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Abstract and Summary 

 

The name PNP was introduced by Eisenberg and Chen because it has important 

physical meaning beyond being the first letters of Poisson-Nernst-Planck. PNP also 

means Positive-Negative-Positive, the signs of majority current carriers in different 

regions of a PNP bipolar transistor. PNP transistors are two diodes in series PN + NP 

that rectify by changing the shape of the electric field. Transistors can function as quite 

different types of nonlinear devices by changing the shape of the electric field. Those 

realities motivated Eisenberg and Chen to introduce the name PNP in 1993. 

The pun “PNP = Poisson-Nernst-Planck = Positive-Negative-Positive” has 

physical content. It suggests that Poisson-Nernst-Planck systems like open ionic 

channels cannot be assumed to have constant electric fields. Indeed, the equations of 

electrodynamics make it more or less impossible that a channel have a constant electric 

field, if there is permanent charge nearby. The electric field must be studied and 

computed because its change of shape is unavoidable for charged channels, and the 

shape of the electric field is likely to be important in the function of biological systems, 

as it is in semiconductor systems.  
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PNP is a shortened name for “Positive-Negative-Positive” or “Poisson-Nernst-

Planck equation”. It was not meant to be just an abbreviation: names are important, 

beyond their logical meaning, as advertisements show us everyday. The name PNP is 

no exception. The name was chosen to help understand the system it describes. 

PNP was a pun introduced by Eisenberg and Chen [1, 2] at a well attended 

workshop of the 1993 Biophysical Society (USA) annual meeting [3]. Eisenberg and 

Chen wanted to emphasize the analogy between open ion channels and semiconductor 

devices. The Poisson equation is a version of Maxwell’s first equation [4-7] that 

describes how charge creates electrical forces and thus electrical potential. The Nernst-

Planck equation [8-27] describes how electrical charges migrate (in the gradient of 

electric fields) and diffuse (in the gradient of concentration fields).1 The combination 

PNP is often called the drift diffusion equation in the semiconductor literature [8, 11, 

12, 14-17, 20] 

PNP meaning “Positive-Negative-Positive” describes the spatial distribution of 

mobile charge produced (mostly) by the spatial distribution of doping in a 

semiconductor device, a bipolar transistor. Doping is a name for the ionizable impurities 

(dopants) introduced into pure semiconductors to create the quasi-particles holes P and 

electrons N. When dopants ionize, they leave behind a permanent charge (negative or 

positive) in a fixed spatial distribution, much like the permanent charge of ionized weak 

acids and bases of ion exchangers or protein side chains. The ionized acid and base side 

chains of proteins, like glutamates E or lysines K, are one kind of the permanent charge 

of proteins. This view of proteins emphasizes the importance of permanent charge 

because permanent charge usually creates much larger forces than the induced charge 

of polarization (i.e., dielectric effects) and dielectric boundary charges[28]. 

Holes and electrons diffuse and migrate according to the PNP equations [8, 10, 

29]. They are the (pseudo) ions of semiconductors. Note that the ‘electrons’ [30] of 

semiconductors are not the electrons [31, 32] discovered by JJ Thomson or the electrons 

found in atoms [33]. The ‘electrons’ of semiconductors are quasiparticles defined by 

properties of the conduction bands of semiconductors [17, 29, 34]. They have rather 

short lifetimes often measured in microseconds, compared to the infinite lifetimes of 

ions in water. 

 
1 Another paper is needed to describe the utility and evident limitations of PNP, as well as its antecedents and 

present uses. 
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Eisenberg and Chen chose the name PNP to emphasize the analogy between 

doping of semiconductors and the permanent charge of channels, or ion exchange 

membranes [9, 20, 24, 25, 35-68].  

Eisenberg and Chen were thinking of semiconductor devices because transistors 

and PNP equations have a wide range of nonlinear behavior. For example, PNP 

equations can describe an amplifier, limiter, multiplier, exponentiator, or logarithmic 

converter depending on the range of voltages applied to the transistor through boundary 

conditions and auxiliary circuits.  

Eisenberg and Chen wondered if nonlinear devices, well described by the PNP 

equations in semiconductors, might also exist in biological systems, particularly protein 

channels and transporters [69]. [70, 71]. Eisenberg and Chen wondered which of the 

nonlinearities of channels and transporters might come from PNP equations like those 

describing semiconductor devices [72]. These ideas were spelled out in an Abstract [72] 

presented at the Society of General Physiology Meeting 1992, Woods Hole MA: 

“Exchange Diffusion, Single Filing, and Gating in Macroscopic Channels of One 

Conformation” but the name PNP was not used there.  

