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ABSTRACT The action potential of nerve and muscle is produced by voltage-sensitive channels that include a specialized
device to sense voltage. The voltage sensor depends on the movement of charges in the changing electric field as sug-
gested by Hodgkin and Huxley. Gating currents of the voltage sensor are now known to depend on the movements of posi-
tively charged arginines through the hydrophobic plug of a voltage sensor domain. Transient movements of these
permanently charged arginines, caused by the change of transmembrane potential V, further drag the S4 segment and
induce opening/closing of the ion conduction pore by moving the S4-S5 linker. This moving permanent charge induces
capacitive current flow everywhere. Everything interacts with everything else in the voltage sensor and protein, and so it
must also happen in its mathematical model. A Poisson-Nernst-Planck (PNP)-steric model of arginines and a mechanical
model for the S4 segment are combined using energy variational methods in which all densities and movements of charge
satisfy conservation laws, which are expressed as partial differential equations in space and time. The model computes
gating current flowing in the baths produced by arginines moving in the voltage sensor. The model also captures the capac-
itive pile up of ions in the vestibules that link the bulk solution to the hydrophobic plug. Our model reproduces the signature
properties of gating current: 1) equality of ON and OFF charge Q in integrals of gating current, 2) saturating voltage depen-
dence in the Q(charge)-voltage curve, and 3) many (but not all) details of the shape of gating current as a function of
voltage. Our results agree qualitatively with experiments and can be improved by adding more details of the structure
and its correlated movements. The proposed continuum model is a promising tool to explore the dynamics and mechanism
of the voltage sensor.
INTRODUCTION
Much of biology depends on the voltage across cell mem-
branes. The voltage across the membrane must be sensed
before it can be used by proteins. Permanent charges
move in the strong electric fields within membranes, so car-
riers of sensing charge were proposed as voltage sensors
even before membrane proteins were known to span lipid
membranes (1). The movement of permanent charges of
the voltage sensor is gating current, and the movement is
the voltage-sensing mechanism. Permanent charge is our
name for a charge or charge density independent of the
local electric field (for example, the charge and charge dis-
tribution of Naþ but not the charge in a highly polarizable
anion like Br� or the nonuniform charge distribution of
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H2O in the liquid state with its complex time dependent
(and perhaps nonlinear) polarization response to the local
electric field).

Knowledge of membrane protein structure has allowed
us to identify and look at the atoms that make up the voltage
sensor. Protein structures do not include the membrane
potentials and macroscopic concentrations that power gating
currents, and therefore, simulations are needed. Atomic-level
simulations likemolecular dynamics (MD) do not provide an
easy extension from the atomic timescale�10�15 s to the bio-
logical timescale of gating currents that starts at �10�6 s
and reaches �10�2 s. Calculations of gating currents from
simulations must average the trajectories (lasting �10�1 s
sampled every 10�15 s) of �106 atoms, all of which interact
through the electric field to conserve charge and current
while conserving mass. It is difficult to enforce continuity
of current flow in simulations of atomic dynamics because
simulations compute only local behavior, whereas continuity
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Gating Currents Model
of current is global, involving current flow far from the atoms
that control the local behavior. It is impossible to enforce con-
tinuity of current flow in calculations that assume equilib-
rium (zero net flow) under all conditions.

A hybrid approach is needed, starting with the essential
knowledge of structure but computing only those parts of
the structure used by biology to sense voltage. In close-
packed (‘‘condensed’’) systems like the voltage sensor
or ionic solutions, ‘‘everything interacts with everything
else’’ because electric fields are long ranged as well as
exceedingly strong (2). In ionic solutions, ion channels,
even enzyme active sites, steric interactions that prevent
the overfilling of space in well-defined protein structures
are also of great importance because they produce short-
range correlations (3).

Closely packed charged systems are well handled math-
ematically by energy variational methods. Energy varia-
tional methods guarantee that all variables satisfy all
equations (and boundary conditions) at all times and under
all conditions and are thus always consistent. We use the
energy variational approach developed in (4) and (5) to
derive a consistent model of gating charge movement,
based on the basic features of the structure of crystallized
voltage-sensitive channels. A schematic of the model is
shown below. The continuum model we use simulates the
mechanical dynamics in a single voltage sensor, although
the experimental data is from many independent voltage
sensors. Ensemble averages of recordings of individual in-
dependent voltage sensors are equivalent to macroscopic
continuum modeling in a single voltage sensor if correla-
tions are captured correctly in the model of the single
voltage sensor.
MATERIALS AND METHODS

Theory: Mathematical model

The reduced mechanical model for a voltage sensor is shown in Fig. 1 a

with four arginines (Ri, i¼ 1, 2, 3, 4), each attached to the S4 helix by iden-

tical springs with the same spring constant K. The electric field will drag

these four arginines because each arginine carries þ1 charge. The charged

arginines can also move as a group. S4 connects to S3 and S5 at its two ends

by identical springs with spring constant KS4/2.

Once the membrane is depolarized from, for example, �90 mV inside

negative to þ10 mV inside positive, arginines together with S4 will

be driven toward the extracellular side. A repolarization from þ10 to

�90 mV moves the arginines back to the intracellular side. This movement

is the basic voltage-sensing mechanism. The movement of S4 triggers the

opening or closing of the lower gate—consisting mainly of S6 forming

the ion permeation channel—by a mechanism widely assumed to be me-

chanical, although electrical aspects of the linker motion are likely to be

involved as well.

When arginines are driven by an electric field, they are forced to move

through a hydrophobic plug composed of several nonpolar amino acids

from S1, S2, to S3 (6). Arginines reside initially in the hydrated lumen of

the intracellular vestibule. They then move though the hydrophobic plug

and wind up in the vestibule on the extracellular side. This movement in-

volves dehydration when the arginines move through the hydrophobic

plug, in which the arginines encounter a barrier in the potential of mean
force (PMF), mainly dominated by the difference of the solvation energy

in bulk situation and in the hydrophobic plug (7). Note that Naþ and Cl�

(which are the only ions in the bulk solution in this article for simplicity)

are found only in vestibules and are not allowed into the hydrophobic

plug in our model. The ends of the two vestibules on each side of the hy-

drophobic plug act as impermeable walls for Naþ and Cl� in our model.

When the voltage is turned on and off, these two walls store/release charge

(carried by ions) in their electric double layers (EDL) that have many of the

properties of capacitors.

In this continuum model, the four arginines (Ri, i ¼ 1, 2, 3, 4) are

described by their individual density distributions (concentrations) (ci,

i ¼ 1, 2, 3, 4), allowing the arginines to interact with Naþ and Cl� in

vestibules. The density (i.e., concentration) distributions represent prob-

ability density functions as shown explicitly in the theory of stochastic

processes used to derive such equations in (8) using the general methods

of (9). The important issue here is how well the correlations are captured

in the continuum model. Some are more likely to be faithfully captured

in molecular or coarse-grained dynamics simulations (e.g., more or less

local hard sphere interactions) (10–14) and others in continuum models

(e.g., correlations induced by far-field boundary conditions like the

potentials imposed by bath electrodes to maintain a voltage clamp)

(15–18).

Here, we treat the S4 itself as a rigid body, so we can capture the basic

mechanism of a voltage sensor without considering the full details of struc-

ture, which might lead to a three-dimensional model difficult to compute in

reasonable time. We construct an axisymmetric one-dimensional (1D)

model with a three-zone geometric configuration illustrated in Fig. 1 b,

following Fig. 1 a. Zone 1 with z ˛ [0, LR] is the intracellular vestibule;

zone 2 with z ˛ [LR, LR þ L] is the hydrophobic plug; zone 3 with z ˛
[LR þ L, 2LR þ L] is the extracellular vestibule. Arginines, Naþ, and Cl�

can all reside in zone 1 and 3. Zone 2 only allows the residence of arginines,

albeit with a severe hydrophobic penalty because of their permanent charge,

in a region of low dielectric coefficient, hence called hydrophobic.

Based on Fig. 1 b, the governing 1D dimensionless Poisson-Nernst-

Planck (PNP)-steric equations are expressed below with the detailed nondi-

mensionalization process shown in Supporting Materials and Methods,

Section S1. The first one is a Poisson equation that shows how charge cre-

ates potential:

�1

A

d

dz

�
GA

df

dz

�
¼
XN
i¼ 1

qici; i ¼ Na;Cl; 1; 2; 3; 4; (1)

where f is electric potential; ci is concentration of species i with valence

qNa ¼ 1, qCl ¼ �1, qi ¼ qarg ¼ 1, i ¼ 1, 2, 3, 4; G ¼ l2D=R
2 with

lD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εrε0kBT=c0e2

p
being the Debye length, and the characteristic length

(radius of vestibule) R ¼ 1 nm here. A(z) is the channel cross-sectional area

at position z. For zones 1 and 3, G ¼ 1 by setting NaCl bulk concentration

c0 ¼ 184 mM and εr ¼ 80. For zone 2, we assume a hydrophobic environ-

ment with εr ¼ 8 and therefore G¼ 0.1. The value of the dielectric constant

inside the hydrophobic plug (zone 2) is not experimentally available; how-

ever, the computational result is not sensitive to this value based on our

sensitivity analysis.

The second equation is the species transport equation based on conserva-

tion laws:

vci
vt

þ 1

A

v

vz
ðAJiÞ ¼ 0; i ¼ Na;Cl; 1; 2 ; 3; 4; (2)

with the content of flux Ji expressed below based on the Nernst-Planck

equation for Naþ and Cl�:

Ji ¼ �Di

vci
vz

þ ciqi
vf

vz

� �
; i ¼ Na;Cl; z in zone 1 and 3;

(3)
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FIGURE 1 (a) Geometric configuration of

gating pore in this model, including the attach-

ments of arginines to the S4 segment. (b) Following

(a), an axisymmetric three-zone domain shape is

designated in r-z coordinate for the current 1D

model. Here, the diameter of the hydrophobic

plug is 0.3 nm (arginine’s diameter); L ¼ 0.7 nm;

LR ¼ 1.5 nm; and the radius of the vestibule is

R ¼ 1 nm. BC means boundary condition. To see

this figure in color, go online.

Horng et al.
and for four arginines ci, i ¼ 1, 2, 3 and 4 based on the Nernst-Planck equa-

tion with steric effect and some imposed potentials:

Ji ¼ � Di

 
vCi

vz
þ qargci

vf

vz
þ ci

�
vVi

vz
þ vVb

vz

�

þ gci
X
jsi

vcj
vz

!
; z in all zones;

(4)

where Di is the diffusion coefficient for species i.

The first and second terms in Eqs. 3 and 4 describe diffusion and electro-

migration, respectively. The third terms in Eq. 4 are external potential terms

with Vi, i¼ 1, 2, 3, and 4 being the constraint potential for the four arginines

ci to S4, represented here by a spring connecting each arginine ci to S4, as

shown in Fig. 1 a. Governing equations Eqs. 1, 2, 3, and 4 were derived by

energy variational methods, which is further shown in Supporting Materials

and Methods, Section S3.

The elastic system is described by

Viðz; tÞ ¼ Kðz� ðzi þ ZS4ðtÞÞÞ2; (5)

where K is the spring constant, zi is the fixed anchoring position of the

spring for each arginine ci on S4, and ZS4(t) is the center-of-mass z position
272 Biophysical Journal 116, 270–282, January 22, 2019
of S4 by treating S4 as a rigid body. Here, we set z1 ¼ 0.6, z2 ¼ 0.2,

z3 ¼ �0.2, and z4 ¼ �0.6 using structural information that gives the argi-

nine anchoring interval on S4 as 0.4 nm. ZS4(t) follows the motion of equa-

tion based on the spring-mass system:

mS4

d2ZS4

dt2
þ bS4

dZS4

dt
þ KS4ðZS4 � ZS4;0Þ

¼
X4
i¼ 1

Kðzi;CM � ðzi þ ZS4ÞÞ; (6)

where mS4, bS4, and KS4 are the mass, damping coefficient, and restraining

spring constants for S4. ZS4,0 is the resting position of ZS4(t). Here, zi,CM is

the center of mass for the set of arginines ci, which can be calculated by

zi;CM ¼
R Lþ2LR

0
AðzÞzcidzR Lþ2LR

0
AðzÞcidz

; i ¼ 1; 2; 3; 4: (7)

We assume that the spring-mass system for S4 is overdamped, which

means the inertia term in Eq. 6 can be neglected.

The energy barrier Vb in Eq. 4 is nonzero only in zone 2, which mainly

represents the difference in solvation energy, chiefly characterized by the
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difference of dielectric constants, in the hydrophobic plug and bulk solu-

tion. The structure of the energy barrier is actually very complicated.

Here, we simply assume a hump shape for PMF (see more in Supporting

Materials and Methods, Section S2), although we will seek greater realism

in later work.

The last term in Eq. 4 is the steric term that accounts for steric interaction

among arginines (5,19). Here, we set g ¼ 0.5, a reasonable value. Though

there is actually no experimental measurement available for g, the compu-

tation results have been verified to be insensitive to its value.

Here, we assume quasisteady state for Naþ and Cl�, which means

vci=vt ¼ 0; i ¼ Na;Cl; in Eq. 2, and the reasons are elaborated in Support-

ing Materials and Methods, Section S4. The formulation of boundary and

interface conditions is also shown in Supporting Materials and Methods,

Section S5.

Besides the main input parameter V, which is the applied voltage bias

(corresponding to the command potential in voltage-clamp experiments),

other parameters like Di (i ¼ 1, 2, 3, 4), K, KS4, and bS4 are also required.

Results are especially sensitive to the values of K, KS4, and bS4. We

have tried and found Di ¼ 50; i ¼ 1, 2, 3, and 4; K ¼ 3; KS4 ¼ 3;

and bS4 ¼ 1.5 provide the best fit to the experimental Q(charge)-voltage

(QV) curve reported in (20). Some additional explanation on fitting these

parameter values is described in Supporting Materials and Methods,

Section S6.

