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Abstract

There exists a large body of research on the lens of mammalian eye over the past several decades. The

objective of the current work is to provide a link between the most recent computational models and some

of the pioneering work in the 1970s and 80s. We introduce a general non-electro-neutral model to study the

microcirculation in lens of eyes. It describes the steady state relationships among ion fluxes, water flow and

electric field inside cells, and in the narrow extracellular spaces between cells in the lens. Using asymptotic

analysis, we derive a simplified model based on physiological data and compare our results with those in

the literature. We show that our simplified model can be reduced further to the first generation models

while our full model is consistent with the most recent computational models. In addition, our simplified

model captures the main features of the full model. Our results serve as a useful link intermediate between

the computational models and the first generation analytical models. Simplified models of this sort may be

particularly helpful as the roles of similar osmotic pumps of microcirculation are examined in other tissues

with narrow extracellular spaces, like cardiac and skeletal muscle, liver, kidney, epithelia in general, and

the narrow extracellular spaces of the central nervous system, the “brain”. Simplified models may reveal

the general functional plan of these systems before full computational models become feasible and specific.

1. Introduction

Biological systems require continual inputs of mass and energy to stay alive. They are open systems that

require flow of matter, and specific chemicals, across their boundaries. Unicellular organisms can provide

that flow by diffusion to and across cell membranes. Diffusion is not adequate over distances larger than

a few cell diameters, i.e., larger than say 2× 10−6 meters, to pick a number. For that reason, multicellular

organisms cannot provide those flows to their cells by diffusion itself. Multicellular organisms depend on

∗Corresponding author
Email address: hhuang@fields.utoronto.ca (Huaxiong Huang )

Preprint submitted to Elsevier May 24, 2019

ar
X

iv
:1

81
0.

04
16

2v
3 

 [
q-

bi
o.

T
O

] 
 2

2 
M

ay
 2

01
9

Version 3 
May 23, 2019



convection to bring materials close enough to cells so diffusion to and across cell membranes can provide

what the cell needs to live.

The circulatory system of blood vessels-arteries, veins, and capillaries-provides the convection in almost

all tissues. But there is one clear exception, the lens of the (mammalian) eye. The lens does not have blood

vessels, presumably because even capillaries would so seriously interfere with transparency. The lens

is large, much larger than the length scale on which diffusion itself is efficient. The lens must provide

nutrients through another kind of convection, a microcirculation of water that moves nutrients into the

lens and rinses wastes out of it. The microcirculation is in fact driven by the lens itself, without an external

‘pump’. The lens is itself an osmotic pump.

The lens is an asymmetrical electrical syncytium in which all cells are electrically coupled one to an-

other, with a narrow extracellular space between the cells (see Fig.1). The extracellular space is filled with

ionic solution in free diffusion with the plasma outside cells. It may also contain specialized more or less

immobile proteins and specialized polysaccharides, as well as containing obstructions formed by the con-

nexin proteins themselves. The intracellular space behaves very much as a large single cell would, with

the bio-ions of classical electro-physiology (Na+, K+, Cl−) free to move without much resistance from cell

to cell, and many solutes of significant size (say with diameter less than 1.5 nm) able to move as well. The

intracellular media contains proteins particularly the crystallins responsible for the high refractive index of

the lens. So the lens is an example of a bidomain tissue that has been studied in some detail, first in skeletal

muscle, then in cardiac muscle, and syncytia in general. Electrical models of bidomain tissues have been

developed and a general approach combining morphology, theory, and experiments has been applied in

reference [1], showing how the lens could be studied in this tradition.

A general approach to bidomain tissues was implemented [2] involving detailed measurements of

morphology (best done with statistical sampling by stereo-logical methods [3]), impedance spectroscopy

[4, 5, 6, 7, 8, 9, 10] using intracellular probes (micro-electrodes) that force current to flow across membranes

to the extracellular baths [11, 1, 12, 13, 14, 15], electric field theory to develop models appropriate to the

structure [16, 17, 18, 19, 20] analyzing the spectroscopic data with the field theory [21, 22] and checking

that parameters change appropriately (i.e., estimates of membrane capacitance are constant) as extracel-

lular solutions are changed in composition and concentration [20, 23]. This work was extended to deal

with transport by Mathias and co-workers [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40] and

computational models of the water flow in the lens were later developed in some detail [25, 41, 42] and

exploited with great success, reviewed in [43, 44], also see [45, 46, 47, 48, 49].

2



The original work on electrical models is cited here because it provides coherent support, involving a

range of techniques and approaches, to the general view of syncytial tissues, used here and in later work.

It also shows the range of approaches needed to establish a (then) new view of a tissue.

Mathias [50, 51] realized that an asymmetrical electrical syncytium would produce convection, in par-

ticular in the lens [31]: he and co-workers systematically investigated the flow of water, solutes, and current

in the lens, which is (in our opinion) a model of interdisciplinary research, combining theory, simulation,

and measurements of many types [24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40]. Computational

models of the water flow in the lens were later developed in great detail [25, 41, 42] and compared to the

more analytical models. These models have been extensively tested and we are fortunate that comprehen-

sive reviews have been written of great value to newcomers to the field, particularly [43, 44] as well as

[45, 46, 47, 48, 49, 43, 41, 44].

Since the pioneering work on the models of lens microcirculation system proposed by Mathias et al.

[51, 21], numerous investigations have been carried out [52, 53, 23, 20, 19]. The microcirculation model has

firstly relied on a combination of electrical resistance and current measurements and theoretical modeling

[18, 54, 19]. More recently, in order to provide a better understanding the electric current flow and potential

field, the detail structure of lens has been included [55, 41, 44, 43], describing the asymmetric biological

properties of the lens and measurements of pressure have been made [47, 28]. Different types of fluid flow

[56, 57] and transport properties of the ions have been introduced. Meanwhile, the lens model [55] has been

extended to simulate age-related changes in lens physiology [58] and a variety of physiological processes

[26, 59, 60, 61]. Reviews of current studies on micro-circulation in lens are most helpful [30, 26, 33]. Despite

this large body of experimental and theoretical work, it is not completely clear how they are related to each

other. In particular, it is not clear how the latest computational models are related to the pioneering work,

and how theoretical analysis is related to experimental findings. In this paper, we will provide such a link.

Based on the microscale model for semipermeable membrane [62] and bidomain method [51], we con-

struct a mathematical model to ensure that all interactions are included and treated consistently. Using

asymptotic analysis, we derive a reduced model, which can be used to obtain most physiologically sig-

nificant quantities except for the intracellular pressure. This simplified model can be further reduced to

the model proposed by Mathias [51] with additional assumptions that Nernst potentials (that describe gra-

dients of chemical potential of each ionic species) and conductance are are constant in space. However,

we will show that neither the Nernst potentials nor the conductance are constant. On the contrary, they

vary significantly from the interior to the surface of the lens Therefore, both of these quantities need to be
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coupled as part of the solution.