Nonlinearities of proteins were particularly interesting because they were 

thought to be the ‘secret of life’ by many physicists coming to biology soon after World 

War 2 [73-77]—at the same time that Shockley invented the transistors [78, 79]. 

Transistors create the complex nonlinearities of semiconductor devices.  

We now know that the nonlinearities of biology exist on many scales [80]. Some 

of those nonlinearities are emergent properties that exist (i.e., emerge) only on scales 

much larger than a channel. Many nonlinearities arise on the cellular scale of neurons 

and dendrites [81, 82]. Some nonlinear properties arise on the molecular scale of 

proteins. Most models of protein function use rate models (with states connected by 

arrows and the law of mass action) to describe nonlinear properties. When rate models 

do not easily describe protein function, the mechanism is often said to be allosteric or 

to involve conformation changes that are not described by any specific equations.  

It should be clearly understood that rate models are not fundamental laws of 

physics or chemistry. In fact, rate models with fixed rate constants are rarely 

transferrable, to use the chemists’ language. Rate constants must be adjusted as 

conditions change if the models are to fit experimental data, in most cases. That means, 

of course, that a rate model with fixed parameters does not describe the underlying free 

energies of the chemical reaction. In much of physics and engineering, models that do 

not describe data with one set of parameters or free energies are called ‘incorrect’ 

because they cannot predict experiments. In nontransferable models, parameters or free 
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energies cannot be predicted. If they could be predicted, the models would be 

transferable! 

Most biologists sought other explanations for the nonlinearities of life beyond 

the properties of channels, let alone open channels. I hasten to add that those biologists 

seem to be right. Eisenberg and Chen’s hope that nonlinear biological devices—e.g., 

channels or transporters—would emerge as analogs of transistor devices, described by 

PNP equations and auxiliary circuits, has not been fulfilled, as far as I know, probably, 

I suspect, because the third terminal of transistors—so important to the history of 

technology and to human life as the source of amplification—has not yet been found 

(or recognized) in channels or transporters. Transistors connected as two terminal 

devices provide properties that have not been considered by biologists, as far as I know, 

so I am not sure we would recognize them even if we were studying them! 

Eisenberg and Chen knew of the bipolar transistor PNP (along with its fraternal 

twin NPN) because bipolar transistors were the dominant form of solid state device, 

analog or digital, for much of their lives. Engineers today live quite a different life. 

Engineers today focus on the unipolar devices of our digital technologies (usually CMOS 

and its cousins) because they allow much higher densities (particularly thermal 

densities) of devices and are faster than bipolar devices. Bipolar devices have majority 

and minority charge carriers and are often limited in speed by the kinetics of the 

minority carriers, which tend to move slowly because they are present in the minority, 

in small numbers. Knowledge of bipolar transistors has been decreasing in the last two 

or three decades as they are used less and less.2 

The bipolar transistor [83] is made of two semiconductor diode rectifiers [84] 

PN and NP in series. Crystal rectifiers much like these were used in the early history of 

radio broadcasting (around 1920) and remained of great interest to hobbyists for many 

years, including the young Eisenberg and his father. Crystal radios seem to “run on 

nothing”, using only the energy gathered by the antenna system (paraphrase of [85]). 

They demonstrate in a most practical way that the electric field of radio waves exists 

and has enough energy to power a (tiny) loudspeaker. Anyone who builds a crystal radio 

is likely to be entranced forever by the electric field and to be convinced of that power 

can propagate through empty space [86, 87]. Eisenberg was no exception. (The 

explanation of how power propagates through empty space is one of the triumphs of 

electrodynamics. In fact, the equations of electrodynamics predict correctly that energy 

 
2 It seemed wise to write this paper before the knowledge of bipolar PNP transistors and analog circuity 

disappears altogether. 
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propagates at the speed of light 𝑐 = 1 (𝜇0𝜀0)1 2⁄⁄ , determined by magnetic 𝜇0 and 

electric 𝜀0 constants that are measured without reference to light or radiation.) 

PNP transistors and PN diodes are rectifiers that detect asymmetrical signals in 

radio waves. They make current flow ‘the right way’, which is the rectified way. “To 

rectify” is to make something correct, to make something as it should be, in 

nontechnical English, commonly used in the 1800’s. In fact, rectifiers make current 

flow in one direction as Edison thought it should in the war between Edison’s DC and 

Tesla’s AC systems of electrical power [88]. The resistance of rectifiers depends on the 

direction of current flow because the shape of the electric fields at the PN or NP 

junctions depends on the direction of current flow.  