Usually, the electric current in the ion channel is treated simply as the

flux of charge and is uniform in the z direction when steady in time. This

is not so in this nonsteady dynamic situation because the storing and

releasing of charge in vestibules is involved. Here, the flux of charge

at the middle of hydrophobic plug, z ¼ LR þ L/2, was computed to es-

timate the experimentally observed gating current. However, it is actu-

ally impossible (so far) to experimentally measure the current at the

middle of the hydrophobic plug. In experiments, the voltage-clamp tech-

nique is used, and on/off gating current through the membrane is

measured, which should be equal to the flux of charge at z ¼ 0 in this

framework, as shown in Fig. 1 b. The flux of charges at any z position

I(z, t) can be related to the flux of charges at z ¼ 0, I(0, t), simply by

charge conservation:

v

vt
Qnetðz; tÞ ¼ Ið0; tÞ � Iðz; tÞ; (8)

where

Qnetðz; tÞ ¼
Zz

0

AðxÞ
X
all i

qicidx; (9)

and flux of charges at any z position I(z, t) is defined by

Iðz; tÞ ¼ AðzÞ
X
all i

qiJiðz; tÞ: (10)

We identify v=vtQnetðz; tÞ as the displacement current and denote it as

Idisp (z, t) because Eq. 8 is equivalent to Ampere’s law in Maxwell’s equa-

tions, and v=vt Qnet z; tð Þð Þ is exactly the displacement current in Ampere’s

law. The proof is elaborated on in Supporting Materials and Methods, Sec-

tion S7. A general discussion about displacement current can be found in

(21–23), which does not involve assumptions concerning the dielectric co-

efficient εr or polarization properties of matter at all. Hence, Eq. 8 can be

simply rewritten as

Itotðz; tÞ ¼ Iðz; tÞ þ Idispðz; tÞ ¼ Ið0; tÞ; (11)

where we define the sum of displacement current and flux of charges as

the total current Itot (z, t). The z distribution of the total current should be
uniform by Kirchhoff’s law, and we verify this by computations shown

in the section under heading Flux of Charges at Different Locations.

Note the ionic current I(z, t) changes a great deal with location. The

displacement current Idisp(z, t) varies a great deal with location. The total

current, the sum Itot(z, t), does not vary at all with location, although of

course it varies a great deal with time. For example, calculations of cur-

rent in the baths (which are not reported here) would show only ionic

current in the time range considered here, but it would equal the total

current that flows anywhere in our 1D model of the voltage sensor

domain.

We are also interested in observing the net charge at vestibules. Consider,

for example, the net charge at the intracellular vestibule,Qnet(LR, t). The net

charge consists of arginine charges and their countercharges formed by the

EDL of ionic solution in that location. Electroneutrality is approximate but

will not be exact there. Flux of charge, displacement current, and net charge

at vestibules will be discussed further in the section under heading Flux of

Charges at Different Locations.

To evaluate the current theoretical model, it is important to compare

our computational results with experimental measurements (20) in

the curves of gating current and amount of gating charge moved

versus applied voltage (I(current)-voltage [IV] and QV curves).

To construct the QV curve, we calculate Q1 ¼
R LR
0

AðzÞP4
i¼1cidz; Q2 ¼R LRþL

LR
AðzÞP4

i¼1cidz, Q3 ¼ R 2LRþL
LRþL AðzÞP4

i¼1cidz, which are the amounts

of arginine found in zone 1, 2, and 3, respectively. Usually Q2 z 0 is due

to the energy barrier Vb in zone 2. Arginines tend to jump across zone 2

when driven from zone 1 to zone 3 as the voltage V is turned on. The

number of arginines that move and settle at zone 3 depends on the

magnitude of V. Besides IV and QV curves, the time course of the move-

ment of arginines and S4, zi,CM(t) and ZS4(t), is important to report here

because recording these movements in experiments is becoming feasible

nowadays by optical methods. Many qualitative models accounting for

the movement of S4 and conformation change of the voltage sensor

have been proposed. Readers are referred to review articles (24,25) for

more details.
Numerical method

Equations 1, 2, 3, and 4 are first discretized in space by high-order multi-

block Chebyshev pseudospectral methods and then integrated in time under

the framework of method of lines. The details of the numerical method are

referred to Supporting Materials and Methods, Section S8.
RESULTS AND DISCUSSION

Here, numerical results based on the mathematical model
described above were calculated and compared with exper-
imental measurements (20). Our 1D continuum model has
advantages and disadvantages. The lack of three-dimen-
sional structural detail means that some details of the gating
current and charge cannot be reproduced. It should be noted,
however, that to reproduce those, one needs more than just
static structural detail. One must also know how the struc-
tures (particularly their permanent and polarization charge)
move and change after a command potential is applied in the
experimental ionic conditions. The 1D model has advan-
tages because it computes the actual experimental results
on the actual experimental timescale in realistic ionic solu-
tions and with far-field boundary conditions actually used in
voltage-clamp experiments. It also conserves total current,
as we will demonstrate later. Conservation of current needs
Biophysical Journal 116, 270–282, January 22, 2019 273
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to be there and verified in theories and simulations because
it is a universal property of the Maxwell equations (21–23).
QV curve

When the membrane and voltage sensor is held at a large in-
side negative potential (e.g., hyperpolarized to�90 mV), S4
is in a resting potential position, and all arginines stay in the
intracellular vestibule. When the potential is made more
positive (e.g., depolarized to þ10 mV), S4 is in the active
potential position, and all arginines are at the extracellular
vestibule.

The voltage dependence of the charge (arginines) trans-
ferred from intracellular vestibule to extracellular vestibule
is characterized as a QV curve in experimental papers, and
it is sigmoidal in shape (20). Fig. 2 a shows that our
computed QV curve—the dependence of Q3 on V—is in
very good agreement with the experiment (20). This good
agreement comes from the fact that our resultant QV curve
is also a sigmoidal curve, and, most important of all, the
slope of QV curve can be tuned, mainly by the adjustment
of K, KS4, and bS4, to agree with experiment. Not many theo-
retical models can achieve this agreement, especially for the
slope. Models in (15,16) show good agreement with exper-
iments, whereas a mismatch of slope was reported in
(17,18). The voltage dependence of activation has been
considered a crucial property of the sodium conductance
since it was defined (1). Fig. 2 b shows the steady-state
distributions of Naþ, Cl�, and arginines in the inside nega-
tive, hyperpolarized situation (V ¼ �90 mV). As we can
see, all the arginines stay in the intracellular vestibule,
and none of the arginines move to the extracellular vestibule
(Q3 z 0).

Fig. 2 c shows the situation at V ¼ �48 mV, which is the
midpoint of the QV curve. As we can see, each vestibule has
distributions of ci (i ¼ 1, 2, 3, and 4), resulting in half of the
arginines staying in it (Q3 ¼ 2). The center-of-mass position
for each arginine, presented later in Fig. 6, shows that R1
and R2 are in the extracellular vestibule, and R3 and R4
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are in the intracellular vestibule. There are almost no argi-
nines in zone 2 (hydrophobic plug) because of the energy
barrier in it. Note that this represents an average because
in a single molecule interpretation, half of the sensors will
be with all R’s inside and the other half with all R’s outside.
The midpoint of �48 mV from (20) requires the resting po-
sition of S4, ZS4,0, to be biased from LR þ 0.5L to ZS4,0 ¼
LR þ 0.5L þ 1.591 nm; otherwise, the midpoint would be
0 mV. Fig. 2 d shows the situation at full depolarization
(V¼�8 mV), at which time all arginines move to the extra-
cellular vestibule (Q3 z 4) in the fully depolarized, acti-
vated state.
Gating current

Fig. 3 shows the time course of gating currents, observed
as flux of charge at the middle of hydrophobic plug
I(LR þ L/2, t) because of the movement of arginines when
the membrane depolarization is large and when the depolar-
ization is small. In the case of large depolarization, V rises
from �90 mV at t ¼ 10 to �8 mV and drops back to
�90 mVat t¼ 150 (Fig. 3 a). The time course of gating cur-
rent and contributions of individual arginines are shown in
Fig. 3 b. As expected, the rising order of each current
component follows the moving order of R1, R2, R3, and
R4 when depolarized and that order is reversed when repo-
larized. The area under the gating current is the amount of
charge moved. Because arginines move forward and back-
ward in this depolarization/repolarization scenario, the areas
under the ON current and the OFF current are same. The
areas are equal for each component of current as well.
The equality of area is an important signature of gating
current that contrasts markedly with the properties of ionic
current (26,27). In the case of small depolarization (V rises
from�90 to�50 mVat t¼ 10 to and drops back to�90 mV
at t¼ 150, Fig. 3 c), the time course of gating current and its
four components contributed by each arginine for this situ-
ation is shown in Fig. 3 d. Under this small depolarization,
not all arginines move past the middle of the hydrophobic
2 3
m)

2 3
m)

V=-90mV

V=-8mV

FIGURE 2 (a) QV curve and comparison

with (20). Steady-state distributions for Naþ, Cl�,
and arginines are shown at (b) V ¼ �90 mV,

(c) V ¼ �48 mV, and (d) V ¼ �8 mV. Note that

the experimental data in (20) were scaled to 4e. To

see this figure in color, go online.
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plug because of the weaker driving force in the small depo-
larization compared with the large depolarization case. This
can be inferred because the areas under each component
current are different (Fig. 3 d).

The gating currents can be better understood by looking
at a sequence of snapshots showing the spatial distribution
of electric potential, species concentration, and electric
current. The distributions at several times are shown in
Fig. 4 a for the case of sudden change in command voltage
to a more positive value and a large depolarization, and the
distributions are shown in Fig. 4 b for the case of a small
depolarization. The electric potential profiles at t ¼ 13
and t ¼ 148 show that the profile of electric potential
changes as arginines move from left to right even though
the voltage is maintained constant across the sensor. Slight
bulges in electric potential profile exist wherever arginines
are dense. This can be easily explained by understanding
the effect of Eq. 1 on a concave spatial distribution of elec-
tric potential.

In Fig. 4, the total current defined in Eq. 11, though
changing with time, is always constant in z at all times, satis-
fying Kirchhoff’s law (i.e., conservation of current). At
t ¼ 13, when gating current is substantial, as seen from
t ¼ 13 in Fig. 3, b and d, we can visualize the z distributions
of flux of charges I(z, t), displacement of current Idisp(z, t),
and total current Itot(z, t) individually in Fig. 4.
Flux of charges at different locations

Flux of charges I(z, t), together with displacement current
Idisp(z, t) and total current Itot(z, t), depicted in Fig. 4, deserve
more discussion here. Though I(z, t), Idisp(z, t), and Itot(z, t) are
well defined inEqs. 8, 9, 10, and 11, the actual computation of
them takes an indirect path because of the assumption of qua-
sisteady state for Naþ and Cl� in Eq. 2. The details are pre-
sented in Supporting Materials and Methods, Section S9.
The computed total current Itot(z, t) does indeed satisfy
Kirchhoff’s law by its uniformity in z. This verification is
shown in Fig. 4 at several times, and we have checked that
this is in fact true at any time.

In the bottom rows of Fig. 4 at t ¼ 13, we observe that
I(z, t) is generally nonuniform in z and is accompanied by
congestion/decongestion of arginines in between. However,
I(z, t) is almost uniform in zone 2 (hydrophobic plug), which
means almost no congestion/decongestion of arginines oc-
curs there, and therefore, there is no contribution to the
displacement current d=dtQnetðz; tÞ from zone 2. This is
because arginines can hardly reside in zone 2 because of
the energy barrier in it.

Several things are worth noting in the time courses of
IðLR þ L=2; tÞ and I(0, t) (equal to uniformly distributed
Itot as depicted by Eq. 11) illustrated in Fig. 5 a under the
case of large depolarization. First, IðLR þ L=2; tÞ is notice-
ably larger than I(0, t) in the ON period. This is because their
difference, exactly the displacement current Idisp, is always
negative at zone 2 when depolarized because arginines
are leaving zone 1 and make d=dtQnet < 0 for zone 2.
It is expected that the area under the time course of
IðLR þ L=2; tÞ would be very close to 4e, as verified
by the time courses of Q3 in Fig. 5 b. We use I(0, t) to esti-
mate the experimentally measured voltage-clamp current,
whereas the counterpart area of experimentally measurable
I(0, t) would be less than 4e because of its smaller magni-
tude compared with IðLR þ L=2; tÞ. This may partly explain
Biophysical Journal 116, 270–282, January 22, 2019 275



FIGURE 4 (a) The top row shows dimensionless

species concentration distributions at t ¼ 0, 13

(right after depolarization), and 148 (right before

repolarization) for the case of large depolarization

with V from �90 mVat t ¼ 10 to �8 mVand drop-

ping back to �90 mV at t ¼ 150. The middle

row shows concurrent electric potential profiles.

The bottom row shows concurrent electric current

profiles with the components of flux of charge,

displacement current, and total current. (b) The

same as (a) is shown except with V depolarized

from �90 to �50 mV. To see this figure in color,

go online.
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the experimental observations that at most 13e (25,28,29),
instead of 16e, are moved during full depolarization in
four voltage sensors (for a single ion channel) based on
computing the area under voltage-clamp gating current.
Therefore, flux of charge at any location of zone 2, though
impossible to measure in experiments so far, will give us
the amount of arginines moved during depolarization
more reliably than the measurable I(0, t).

Second, we see in Fig. 5 a with magnification in its inset
plot that, as in experiments, I(0, t), but not IðLR þ L=2;tÞ, has
contaminating leading spikes in ON and OFF parts of the
current. These spikes are capacitive currents from solution
EDL of vestibules caused by the sudden rising and dropping
of command potential. These spikes need to be removed in
voltage-clamp experiments to get rid of the contribution
from vestibule solution EDL (and membrane) to the trans-
port of gating charges (arginines) when computing the
area under gating current. The technical details of removing
these spikes are shown in Supporting Materials and
276 Biophysical Journal 116, 270–282, January 22, 2019
Methods, Section S10, and more details about spikes can
be found in Supporting Materials and Methods, Section S11.

Third, in Fig. 5 b, as arginines move from one vestibule
to another, the concentrations of Naþ and Cl� also corre-
spondingly change with time at the vestibules. They form
countercharges through EDL and balance arginine charges
at vestibules. However, these EDL changes only maintain
an approximate, not exact, charge balance, as shown in
Fig. 5 b. The violation of electroneutrality causes the
displacement current, which is not negligible. This further
causes the underestimate of arginines that move when the
voltage sensor is depolarized if the estimate is made by
measuring the area under I(0, t).

As in the previous section, we used flux of charges at the
middle of the hydrophobic plug, I(LR þ L/2, t), instead of
experimentally measurable I(0, t) to represent the gating
current in discussions. We may as well name I(LR þ
L/2, t) as the arginine current to avoid the confusion with
the actual gating current I(0, t) here. This arginine current
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FIGURE 5 (a) The time courses of IðLR þ L=2;tÞ,
I(0, t), and despiked I(0, t) for the case of large depo-

larizationwithV rising from�90 to�8mVat t¼ 10,

holding on till t ¼ 150, and then dropping back

to �90 mV. The inset plot is a magnification

of the ON current to visualize the difference of

I(0, t) and despiked I(0, t) more clearly. (b) The

time courses of Q1; Q3;
R LR
0
ðcNa � cClÞdz, andR 2LRþL

LRþL ðcNa � cClÞdz are under the same depolariza-

tion scenario as (a). To see this figure in color,

go online.
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leaves out its associated displacement current Idisp(LR þ
L/2, t) and serves to represent gating current better for two
reasons:

1) The area under the time course of I(LR þ L/2, t) gives us
the amount of arginines moved during depolarization
more faithfully than I(0, t). The fluxes of charge for
each arginine shown in Fig. 3, b and d carry important
information about how each arginine is moved by the
electric field that will be further illustrated in Fig. 6.
All these will not be easy to display and comprehend if
we use I(0, t) instead.