Our model also shows explicitly that the intracellular pressure is decoupled from the rest of the vari-

ables. Evolution has chosen parameters so the intracellular pressure does not affect the other parameters

of the lens in a significant way. They are robust to variations of intracellular pressure. The evolutionary

advantage of this adaptation is not clear to us, but may be more obvious to other workers with a greater

knowledge of clinical realities that show how the lens becomes diseased [63, 46, 48, 49]. Our simplified

model suggests that all the quantities can be computed without knowing the intracellular pressure. On the

other hand, we need to solve the full model to find the value of the intracellular pressure. Our model is also

calibrated by experimental data and predicts the effects of gap junctions [28, 47] described by a ‘membrane’

permeability κin.

Our new results extend but do not fundamentally change previous work on the lens. We strengthen the

view that the lens provides an osmotic pump to maintain the microcirculation necessary to sustain a living

lens, for the life of the animal. We imagine that similar osmotic pumps create microcirculation in other cells

and tissues of the body.

This paper is organized as following. The full model for micro-circulation of water and ions are pro-

posed based on conservation laws in Section 2. In Section 3, we obtain the leading order model by identify-

ing small parameters in the full model. Based on the boundary conditions and partial differential equation

(PDE) analysis, a simplified version of the leading order model is proposed and compared with the existing

models. The model calibration and simulation results are shown in Section 4. The conclusions and future

work are given in Section 5.

2. Mathematical model

In this section, we present a 1-D spherical symmetric non-electro-neutral model for microcirculation of

the lens with radius R by using the bidomain method [17]. The model deals with two types of flow: the

circulation of water (hydrodynamics) and the circulation of ions (electrodynamics), generalizing previous

bidomain models that deal only with electrodynamics. The model is mainly derived from laws of conser-

vation of ions and water in the presence of membrane flow between intra and extracellular domains. We

note that a similar approach may be useful in other tissues with narrow extracellular space, like the heart,

cardiac muscle, and the central nervous system, including the cerebral cortex, ‘the brain’.

2.1. Water circulation

We assume
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Figure 1: Schematic diagram of lens. (A) The sphere of the lens with three landmarks: anterior pole (AP), posterior pole (PP) and
equator (EQ); (B) The control volume in the bidomain model; (C) The micro structure of the lens: 1. intracellular region 2. extracellular
region 3. cell membrane 4. gap junction (connexions); (D) Distribution of the gap junctions between the cell membrane at EQ or AP
and PP; (E) A single gap junction which allows the water and ions flows.
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• the loss of intracellular water is only through membranes flowing into the extracellular space, vice

versa [17];

• the trans-membrane water flux is proportional to the intra/extra-cellular hydrostatic pressure and

osmotic pressure differences, i.e. Starling’s law, classically applied to capillaries, here applied to

membranes [64]. In a system like non-ideal ionic solutions in which ‘everything interacts with ev-

erything else’ [65, 66], this statement needs derivation as well as assertion. A complete, and rigorous

derivation can be found in [62];

• in the rest of this paper, subscript l = in, ex denotes the intra-/extracellular space and superscript i =

Na+, K+, Cl− denotes the ith specie ion.

Then we obtain the following system for intra and extracellular velocities in domain Ω = [0, R]

1
r2

d
dr

(
r2Mexuex

)
= −MvLm (Pex − Pin + γmkBT(Oin −Oex)) , (1a)

1
r2

d
dr

(r2(Mexuex +Minuin)) = 0, (1b)

where ul and Pl are the velocity and pressure in the intracellular and extracellular space, respectively. And

Ol is the osmotic pressure with definition

Oex = ∑
i

Ci
ex, Oin = ∑

i
Ci

in +
Ain
Vin

,

where Ci
l is the concentration of ith specie ion in l space. Ain

Vin
is the density of the permanent negative

charged protein. In this paper, we assume the permanent negative charged protein is uniformly distributed

within intracellular space with valence of z̄. HereMl is the ratio of intracellular area (l = in) and extracel-

lular area (l = ex),Mv is the membrane area per volume unit, γm is the intracellular membrane reflectance,

Lm is intracellular membrane hydraulic permeability, kB is Boltzmann constant and T is temperature.

As we mentioned before, the intracellular space is a connected space, where water can flow from cell to

cell through connexin proteins joining membranes of neighboring cells,, and the extracellular space is nar-

row with a high tortuosity. The intracellular velocity depends on the gradients of hydrostatic pressure and

osmotic pressure [62, 41, 51], and the extracellular velocity is determined by the gradients of hydrostatic

pressure and electric potential [41, 67],
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uex = −κex

µ
τc

d
dr

Pex − keτc
d
dr

φex, (2a)

uin = −κin
µ

(
d
dr

Pin − γmkBT
d
dr

Oin

)
, (2b)

where φl is the electric potential in the l space, τc is the tortuosity of extracellular region and µ is the

viscosity of water, ke is introduced to describe the effect of electro osmotic flow, κl is the permeability of

intracellular region (l = in) and extracellular region (l = ex), respectively.

Thanks to Eq. 2, Eq.1 can be treated as equation of hydraulic pressure. Due to the axis symmetry

condition, homogeneous Neumann boundary conditions are used for pressure at r = 0. At the surface of

lens r = R, we set the extracellular hydrostatic pressure to be zero and the intracellular velocity is consistent

with Eq.2 

∂Pex

∂r
=

∂Pin
∂r

= 0, at r = 0,

Pex = 0, at r = R,

− κin
µ

(
d
dr

Pin − γmkBT
d
dr

Oin

)
= Ls (Pin − γskBT (Oin −Oex)) , at r = R,

(3)

where γs is surface membrane reflectance and Ls is surface membrane hydraulic permeability.

2.2. Ion circulation

With similar assumptions, the conservation of ion concentration yields the following ion flux system

1
r2

d
dr

(r2Mex Ji
ex) =Mv jim, (4a)

1
r2

d
dr

(r2(Mex Ji
ex +Min Ji

in)) = 0, (4b)

The ion flux in the intracellular region Ji
in and ion flux in the extracellular region Ji

ex are defined as

Ji
ex =Ci

exuex−Di
exτc

d
dr

Ci
ex − Di

exτc
zie

kBT
Ci

ex
d
dr

φex, (5a)

Ji
in =Ci

inuin − Di
in

d
dr

Ci
in − Di

in
zie

kBT
Ci

in
d
dr

φin, (5b)
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where Di
l is the diffusion coefficient of the ith specie ion in the l space. The Hodgkin-Huxley conductance

formulation [68, 69] is used to describe the trans-membrane flux of ions across intracellular membrane and

surface membrane

jim =
gi

ezi

(
φin − φex − Ei

)
, (6a)

jis =
Gi

ezi

(
φin − φex − Ei

)
(6b)

where Ei = kBT
ezi log

(
Ci

ex
Ci

in

)
is the Nernst potential (an expression of the difference of chemical potential ) of

ith specie ion.