Rectifiers exist in biological membranes and so it was natural to analyze them 

the way crystal rectifiers of early radios were analyzed. One of the early papers on the 

crystal rectifier [89] served as the template for the constant field GHK theory of 

Goldman [90] and Hodgkin and Katz [91] of rectification in membranes , according to 

personal communications to me from Hodgkin, Goldman and Goldman’s Ph.D. 

supervisor, Cole, from the 1960’s. It is important to understand that when the theory 

was published, no one had proposed that the currents being measured flowed through a 

hole in a protein, itself embedded in a lipid membrane, as far as I know. The theory was 

used to describe flow through what its authors thought was a lipid membrane. There is 

little permanent charge inside a lipid membrane. Charge is on the outside of such 

membranes at the interface between lipid and ionic solution. 

The GHK theory has been used extensively in electrophysiology to describe the 

electric field in holes in the proteins that make ionic channels [92-94]. This usage is 

unfortunate because the theory contains no description of the structure or charge of the 

channel protein. It is even more unfortunate that it uses a field, a potential profile 

independent of the charge on the protein. On physical grounds, the potential cannot be 

independent of charge. On biological and evolutionary grounds the current or selectivity 

(i.e., reversal potential) cannot be independent of the structure of the channel protein, 

[92-94]. Indeed, structural and molecular biology shows that current and selectivity 

depend sensitively on the distribution and structure of permanent charge in a channel 

protein. Site directed mutagenesis changes that charge distribution and observes the 

resulting changes in current in innumerable laboratories every day. Structural biologists 

know this better than I, yet most continue to use the GHK theory that denies that reality, 

because it does not depend on structure at all. 

A central aspect of PNP physics is rectification. Rectification depends on the 

shape of the electric field. Rectifiers function by changing the shape of the field and so 
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the shape of the field needs to be computed [95-99], not assumed. In fact, assuming the 

shape of the field will prevent understanding of how the device works. If the workers at 

Bell Labs, led by William Shockley [100-105] had assumed constant fields, they could 

not have understood how PN junctions rectified[79, 106], and it seems unlikely they 

could have discovered PNP [10] and designed the transistors and solid state circuity on 

which our computer, smart phone, and video technology is based. 

This point was emphasized by Eisenberg in a series of reviews [70, 95, 107-111] 

because he felt the role of the electric field in biological systems (and chemical 

reactions) could not be understood if the field was assumed constant. Properties of 

biological systems or chemical reactions [112] that arise from changes in the shape of 

the field cannot be robustly described in theories that assume a constant field. Constant 

field theories are not transferable, as (for example) protein permanent charges are 

changed by site directed mutagenesis. Theories would have to change parameters as 

they tried to mimic the consequences of a changing permanent charge, or anything else 

that changed the shape of the electric field. 

An important part of PNP history was Duan-Pin Chen’s (re)-discovery of 

Gummel’s robust and reliable method [113, 114] of integrating the equations.  

Most of the work on PNP in chemistry before say the 1990’s used numerical 

methods that do not converge, and even worse appear to converge, but do not actually 

converge to a solution. These issues are now established mathematics, reviewed, 

explained and cured in [13] where the author is too kind to emphasize the long time 

necessary before mathematicians and physicists in the Shockley tradition [78, 79, 

106]—even with the resources of the Bell Laboratories—learned from an engineer 

Gummel [113, 114] how to replace a nonconvergent numerical method with one that 

was strongly convergent indeed.  

This issue has undermined the use of the Poisson Nernst Planck equations in 

chemistry for many decades and it is not clear that many early papers on PNP had solved 

it [9, 25, 39, 40, 42, 43, 46, 115-119], perhaps even extending to recent times [99, 120-

123]. Roughly speaking, if numerical difficulties and procedure are not discussed in an 

early paper, or indeed in any paper using the PNP equations, one must worry that results 

are not converged to true solutions of the equations. Fortunately for us, Duan-Pin Chen 

discovered the Gummel iteration independently [124-128], before we knew of 

computational electronics. Joe Jerome [13], Tom Kerkhoven [129], and Uwe 

Hollerbach [127, 128] checked DuanPin’s implementation carefully and compared his 

methods to those of [130, 131] and themselves, to be sure it converged as Gummel’s 

did. 
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Eisenberg and Chen’s PNP results were presented to the mathematics and 

physics communities at a series of well attended minisymposia at SIAM (Society of 

Industrial and Applied Mathematics) annual meetings (2001, 2005, 2006). The 2005 

meeting was in New Orleans, just a few weeks before hurricane Katrina destroyed the 

hotel we had been in and devastated the city. The 2006 meeting in Boston was co-

chaired by electrochemist Martin Bazant, who had questioned the presentation in New 

Orleans, vigorously and appropriately, if my memory serves me right. The subsequent 

visit and lecture by Eisenberg at MIT, generously arranged by Bazant, may have 

catalyzed the spread of these ideas to the electrochemical community [9, 115, 116], 

although of course the Poisson-Nernst-Planck equations had existed long before then, 

however, usually without permanent charge and with few if any checks that the 

numerical procedures converged to actual solutions of the equations.  