2) Using I(0, t) as a definition of gating current would
require a decontamination by removing the leading
spikes, which is computationally costly. Removing
spikes would especially pose a heavy numerical burden
when doing parameter fitting in which numerous
repeated computations are done.
Time course of arginine and S4 translocation

Fig. 6 shows the time course of Q (amount of arginines
moved to extracellular vestibule, equal to Q3 here) and cen-
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ter-of-mass trajectories of individual arginines (zi,CM, i ¼ 1,
2, 3, and 4) and S4 segment (ZS4). Fig. 6, a and b show the
case of large depolarization, and Fig. 6, c and d show the
case of small depolarization.

In the case of large depolarization (Fig. 6 b), the argi-
nines and S4 z positions quickly reach individual steady
states, with almost all arginines transferred to the extracel-
lular vestibule as previously shown in Fig. 4 a. Therefore,
Q is close to its saturated value 4 as shown in Fig. 6 a. Ar-
ginines and S4 move back to the intracellular vestibule once
the voltage drops back to �90 mV. From Fig. 6 b, the for-
ward-moving order of arginines is R1, R2, R3, and R4, and
the backward-moving order is the opposite R4, R3, R2,
and R1 with agreement with the structure. This agreement
might look trivial in molecular dynamics simulations but
is not a trivial check here because this model describes
arginines not by particles, as in molecular dynamics, but
by concentrations. Note that an incorrect order and pace
of the movement of arginines would cause disagreement
with experiments in the shape of IV curve as well. S4 is
initially farthest to the right but lags behind R1 and R2 dur-
ing movement in depolarization, as shown in Fig. 6 b. This
is certainly because S4 is finally relaxed to an almost
unforced situation close to its resting position ZS4,0 during
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FIGURE 6 (a) and (c) are the time courses of the

amount of arginines moved to the extracellular

vestibule. (b) and (d) are center-of-mass trajec-

tories of individual arginines and S4. (a) and (b)

are the case of large depolarization with V rising

from �90 to �8 mV at t ¼ 10, holding on till

t ¼ 150, and then dropping back to �90 mV.

(c) and (d) are the case of small depolarization

with V rising from�90 to�50 mVat t ¼ 10, hold-

ing on till t ¼ 150, and then dropping back to

�90 mV. To see this figure in color, go online.
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this large depolarization. We can further calculate the
displacements of each arginine and S4 during this full-
saturating depolarization and find Dz1,CM z Dz2,CM z
Dz3,CM z 1.93 nm, Dz4,CM ¼ 1.76 nm, and DZS4 ¼
1.51 nm. Besides almost the same displacements for R1,
R2, and R3, their average moving velocities are also very
close to each other. This seems to suggest a synchronized
movement among R1, R2, and R3 that we have not imposed
on the arginines in our model. Also, we can see the move-
ments of arginines contribute significantly to the movement
of the S4 segment. This can be seen from the steady-state z
position of S4 derived from Eq. 6,

ZS4 ¼ K

KS4 þ 4K

X4
i¼ 1

ðzi;CM � ziÞ þ KS4

KS4 þ 4K
ZS4;0

¼ 1

5

"
ZS4;0 þ

X4
i¼ 1

zi;CM

#
: (11)
Experimental estimates of S4 displacement during full de-
polarization range from 2 to 20 Å (24,30), depending on the
model of the voltage sensor and its motion, including the
transporter model, the helical screw, and the paddle model
(24). Our DZS4 ¼ 1.51 nm here is large and seems to agree
better with experimental estimates requiring large displace-
ments, such as the paddle model. In contrast, the helical
screw model, which is supported by most of the recent
data, is known to have shorter displacements. A plausible
explanation for our overestimate ofDZS4 is that our 1Dmodel
uses a straight line perpendicular to the hydrophobic-plug
path for the movement of the arginines. In reality, the S4
segment is significantly tilted with respect to the membrane,
and the arginines follow a spiral along the helix. Therefore, if
the S4 segment rotates and changes its tilt during activation,
the total vertical translation needed to cross the hydrophobic
plug is significantly reduced, as was shown by Vargas et al.
a b
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(31). The value obtained in (31) was between 0.7 and 1 nm
when comparing the displacement perpendicular to themem-
brane of the open-relaxed state crystal structure ofKv1.2 (32)
and the closed structure that has been derived by consensus
from experimental measurements (31).

In the case of small depolarization, the driving force is
weaker than in a large-saturating depolarization, so their
z positions do not have a chance to reach steady states as
they do during a full-saturating depolarization. Rather,
in a small depolarization, the motion of the arginines and
S4 are aborted. They return to the intracellular vestibule
because the depolarization drops (i.e., decreases in magni-
tude, and the membrane potential becomes more negative)
before arginines and S4 have a chance to reach their
steady-state positions. This detailed atomic interpretation
likely overreaches the resolution of our model. At the sin-
gle-sensor level, we do not expect partial movements;
instead, some sensors will have moved all the way and
others not at all, but the distribution of sensors in the two
extreme positions should follow what we predict with this
model, which is an ensemble average. We look forward to
measurements of movements of probes that mimic arginine
in its environment that require improvements in the resolu-
tion and structural realism of our model.

Fig. 6 c illustrates these aborted motions. Q reaches 1.57
at most, which should be 2 instead if steady-state was
reached as it is if time is long enough. See the steady-state
behavior shown in the QV curve of Fig. 2 a. Fig. 6 d shows
that the S4 segment is initially farthest to the right, lags
behind R1 during movement, and is almost caught up by
R2. The maximal displacements of arginines and S4 calcu-
lated from Fig. 6 d are Dz1,CM ¼ 1.36 nm, Dz2,CM ¼
0.966 nm, Dz3,CM ¼ 0.459 nm, Dz4,CM ¼ 0.316 nm, and
DZ4,CM ¼ 0.616 nm. The significant difference between
Dz1,CM, Dz2,CM, Dz3,CM, and Dz4,CM may imply that R1
and R2 have jumped across the hydrophobic plug and
entered the extracellular vestibule, whereas R3 and R4
FIGURE 7 (a) The time courses of subtracted

gating current, despiked I(0, t), with the voltage

rising from �90 to V mV at t ¼ 10, holds on till

t ¼ 150, and then drops back to �90 mV, where

V ¼ �62, �50, ., �8 mV. (b) t2 versus V

compared with experiment (20) is shown. To see

this figure in color, go online.
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still stay at the intracellular vestibule during this small
depolarization. This is consistent with the observation
from individual gating-current components of arginines in
Fig. 3 d.
Family of gating currents for a range of voltages

Though we prefer IðLR þ L=2; tÞ to I(0, t) for representing
gating current as explained in the section under heading
Flux of Charges at Different Locations, we here use the
actual gating current, despiked I(0, t), to compare with
experiment (20). Fig. 7 a shows the time courses of a sub-
tracted gating current (despiked I(0, t)) for a range of volt-
ages V ranging from �62 to �8 mV. The area under
gating current, for both ON and OFF parts, increases
with V because more arginines are transferred to the extra-
cellular vestibule as V increases. The shapes of this family
of gating currents agree well with experiment (20) in both
magnitude and time course.

We can characterize the time course by fitting the decay
part of a subtracted gating current by ae�t=t1 þ be�t=t2,
t1 < t2 as generally done in experiments (20) in which t1
is the fast time constant and t2 is the slow time constant.
Usually, the movement of arginines is dominated by t2.
Here, t2 was calculated from simulation and compared
with experiment (20) as shown in Fig. 7 b. Because in our
computation the time is in arbitrary units, we have scaled
the time to have the maximal t2 to fit with its counterpart
in experiment (20). Overall, the trend of t2 versus V in our
result, though not the whole curve, agrees well with exper-
iment (20). To the left of the maximal point in Fig. 7 b,
simulation results fit rather well with the experiment
compared with the values to the right of the maximal point,
at which it overestimates t2 compared with the experiment.
This overestimate is consistent with the observation that the
amount of transferred charges Q saturates slightly faster in
experimental data than in this simulation as V increases
(see QV curve of Fig. 2 a). This phenomenon is related
0 20 40 60 80 100 120 14
-0.1

-0.05

0

0.05

I (
a.

u.
)

0 20 40 60 80 100 120 140
t (a.u.)

-0.1

0

0.1

I (
a.

u.
)

a

b

to the cooperativity of movement among arginines, which
will be further discussed below.
Effect of voltage pulse duration

Fig. 8 shows the effect of voltage pulse duration with Fig. 8 a
for the case of small depolarization and Fig. 8 b for the case of
large depolarization. The magnitude and time span of sub-
tracted gating current (despiked I(0, t)) are changed by pulse
duration in both cases, but the shape will asymptotically
approach the same curve as pulse duration increases, no
matter the size of the depolarization. This behavior occurs
because it takes time for the command pulse to drive the ar-
ginines toward the extracellular vestibule. If the pulse dura-
tion is long enough, the time course of Q will approach its
steady state for large depolarization as in Fig. 6 a. Small de-
polarization takes a longer time to reach its steady state, as
demonstrated in Fig. 6 c. The shapes of gating currents in
Fig. 8 compare favorably with experiment (20) in which
the OFF subtracted gating currents for short pulses have
very fast decays, whereas for long pulses, the OFF subtracted
gating currents have larger rising amplitude and slower decay
because of a larger amount of arginines moved.
CONCLUSIONS

Previous work with molecular and coarse-grained simula-
tions have captured some interactions, but they have not
yet reproduced the time course and voltage dependence of
macroscopic gating currents (10–14), and previous contin-
uum models have captured only the steady-state properties
of charge movement (15–18).

This 1D continuum mechanical model of the voltage
sensor tries to capture the essential structural details of the
movement of mass and charge that are necessary to repro-
duce the basic features of experimentally recorded gating
currents. After finding appropriate parameters, we find
that the general kinetic and steady-state properties are
0 160 180

160 180

FIGURE 8 Subtracted gating currents, despiked

I(0, t), showing the effect of voltage pulse duration.

(a) V increases from �90 to �35 mVat t ¼ 10 and

drops back to �90 mV at various times. (b) V in-

creases from �90 to 0 mV at t ¼ 10 and drops

back to�90 mVat various times. To see this figure

in color, go online.
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well represented by the simulations. The good agreement of
our numerical results with salient features of gating current
measured experimentally would be impossible by simply
tuning of parameters if our model had not captured the
essence of physics for the voltage sensor. The continuum
approach seems to be a good model of voltage sensors, pro-
vided that it 1) takes into account all interactions crucial to
the movement of gating charges and S4; 2) computes their
correlations consistently, so all variables satisfy all equa-
tions under all conditions with one set of parameters;
and 3) satisfies conservation of current. This last point
gave us a new insight: what is measured experimentally
does not correspond to the transfer of the arginines because
the total current, containing a displacement current, is
smaller than the arginine current. It should be noted, how-
ever, that the total energy provided by the voltage clamp
is qV, where q is the time integral of the measured gating
current and V is the applied voltage. This is the total energy
that explains the correspondence of charge per channel with
the charge estimated by the limiting slope method (33–35).

We have simplified the profile of the energy barrier in the
hydrophobic plug because the PMF in that region, and its
variation with potential and conditions, is unknown. There
is plenty of detailed information on the amino acid side
chains in the plug and how each one of them changes the ki-
netics and steady-state properties of gating charge move-
ment (6). Therefore, the next step is to model the details
of interactions of the moving arginines with the wall of
the hydrophobic plug and the contributions from other sur-
rounding charged protein components. Some of the effects
to be included are as follows:

1) Steric and dielectric interactions of the arginines that this
model does not include. These include the interaction of
arginines with negative charges of the S2 and S3 seg-
ments and the negative phospholipids as well as the hy-
drophobic residues in the plug. These interactions may
be responsible for the simultaneous movement of two
to three arginines across the plug, which is an experi-
mental result that this model does not reproduce (36,37).

2) Time dependence of the plug energy barrier Vb. Once the
first arginine enters the hydrophobic plug by carrying
some water with it, this partial wetting of the hydropho-
bic plug will lower Vb, chiefly consisting of solvation en-
ergy, and enable the next arginine to enter the plug with
less difficulty. This might explain the cooperativity of
movement among arginines when they jump through
the plug. The addition of details in the plug may also pro-
duce intermediate states that have been measured exper-
imentally. In this situation, arginines may transiently
dwell within the plug.

3) A very strong electric field might affect the hydration
equilibrium of the hydrophobic plug and would lower
its hydration energy barrier as well (38). This cooper-
ativity of movement may help explain the quick satura-
280 Biophysical Journal 116, 270–282, January 22, 2019
tion in the upper right branch of the QV curve (and
smaller t2). It may also explain the experimentally
observed translocation of two to three arginines simulta-
neously (36,37).

The power of this mathematical modeling is precisely the
implementation of interactions and the various effects in a
consistent manner. Implementing the various effects listed
above is likely to lead to a better prediction of the currents
and to the design of experiments to further test and extend
the model.