Figure 2: (A) Schematic diagram of ion circulation and the distributions of ion channels and pumps. The purple line represents the
sodium circulation, the light green represents the potassium circulation and the brown line represents chloride circulation. The surface
epithelial cells (dark black square) connect with the intracellular cells (light black hexagon) by the gap junctions (orange rectangle).
The sodium and chlorine ion channels are located on the intracellular membranes, while the potassium ion channel and sodium-
potassium ATP pumps are found only on the surface membrane. (B) Schematic diagram of water circulation. Trans-membrane water
transport is through AQP0 and AQP1 gap junctions. APQ0 gap junctions are located on the intracellular membranes, and AQP1 is on
surface membrane.

In Eq. 6, the intracellular ion conductance gi and surface ion conductance Gi depends on the ion channel

distribution on the membrane (see Fig. 2). Based on previous work [51, 17, 41], we assume that (1) only

Na+ and Cl− can leak between intracellular and extracellular through ion channels inside the lens and (2)
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that there is no trans-membrane flux for K+ between the extracellular and intracellular region, i.e. jK
m = 0.

Similarly, homogeneous Neumann boundary conditions are used at r = 0. At r = R, the extracellular

concentrations are fixed and Robin boundary conditions are used for intracellular concentrations due to

the trans-membrane flux and pump,


Ji
ex = Ji

in = 0, at r = 0

Ci
ex = Ci

o, Ji
in = jis + ai, at r = R,

(7)

where ai is active ion pump on the surface membrane. Here we only consider the sodium-potassium pump

on the surface. The strength of the pump depends on the ion’s concentration as in [29, 41],

aNa = 3
Ip

e
, aK = −2

Ip

e
, aCl = 0, (8)

where

Ip = Imax1

(
CNa

in
CNa

in + KNa1

)3 (
CK

o
CK

o + KK1

)2

+ Imax2

(
CNa

in
CNa

in + KNa2

)3 (
CK

o
CK

o + KK2

)2

.

(9)

Due to the capacitance of the cell membrane, assumptions of exact charge neutrality can easily lead

to paradoxes because they oversimplify Maxwell’s equations by leaving out altogether the essential role

of charge. We use the analysis of [70] and thus introduce a linear correction term replacing the charge

neutrality condition [51, 41], without introducing significant error (See also [71]),

(1− η)

(
∑

i
eziCi

ex

)
= −MvCm (φin − φex) , (10a)

η

(
∑

i
eziCi

in + z̄e
Ain
Vin

)
=MvCm (φin − φex) , (10b)

where η is the porosity of intracellular region and Cm is capacitance per unit area.

Multiplying each ion concentration equation in Eq. 4 with ezi respectively, summing up and using

Eq.10, the sodium equations are replaced by the following equations

1
r2

d
dr

(
r2Mex

(
ρexuex − eτc ∑

i
Di

exzi d
dr

Ci
ex − σex

d
dr

φex

))

9



=Mv

(
gm (φin − φex)−∑

i
giEi

)
, (11a)

1
r2

d
dr

(
r2Min

(
ρinuin − e ∑

i
Di

inzi d
dr

Ci
in − σin

d
dr

φin

))

= −Mv

(
gm (φin − φex)−∑

i
giEi

)
, (11b)

with boundary conditions



dφex

dr
=

dφin
dr

= 0, at r = 0,

φex = 0, at r = R,(
ρinuin − e ∑

i
Di

inzi d
dr

Ci
in − σin

d
dr

φin

)

= Gsφin −∑
i

GiEi + Iφ
p , at r = R,

where ρin = MvCm
η (φin − φex) + |z̄|e Ain

Vin
and ρex = MvCm

1−η (φex − φin)

gm = ∑
i

gi, Gs = ∑
i

Gi, Iφ
p = e ∑

i
ziai.

In Eq. 11, we define the intracellular conductance σin and extracellular conductance σex as

σex =
e2τc

kBT

(
∑

i
Di

ex(z
i)2Ci

ex

)
, σin =

e2

kBT

(
∑

i
Di

in(z
i)2Ci

in

)
.

It is obvious that system 11 might be derived using either Eq. 4 and Eq. 10. Therefore, we should drop

either Eq. 4 or Eq. 10 when Eq. 11 is used.

2.3. Non-dimensionalization

Since lens circulation is driven by the sodium-potassium pump, it is natural to choose the characteristic

velocity u∗in by the pump strength aNa∗

u∗in =
aNa∗

O∗
. (12)

where O∗ = 2
(
CNa

o + CK
o
)

is characteristic osmotic pressure. Using Eq.1b, we obtain the scale of uex as

u∗ex = δ−1
0 u∗in, (13)
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where δ0 = Mex
Min

. With the characteristic values for φ, P, Ci, chosen as kBT
e , µRu∗ex

κexτc
, CNa

o + CK
o , we obtain the

dimensionless system for lens problem as follows ( Detailed derivation is given in the appendix C.)

uex = − d
dr

Pex − δ1
d
dr

φex, (14a)

δ2uin = −δ3
d
dr

Pin +
d
dr

Oin, (14b)

δ4
1
r2

d
dr

(
r2uin

)
= δ3 (Pex − Pin) + (Oin −Oex) , (14c)

uex = −uin, (14d)

∑
i

ziCi
in + z̄

Ain
Vin

= δ6 (φin − φex) , (14e)

∑
i

ziCi
ex = −δ7 (φin − φex) , (14f)

1
r2

d
dr

(
r2 JCl

ex

)
=
Mex

v
zCl

(
φin − φex − ECl

)
, (14g)

1
r2

d
dr

(
r2 JCl

in

)
= − δ8

r2
d
dr

(
r2 JCl

ex

)
, (14h)

1
r2

d
dr

(
r2 JK

ex

)
= 0, (14i)

1
r2

d
dr

(
r2 JK

in

)
= 0, (14j)

1
r2

d
dr

(
r2

(
Peexρexuex −∑

i
Di

exzi d
dr

Ci
ex − σex

d
dr

φex

))

=Mex
v

(
2 (φin − φex)− ENa − ECl

)
, (14k)

1
r2

d
dr

(
r2

(
Peinρinuin −∑

i
Di

inzi d
dr

Ci
in − σin

d
dr

φin

))

= − δ8

r2
d
dr

(
r2

(
Peexρexuex −∑

i
Di

exzi d
dr

Ci
ex − σex

d
dr

φex

))
, (14l)
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with homogeneous Neumann boundary conditions at r = 0 and following boundary conditions at r = 1



Pex = 0,

δ5uin = δ3Pin − (Oin −Oex) ,

CK
ex = CK

o , JK
in =

Rs

zK

(
φin − EK

)
− aK,

CCl
ex = C̃Na

o + C̃K
o + δ7

(
φ̃in − φ̃ex

)
, JCl

in = 0,

φex = 0,

Peinρinuin −∑
i

Di
inzi d

dr
Ci

in − σin
d
dr

φin

=
Rs

zK

(
φin − EK

)
+ Iφ

p ,

where

ρin = ρ0 + δ6 (φin − φex) , ρ0 = |z̄|Ain
Vin

, (15a)

ρex = δ7 (φex − φin) , (15b)

σl = ∑
i

Di
l(z

i)2Ci
l , (15c)

Ei =
1
zi log

(
Ci

ex

Ci
in

)
, (15d)

Iφ
p =

IpR
eD∗inC∗

. (15e)

Ji
l = PelCi

lul − Di
l

(
d
dr

Ci
l + ziCi

l
d
dr

φl

)
. (15f)

3. Simplified model

The full model given by system 14 with boundary condition 15 is a coupled nonlinear system. In this

section, we present a simplified version of the full model which captures the main features of the lens

circulation. We first obtain the leading order model by identify the small parameters. And then by using

boundary conditions and theoretical analysis, the leading order model with is further simplified as only

one PDE with serial algebra equations.

