matrix is a third order polynomial of growth rate a,
which yields three independent eigen-modes. Using an asymptotic
analysis at small wave numbers |k| � 1, the three asymptotic growth
rates are obtained asymptotically:

a1 = T1k2 + O(k4),

a2,3 = −
T2 ±

√
T2

2 + T3

T4
+ O(k2), (5.3)

where

T1 = − k1k2n0

(k1 + k2) n0
3

[
q2

kn0
3

(
1

N1n0
+

1
N2n0

+ n11 + n22 + 2n12

)

+ qk (rv
1 + rv

2)
((

rm
1 + rm

2

)
+ (R1 + R2) n0

3

)]
,

T2 =k1k2qk(n0)2(R1 + R2)
2 + e,

T3 = − 4(n0)2qke (k1 + k2)
(
k1R2

1 + k2R2
2

)
,

T4 =2n0qke
(
k1R2

1 + k2R2
2

)
. (5.4)

Notice that a2,3 < 0 for small k due to T3 < 0. The eigenvalue a1 > 0
when T1 > 0,

1
N1n0

+
1

N2n0
+ n11 + n22 + 2n12 < − rv

1 + rv
2

qkn0
3

((
rm
1 + rm

2

)
+ (R1 + R2) n0

3

)
.

(5.5)

This is the instability condition for long waves for the Full model. It
follows from Eq. (3.11) that (rm

1 + rm
2 ) + (R1 + R2)n0

3 > 0. So, the
instability can incur only when n11 + n22 + 2n12 is negative enough.
But, nij > 0 in the model. So this mode of instability is absent from
the full model.

For the EPNP model, only n1, n2,V are coupled, the eigenvalue
problem is given by

⎛
⎜⎜⎝
⎛
⎜⎜⎝

0 0 0
0 a 0
0 0 a

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

−k2 1
e − 1

e

k1n0k2 C1 C2

−k2n0k2 D1 D2

⎞
⎟⎟⎠
⎞
⎟⎟⎠
⎛
⎜⎜⎝

V0

n0
1

n0
2

⎞
⎟⎟⎠ = 0, (5.6)
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where

C1 = k1n0rm
1 rv

1
k2

n0
3

+ k1n0
(

1
N1n0

+ n11

)
k2 + k1n0c1k4,

C2 = k1n0rm
1 rv

2
k2

n0
3

+ k1n0n12k2,

D1 = k2n0rm
2 rv

1
k2

n0
3

+ k2n0n12k2,

D2 = k2n0rm
2 rv

2
k2

n0
3

+ k2n0
(

1
N2n0

+ n22

)
k2 + k2n0c2k4. (5.7)

Eliminating V0, the system reduces to

⎛
⎝
⎛
⎝ a 0

0 a

⎞
⎠ +

⎛
⎝ C1 + k1n0 1

e C2 − k1n0 1
e

D1 − k2n0 1
e D2 + k2n0 1

e

⎞
⎠
⎞
⎠
⎛
⎝ n0

1
n0

2

⎞
⎠ = 0, (5.8)

The characteristic polynomial is quadratic and given by

a2 +
[

C1 + D2 + (k1 + k2) n0 1
e

]
a + A = 0,

A = C1D2 − C2D1 + [k2 (C1 + C2) + k1 (D1 + D2)] n0 1
e
. (5.9)

The two growth rates are given by

a1 = − 2A

⎡
⎣(C1 + D2 + (k1 + k2) n0 1

e

)
+

√(
C1 + D2 + (k1 + k2) n0 1

e

)2

− 4A

⎤
⎦

−1

,

a2 = − 1
2

⎡
⎣(C1 + D2 + (k1 + k2) n0 1

e

)
+

√(
C1 + D2 + (k1 + k2) n0 1

e

)2

− 4A

⎤
⎦ .

(5.10)

Notice that C1 ≥ 0, D2 ≥ 0. So, Re(a2) < 0 and Re(a1) can be positive
only if A < 0.
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