Further work must address the mechanism of coupling
between the voltage sensor movements and the conduction
pore. For example, the spring constant of the two sides of
S4 have been made equal, which does not take into account
the structural reality that one side has a linker to S3,
whereas the other links to the pore opening. It seems likely
that the classical mechanical models of coupling will need
to be extended to include coupling through the electrical
field. The charges involved are large. The distances are
small, so the changes in electric forces that accompany
movements of charged mass (and flows of displacement
current) are likely to be large and important. It is possible
that the voltage sensor modifies the stability of a funda-
mentally stochastically unstable, nearly bistable, conduc-
tion current (of single channels) by triggering sudden
transitions from closed to open state in a controlled
process reminiscent of Coulomb blockade in a noisy
environment (39).
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1. Non-dimensionalization 

We	non‐dimensionalize	all	physical	quantities	as	follows,	

ܿ̃௜ ൌ
௖೔
௖బ
, ߶෨ ൌ థ

௞ಳ்/௘
, ෩ܷ ൌ ௎

௞ಳ்
, ݏ̃ ൌ ௦

ோ
, ݐ̃ ൌ ௧

ோమ/஽ೣ
, ෩௜ܦ ൌ

஽೔
஽ೣ
, ෤݃௜௝ ൌ

௚೔ೕ
௞ಳ்/௖బ

, ሚ௜ܬ ൌ
௃೔

௖బ஽ೣ/ோ
,

ሚܫ ൌ ூ

௘௖బ஽ೣோ
,	

where	 ܿ௜	 is	concentration	of	species	i,	with	i=Na+,	Cl
,	1,	2,	3,	and	4.	Each	is	

scaled	by	 ܿ଴	 which	is	the	bulk	concentration	of	NaCl	in	the	
intracellular/extracellular	domains.	Here	 ܿ଴	 is	set	to	be	184	mM,	equal	on	both	

sides,	so	that	the	Debye	length	 ஽ߣ ൌ ට
ఌೝఌబ௞ಳ்

௖బ௘మ
	 is	1nm	when	the	relative	

permittivity	 ௥ߝ ൌ 80.	 ߶	 is	the	electric	potential	scaled	by	 ݇஻ܶ/݁	 with	 ݇஻	
being	the	Boltzmann	constant;	 ܶ	 the	temperature;	e	the	elementary	charge.	All	
relevant	external	potentials	U	are	scaled	by	 ݇஻ܶ.	All	sizes	s	are	scaled	by	R,	which	
is	the	radius	of	vestibule	as	shown	in	Fig.	1(b).	R=1nm	here.	The	time	t	is	scaled	
by	 ܴଶ/ܦ௫,	with	 	௫ܦ being	a	diffusion	coefficient	that	can	be	adjusted	later	to	be	
consistent	with	the	time	spans	of	on/off	currents	measured	in	experiments	
(caused	by	the	movement	of	arginines).	The	diffusion	coefficient	of	species	i	is	
scaled	by	 	constant	coupling	The	௫.ܦ ݃௜௝	 of	PNP‐steric	model	based	on	
combining	rules	of	Lennard	Jones,	representing	the	strength	of	steric	interaction	
between	species	i	and	j,	is	scaled	by	 ݇஻ܶ/ܿ଴	 [1,2].	For	simplicity,	we	assume	

݃௜௝ ൌ ൜
݃, for	all	݅ ് ݆
	0,					for	all	݅ ൌ ݆	 , ݅, ݆ ൌ 1,2,3,4.	 Note	that	here	we	only	consider	steric	

interaction	among	arginines.	We	think	they	are	a	crucial	source	of	correlated	
structural	change	and	motion	(of	mass	and	charge).	The	consideration	of	steric	
effect	among	arginines	is	justified	by	the	fact	that	arginines	are	generally	
crowded	in	hydrophobic	plug	and	vestibules.	The	flux	density	of	species	i,	 	is	௜,ܬ
scaled	by	 ܿ଴ܦ௫/ܴ,	and	therefore	the	electric	current	I	is	scaled	by	 ݁ܿ଴ܦ௫ܴ.	For	
simplicity	of	notation,	we	will	drop	~	for	all	dimensionless	quantities	shown	in	
all	equations.	 	
	
2.	Shape	of	potential	of	mean	force	(PMF)	in	the	hydrophobic	plug	

Here,	we	simply	assume	a	hump	shape	for	PMF	in	the	hydrophobic	plug	as,	 	

							ቊ
ܸܾ ൌ ௕ܸ,௠௔௫൫tanh൫5ሺݖ െ ோሻ൯ܮ െ tanh൫5ሺݖ െ ܮ െ ோሻ൯ܮ െ 1൯,			when	ݖ	is	in	zone	2,

ܸܾ ൌ 0,				when	ݖ	is	in	zone	1	and	3,
																								(S1)	

with	 ௕ܸ,௠௔௫	 set	to	be	5	for	a	good	agreement	with	experimental	measurements.	
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Theoretically,	if	we	set	 ௕ܸ,௠௔௫	 too	large,	the	gating	current	would	be	slow	and	
perhaps	small	because	it	would	be	very	difficult	for	arginines	to	move	across	this	
barrier.	The	double	tanh	functions	are	designed	to	smooth	the	otherwise	
top‐hat‐shape	barrier	profile,	which	is	not	good	for	numerical	differentiation	
because	of	its	awkward	infinite	slopes.	This	smoothing	is	simply	based	on	the	
belief	that	the	energy	barrier	in	a	protein	structure	does	not	have	a	jump.	In	
future	work,	it	would	be	wise	to	compute	the	PMF	from	a	specific	model	of	charge	
distribution	(both	permanent	and	polarization)	constructed	from	a	combination	
of	structural	data	and	molecular	dynamics	simulations,	if	feasible.	
	
3.	Governing	equations	derivation	from	energy	variation	methods	

Governing	equations	Eqs.	(1‐4)	were	derived	by	energy	variational	methods	
based	on	the	following	energy	(in	dimensional	form):	

ܧ ൌ ׬ ቂ݇஻ܶ∑ ܿ௜݈ܿ݃݋௜ െ
ఌబఌೝ
ଶ௔௟௟	௜ ଶ|߶׏| ൅ ∑ ௜	௜݁௔௟௟ݍ ܿ௜߶ ൅ ∑ ሺ ௜ܸ ൅ ௕ܸሻ௔௥௚௜௡௜௡௘௦ ܿ௜ ൅௏

∑
௚೔ೕ
ଶ
ܿ௜ ௝ܿ௔௥௚௜௡௜௡௘௦	௜,௝ ቃ ܸ݀,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (S.2)	

where	the	first	term	is	entropy;	second	and	third	terms	are	electrostatic	energy;	
the	fourth	term	is	the	constraint	and	barrier	potential	for	arginines;	the	last	term	
is	the	steric	energy	term,	based	on	Lennard‐Jones	potential	[1,3].	The	Poisson	
equation	Eq.	(1)	is	derived	from	the	variation	of	energy	with	respect	to	electric	
potential	

ܧߜ
߶ߜ

ൌ 0,	

and	species	flux	densities	in	Eqs.	(3,4)	are	derived	by	

௜ߤ ൌ
ܧߜ
௜ܿߜ

௜ܬ							, ൌ െ
௜ܦ
݇஻ܶ

ܿ௜ߤ׏௜,	

where	 	௜ߤ is	the	chemical	potential	of	species	i.	
	
4.	Quasi‐steadiness	assumption	for	Na+	and	Cl‐	

Here	we	assume	quasi‐steady	state	for	Na+	and	Cl‐,	which	means	 డ௖೔
డ௧
ൌ 0, ݅ ൌ

Na, Cl.	 The	steady	state	assumption	here	is	justified	by	the	fact	that	the	diffusion	
coefficients	of	Na+	and	Cl	in	vestibules	are	much	larger	than	the	diffusion	
coefficient	of	arginine	based	on	the	very	narrow	time	span	of	the	leading	spike	of	
gating	current	measured	in	experiments.	The	spike	comes	from	the	linear	
capacitive	current	of	vestibule	when	the	command	potential	suddenly	rises	or	
drops.	This	quasi‐steady	state	assumption	is	essential	for	the	success	of	our	
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calculations. Otherwise	using	realistic	diffusion	coefficients	for	Na+	and	Cl‐	would	
render	Eqs.	(1‐4)	too	stiff	to	integrate	in	time.	The	spike	contaminating	the	gating	
current	is	removed	in	experiments	by	a	simple	technique	called	P/n	leak	
subtraction	(see	Section	11;	n	typically	is	4).	P/n	leak	subtraction	is	also	used	to	
subtract	the	linear	capacity	current	of	all	the	membranes	in	the	real	system	that	
are	not	included	in	our	model.	How	to	do	leak	subtraction	computationally	will	
be	discussed	in	Section	10.	
	
5.	Formulation	of	boundary	conditions	

Types	of	boundary	conditions	are	illustrated	in	Fig.	1(b).	Note	the	no‐flux	
boundary	conditions	specified	in	Fig.	1(b).	One	prevents	Na+	and	Cl	from	
entering	the	hydrophobic	plug	(zone	2)	with	low	dielectric	coefficient.	The	other	
boundary	condition	constrains	S4	motion	and	so	prevents	the	arginines	from	
leaving	the	vestibules	into	intracellular/extracellular	domains.	

Boundary	and	interface	conditions	for	electric	potential	 ߶	 are	

߶ሺ0ሻ ൌ ܸ,				߶ሺܮோିሻ ൌ ߶ሺܮோ
ାሻ,				Γሺܮோିሻܣሺܮோିሻ

݀߶
ݖ݀

ሺܮோିሻ ൌ Γሺܮோ
ାሻܣሺܮோ

ାሻ
݀߶
ݖ݀

ሺܮோ
ାሻ,	

߶ሺܮோ ൅ ሻିܮ ൌ ߶ሺܮோ ൅ ோܮΓሺ				ାሻ,ܮ ൅ ோܮሺܣሻିܮ ൅ ሻିܮ
ௗథ

ௗ௭
ሺܮோ ൅ ሻିܮ ൌ Γሺܮோ ൅

ோܮሺܣାሻܮ ൅ ାሻܮ ௗథ
ௗ௭
ሺܮோ ൅ ோܮ߶ሺ2					ାሻ,ܮ ൅ ሻܮ ൌ 0.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (S.3)	

These	are	Dirichlet	boundary	conditions	at	both	ends	and	continuity	of	electric	
potential	and	displacement	at	the	interfaces	between	zones.	Boundary	and	
interface	conditions	for	arginine	are	

,௜ሺ0ܬ ሻݐ ൌ ோܮ௜ሺ2ܬ ൅ ,ܮ ሻݐ ൌ 0,			ܿ௜ሺܮோ
ା, ሻݐ ൌ ܿ௜ሺܮோ

ି, ோܮሺܣ				,ሻݐ
ିሻܬ௜ሺܮோ

ି, ሻݐ ൌ
ோܮሺܣ

ାሻܬ௜ሺܮோ
ା, 	,ሻݐ ܿ௜ሺܮோ ൅ ,ିܮ ሻݐ ൌ ܿ௜ሺܮோ ൅ ,ାܮ ,ሻݐ ோܮሺܣ ൅ ோܮ௜ሺܬሻିܮ ൅ ,ିܮ ሻݐ ൌ

ோܮሺܣ	 ൅ ோܮ௜ሺܬାሻܮ ൅ ,ାܮ ݅			,ሻݐ ൌ 1,2,3,4,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (S.4)	
where	no‐flux	boundary	conditions	are	placed	at	both	ends	of	the	gating	pore,	
consisting	of	vestibules	and	hydrophobic	plug,	to	prevent	arginines	and	S4	from	
entering	intracellular/extracellular	domains.	The	others	are	continuity	of	
concentration	and	flux	at	interfaces	between	zones.	Boundary	conditions	for	Na+	
and	Cl	are	

ܿே௔ሺ0, ሻݐ ൌ ܿ஼௟ሺ0, ሻݐ ൌ ܿே௔ሺ2ܮோ ൅ ,ܮ ሻݐ ൌ ܿ஼௟ሺ2ܮோ ൅ ,ܮ ሻݐ ൌ 1,			

,ோܮே௔ሺܬ	 ሻݐ ൌ ,ோܮ஼௟ሺܬ ሻݐ ൌ ோܮே௔ሺܬ ൅ ,ܮ ሻݐ ൌ ோܮ஼௟ሺܬ ൅ ,ܮ ሻݐ ൌ 0,		 	 	 	 	 	 	 	 	 	 (S.5)	

where	Dirichlet	boundary	conditions	are	placed	at	both	ends	of	the	gating	pore	to	
describe	the	concentrations	for	Na+	and	Cl	as	the	bulk	concentration.	No‐flux	
boundary	conditions	at	both	ends	of	hydrophobic	plug	describe	the	
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impermeability	of	Na+	and	Cl	into	hydrophobic	plug.	
	
6.	Parameters	fitting	

We	have	tried	and	found	Di=50,	i=1,2,3,4,	K=3,	KS4=3,	bS4=1.5	provide	the	
best	fit	to	the	important	experiments	reported	in	[4].	Several	things	are	to	be	
noted	about	the	parameter	values	specified	above:	(1)	there	is	no	experimental	
measurement	of	diffusion	coefficient	of	arginine	inside	vestibule	and	plug	
available	that	we	can	use	for	simulation.	Imprecise	setting	of	the	values	of	these	
diffusion	coefficients	only	affects	the	scale	of	time	in	I‐V	curve,	but	not	its	shape.	
That	is	why	we	set	time	coordinate	to	be	in	an	arbitrary	unit	later	in	results,	and	
here	we	only	focus	on	comparing	the	shape	of	IV	curves	with	experiments	in	[4].	
(2)	K,	KS4,	and	bS4	were	particularly	determined	by	fitting	with	QV	curve	in	
experiment	[4].	The	QV	curve	is	very	sensitive	to	K	and	KS4,	and	many	efforts	have	
been	taken	to	achieve	proper	values	for	them.	The	method	of	fitting	is	done	by	
trial	and	error.	Choosing	incorrect	K	and	KS4	would	end	up	serious	mismatch	of	
QV	curve	with	experiment	[4]	as	demonstrated	by	the	case	of	K=3	and	KS4=12	in	
Fig.	1	here.	The	choice	of	K=3	and	KS4=3	fits	experiment	[4]	best	and	is	adopted	
for	the	rest	of	simulations.	

	

	
Figure	1.	Simulated	QV	curves	under	different	K	and	KS4	compared	with	
experimental	counterpart	from	[4].	Note	that	the	experimental	data	in	[4]	was	
scaled	to	4e.	
	
7.	Derivation	of	Ampere’s	law	in	Maxwell’s	equations	by	Poisson	equation	
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and	species	transport	equation	
Eq.	(8)	is	consistent	with	Ampere’s	law	in	Maxwell’s	equations:	

׏ ൈ ቀ ஻
ሬԦ

ఓబ
ቁ ൌ ௥ߝ଴ߝ

డாሬԦ

డ௧
൅ 	,Ԧܬ 	 	 	 	 	 	 	 	 	 	 (S.6)	

or	equivalently,	

׏ ∙ ቀߝ଴ߝ௥
డாሬԦ

డ௧
൅ Ԧቁܬ ൌ 0,	 	 	 	 	 	 	 	 (S.7)	

where	 	ሬԦܧ is	the	electric	field	and	 	Ԧܬ is	flux	density	of	charge	(current	density).	Eq.	
(S.7)	tells	us	that	the	total	current	is	conserved	everywhere	and	it	consists	of	flux	

of	charges	 	Ԧܬ and	displacement	current	 ௥ߝ଴ߝ
డாሬԦ

డ௧
.	Eq.	(S.7)	can	be	derived	from	the	

Poisson	equation	and	species	transport	equation	like	Eq.	(1)	and	Eq.	(2).	Starting	
from	Poisson	equation	in	dimensional	form:	
െ׏ ∙ ሺߝ଴ߝ௥׏߶ሻ ൌ ߩ ൅ ∑ ௜݁ܿ௜௜ݍ ,	 	 	 	 	 	 (S.8)	
or	equivalently	

׏ ∙ ൫ߝ଴ߝ௥ܧሬԦ൯ ൌ ߩ ൅ ∑ ௜݁ܿ௜௜ݍ .	 	 	 	 (S.9)	

Taking	time	derivative	of	Eq.	(S.9),	

׏ ∙ ቀߝ଴ߝ௥
డாሬԦ

డ௧
ቁ ൌ ∑ ௜݁ݍ

డ௖೔
డ௧௜ ,	 	 	 	 	 	 	 	 	 	 	 (S.10)	

and	using	species	transport	equation	based	on	mass	conservation,	

డ௖೔
డ௧
൅ ׏ ∙ Ԧ௜ܬ ൌ 0,	 	 	 	 	 	 	 	 	 	 	 	 	 (S.11)	

then	

׏ ∙ ቀߝ଴ߝ௥
డாሬԦ

డ௧
ቁ ൌ ∑ ௜݁ݍ

డ௖೔
డ௧
ൌ௜ െ ׏ ∙ ∑ Ԧ௜ܬ௜݁ݍ ൌ െ׏ ∙ Ԧ௜ܬ ,	 	 	 	 	 	 	 	 	 	 	 (S.12)	

which	becomes	exactly	Eq.	(S.7)	by	defining	

∑=Ԧܬ Ԧ௜௜ܬ௜݁ݍ .	 	 	 	 	 	 	 	 	 	 	 	 	 (S.13)	
A	more	general	treatment	that	does	not	involve	assumptions	about	 	be	can	௥ߝ
found	in	[5‐7].	 	