According to those dimensionless parameters presented in the appendix B, we identify the scale of the
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parameters as follows

{δ1, δ8} ⊂ O(ε), {δ0, δ3} ⊂ O(ε2),

{δ2, δ4, δ5, δ6, δ7} ⊂ o(ε2).
(16)

If we denote δ9 = DCl
l − DK

l and δ10 = DCl
l − DNa

l , l = in, ex, it yields

δ9 = O(ε2), δ10 = O(ε). (17)

3.1. A priori estimation

In this section, we provide the priori estimation of the JCl
in as follows. By using the homogeneous Neu-

mann boundary condition at r = 0 and Eq. 14l yields

d
dr

φin =
1

σin

(
Peinρinuin + δ9

d
dr

CK
in + δ10

d
dr

CNa
in

)
+

δ8

σin

(
Peexρexuex + δ9

d
dr

CK
ex + δ10

d
dr

CNa
ex − σex

d
dr

φex

)
.

(18)

From Eq. 18, since Pein = O(ε) and order of δ8, δ9, δ10 in Eqs. 16-17, we obtain that

d
dr

φin = O(ε). (19)

Meanwhile, from Eq. 14b we can have
d
dr

Oin = O(ε2). (20)

and in the Eq.14e, we know
d
dr

CCl
in =

d
dr

(
CNa

in + CK
in

)
+ o(ε2), (21)

With Eqs. 20-21 and Ain
Vin

is constants, we obtain

d
dr

CCl
in = O(ε2). (22)

Furthermore, using Eq. 14d and boundary conditions for CCl
ex in Eq. 15 yieldds

CCl
in = CNa

o + CK
o −

1 + |z̄|
2

Ain
Vin

+ O(ε2). (23)
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From the experimental setting of lens [51, 55, 41], we assume that

CNa
o + CK

o −
1 + |z̄|

2
Ain
Vin

= O(ε). (24)

Therefore,

CCl
in = O(ε). (25)

In all, we claim that

JCl
in = PeinCCl

in uin − DCl
in

(
d
dr

CCl
in + zClCCl

in
d
dr

φin

)
= O(ε2).

(26)

By dropping the terms involving these small parameters, the leading order of water circulation system

14a-14d is as follows,

u0
ex = − d

dr
P0

ex − δ1
d
dr

φ0
ex, (27a)

d
dr

O0
in = 0, (27b)

O0
in −O0

ex = 0, (27c)

u0
ex = −u0

in, (27d)

where the superscript ‘0’ denotes the leading order approximation. From Eq. 27, we deduce O0
ex = O0

in are

constants, and the intracellular and extracellular flow are counterflow. And the total charge in the leading

order systems are neutral

∑
i

ziCi,0
in + z̄

Ain
Vin

= 0, (28a)

∑
i

ziCi,0
ex = 0. (28b)

Combining constant osmotic pressure and charge neutrality yields

O0
ex(r) = O0

in(r) = 2
(

CNa,0
ex (1) + CK,0

ex (1)
)

, (29a)

dCCl,0
in

dr
=

dCCl,0
ex

dr
= 0, (29b)
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which means CCl,0
in and CCl,0

ex are constants and

dCNa,0
l
dr

= −
dCK,0

l
dr

, l ∈ {in, ex}. (30)

And the leading order of potassium and chloride concentrations satisfy

1
r2

d
dr

(
r2 JK,0

in

)
= 0, (31a)

1
r2

d
dr

(
r2 JK,0

ex

)
= 0 (31b)

1
r2

d
dr

(
r2 JCl,0

ex

)
=
Mex

v
zCl

(
φ0

in − φ0
ex − ECl,0

)
(31c)

1
r2

d
dr

(
r2 JCl,0

in

)
= − 1

r2
d
dr

(
r2δ8 JCl,0

ex

)
, (31d)

where Ji,0
l = PelC

i,0
l u0

l − Di
l

(
d
dr Ci,0

l + ziCi,0
l

d
dr φ0

l

)
with i = K, Cl and l = in, ex, ECl,0 = 1

zCl log
(

CCl,0
ex

CCl,0
in

)
.

For the electric potential, using the homogeneous Neumann boundary condition at r = 0 and Eqs. 29a

-30, 14l yields

d
dr φin = 1

σin

(
Peinρinuin + δ9

d
dr CK

in + δ10
d
dr CNa

in

)
(32)

+ δ8
σin

(
Peexρexuex + δ9

d
dr CK

ex + δ10
d
dr CNa

ex − σex
d
dr φex

)
.

At the same time, based on the intracellular equation of potassium Eq. 14j the homogeneous Neumann

boundary condition at r = 0 and Eqs. 29a -30, we have

DK
in

d
dr

CK
in =

(
PeinCK

inuin − DK
inzKCK

in
d
dr

φin

)
(33)

Substituting Eq. 32 into Eq. 33 yields

(
1− zKCK

in
δ10

σin

)
DK

in
dCK

in
dr

=

((
1− zKDK

in
ρin
σin

)
Peinuin + zKDK

in
δ8σex

σin

dφex

dr

)
CK

in

+O(ε2), (34)

where we used that fact that ρex = o(ε2), δ9 = O(ε2) and dCK
l

dr = − dCNa
l

dr + O(ε2), l ∈ {in, ex}. Since
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Pein = O(ε) , and δ8 = O(ε), in Eq. 34, we claim

dCK
in

dr
= O(ε). (35)

Combining Eqs. 32 and 35 yields the leading order approximation of intracellular potential

d
dr

φ0
in =

1
σ0

in
Peinρ0u0

in −
δ8

σ0
in

σ0
ex

d
dr

φ0
ex = O(ε), (36)

where σ0
in = ∑i Di

in(z
i)2Ci,0

in , σ0
ex = ∑i Di

ex(zi)2Ci,0
ex .

Similarly, the leading order approximation of extracellular potential is

− 1
r2

d
dr

(
r2
(

δ10
d
dr

CNa,0
ex + σ0

ex
d
dr

φ0
ex

))
=Mex

v

(
2
(

φ0
in − φ0

ex

)
− ENa,0 − ECl,0

)
,

(37)

where ENa,0 = 1
zNa log

(
CNa,0

ex
CNa,0

in

)
.