The crucial role of the spatial distribution doping, (permanent charge) and the 

near identity of PNP with the drift diffusion equations of computational electronics is 

still not given its due, in my opinion, in the community of chemists, electrochemists 

[132, 133], physical chemists, and biochemists. The spatial distribution of permanent 

charge provides enormous opportunities for control that might be of great technological 

use where ions are the main mobile charges. Changes of sign of doping create depletion 

layers that allow full control of current by a handful of atoms because this is a series 

system. Particularly note the properties of thyristors (PNPN) and power transistors of 

various types [134, 135].  

Useful properties of ion exchangers and other selective macroscopic membranes 

may be designed if an inverse approach is used. The inverse methods of Burger and 

collaborators [136-138], allow design of a spatial distribution of permanent charge that 

will produce a desirable selectivity, as has been shown by actual computation (in the 

presence of noise and systematic error), not just argument. Indeed, the idea that potential 

profiles, and rate constants, must be the computed consequence [95] distribution 

of permanent charge on the atomic scale [70, 71] (and of macroscopic boundary 

conditions describing the structure of the system) is notable by its absence in the 

chemical, biochemical, biophysical, and (to a lesser extent) electrochemical literature.  

Theories and simulations done without computed potential profiles are almost 

never transferrable. Nontransferable theories need different parameters in different 

experimental conditions and cannot calculate the different parameters before the 

experiments are done. Transferrable theories use the same set of parameters in different 

conditions. Transferrable theories are needed to create stable understanding or robust 

devices, in my view. 
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It should clearly be understood that the shape of an electric field varies as 

experimental conditions are changed (as they are changed in almost all experiments). 

Voltage clamp apparatus maintains voltages only at one specific location. To maintain 

the shape of an electric field, voltage clamp must be applied at many locations (within 

an ionic channel or membrane) because the only way to maintain a potential, as 

conditions are changed, is to supply charge from an external device like a voltage 

clamp amplifier. That charge must come through ‘wires’ from an external source, 

because ion channels—like most proteins—are in themselves isolated devices, unable 

to create charge. These issues are discussed at embarrassing length in the reviews [70, 

95, 107-111]. 

Isolated proteins need to be described as spatial distributions of permanent charge 

(to a first approximation) just as PNP transistors are described as distributions of doping 

(to a first approximation) and for the same reason. Their materials provide a permanent 

charge (as a first approximation) that arises from their chemical nature [125]. The 

second approximation is provided by an term to describe the field dependent induced 

polarization charge of the dielectric. Further approximations require a fuller description 

of polarization [4, 87, 139, 140]. 

The boundary condition describing the potential in isolated proteins like channels 

is an inhomogeneous Neumann condition defining the (normal) spatial derivative of the 

potential, that is to say, defining the permanent charge, not the potential itself, to a first 

approximation (Appendix eq. A25 of [125]). The chemical nature and structure of the 

amino acids and proteins determine the permanent charge and thus the inhomogeneous 

Neumann condition on the potential. Adding in the dielectric (i.e., polarization) current 

does not have a first order effect if permanent charge created by doping (e.g., acid or 

base side chains of proteins) is present. If permanent charge of that type is not present, 

the dielectric boundary condition must be used and may be an important determinant of 

channel properties. 

Proteins are almost always isolated from the outside world except at boundaries 

like baths connected to the outside world by the apparatus of electrochemical cells, i.e., 

3M KCl bridges, AgAgCl electrodes, and amplifiers [22, 141]. Proteins have one 

unchanging spatial distribution of permanent charge as conditions change (neglecting 

the second order effect of dielectric properties) unless they ionize or deionize. We do 

not consider those conditions here, although they may exist and contribute to properties 

of transporters for example, as proposed a long time ago [70]. Proteins cannot be 

described by a single field of potential as conditions change because the electric field 



10 

 

changes dramatically as conditions change. It is the permanent charge of the protein that 

does not change as conditions change. 

Experiments maintaining a constant field in vacuum (i.e., one spatial distribution 

of potential) have been done. They are difficult to perform even in a SQUID 

(superconducting quantum interference device) [142]. 
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