Casting	Eq.	(S.7)	into	the	present	1D	framework	by	integrating	it	in	space	and	
applying	the	divergence	theorem,	we	have	

ሻݖሺܣ௥ߝ଴ߝ
డாሺ௭,௧ሻ

డ௧
൅ ,ݖሺܫ ሻݐ ൌ ሺ0ሻܣ௥ߝ଴ߝ

డாሺ଴,௧ሻ

డ௧
൅ ,ሺ0ܫ 	.ሻݐ 	 	 	 	 	 	 (S.14)	

Comparing	with	Eq.	(11),	 	

ሻݖሺܣ௥ߝ଴ߝ
డாሺ௭,௧ሻ

డ௧
െ ሺ0ሻܣ௥ߝ଴ߝ

డாሺ଴,௧ሻ

డ௧
ൌ ,ݖௗ௜௦௣ሺܫ 	,ሻݐ 	 	 	 	 	 	 	 	 	 (S.15)	

which	justifies	the	naming	of	displacement	current	in	Eq.	(11).	 	
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8.	Numerical	method	
	 High-order	multi�block	Chebyshev	pseudospectral	methods	are	used	here	
to	discretize	Eqs.	(1‐4)	in	space	[8].	The	resultant	semi	discrete	system	is	then	a	
set	of	coupled	ordinary	differential	equations	in	time	and	algebraic	equations	(an	
ODAE	system)	[9].	The	ordinary	differential	equations	are	chiefly	from	Eq.	(2),	
and	algebraic	equations	are	chiefly	from	Eq.	(1)	and	boundary/interface	
conditions	Eqs.	(S.3‐S.5).	This	system	is	further	integrated	in	time	by	an	ODAE	
solver	(ODE15S	in	MATLAB	(The	MathWorks,	Natick,	MA)	[10,11])	together	with	
appropriate	initial	condition.	ODE15S	is	a	variable order variable step	(VSVO)	
solver,	which	is	highly	efficient	in	time	integration	because	it	adjusts	the	time	step	
and	order	of	integration.	High�order	pseudospectral	methods	generally	provide	
excellent	spatial	accuracy	with	economically	practicable	resolutions.	A	
combination	of	these	two	techniques	makes	the	whole	computation	very	efficient.	
This	is	particularly	important	here,	since	numerous	computations	have	to	be	
tried	during	the	tuning	of	parameters.	Efficiency	will	be	vital	in	future	
calculations	comparing	theory	and	experiment	in	a	wide	variety	of	mutants	and	
experimental	conditions.	
	
9.	Computation	of	flux	of	charge,	displacement	current	and	total	current	

According	to	definition	in	Eq.	(10),	flux	of	charges	at	the	middle	of	gating	
pore,	 ோܮሺܫ ൅ ,2/ܮ 	,pore	gating	of	ends	both	and	ሻ,ݐ ,ሺ0ܫ 	ሻݐ and	 ோܮሺ2ܫ ൅ ,ܮ 	,ሻݐ
should	be	computed	by 

ܫ ቀܮோ ൅
௅

ଶ
, ቁݐ ൌ ܣ ቀܮோ ൅

௅

ଶ
ቁ∑ ௜ܬ௜ݍ ቀܮோ ൅

௅

ଶ
, ቁ௔௥௚௜௡௜௡௘௦ݐ ,	 	 	 	 	 (S.16)	

,ሺ0ܫ ሻݐ ൌ ∑ሺ0ሻܣ ,௜ሺ0ܬ௜ݍ ሻ௜ୀே௔,஼௟ݐ ,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (S.17)	
ோܮሺ2ܫ ൅ ,ܮ ሻݐ ൌ ோܮሺ2ܣ ൅ ∑ሻܮ ோܮ௜ሺ2ܬ௜ݍ ൅ ,ܮ ሻ௜ୀே௔,஼௟ݐ .	 	 	 	 	 (S.18)	

Except	 ܫ ቀܮோ ൅
௅

ଶ
, 	,ቁݐ ,ሺ0ܫ 	ሻݐ and	 ோܮሺ2ܫ ൅ ,ܮ 	ሻݐ are	trivially	zero	due	to	the	

implement	of	quasi‐steadiness	
డ௖೔
డ௧
ൌ 0, ݅ ൌ Na, Cl,	 in	vestibules,	which	causes	

	ே௔ܬ and	 	஼௟ܬ to	be	uniform	in	vestibules	by	Eq.	(2),	and	further	become	zero	by	
the	no‐flux	boundary	conditions	for	 Naା	 and	 Clି	 at	the	bottom	of	vestibules	as	
described	in	Eq.	(S.5).	We	have	to	alternatively	reconstruct	 ,ሺ0ܫ 	ሻݐ and	
ோܮሺ2ܫ ൅ ,ܮ 	ሻݐ by	charge	conservation	of	 Naା	 and	 Clି,	

,ሺ0ܫ ሻݐ ൌ
ௗ

ௗ௧
׬ ∑ሻݖሺܣ ே௔,஼௟ݖ௜ܿ௜݀ݍ
௅

଴
,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (S.19)	

ோܮሺ2ܫ ൅ ,ܮ ሻݐ ൌ െ ௗ

ௗ௧
׬ ∑ሻݖሺܣ ே௔,஼௟ݖ௜ܿ௜݀ݍ
௅ାଶ௅ೃ
௅ା௅ೃ

.	 	 	 	 	 	 	 	 	 	 (S.20)	
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After	obtaining	 ,ሺ0ܫ 	ሻݐ and	 ோܮሺ2ܫ ൅ ,ܮ 	of	flux	the	reconstruct	further	can	we	ሻ,ݐ
charges	 ,ݖሺܫ 	ሻݐ at	zone	1	and	zone	3	by	(8)	and	(9),	

,ݖሺܫ ሻݐ ൌ ,ሺ0ܫ ሻݐ െ ௗ

ௗ௧
׬ ∑ሻݖሺܣ ௜	௔௟௟ݖ௜ܿ௜݀ݍ
௭

଴
ݖ			, ∈ ሾ0, 	,ோሿܮ 	 	 	 (S.21)	

,ݖሺܫ ሻݐ ൌ ோܮሺ2ܫ ൅ ,ܮ ሻݐ ൅
ௗ

ௗ௧
׬ ∑ሻݖሺܣ ௜	௔௟௟ݖ௜ܿ௜݀ݍ
ଶ௅ೃା௅

௭
ݖ			, ∈ ሾܮோ ൅ ,ܮ ோܮ2 ൅ 	(S.22)	ሿ.ܮ

Flux	of	charge	at	zone	2	is	simply	
,ݖሺܫ ሻݐ ൌ ∑ሻݖሺܣ ,ݖ௜ሺܬ௜ݍ ሻ௔௥௚௜௡௜௡௘௦ݐ ݖ		, ∈ ሾܮோ, ோܮ ൅ 	,ሿܮ 	 	 	 	 (S.23)	
since	 Naା	 and	 Clି	 are	not	allowed	to	enter	zone	2,	the	hydrophobic	plug.	
	
10.	Removing	spike	in	total	current	

In	voltage‐clamp	experiments,	subtracting	this	linear	capacitive	component	
and	removing	the	spike	from	gating	current	is	done	by	‘leak	subtraction’,	in	
various	forms,	e.g.,	P/4	(see	details	in	Section	11)	In	reality,	this	linear	capacitive	
current	that	is	subtracted	in	this	procedure	comes	from	both	the	lipid	bilayer	
membrane	in	parallel	with	the	gating	pore.	Here,	we	only	considered	the	
capacitive	current	from	solution	EDL	of	vestibule	inside	the	gating	pore	and	
ignored	the	membrane	capacitive	current	because	we	simply	use	Dirichlet	
boundary	conditions	for	 ߶	 at	both	ends	of	the	gating	pore	in	Eq.	(S.3).	Actually,	
capacitive	current	of	the	membrane	in	parallel	with	the	gating	pore	would	be	
much	larger	than	vestibule	capacitive	current.	Following	the	idea	of	the	
experiment	[4],	we	calculated	 ,ሺ0ܫ 	ሻݐ with	V	rising	from	‐150	mV	to	‐140	mV	at	
t=10,	and	dropping	back	to	‐150	mV	at	t=150.	We	chose	from	‐150	mV	to	‐140	
mV	because	essentially	none	of	the	arginines	move	across	the	hydrophobic	plug	
in	this	hyperpolarized	region.	The	voltage	step	quickly	charges	and	discharges	
solution	EDL	in	vestibules,	and	the	computed	time	course	of	 ,ሺ0ܫ 	ሻݐ is	just	two	
spikes	at	on	and	off	of	the	command	potential.	Subtracting	this	hyperpolarized	
,ሺ0ܫ 	capacitive	of	linearity	the	to	(due	factor	proportion	a	by	multiplied	ሻ,ݐ
current),	from	its	original	counterpart	will	then	remove	the	spikes,	and	the	
unspiked	 ,ሺ0ܫ 	ሻݐ is	shown	in	Fig.	5(a).	In	preliminary	calculations	with	the	model,	
when	the	command	voltage	pulse	rises	faster,	the	early	spike	becomes	larger	and	
is	still	visible	even	after	subtraction,	suggesting	that	is	the	origin	of	the	early	
transient	gating	current	in	experiments	[12‐14].	

11.	Removing	linear	capacitive	current	to	obtain	gating	current	in	
experiments	 	
	 Our	computations	have	limited	fidelity	at	short	times	because	of	time	step	
limitations	in	integrating	stiff	systems.	The	spike	artifacts	are	one	example,	
described	previously.	Experimental	measurements	[12,15]	of	the	fast	transient	
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gating	current	are	fascinating	and	our	calculations	will	be	extended	to	explore	
more	of	them	in	future	study	by	using	greater	resolution	in	time.	
	 A	more	general	consideration	is	the	subtraction	procedure	used	in	
experiments	to	isolate	gating	current	from	currents	arising	from	other	sources.	
Channels	and	their	voltage	sensors	are	embedded	in	lipid	membranes,	therefore	
they	are	‘in	parallel’	with	large	capacitive	currents	of	the	lipid	bilayer.	The	lipid	
membrane	has	a	large	capacitance	(	ܥ௟௜௣௜ௗ ≅ 8 ൈ 10ି଻	farads/cmଶ	)	that	has	
nothing	to	do	with	the	current	produced	by	charge	movement	in	the	voltage	
sensor.	Fortunately,	the	capacitance	ܥ௟௜௣௜ௗ	 is	a	nearly	ideal	circuit	element	and	the	
current	to	charge	it	is	entirely	a	displacement	current	accurately	described	by	
݅௖௔௣ ൌ ௟௜௣௜ௗܥ ∂V ∂t⁄ 	with	a	single	constant	 	lipid	the	across	voltage	the	is	V	௟௜௣௜ௗ.ܥ
capacitor.	Note	that	 ݅௖௔௣	does	not	include	any	current	or	flux	of	charge	carried	
across	the	lipid.	 	

In	experimental	measurements,	 ݅௖௔௣	 is	always	present.	Experimental	
measurements	always	mix	the	displacement	currents	of	lipid	membrane	and	
voltage	sensor.	Lipid	membrane	current	usually	dominates	the	measurement	of	
gating	currents	in	native	preparations	and	remains	large	in	systems	mutated	to	
have	unnaturally	large	numbers	of	voltage	sensors.	
	 A	procedure	to	remove	the	lipid	membrane	current	is	needed	if	the	gating	
current	of	the	voltage	sensor	is	to	be	measured.	The	procedure	introduced	by	[16]	
has	been	used	ever	since	in	the	improved	P/4	version	developed	by	[17]	
reviewed	and	discussed	in	[18]. Also,	see	another	approach	in	[19]	and	[20]. 
Schneider	and	Chandler’s	procedure	[19]	estimates	the	so‐called	linear	current	
݅௫ ൌ ௫ܥ ∂V ∂t⁄ 	in	conditions	in	which	the	voltage	sensor	and	ܥ௫	 behave	as	ideal	
circuit	elements.	The	voltage	sensor	might	then	have	a	component	linear	in	
potential.	An	ideal	capacitor	has	a	capacitance	ܥ௫	 independent	of	voltage,	time,	
current,	or	ionic	composition.	The	Schneider	procedure	then	subtracts	that	linear	
current	 ݅௫—plus	any	linear	component	of	voltage	sensor	current—from	the	total	
current	measured	in	conditions	in	which	the	voltage	sensor	does	not	behave	as	
an	ideal	capacitor.	The	leftover	estimates	the	nonlinear	properties	of	the	charge	
movement	in	the	voltage	sensor.	That	is	to	say,	the	leftover	estimates	the	charge	
movement	of	the	voltage	sensor	that	is	not	proportional	to	the	size	of	the	voltage	
step	used	in	the	measurement.	The	leftover	is	called	gating	current	here	and	in	
experimental	papers. 

The	gating	current	reported	in	experiments	[16]	can	miss	a	component	of	the	
displacement	current	of	the	voltage	sensor,	if	it	uses	the	linear	subtraction	to	
estimate	 ݅௫.	These	procedures	can	remove	more	than	the	current	through	the	
lipid	membrane	capacitor	݅௖௔௣.		
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Clearly,	some	of	the	current	produced	by	movements	of	the	arginines	in	the	
voltage	sensor	will	be	a	linear	displacement	current,	a	linear	component	of	gating	
current	and	it	would	not	be	present	in	the	reported	gating	current	determined	by	
some	linear	subtraction	procedures.	In	particular,	if	the	arginine	system	is	
present	at	the	‘control’	potential	contributing	a	current	linear	in	potential,	this	
problem	would	occur.	Of	course,	if	the	arginine	system	is	immobilized	and	
inactivated	at	the	control	potential	and	so	contributes	no	current	flow	under	that	
condition,	this	problem	would	not	occur.	

Other	systems	may	contribute	to	the	linear	displacement	current	as	well,	for	
example,	i)	all	sorts	of	experimental	and	instrumentation	artifacts	and	ii)	
displacement	current	in	the	conduction	channel	itself.	The	conduction	channel	of	
field	effect	transistors	produces	a	large	displacement	current	often	characterized	
as	a	capacitance	that	involves	diffusion	and	is	described	by	drift	diffusion	
equations	quite	similar	to	the	PNP	equations	of	the	open	conduction	channel.	