To summarize, the leading order approximation of system 14-15 is given by, in domain Ω = [0, 1]

u0
ex = − d

dr
P0

ex − δ1
d
dr

φ0
ex, (38a)

d
dr

O0
in = 0, (38b)

O0
in −O0

ex = 0, (38c)

u0
ex = −u0

in, (38d)

∑
i

ziCi,0
in + z̄

Ain
Vin

= 0, (38e)

∑
i

ziCi,0
ex = 0, (38f)

1
r2

d
dr

(
r2 JK,0

in

)
= 0, (38g)

1
r2

d
dr

(
r2 JK,0

ex

)
= 0, (38h)

1
r2

d
dr

(
r2 JCl,0

ex

)
=
Mex

v
zCl

(
φ0

in − φ0
ex − ECl,0

)
, (38i)

1
r2

d
dr

(
r2 JCl,0

in

)
= − 1

r2
d
dr

(
r2δ8 JCl,0

ex

)
, (38j)

d
dr

φ0
in =

1
σ0

in
Peinρ0u0

in −
δ8

σ0
in

σ0
ex

d
dr

φ0
ex, (38k)
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− 1
r2

d
dr

(
r2
(

δ10
d
dr

CNa,0
ex + σ0

ex
d
dr

φ0
ex

))
=Mex

v

(
2
(

φ0
in − φ0

ex

)
− ENa,0 − ECl,0

)
, (38l)

with boundary conditions at r = 1



P0
ex = 0, CCl,0

ex = CNa
o + CK

o , CK,0
ex = CK

o ,

PeinCK,0
in u0

in − DK
in

(
d
dr

CK,0
in + zKCK,0

in
d
dr

φ0
in

)
=

Rs

zK

(
φ0

in − EK,0
)
− aK,

Peinρ0u0
in + δ10

d
dr

CNa,0
in − σin

d
dr

φ0
in

=
Rs

zK

(
φ0

in − EK,0
)
+ Ie

p,

φ0
ex = 0.

(39)

In the following, we will further simplify Eqs. 38-39 and obtain the relationships between φ0
ex and other

leading order variables by using assumptions concerning the boundary conditions.

3.2. Relation between φ0
in and φ0

ex

Combining Eqs. 38a, 38d and 38k, and integrating with respect to r yields the relation between φ0
in and

φ0
ex as

φ0
in(r) =

(
Peinρ0δ1

σ0
in

− δ8σ0
ex

σ0
in

)
φ0

ex(r)

+
Peinρ0

σ0
in

P0
ex(r) + φ0

in(1).

(40)

where we used the boundary conditions φ0
ex(1) = P0

ex(1) = 0.

3.3. Relation between P0
ex and φ0

ex

By the homogeneous Neumann boundary condition on r = 0 and Eq. 38j, we have

JCl,0
in + δ8 JCl,0

ex = 0. (41)
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By Eq. 29b, we can divide Eq. 41 by CCl,0
ex on both sides, we get

(
Pein

CCl,0
in

CCl,0
ex

u0
in − DCl

in zCl CCl,0
in

CCl,0
ex

dφ0
in

dr

)

+ δ8

(
Peexu0

ex − DCl
ex zCl dφ0

ex
dr

)
= 0.

(42)

Base on the charge neutrality Eq. 28, constant osmotic pressure Eq. 29a and parameters in Appendix B,

we denotes

δ11 =
CCl,0

in

CCl,0
ex

=
CNa

o + CK
o −

1+|z̄|
2

Ain
Vin

CCl,0
o

= O(ε). (43)

Then combining the Eqs. 36 and Pein = O(ε), Eq. 42 yields the following equation by omitting the

higher order terms

Peexu0
ex − DCl

ex zCl dφ0
ex

dr
= 0. (44)

Finally, by using the boundary condition, we have the relation between extracellular pressure and electric

potential as

P0
ex =

DCl
ex − Peexδ1

Peex
φ0

ex. (45)

3.4. Expression of ENa

Based on potassium equation and relation in Eqs. 40 and 45, we have expression for CK
in and CK

ex as

CK,0
ex = CK,0

0 exp

(
−
(

1 +
DCl

ex
DK

ex

)
φ0

ex

)
, (46a)

CK,0
in = CK,0

in (1) exp

((
PeinDCl

ex

PeexDK
in
− PeinDCl

ex ρ0

Peexσ0
in

)
φ0

ex

)

exp

((
δ9σ0

ex

σ0
in

)
φ0

ex

)
, (46b)

where

CK,0
in (1) = CK,0

o exp
(

aK

Rs
− φin(1)

)
. (47)

Based on Eq. 28, we can get

ENa,0 =
1

zNa log

(
CNa,0

ex

CNa,0
in

)
(48)

=
1

zNa log

 CCl,0
ex − CK,0

ex

CCl,0
in + |z̄| Ain

Vin
− CK,0

in

 .
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3.5. Extracellular electric potential system

By Eqs. 40 and 45, we have φin as

φ0
in(r)=

(
DCl

ex Peinρ0

σ0
inPeex

− δ9σ0
ex

σ0
in

)
φ0

ex(r) + φ0
in(1), (49)

The value φ0
in(1) is determined by the boundary condition of φ0

in in Eq. 39, where

−Min
v

∫ 1

0

(
2
(

φ0
in−φ0

ex

)
−ENa,0 − ECl,0

)
s2ds = aNa. (50)

where we use

aNa = −aK + Iφ
p ,

Rs

zK

(
φin − EK

)
= −aK.

To summarize, we obtained the simplified model of system 38-39 as follows

− 1
r2

d
dr

(
r2
(

δ10
d
dr

CNa,0
ex + σ0

ex
d
dr

φ0
ex

))
=Mex

v

(
2
(

φ0
in − φ0

ex

)
− ENa,0 − ECl,0

)
, (51a)

φ0
in(r) =

(
DCl

ex Peinρ0

σ0
inPeex

− δ9σ0
ex

σ0
in

)
φ0

ex(r) + φ0
in(1), (51b)

−Min
v

∫ 1

0

(
2
(

φ0
in − φ0

ex

)
− ENa,0 − ECl,0

)
s2ds,

= aNa (51c)

u0
ex = − d

dr
P0

ex − δ1
d
dr

φ0
ex, (51d)

u0
in = −u0

ex (51e)

CK,0
ex = CK,0

0 exp

(
−
(

1 +
DCl

ex
DK

ex

)
φ0

ex

)
, (51f)

CK,0
in = CK,0

in (1) exp

((
PeinDCl

ex

PeexDK
in
− PeinDCl

ex ρ0

Peexσ0
in

)
φ0

ex

)

exp

((
δ9σ0

ex

σ0
in

)
φ0

ex

)
, (51g)

CNa,0
ex = CCl,0

ex − CK,0
ex , (51h)

CNa,0
in = CCl,0

in + z̄
Ain
Vin
− CK,0

in , (51i)

CCl,0
in = CNa,0

o + CK,0
o − 1 + |z̄|

2
Ain
Vin

, (51j)
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CCl,0
ex = CNa,0

o + CK,0
o , (51k)

P0
ex =

DCl
ex − Peexδ1

Peex
φ0

ex. (51l)

with boundary conditions 
dφ0

ex
dr

= 0, at r = 0,

φ0
ex = 0, at r = 1.