Most	systems	have	substantial	motions	that	are	linear	in	voltage	(even	if	the	
system	is	labeled	‘nonlinear’).	The	linear	term	is	present	in	most	systems,	just	as	
it	is	present	in	most	Taylor	expansions	of	nonlinear	functions.	 	
	 	 	 	 The	linear	component	that	can	be	missed	in	experiments,	and	removed	in	
these	calculations,	may	have	functional	and	structural	significance.	The	voltage	
sensor	works	by	sensing	voltage,	for	example,	by	producing	a	motion	of	arginines.	
That	motion—the	response	of	the	voltage	sensor	in	this	model—includes	a	linear	
component.	The	signal	passed	to	the	conduction	channel,	to	control	gating,	is	
likely	to	include	or	depend	on	the	linear	component	of	sensor	function.	Confusion	
will	result	if	a	significant	linear	component	exists	and	is	ignored	when	a	model	is	
created	that	links	the	voltage	sensor	to	the	gating	process	of	the	conduction	
channel.	Direct	measurements	of	the	movement	of	arginines	(e.g.,	with	optical	
methods)	are	likely	to	include	the	linear	component	and	so	should	not	agree	with	
experimental	measurements	of	gating	current	or	with	the	currents	reported	here	
if	the	linear	component	exists	and	is	significant	in	size.	
	 	 	 	 If	the	P/4	procedure	subtracts	a	charge	movement	in	a	control	system	in	
which	the	arginines	do	not	move	at	all	(because	they	are	immobilized	and	
inactivated,	in	that	sense),	then	the	resulting	estimate	of	gating	current	will	
contain	a	component	linear	in	voltage.	Thus,	the	interpretation	of	the	corrected	
record	depends	on	the	details	of	immobilization	and	inactivation,	topics	that	are	
beyond	the	scope	of	this	paper	and	our	present	work.	
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1. Non-dimensionalization 

We	non‐dimensionalize	all	physical	quantities	as	follows,	

ܿ̃௜ ൌ
௖೔
௖బ
, ߶෨ ൌ థ

௞ಳ்/௘
, ෩ܷ ൌ ௎

௞ಳ்
, ݏ̃ ൌ ௦

ோ
, ݐ̃ ൌ ௧

ோమ/஽ೣ
, ෩௜ܦ ൌ

஽೔
஽ೣ
, ෤݃௜௝ ൌ

௚೔ೕ
௞ಳ்/௖బ

, ሚ௜ܬ ൌ
௃೔

௖బ஽ೣ/ோ
,

ሚܫ ൌ ூ

௘௖బ஽ೣோ
,	

where	 ܿ௜	 is	concentration	of	species	i,	with	i=Na+,	Cl
,	1,	2,	3,	and	4.	Each	is	

scaled	by	 ܿ଴	 which	is	the	bulk	concentration	of	NaCl	in	the	
intracellular/extracellular	domains.	Here	 ܿ଴	 is	set	to	be	184	mM,	equal	on	both	

sides,	so	that	the	Debye	length	 ஽ߣ ൌ ට
ఌೝఌబ௞ಳ்

௖బ௘మ
	 is	1nm	when	the	relative	

permittivity	 ௥ߝ ൌ 80.	 ߶	 is	the	electric	potential	scaled	by	 ݇஻ܶ/݁	 with	 ݇஻	
being	the	Boltzmann	constant;	 ܶ	 the	temperature;	e	the	elementary	charge.	All	
relevant	external	potentials	U	are	scaled	by	 ݇஻ܶ.	All	sizes	s	are	scaled	by	R,	which	
is	the	radius	of	vestibule	as	shown	in	Fig.	1(b).	R=1nm	here.	The	time	t	is	scaled	
by	 ܴଶ/ܦ௫,	with	 	௫ܦ being	a	diffusion	coefficient	that	can	be	adjusted	later	to	be	
consistent	with	the	time	spans	of	on/off	currents	measured	in	experiments	
(caused	by	the	movement	of	arginines).	The	diffusion	coefficient	of	species	i	is	
scaled	by	 	constant	coupling	The	௫.ܦ ݃௜௝	 of	PNP‐steric	model	based	on	
combining	rules	of	Lennard	Jones,	representing	the	strength	of	steric	interaction	
between	species	i	and	j,	is	scaled	by	 ݇஻ܶ/ܿ଴	 [1,2].	For	simplicity,	we	assume	

݃௜௝ ൌ ൜
݃, for	all	݅ ് ݆
	0,					for	all	݅ ൌ ݆	 , ݅, ݆ ൌ 1,2,3,4.	 Note	that	here	we	only	consider	steric	

interaction	among	arginines.	We	think	they	are	a	crucial	source	of	correlated	
structural	change	and	motion	(of	mass	and	charge).	The	consideration	of	steric	
effect	among	arginines	is	justified	by	the	fact	that	arginines	are	generally	
crowded	in	hydrophobic	plug	and	vestibules.	The	flux	density	of	species	i,	 	is	௜,ܬ
scaled	by	 ܿ଴ܦ௫/ܴ,	and	therefore	the	electric	current	I	is	scaled	by	 ݁ܿ଴ܦ௫ܴ.	For	
simplicity	of	notation,	we	will	drop	~	for	all	dimensionless	quantities	shown	in	
all	equations.	 	
	
2.	Shape	of	potential	of	mean	force	(PMF)	in	the	hydrophobic	plug	

Here,	we	simply	assume	a	hump	shape	for	PMF	in	the	hydrophobic	plug	as,	 	

							ቊ
ܸܾ ൌ ௕ܸ,௠௔௫൫tanh൫5ሺݖ െ ோሻ൯ܮ െ tanh൫5ሺݖ െ ܮ െ ோሻ൯ܮ െ 1൯,			when	ݖ	is	in	zone	2,

ܸܾ ൌ 0,				when	ݖ	is	in	zone	1	and	3,
																								(S1)	

with	 ௕ܸ,௠௔௫	 set	to	be	5	for	a	good	agreement	with	experimental	measurements.	
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Theoretically,	if	we	set	 ௕ܸ,௠௔௫	 too	large,	the	gating	current	would	be	slow	and	
perhaps	small	because	it	would	be	very	difficult	for	arginines	to	move	across	this	
barrier.	The	double	tanh	functions	are	designed	to	smooth	the	otherwise	
top‐hat‐shape	barrier	profile,	which	is	not	good	for	numerical	differentiation	
because	of	its	awkward	infinite	slopes.	This	smoothing	is	simply	based	on	the	
belief	that	the	energy	barrier	in	a	protein	structure	does	not	have	a	jump.	In	
future	work,	it	would	be	wise	to	compute	the	PMF	from	a	specific	model	of	charge	
distribution	(both	permanent	and	polarization)	constructed	from	a	combination	
of	structural	data	and	molecular	dynamics	simulations,	if	feasible.	
	
3.	Governing	equations	derivation	from	energy	variation	methods	

Governing	equations	Eqs.	(1‐4)	were	derived	by	energy	variational	methods	
based	on	the	following	energy	(in	dimensional	form):	

ܧ ൌ ׬ ቂ݇஻ܶ∑ ܿ௜݈ܿ݃݋௜ െ
ఌబఌೝ
ଶ௔௟௟	௜ ଶ|߶׏| ൅ ∑ ௜	௜݁௔௟௟ݍ ܿ௜߶ ൅ ∑ ሺ ௜ܸ ൅ ௕ܸሻ௔௥௚௜௡௜௡௘௦ ܿ௜ ൅௏

∑
௚೔ೕ
ଶ
ܿ௜ ௝ܿ௔௥௚௜௡௜௡௘௦	௜,௝ ቃ ܸ݀,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (S.2)	

where	the	first	term	is	entropy;	second	and	third	terms	are	electrostatic	energy;	
the	fourth	term	is	the	constraint	and	barrier	potential	for	arginines;	the	last	term	
is	the	steric	energy	term,	based	on	Lennard‐Jones	potential	[1,3].	The	Poisson	
equation	Eq.	(1)	is	derived	from	the	variation	of	energy	with	respect	to	electric	
potential	

ܧߜ
߶ߜ

ൌ 0,	

and	species	flux	densities	in	Eqs.	(3,4)	are	derived	by	

௜ߤ ൌ
ܧߜ
௜ܿߜ

௜ܬ							, ൌ െ
௜ܦ
݇஻ܶ

ܿ௜ߤ׏௜,	

where	 	௜ߤ is	the	chemical	potential	of	species	i.	
	
4.	Quasi‐steadiness	assumption	for	Na+	and	Cl‐	

Here	we	assume	quasi‐steady	state	for	Na+	and	Cl‐,	which	means	 డ௖೔
డ௧
ൌ 0, ݅ ൌ

Na, Cl.	 The	steady	state	assumption	here	is	justified	by	the	fact	that	the	diffusion	
coefficients	of	Na+	and	Cl	in	vestibules	are	much	larger	than	the	diffusion	
coefficient	of	arginine	based	on	the	very	narrow	time	span	of	the	leading	spike	of	
gating	current	measured	in	experiments.	The	spike	comes	from	the	linear	
capacitive	current	of	vestibule	when	the	command	potential	suddenly	rises	or	
drops.	This	quasi‐steady	state	assumption	is	essential	for	the	success	of	our	
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calculations. Otherwise	using	realistic	diffusion	coefficients	for	Na+	and	Cl‐	would	
render	Eqs.	(1‐4)	too	stiff	to	integrate	in	time.	The	spike	contaminating	the	gating	
current	is	removed	in	experiments	by	a	simple	technique	called	P/n	leak	
subtraction	(see	Section	11;	n	typically	is	4).	P/n	leak	subtraction	is	also	used	to	
subtract	the	linear	capacity	current	of	all	the	membranes	in	the	real	system	that	
are	not	included	in	our	model.	How	to	do	leak	subtraction	computationally	will	
be	discussed	in	Section	10.	
	
5.	Formulation	of	boundary	conditions	

Types	of	boundary	conditions	are	illustrated	in	Fig.	1(b).	Note	the	no‐flux	
boundary	conditions	specified	in	Fig.	1(b).	One	prevents	Na+	and	Cl	from	
entering	the	hydrophobic	plug	(zone	2)	with	low	dielectric	coefficient.	The	other	
boundary	condition	constrains	S4	motion	and	so	prevents	the	arginines	from	
leaving	the	vestibules	into	intracellular/extracellular	domains.	

Boundary	and	interface	conditions	for	electric	potential	 ߶	 are	

߶ሺ0ሻ ൌ ܸ,				߶ሺܮோିሻ ൌ ߶ሺܮோ
ାሻ,				Γሺܮோିሻܣሺܮோିሻ

݀߶
ݖ݀

ሺܮோିሻ ൌ Γሺܮோ
ାሻܣሺܮோ

ାሻ
݀߶
ݖ݀

ሺܮோ
ାሻ,	

߶ሺܮோ ൅ ሻିܮ ൌ ߶ሺܮோ ൅ ோܮΓሺ				ାሻ,ܮ ൅ ோܮሺܣሻିܮ ൅ ሻିܮ
ௗథ

ௗ௭
ሺܮோ ൅ ሻିܮ ൌ Γሺܮோ ൅

ோܮሺܣାሻܮ ൅ ାሻܮ ௗథ
ௗ௭
ሺܮோ ൅ ோܮ߶ሺ2					ାሻ,ܮ ൅ ሻܮ ൌ 0.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (S.3)	

These	are	Dirichlet	boundary	conditions	at	both	ends	and	continuity	of	electric	
potential	and	displacement	at	the	interfaces	between	zones.	Boundary	and	
interface	conditions	for	arginine	are	

,௜ሺ0ܬ ሻݐ ൌ ோܮ௜ሺ2ܬ ൅ ,ܮ ሻݐ ൌ 0,			ܿ௜ሺܮோ
ା, ሻݐ ൌ ܿ௜ሺܮோ

ି, ோܮሺܣ				,ሻݐ
ିሻܬ௜ሺܮோ

ି, ሻݐ ൌ
ோܮሺܣ

ାሻܬ௜ሺܮோ
ା, 	,ሻݐ ܿ௜ሺܮோ ൅ ,ିܮ ሻݐ ൌ ܿ௜ሺܮோ ൅ ,ାܮ ,ሻݐ ோܮሺܣ ൅ ோܮ௜ሺܬሻିܮ ൅ ,ିܮ ሻݐ ൌ

ோܮሺܣ	 ൅ ோܮ௜ሺܬାሻܮ ൅ ,ାܮ ݅			,ሻݐ ൌ 1,2,3,4,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (S.4)	
where	no‐flux	boundary	conditions	are	placed	at	both	ends	of	the	gating	pore,	
consisting	of	vestibules	and	hydrophobic	plug,	to	prevent	arginines	and	S4	from	
entering	intracellular/extracellular	domains.	The	others	are	continuity	of	
concentration	and	flux	at	interfaces	between	zones.	Boundary	conditions	for	Na+	
and	Cl	are	

ܿே௔ሺ0, ሻݐ ൌ ܿ஼௟ሺ0, ሻݐ ൌ ܿே௔ሺ2ܮோ ൅ ,ܮ ሻݐ ൌ ܿ஼௟ሺ2ܮோ ൅ ,ܮ ሻݐ ൌ 1,			

,ோܮே௔ሺܬ	 ሻݐ ൌ ,ோܮ஼௟ሺܬ ሻݐ ൌ ோܮே௔ሺܬ ൅ ,ܮ ሻݐ ൌ ோܮ஼௟ሺܬ ൅ ,ܮ ሻݐ ൌ 0,		 	 	 	 	 	 	 	 	 	 (S.5)	

where	Dirichlet	boundary	conditions	are	placed	at	both	ends	of	the	gating	pore	to	
describe	the	concentrations	for	Na+	and	Cl	as	the	bulk	concentration.	No‐flux	
boundary	conditions	at	both	ends	of	hydrophobic	plug	describe	the	
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impermeability	of	Na+	and	Cl	into	hydrophobic	plug.	
	
6.	Parameters	fitting	

We	have	tried	and	found	Di=50,	i=1,2,3,4,	K=3,	KS4=3,	bS4=1.5	provide	the	
best	fit	to	the	important	experiments	reported	in	[4].	Several	things	are	to	be	
noted	about	the	parameter	values	specified	above:	(1)	there	is	no	experimental	
measurement	of	diffusion	coefficient	of	arginine	inside	vestibule	and	plug	
available	that	we	can	use	for	simulation.	Imprecise	setting	of	the	values	of	these	
diffusion	coefficients	only	affects	the	scale	of	time	in	I‐V	curve,	but	not	its	shape.	
That	is	why	we	set	time	coordinate	to	be	in	an	arbitrary	unit	later	in	results,	and	
here	we	only	focus	on	comparing	the	shape	of	IV	curves	with	experiments	in	[4].	
(2)	K,	KS4,	and	bS4	were	particularly	determined	by	fitting	with	QV	curve	in	
experiment	[4].	The	QV	curve	is	very	sensitive	to	K	and	KS4,	and	many	efforts	have	
been	taken	to	achieve	proper	values	for	them.	The	method	of	fitting	is	done	by	
trial	and	error.	Choosing	incorrect	K	and	KS4	would	end	up	serious	mismatch	of	
QV	curve	with	experiment	[4]	as	demonstrated	by	the	case	of	K=3	and	KS4=12	in	
Fig.	1	here.	The	choice	of	K=3	and	KS4=3	fits	experiment	[4]	best	and	is	adopted	
for	the	rest	of	simulations.	