(52)

Remark 3.1. Under the same assumptions in [51], for example, uniform diffusion constants for all ions, constant

Nernst potential, our simplified model system 51 recovers the model proposed by Mathias. The main contribution here

is that we remove the assumptions that Nernst potentials and effective conductance should be constants. By using

the relationships between ions concentrations and external potential, we obtain the space dependent Nernst potential

which yields a much better approximation to the full model (see Fig. 4).

4. Results and discussion

In this section, we present numerical simulations using both the full and simplified models. Finite

Volume Method [70] is used in order to preserve mass conservation of ions. The convex iteration [72] is

employed to solve the nonlinear coupled system. The numerical algorithm is implemented in Matlab.

4.1. Model calibration: membrane conductance effects intracellular hydrostatic pressure

In this section, we first calibrate the full model by the comparing with the experimental data to study

effect of connexin to intracellular hydrostatic pressure.

Intracellular hydrostatic pressure is an important physiological quantity [63]. In the paper [28, 47], the

authors showed the connexin (gap junction) conductance play an important role in the microcirculation of

lens. It is said that if the intracellular conductance κin
µin

in lenses is approximately doubled, the hydrostatic

pressure gradient in the lenses should become approximately half of the original one. In this section, we

calibrate our model. We choose a value of the intracellular conductance ( κin
µin

) that correctly calculates the

experimental results in the [28, 47].

In Figure 3 (A), the value κw
in = 4.6830× 10−20/m2 (black line) yields a good approximation to exper-

imental data (black makers). When the conductivity of the connexins is doubled, to parameter value κin

to be 2κw
in (in the lens of mice Cx46 KI lens) as in the experiments [28, 47], where doubled the conductivity

of the connexins by using Cx46 KI mice lens, our model (black dot) can also match the experimental data
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(red markers): the intracellular hydrostatic pressure drops to half. This result shows that our full model

can correctly predict the effect of permeability of membrane on hydrostatic pressure.

Interestingly, panels (B)-(D) it shows that other intracellular quantities and extracellular ones (appendix)

are insensitive to increases in the permeability by a factor of twenty, even to 20κw
in. The reason for this can

be explained by using our simplified the system 51. If the variation of intracellular conductance still keep

the δ2 to be a small quantity in the dimensionless system 14, our simplified model will be still valid. In the

simplified model, All the quantities except intracellular hydrostatic pressure are related to the extracellular

electric potential. However, the extracellular electric potential will not be effected by the change of the

intracellular conductance, since Eq. 51a not involves intracellular conductance.

Figure 3: Comparison between different κin. The experimental data of dog, rabbit, rat come from paper [47]. Mice and Cx46 KI mice
come from paper [28]. According to paper [28], the Cx46 KI mice lens has twice the number density of lens gap junction channels
compared to mice. The parameter κw

in = 4.6830× 10−20/ m2 and radius is written in dimensionless units for different species

4.2. Full model vs simplified model

In this section, we compare the full model 14-15 with the simplified model 51 and Mathias model in

[51]. The numerical results of full model (Black lines) in Figure 4 (A-C) suggest that the variations in-

tracellular electric potential, extracellular conductance and Nernst potential of Cl− are rather small. The
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assumption of constant values for those variables ( potential, extracellular conductance, and Nernst, i.e.

chemical potential of Cl− ) in the Mathias’s model (shown as red dash-dot lines) is reasonable. However,

the Nernst potentials of sodium and potassium (Figure 4 (D-E)) have large variations, because of the effect

of Sodium-potassium pump. Our simplified model (black dash lines) describes these variations with small

errors. The comparisons for extracellular pressure, velocity, and potential (Figure 4 (F-H)) confirm that our

simplified model yields good approximations to the full model.

5. Conclusion

In this paper, we propose a bidomain model to study the microcirculation of lens. We include a capac-

itor in the representation of the membrane and so our model is consistent with classical electrodynamics.

Consistency produces a linear correction term in the classical charge neutrality equation. This full model is

calibrated by comparing with the experiment studying effect of connexin on hydrostatic pressure. It shows

that only by changing intracellular membrane conductance (strength of connexion), our model could match

the two experimental results with different connexin very well. Our model is capable of making prediction

to the circulation of lens. Furthermore, the numerical simulations show that the velocity, potential, osmotic

pressure in the intra and extra cellular are not sensitive to increasing conductance.

Based on the asymptotic analysis, we proposed a simplified model, which allows us to obtain a deep

understanding of the physical process without making unrealistic assumptions. Our results showed that

the simplified model is a good approximation of the full model where Nernst potentials and conductivity

vary significantly inside the lens.

Our model allows calculation of variables that determine the role and life of the lens as an organ. Partic-

ularly important are the factors that determine the transparency of the lens, since that is the main function

of the organ. The dependence of the size of the extracellular space, and thus the pressure in the extracellular

and intracellular spaces and the difference between those two, is likely to be an important determinant of

transparency. One imagines that swelling of the extracellular space will scatter light, particularly because

the swelling is likely to be irregular (in a way our model does not yet capture). Changes in the Osmolarity

(i.e., activity of water estimated by the total concentration of solutes) is likely to be important as well.

This hydrodynamic bidomain model can point the way to dealing with other cells, tissues, and organs

in which current flow, water flow, and cell volume changes are important. These include the kidney, the

central nervous system (where the narrow extracellular space poses many of the biological problems facing
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Figure 4: Comparison of electro-neutral and simplified and Mathias’s model in [51].
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the lens), the t-tubular system of skeletal and much cardiac muscle and so on. We show that a mathemat-

ically well defined model can deal with the reality of biological structure and its complex distribution of

channels, etc.

Conservation laws applied to simplified structures are enough to provide quite useful results, as they

were in three dimensional electrical problems of cells of various geometries [16] and syncytia [3]-[23]. The

exact results are analyzed with perturbation methods, described in general in [73] and these methods allow

dramatic simplifications without introducing large or even significant errors. It is as if evolution chose sys-

tems in which parameters and structures allow simple results, in which parameters can control biological

function robustly.

Of course, we only point the way. Additional compartments and additional structural complexity will

surely be needed to deal with the workings of evolution. But these can be handled in a mathematically

defined way, yielding approximate results with clear physical and biological interpretation. Combining

the multi-domain model and membrane potential dependent conductance, one can model depolarization

induced by extra potassium in lens [53, 55] and cortical spreading depression (CSD) problem [74, 75, 71].

The ultimate goals will be (i) to provide as much precision in the mathematics and physics as we can, start-

ing from first principles [62]; (ii) to provide a general basis for treatments of convection in other tissues that

involve microcirculation. Computational models of these are not in hand, and may be hard to construct,

since so little is know of those systems compared to the lens. With what we have learned here, we hope a

general mathematical approach and model of the type we present here may be constructed and helpful in

other systems with narrow extracellular spaces that are likely to need microcirculation to augment diffu-

sion, like cardiac and skeletal muscle, kidney, liver, epithelia, and the extracellular space of the brain.
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Appendix A. Model Parameters

Parameters Mathias [51] Malcolm [55] Parameters Mathias [51] Malcolm [55]

R 1.6× 10−3 m 1.6× 10−3 m Lm 3.75× 10−13m/(Pa · s) 1.34× 10−13m/(Pa · s)

Ain/Vin 78 mM 78 mM Ls 3.75× 10−13m/(Pa · s) 8.89× 10−13m/(Pa · s)

CNa
o 107 mM 107 mM Min 0.988 0.99

CK
o 3 mM 3 mM Mex 0.012 0.01

Cm - 1× 10−2 F/m2 Mv 6× 105/m 5× 105/m

DNa
ex - 1.39× 10−9 m2/s T - 310 K

DK
ex - 2.04× 10−9 m2/s ke 1.72× 10−8 m2/(V · s) 1.45× 10−8 m2/(V · s)

DCl
ex - 2.12× 10−9 m2/s kB 1.38× 10−23 J/K 1.38× 10−23 J/K

DNa
in - 1.39× 10−11 m2/s KK1 - 1.6154 mM

DK
in - 2.04× 10−11 m2/s KK2 - 0.1657 mM

DCl
in - 2.12× 10−11 m2/s KNa1,Na2 - 2.3393 mM

e 1.6× 10−19 A · s 1.6× 10−19 A · s η 0.988 0.99

gNa 2.2× 10−3 S/m2 2.2× 10−3S/m2 κex 1.141× 10−16 m2 1.33× 10−16 m2

gCl 2.2× 10−3 S/m2 2.2× 10−3 S/m2 κin - 9.366× 10−19 m2

GK 2.1 S/m2 2.1 S/m2 γm,s 1 1

Ip 2.3× 10−2 A/m2 - τc 0.16 0.16

Imax1 - 0.478 A/m2 µ 7× 10−4 Pa · s 7× 10−4 Pa · s

Imax2 - 0.065 A/m2 z̄ -1.5 -1.5
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Appendix B. Dimensionless Parameters and Scales

The following dimensionless parameters’ value and scales calculation based on values in [55]

Scales/Parameters Value Parameters Value

aNa∗ 6.9× 10−2 A/m2 δ0 = Mex
Min

1
99

C∗ 110 mM δ1 =
keτckB T

eRu∗ex
1.2031× 10−1

O∗ 220 mM δ2 =
µRu∗in

κinγmkB TO∗ 6.861× 10−3

P∗ 16.937 KPa δ3 = P∗
γmkB TO∗ 2.9894× 10−2

u∗in 3.2506 nm/s δ4 =
Min u∗in

RMv LmγmkB TO∗

3.5323× 10−5

u∗ex 3.2181 µm/s δ5 =
u∗in

Ls γs kB TO∗ 4.3022× 10−3

φ∗ 26.7 mV δ6 =
MvCmkB T

e2C∗η
1.2745× 10−5

D∗ex 3.392× 1010 m2/s δ7 =
MvCmkB T
e2C∗ (1−η)

1.2617× 10−3

D∗in 2.12× 10−11 m2/s δ8 = Mex D∗ex
Min D∗in

1.6162× 10−1

Peex 1.5180 δ9 =
DCl

l −DK
l

D∗l
3.77× 10−2

Pein 2.4533× 10−1 δ10 =
DCl

l −DNa
l

D∗l
3.443× 10−1

D̃Na
in,ex 0.6557 δ11 =

CCl,0
in

CCl,0
ex

12.5
110

D̃K
in,ex 0.9623 ρ0

117
110

D̃Cl
in,ex 1 M̃in

v 3.3859× 10−1

Rs 4.00× 10−1 M̃ex
v 2.095

The δ can be find in the following equations.

δ0 : in eq.[13],

δ1 : in eq.[14a],

δ2 : in eq.[14b],

δ3 : in eq.[14b],

δ4 : in eq.[14c],

δ5 : in B.C. below eq.[14],

δ6 : in eq.[14e],

δ7 : in eq.[14 f ],

δ8 : in eq.[14h],

δ9 : in eq.[18],

δ10 : in eq.[18],

δ11 : in eq.[43],
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Appendix C. Non-dimensionalization

In this section, we derive the dimensionless model based on the lens, which has been widely stud-

ied. The major ions we considering here are sodium (Na+), potassium (K+) and chloride (Cl−) and the

sodium-potassium pump which distributed on the surface of the lens. Although we restrict ourselves in

this particular problem, the following procedure can be applied in a wide range of practical problems in

biological syncytia.

Appendix C.1. Water circulation

In the following, we assume the typical length of lens is R. The fluid system is driven by the osmotic

gradient, which is generated by the sodium-potassium pump on the surface. In Eq. 7, the strength of

sodium-potassium pump at surface depends on the ion’s concentration , which leads

aNa = 3
Ip

e
, aK = −2

Ip

e
, aCl = 0, (C.1)

where

Ip = Imax1

(
CNa

in
CNa

in + KNa1

)3 (
CK

o
CK

o + KK1

)2

+ Imax2

(
CNa

in
CNa

in + KNa2

)3 (
CK

o
CK

o + KK2

)2

. (C.2)

We assume that the velocity at surface determines the characteristic velocity scale for the problem. We have

ion fluxes in the intracellular, extracellular region in Eq. 5 and trans-membrane source of ion in Eq. 6 for

ion Na+, K+, Cl−.

At boundary of the intracellular space, due to the ion pump in Eq. C.1 and assumption of conductance at

surface that GNa = GCl = 0 [51, 47], we have

JNa
in = aNa, JK

in = jK
s + aK, JCl

in = 0. (C.3)

Since gK = 0 inside of the lens, we obtain

jK
s + aK = 0. (C.4)

This assumption obviously will have to be replaced in applications to other tissues, with a less particular

distribution of channel proteins.

By the conservation of fluxes for each ion in Eq. 4, we get

Ji
in = −δ0 Ji

ex, i = Na, K, Cl, (C.5)
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where δ0 = Mex
Min

. Therefore, Eq. C.3 becomes

−δ0 JNa
ex = aNa, −δ0 JK

ex = 0, −δ0 JCl
ex = 0. (C.6)

Adding up all three fluxes in Eq. C.6 and since in the extracellular region each ion diffusion coefficient are

at the same level of approximation, i.e.