	

	
Figure	1.	Simulated	QV	curves	under	different	K	and	KS4	compared	with	
experimental	counterpart	from	[4].	Note	that	the	experimental	data	in	[4]	was	
scaled	to	4e.	
	
7.	Derivation	of	Ampere’s	law	in	Maxwell’s	equations	by	Poisson	equation	
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and	species	transport	equation	
Eq.	(8)	is	consistent	with	Ampere’s	law	in	Maxwell’s	equations:	

׏ ൈ ቀ ஻
ሬԦ

ఓబ
ቁ ൌ ௥ߝ଴ߝ

డாሬԦ

డ௧
൅ 	,Ԧܬ 	 	 	 	 	 	 	 	 	 	 (S.6)	

or	equivalently,	

׏ ∙ ቀߝ଴ߝ௥
డாሬԦ

డ௧
൅ Ԧቁܬ ൌ 0,	 	 	 	 	 	 	 	 (S.7)	

where	 	ሬԦܧ is	the	electric	field	and	 	Ԧܬ is	flux	density	of	charge	(current	density).	Eq.	
(S.7)	tells	us	that	the	total	current	is	conserved	everywhere	and	it	consists	of	flux	

of	charges	 	Ԧܬ and	displacement	current	 ௥ߝ଴ߝ
డாሬԦ

డ௧
.	Eq.	(S.7)	can	be	derived	from	the	

Poisson	equation	and	species	transport	equation	like	Eq.	(1)	and	Eq.	(2).	Starting	
from	Poisson	equation	in	dimensional	form:	
െ׏ ∙ ሺߝ଴ߝ௥׏߶ሻ ൌ ߩ ൅ ∑ ௜݁ܿ௜௜ݍ ,	 	 	 	 	 	 (S.8)	
or	equivalently	

׏ ∙ ൫ߝ଴ߝ௥ܧሬԦ൯ ൌ ߩ ൅ ∑ ௜݁ܿ௜௜ݍ .	 	 	 	 (S.9)	

Taking	time	derivative	of	Eq.	(S.9),	

׏ ∙ ቀߝ଴ߝ௥
డாሬԦ

డ௧
ቁ ൌ ∑ ௜݁ݍ

డ௖೔
డ௧௜ ,	 	 	 	 	 	 	 	 	 	 	 (S.10)	

and	using	species	transport	equation	based	on	mass	conservation,	

డ௖೔
డ௧
൅ ׏ ∙ Ԧ௜ܬ ൌ 0,	 	 	 	 	 	 	 	 	 	 	 	 	 (S.11)	

then	

׏ ∙ ቀߝ଴ߝ௥
డாሬԦ

డ௧
ቁ ൌ ∑ ௜݁ݍ

డ௖೔
డ௧
ൌ௜ െ ׏ ∙ ∑ Ԧ௜ܬ௜݁ݍ ൌ െ׏ ∙ Ԧ௜ܬ ,	 	 	 	 	 	 	 	 	 	 	 (S.12)	

which	becomes	exactly	Eq.	(S.7)	by	defining	

∑=Ԧܬ Ԧ௜௜ܬ௜݁ݍ .	 	 	 	 	 	 	 	 	 	 	 	 	 (S.13)	
A	more	general	treatment	that	does	not	involve	assumptions	about	 	be	can	௥ߝ
found	in	[5‐7].	 	

Casting	Eq.	(S.7)	into	the	present	1D	framework	by	integrating	it	in	space	and	
applying	the	divergence	theorem,	we	have	

ሻݖሺܣ௥ߝ଴ߝ
డாሺ௭,௧ሻ

డ௧
൅ ,ݖሺܫ ሻݐ ൌ ሺ0ሻܣ௥ߝ଴ߝ

డாሺ଴,௧ሻ

డ௧
൅ ,ሺ0ܫ 	.ሻݐ 	 	 	 	 	 	 (S.14)	

Comparing	with	Eq.	(11),	 	

ሻݖሺܣ௥ߝ଴ߝ
డாሺ௭,௧ሻ

డ௧
െ ሺ0ሻܣ௥ߝ଴ߝ

డாሺ଴,௧ሻ

డ௧
ൌ ,ݖௗ௜௦௣ሺܫ 	,ሻݐ 	 	 	 	 	 	 	 	 	 (S.15)	

which	justifies	the	naming	of	displacement	current	in	Eq.	(11).	 	
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8.	Numerical	method	
	 High-order	multi�block	Chebyshev	pseudospectral	methods	are	used	here	
to	discretize	Eqs.	(1‐4)	in	space	[8].	The	resultant	semi	discrete	system	is	then	a	
set	of	coupled	ordinary	differential	equations	in	time	and	algebraic	equations	(an	
ODAE	system)	[9].	The	ordinary	differential	equations	are	chiefly	from	Eq.	(2),	
and	algebraic	equations	are	chiefly	from	Eq.	(1)	and	boundary/interface	
conditions	Eqs.	(S.3‐S.5).	This	system	is	further	integrated	in	time	by	an	ODAE	
solver	(ODE15S	in	MATLAB	(The	MathWorks,	Natick,	MA)	[10,11])	together	with	
appropriate	initial	condition.	ODE15S	is	a	variable order variable step	(VSVO)	
solver,	which	is	highly	efficient	in	time	integration	because	it	adjusts	the	time	step	
and	order	of	integration.	High�order	pseudospectral	methods	generally	provide	
excellent	spatial	accuracy	with	economically	practicable	resolutions.	A	
combination	of	these	two	techniques	makes	the	whole	computation	very	efficient.	
This	is	particularly	important	here,	since	numerous	computations	have	to	be	
tried	during	the	tuning	of	parameters.	Efficiency	will	be	vital	in	future	
calculations	comparing	theory	and	experiment	in	a	wide	variety	of	mutants	and	
experimental	conditions.	
	
9.	Computation	of	flux	of	charge,	displacement	current	and	total	current	

According	to	definition	in	Eq.	(10),	flux	of	charges	at	the	middle	of	gating	
pore,	 ோܮሺܫ ൅ ,2/ܮ 	,pore	gating	of	ends	both	and	ሻ,ݐ ,ሺ0ܫ 	ሻݐ and	 ோܮሺ2ܫ ൅ ,ܮ 	,ሻݐ
should	be	computed	by 

ܫ ቀܮோ ൅
௅

ଶ
, ቁݐ ൌ ܣ ቀܮோ ൅

௅

ଶ
ቁ∑ ௜ܬ௜ݍ ቀܮோ ൅

௅

ଶ
, ቁ௔௥௚௜௡௜௡௘௦ݐ ,	 	 	 	 	 (S.16)	

,ሺ0ܫ ሻݐ ൌ ∑ሺ0ሻܣ ,௜ሺ0ܬ௜ݍ ሻ௜ୀே௔,஼௟ݐ ,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (S.17)	
ோܮሺ2ܫ ൅ ,ܮ ሻݐ ൌ ோܮሺ2ܣ ൅ ∑ሻܮ ோܮ௜ሺ2ܬ௜ݍ ൅ ,ܮ ሻ௜ୀே௔,஼௟ݐ .	 	 	 	 	 (S.18)	

Except	 ܫ ቀܮோ ൅
௅

ଶ
, 	,ቁݐ ,ሺ0ܫ 	ሻݐ and	 ோܮሺ2ܫ ൅ ,ܮ 	ሻݐ are	trivially	zero	due	to	the	

implement	of	quasi‐steadiness	
డ௖೔
డ௧
ൌ 0, ݅ ൌ Na, Cl,	 in	vestibules,	which	causes	

	ே௔ܬ and	 	஼௟ܬ to	be	uniform	in	vestibules	by	Eq.	(2),	and	further	become	zero	by	
the	no‐flux	boundary	conditions	for	 Naା	 and	 Clି	 at	the	bottom	of	vestibules	as	
described	in	Eq.	(S.5).	We	have	to	alternatively	reconstruct	 ,ሺ0ܫ 	ሻݐ and	
ோܮሺ2ܫ ൅ ,ܮ 	ሻݐ by	charge	conservation	of	 Naା	 and	 Clି,	

,ሺ0ܫ ሻݐ ൌ
ௗ

ௗ௧
׬ ∑ሻݖሺܣ ே௔,஼௟ݖ௜ܿ௜݀ݍ
௅

଴
,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (S.19)	

ோܮሺ2ܫ ൅ ,ܮ ሻݐ ൌ െ ௗ

ௗ௧
׬ ∑ሻݖሺܣ ே௔,஼௟ݖ௜ܿ௜݀ݍ
௅ାଶ௅ೃ
௅ା௅ೃ

.	 	 	 	 	 	 	 	 	 	 (S.20)	
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After	obtaining	 ,ሺ0ܫ 	ሻݐ and	 ோܮሺ2ܫ ൅ ,ܮ 	of	flux	the	reconstruct	further	can	we	ሻ,ݐ
charges	 ,ݖሺܫ 	ሻݐ at	zone	1	and	zone	3	by	(8)	and	(9),	

,ݖሺܫ ሻݐ ൌ ,ሺ0ܫ ሻݐ െ ௗ

ௗ௧
׬ ∑ሻݖሺܣ ௜	௔௟௟ݖ௜ܿ௜݀ݍ
௭

଴
ݖ			, ∈ ሾ0, 	,ோሿܮ 	 	 	 (S.21)	

,ݖሺܫ ሻݐ ൌ ோܮሺ2ܫ ൅ ,ܮ ሻݐ ൅
ௗ

ௗ௧
׬ ∑ሻݖሺܣ ௜	௔௟௟ݖ௜ܿ௜݀ݍ
ଶ௅ೃା௅

௭
ݖ			, ∈ ሾܮோ ൅ ,ܮ ோܮ2 ൅ 	(S.22)	ሿ.ܮ

Flux	of	charge	at	zone	2	is	simply	
,ݖሺܫ ሻݐ ൌ ∑ሻݖሺܣ ,ݖ௜ሺܬ௜ݍ ሻ௔௥௚௜௡௜௡௘௦ݐ ݖ		, ∈ ሾܮோ, ோܮ ൅ 	,ሿܮ 	 	 	 	 (S.23)	
since	 Naା	 and	 Clି	 are	not	allowed	to	enter	zone	2,	the	hydrophobic	plug.	
	
10.	Removing	spike	in	total	current	

In	voltage‐clamp	experiments,	subtracting	this	linear	capacitive	component	
and	removing	the	spike	from	gating	current	is	done	by	‘leak	subtraction’,	in	
various	forms,	e.g.,	P/4	(see	details	in	Section	11)	In	reality,	this	linear	capacitive	
current	that	is	subtracted	in	this	procedure	comes	from	both	the	lipid	bilayer	
membrane	in	parallel	with	the	gating	pore.	Here,	we	only	considered	the	
capacitive	current	from	solution	EDL	of	vestibule	inside	the	gating	pore	and	
ignored	the	membrane	capacitive	current	because	we	simply	use	Dirichlet	
boundary	conditions	for	 ߶	 at	both	ends	of	the	gating	pore	in	Eq.	(S.3).	Actually,	
capacitive	current	of	the	membrane	in	parallel	with	the	gating	pore	would	be	
much	larger	than	vestibule	capacitive	current.	Following	the	idea	of	the	
experiment	[4],	we	calculated	 ,ሺ0ܫ 	ሻݐ with	V	rising	from	‐150	mV	to	‐140	mV	at	
t=10,	and	dropping	back	to	‐150	mV	at	t=150.	We	chose	from	‐150	mV	to	‐140	
mV	because	essentially	none	of	the	arginines	move	across	the	hydrophobic	plug	
in	this	hyperpolarized	region.	The	voltage	step	quickly	charges	and	discharges	
solution	EDL	in	vestibules,	and	the	computed	time	course	of	 ,ሺ0ܫ 	ሻݐ is	just	two	
spikes	at	on	and	off	of	the	command	potential.	Subtracting	this	hyperpolarized	
,ሺ0ܫ 	capacitive	of	linearity	the	to	(due	factor	proportion	a	by	multiplied	ሻ,ݐ
current),	from	its	original	counterpart	will	then	remove	the	spikes,	and	the	
unspiked	 ,ሺ0ܫ 	ሻݐ is	shown	in	Fig.	5(a).	In	preliminary	calculations	with	the	model,	
when	the	command	voltage	pulse	rises	faster,	the	early	spike	becomes	larger	and	
is	still	visible	even	after	subtraction,	suggesting	that	is	the	origin	of	the	early	
transient	gating	current	in	experiments	[12‐14].	

11.	Removing	linear	capacitive	current	to	obtain	gating	current	in	
experiments	 	
	 Our	computations	have	limited	fidelity	at	short	times	because	of	time	step	
limitations	in	integrating	stiff	systems.	The	spike	artifacts	are	one	example,	
described	previously.	Experimental	measurements	[12,15]	of	the	fast	transient	
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gating	current	are	fascinating	and	our	calculations	will	be	extended	to	explore	
more	of	them	in	future	study	by	using	greater	resolution	in	time.	
	 A	more	general	consideration	is	the	subtraction	procedure	used	in	
experiments	to	isolate	gating	current	from	currents	arising	from	other	sources.	
Channels	and	their	voltage	sensors	are	embedded	in	lipid	membranes,	therefore	
they	are	‘in	parallel’	with	large	capacitive	currents	of	the	lipid	bilayer.	The	lipid	
membrane	has	a	large	capacitance	(	ܥ௟௜௣௜ௗ ≅ 8 ൈ 10ି଻	farads/cmଶ	)	that	has	
nothing	to	do	with	the	current	produced	by	charge	movement	in	the	voltage	
sensor.	Fortunately,	the	capacitance	ܥ௟௜௣௜ௗ	 is	a	nearly	ideal	circuit	element	and	the	
current	to	charge	it	is	entirely	a	displacement	current	accurately	described	by	
݅௖௔௣ ൌ ௟௜௣௜ௗܥ ∂V ∂t⁄ 	with	a	single	constant	 	lipid	the	across	voltage	the	is	V	௟௜௣௜ௗ.ܥ
capacitor.	Note	that	 ݅௖௔௣	does	not	include	any	current	or	flux	of	charge	carried	
across	the	lipid.	 	