Di
ex = O (Dex) , i = Na, K, Cl, (C.7)

and based on Eq. 10 , we get

Oexuin + δ0Dexτc
d
dr

Oex +
Dexτcδ0

kBT
ρex

d
dr

φex = aNa. (C.8)

The strength of the ion pump aNa depends on the ion concentration in Eq. C.2 . We choose the scale of aNa

is aNa∗ based on an experimental estimation [51]. Using Eq. C.8, we take the scale for Oin,ex and uin to be

O∗ and u∗in as

O∗ = 2
(

CNa
o + CK

o

)
, u∗in =

aNa∗

O∗
. (C.9)

By mass conservation expressed in Eq. 1, we naturally get the scale of uex as

u∗ex = δ−1
0 u∗in. (C.10)

Furthermore, φ∗ = kBT
e is used for the scale of electric potential φin and φex. For the extracellular velocity

in Eq. 2, we have

u∗exũex = − κex

µR
τcP∗ex

d
dr̃

P̃ex − keτc
kBT
eR

d
dr̃

φ̃ex, (C.11)

We think the d
dr Pex term balance the velocity uex. The scale for extracellular pressure P∗ex is then choose

P∗ex =
µRu∗ex
κexτc

.

Therefore, we get

ũex = − d
dr̃

P̃ex − δ1
d
dr̃

φ̃ex, (C.12)
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where δ1 = keτckBT
eRu∗ex

. For the intracellular velocity, we have

u∗inũin = −
κinP∗in

µR
d
dr̃

P̃in +
κinγmkBTO∗

µR
d
dr̃

Õin. (C.13)

We claim term d
dr Pin and d

dr Oin balance at the same level. Therefore, we choose the same scale for the

intracellular and extracellular pressure, namely,

P∗ = P∗in = P∗ex.

Then Eq. C.13 becomes

δ2ũin = −δ3
d
dr̃

P̃in +
d
dr̃

Õin, (C.14)

where

δ2 =
µRu∗in

κinγmkBTO∗
, δ3 =

P∗

γmkBTO∗
.

In all, the fluid system Eq. 1 becomes


ũex = −ũin,

δ4
1
r̃2

d
dr̃

(
r̃2ũin

)
= δ3

(
P̃ex − P̃in

)
+
(

Õin − Õex

)
,

(C.15)

with boundary condition 
P̃ex = 0,

δ5ũin = δ3P̃in −
(

Õin − Õex

)
,

where

δ4 =
Minu∗in

RMvLmγmkBTO∗
, δ5 =

u∗in
LsγskBTO∗

.

Appendix C.2. Ions circulation

The velocity scales and diffusion coefficients in the extracellular and intracellular space are at different

levels of approximation in our approach. In the following, we put the characteristic diffusion coefficients

at intracellular and extracellular region and scale of concentration as

D∗ex = DCl
ex τc, D∗in = DCl

in , C∗ = CNa
o + CK

o .
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In this way, we get Peclet number in the extracellular and intracellular and dimensionless Nernst potential

as

Pein =
u∗inR
D∗in

, Peex =
u∗exR
D∗ex

, Ẽi =
1
zi log

(
C̃i

ex

C̃i
in

)
.

Because gNa = 0 inside of lens, we have K+ system as in Mathias’s model [51],


1
r̃2

d
dr̃

(
r̃2
(

PeexC̃K
exũex − D̃K

ex

(
d
dr̃

C̃K
ex + zKC̃K

ex
d
dr̃

φ̃ex

)))
= 0,

1
r̃2

d
dr̃

(
r̃2
(

PeinC̃K
inũin − D̃K

in

(
d
dr̃

C̃K
in + zKC̃K

in
d
dr̃

φ̃in

)))
= 0,

(C.16)

with boundary condition


C̃K

ex = C̃K
o ,

PeinC̃K
inũin − D̃K

in

(
d
dr̃

C̃K
in + zKC̃K

in
d
dr̃

φ̃in

)
=

Rs

zK

(
φ̃in − ẼK

)
+ ãK,

and Cl− system as



1
r̃2

d
dr̃

(
r̃2
(

PeexC̃Cl
ex ũex − D̃Cl

ex

(
d
dr̃

C̃Cl
ex + zClC̃Cl

ex
d
dr̃

φ̃ex

)))
=
M̃ex

v
zCl

(
φ̃in − φ̃ex − ẼCl

)
,

1
r̃2

d
dr̃

(
r̃2
(

PeinC̃Cl
in ũin − D̃Cl

in

(
d
dr̃

C̃Cl
in + zClC̃Cl

in
d
dr̃

φ̃in

)))
= −δ8

1
r̃2

d
dr̃

(
r̃2
(

PeexC̃Cl
ex ũex − D̃Cl

ex

(
d
dr̃

C̃Cl
ex + zClC̃Cl

ex
d
dr̃

φ̃ex

)))
,

(C.17)

with boundary condition


C̃Cl

ex = C̃Na
o + C̃K

o + δ7
(
φ̃in − φ̃ex

)
,

PeinC̃Cl
in ũin − D̃Cl

in

(
d
dr̃

C̃Cl
in + zClC̃Cl

in
d
dr̃

φ̃in

)
= 0.

where

Rs =
GKkBTR
e2D∗inC∗

, ãK =
aKR

D∗inC∗
, M̃ex

v =
MvgClkBTR2

Mexe2D∗exC∗
, δ8 =

MexD∗ex
MinD∗in

.

The concentration of Na+ can be solved from the following equations


∑

i
ziC̃i

in + z̄
Ãin
Vin

= δ6
(
φ̃in − φ̃ex

)
,

∑
i

ziC̃i
ex = −δ7

(
φ̃in − φ̃ex

)
,

(C.18)
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where

δ6 =
MvCmkBT

e2C∗η
, δ7 =

MvCmkBT
e2C∗(1− η)

. (C.19)

From Eq. 11 and use the fact zNa = zK = 1 and assumption that gNa = gCl and GNa = GCl = 0, we

have



1
r̃2

d
dr̃

(
r̃2

(
Peex ρ̃exũex −∑

i
D̃i

exzi d
dr̃

C̃i
ex − σ̃ex

d
dr̃

φ̃ex

))
= M̃ex

v

(
2
(
φ̃in − φ̃ex

)
− ẼNa − ẼCl

)
,

1
r̃2

d
dr̃

(
r̃2

(
Peinρ̃inũin −∑

i
D̃i

inzi d
dr̃

C̃i
in − σ̃in

d
dr̃

φ̃in

))

= −δ8
1
r̃2

d
dr̃

(
r̃2

(
Peex ρ̃exũex −∑

i
D̃i

exzi d
dr̃

C̃i
ex − σ̃ex

d
dr̃

φ̃ex

))
,

(C.20)

with boundary condition


φ̃ex = 0,

Peinρ̃inũin −∑
i

D̃i
inzi d

dr̃
C̃i

in − σ̃in
d
dr̃

φ̃in =
Rs

zK

(
φ̃in − ẼK

)
+ Ĩφ

p ,
(C.21)

where

ρ̃in = |z̄| Ãin
Vin

+ δ6
(
φ̃in − φ̃ex

)
, ρ̃ex = δ7

(
φ̃ex − φ̃in

)
, Ĩφ

p =
IpR

eD∗inC∗
,

and

σ̃in = ∑
i

D̃i
in(z

i)2C̃i
in, σ̃ex = ∑

i
D̃i

ex(z
i)2C̃i

ex.
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Appendix D. Effect of permeability
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Figure D.5: Comparison between different κin.
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