In	experimental	measurements,	 ݅௖௔௣	 is	always	present.	Experimental	
measurements	always	mix	the	displacement	currents	of	lipid	membrane	and	
voltage	sensor.	Lipid	membrane	current	usually	dominates	the	measurement	of	
gating	currents	in	native	preparations	and	remains	large	in	systems	mutated	to	
have	unnaturally	large	numbers	of	voltage	sensors.	
	 A	procedure	to	remove	the	lipid	membrane	current	is	needed	if	the	gating	
current	of	the	voltage	sensor	is	to	be	measured.	The	procedure	introduced	by	[16]	
has	been	used	ever	since	in	the	improved	P/4	version	developed	by	[17]	
reviewed	and	discussed	in	[18]. Also,	see	another	approach	in	[19]	and	[20]. 
Schneider	and	Chandler’s	procedure	[19]	estimates	the	so‐called	linear	current	
݅௫ ൌ ௫ܥ ∂V ∂t⁄ 	in	conditions	in	which	the	voltage	sensor	and	ܥ௫	 behave	as	ideal	
circuit	elements.	The	voltage	sensor	might	then	have	a	component	linear	in	
potential.	An	ideal	capacitor	has	a	capacitance	ܥ௫	 independent	of	voltage,	time,	
current,	or	ionic	composition.	The	Schneider	procedure	then	subtracts	that	linear	
current	 ݅௫—plus	any	linear	component	of	voltage	sensor	current—from	the	total	
current	measured	in	conditions	in	which	the	voltage	sensor	does	not	behave	as	
an	ideal	capacitor.	The	leftover	estimates	the	nonlinear	properties	of	the	charge	
movement	in	the	voltage	sensor.	That	is	to	say,	the	leftover	estimates	the	charge	
movement	of	the	voltage	sensor	that	is	not	proportional	to	the	size	of	the	voltage	
step	used	in	the	measurement.	The	leftover	is	called	gating	current	here	and	in	
experimental	papers. 

The	gating	current	reported	in	experiments	[16]	can	miss	a	component	of	the	
displacement	current	of	the	voltage	sensor,	if	it	uses	the	linear	subtraction	to	
estimate	 ݅௫.	These	procedures	can	remove	more	than	the	current	through	the	
lipid	membrane	capacitor	݅௖௔௣.		
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Clearly,	some	of	the	current	produced	by	movements	of	the	arginines	in	the	
voltage	sensor	will	be	a	linear	displacement	current,	a	linear	component	of	gating	
current	and	it	would	not	be	present	in	the	reported	gating	current	determined	by	
some	linear	subtraction	procedures.	In	particular,	if	the	arginine	system	is	
present	at	the	‘control’	potential	contributing	a	current	linear	in	potential,	this	
problem	would	occur.	Of	course,	if	the	arginine	system	is	immobilized	and	
inactivated	at	the	control	potential	and	so	contributes	no	current	flow	under	that	
condition,	this	problem	would	not	occur.	

Other	systems	may	contribute	to	the	linear	displacement	current	as	well,	for	
example,	i)	all	sorts	of	experimental	and	instrumentation	artifacts	and	ii)	
displacement	current	in	the	conduction	channel	itself.	The	conduction	channel	of	
field	effect	transistors	produces	a	large	displacement	current	often	characterized	
as	a	capacitance	that	involves	diffusion	and	is	described	by	drift	diffusion	
equations	quite	similar	to	the	PNP	equations	of	the	open	conduction	channel.	

Most	systems	have	substantial	motions	that	are	linear	in	voltage	(even	if	the	
system	is	labeled	‘nonlinear’).	The	linear	term	is	present	in	most	systems,	just	as	
it	is	present	in	most	Taylor	expansions	of	nonlinear	functions.	 	
	 	 	 	 The	linear	component	that	can	be	missed	in	experiments,	and	removed	in	
these	calculations,	may	have	functional	and	structural	significance.	The	voltage	
sensor	works	by	sensing	voltage,	for	example,	by	producing	a	motion	of	arginines.	
That	motion—the	response	of	the	voltage	sensor	in	this	model—includes	a	linear	
component.	The	signal	passed	to	the	conduction	channel,	to	control	gating,	is	
likely	to	include	or	depend	on	the	linear	component	of	sensor	function.	Confusion	
will	result	if	a	significant	linear	component	exists	and	is	ignored	when	a	model	is	
created	that	links	the	voltage	sensor	to	the	gating	process	of	the	conduction	
channel.	Direct	measurements	of	the	movement	of	arginines	(e.g.,	with	optical	
methods)	are	likely	to	include	the	linear	component	and	so	should	not	agree	with	
experimental	measurements	of	gating	current	or	with	the	currents	reported	here	
if	the	linear	component	exists	and	is	significant	in	size.	
	 	 	 	 If	the	P/4	procedure	subtracts	a	charge	movement	in	a	control	system	in	
which	the	arginines	do	not	move	at	all	(because	they	are	immobilized	and	
inactivated,	in	that	sense),	then	the	resulting	estimate	of	gating	current	will	
contain	a	component	linear	in	voltage.	Thus,	the	interpretation	of	the	corrected	
record	depends	on	the	details	of	immobilization	and	inactivation,	topics	that	are	
beyond	the	scope	of	this	paper	and	our	present	work.	
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bpj_9505_mmc2.txt[2/21/2019 1:24:03 AM]

function arginine_s4qsbias
global z1 z2 z3 N1 N2 N3 Dz1 Dz2 Dz3
global DAz1 DAz2 DAz3 Az1 Az2 Az3 
global sphi K KS b S4offset LR L Qint
global NaL NaR ClL ClR phiL phiR phiLlow
global DNa Dq Dq2 DCl
global zNa zCl zq Lap Gamma1 Gamma2 Gamma3
global iplot
global ton toff Vwidtht
global gij Wz
format short e
iclose=input('Input 1 to close old figures, default is 1: ');
if isempty(iclose)
    iclose=1;
end
if iclose==1
    close all;
end
icon=input('Input 1 for preparing initial condition, 2 for full simulation, else for seeing old results, default is 1: ');
if isempty(icon)
icon=1;
end
if icon==1 | icon==2
if icon==2
dir arginine-s4qsbias*.mat
dataini=input('Input the file to load for initial condition: ','s'); 
dataini=dataini(dataini~=' ');
tit2=['load ' dataini];
eval(tit2); 
u0=uall(end,:); u0=u0(:);
phiLlow=phiL;
phiL=input('Input command voltage phiL, default is 0: ');
if isempty(phiL)
    phiL=0;
end
ton=input('Input on time of phiL, default is 10: ');
if isempty(ton)
    ton=10;
end
toff=input('Input off time of phiL, default is 150: ');
if isempty(toff)
    toff=150;
end
Vwidtht=input('Input rise/fall rate of phiL, default is 5: ');
if isempty(Vwidtht)
    Vwidtht=5;
end
Dq
Dq=input('Input diffusion coefficient of arginine inside antechamber, default is 50: ');
if isempty(Dq)
    Dq=50;
end
Dq2

MATLAB CODE
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Dq2=input('Input diffusion coefficient of arginine inside channel, default is 50: ');
if isempty(Dq2)
    Dq2=50;
end
tspan=input('Input time span of simulation, default is 0:0.01:300: ' );
if isempty(tspan)
tspan=(0:0.01:300)';
end
else
% valence:
% zNa=input('Input zNa, default is 1: ');
% if isempty(zNa)
    zNa=1;
% end
% zCl=input('Input zCl, default is -1: ');
% if isempty(zCl)
    zCl=-1;
% end
% grid:
Nz1=input('Input number of intervals in zone 1, default is 70: ');
if isempty(Nz1)
    Nz1=70;
end
N1=Nz1+1; Nz3=Nz1; N3=N1;
Nz2=input('Input number of intervals in zone 2, default is 50: ');
if isempty(Nz2)
    Nz2=50;
end
N2=Nz2+1; 
number_of_grids=[N1 N2 N3]
% geometry:
L=0.7;      % channel length with characteristic length 1nm
LR=1.5;   % antechamber length
AL=0.15;  % channel radius
AR=1;     % antechamber radius
Geometry_data=[L LR AL AR]
% bulk diffusion coefficient: Na 1.33e-9; Cl 2.03e-9; arginine 0.7e-9 in m^2/s
DNa=1; DCl=1.53;    % false diffusion coefficient for DNa and DCl
Dq=input('Input diffusion coefficient of arginine inside antechamber, default is 5: ');
if isempty(Dq)
    Dq=5;
end
Dq2=input('Input diffusion coefficient of arginine inside channel, default is 5: ');
if isempty(Dq2)
    Dq2=5;
end
Diffusion_coefficient=[DNa DCl Dq Dq2]
% Gamma:
Gamma1=input('Input Gamma in zone 1, default is 1: ');
if isempty(Gamma1)
    Gamma1=1;
end
Gamma3=Gamma1;
Gamma2=input('Input Gamma in zone 2, default is 0.1: ');
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if isempty(Gamma2)
    Gamma2=0.1;
end
Gamma_data=[Gamma1 Gamma2 Gamma3]
% Boundary conditions:
NaL=1;NaR=1;ClL=NaL;ClR=NaR;    
phiL=input('Input phiL to reach for its steady state, default is -3.6: ');
if isempty(phiL)
    phiL=-3.6;
end
phiR=0;
Boundary_condition_data=[NaL NaR ClL ClR phiL phiR]
% collocation matrix
% Left reservoir length LR, radius AR
icho=2;
if icho==1
[Dxi,xi]=cheb(Nz1); 
else
[xi,tmp] = chebdif(Nz1+1,1); Dxi=reshape(tmp,Nz1+1,Nz1+1);
end
Dxi=fliplr(flipud(Dxi)); xi=flipud(xi); z1=(xi+1)*LR/2; Dz1=Dxi*2/LR; Dzz1=Dz1^2;
eyez1=eye(N1); gz1=AR*ones(size(z1)); Az1=pi*gz1.^2; DAz1=diag(1./Az1)*Dz1; 
% port length L, radius AL
if icho==1
[Dxi,xi]=cheb(Nz2); 
else
[xi,tmp] = chebdif(Nz2+1,1); Dxi=reshape(tmp,Nz2+1,Nz2+1);
end
Dxi=fliplr(flipud(Dxi)); xi=flipud(xi); stp=LR; z2=(xi+1)*L/2+stp; Dz2=Dxi*2/L; Dzz2=Dz2^2; 
eyez2=eye(N2); gz2=AL*ones(size(z2)); Az2=pi*gz2.^2; DAz2=diag(1./Az2)*Dz2;
% right reservoir length LR, radius AR
if icho==1
[Dxi,xi]=cheb(Nz3); 
else
[xi,tmp] = chebdif(Nz3+1,1); Dxi=reshape(tmp,Nz3+1,Nz3+1);
end
Dxi=fliplr(flipud(Dxi)); xi=flipud(xi); stp=LR+L; z3=(xi+1)*LR/2+stp; Dz3=Dxi*2/LR; Dzz3=Dz3^2;
eyez3=eye(N3); gz3=AR*ones(size(z3)); Az3=pi*gz3.^2; DAz3=diag(1./Az3)*Dz3;
% figure(1); plot(z1,gz1,'b','LineWidth',2); ylim([-8 8]); grid on; xlabel('z','FontSize',18); ylabel('r','FontSize',18); hold 
on; 
% plot(z2,gz2,'b','LineWidth',2); plot(z3,gz3,'b','LineWidth',2); 
% plot(z1,-gz1,'b','LineWidth',2); plot(z2,-gz2,'b','LineWidth',2); plot(z3,-gz3,'b','LineWidth',2); 
% plot([LR LR],[-AR AR],'r','LineWidth',2); plot([LR+L LR+L],[-AR AR],'r','LineWidth',2); hold off; 
% title('3-zone channel shape','FontSize',18); drawnow;
% Laplace operator for electric potential:
Lap1=Dzz1; Lap1(1,:)=eyez1(1,:); Lap1(end,:)=Gamma1*Az1(1)*Dz1(end,:); 
Lap2=Dzz2; Lap2(1,:)=eyez2(1,:); Lap2(end,:)=Gamma2*Az2(1)*Dz2(end,:);
Lap3=Dzz3; Lap3(1,:)=eyez3(1,:); Lap3(end,:)=eyez3(end,:);
Lap=blkdiag(Lap1,Lap2,Lap3); 
Lap(N1,N1+1:N1+N2)=-Gamma2*Az2(1)*Dz2(1,:); Lap(N1+1,1:N1)=-eyez1(end,:);
Lap(N1+N2,N1+N2+1:end)=-Gamma3*Az3(1)*Dz3(1,:); Lap(N1+N2+1,N1+1:N1+N2)=-eyez2(end,:);
% mass matrix: Na, Cl, 4 arginine:
mass1=ones(size(z1)); mass1([1 end])=0; mass1null=zeros(size(z1));
mass2=ones(size(z2)); mass2([1 end])=0;
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mass3=ones(size(z3)); mass3([1 end])=0; mass3null=zeros(size(z3)); 
M=sparse(diag([mass1null(:);mass1null(:);mass1(:);mass1(:);mass1(:);mass1(:); ...
    mass2(:);mass2(:);mass2(:);mass2(:); ...
    mass3null(:);mass3null(:);mass3(:);mass3(:);mass3(:);mass3(:);1]));
% initial condition:
Na01=NaL*ones(size(z1)); Na03=NaR*ones(size(z3)); Cl01=Na01; Cl03=Na03; 
% Arginine initial distribution
Q=input('Input initial uniform concentration distribution for each arginine at left antechamber, default is 1/10: ');
if isempty(Q)
    Q=1/10;
end
disp('Volume of each arginine calcualted from its initial concentration distribution:');
Qint=Az1(1)*LR*Q
zq=input('Input zq, default is 1: ');
if isempty(zq)
zq=1;    % valence of arginine
end
% if abs(phiL+1.2)>=2
% filter1=(1-tanh(10*(z1-LR-0.2)))/2; filter2=(1-tanh(10*(z2-LR-0.2)))/2; filter3=(1-tanh(10*(z3-LR-0.2)))/2; 
% q01=Q*filter1; q02=Q*filter2; q03=Q*filter3;
% else
Quniform=Qint/(Az2(1)*L+Az1(1)*LR+Az3(1)*LR);
q01=ones(size(z1))*Quniform; q02=ones(size(z2))*Quniform; q03=ones(size(z3))*Quniform; 
% end
% figure(100); plot(z1,q01,'b','LineWidth',2); xlabel('z','FontSize',18); ylabel('initial arginine','FontSize',18); grid on; 
hold on;
% plot(z2,q02,'g','LineWidth',2); plot(z3,q03,'r','LineWidth',2); ylim([-0.1*Q 1.1*Q]); hold off; drawnow;
u0=
[Na01(:);Cl01(:);q01(:);q01(:);q01(:);q01(:);q02(:);q02(:);q02(:);q02(:);Na03(:);Cl03(:);q03(:);q03(:);q03(:);q03(:);LR+
L/2]; 
% steric effect:
gij=input('Input steric effect parameter g, default is 0.5: ');
if isempty(gij)
    gij=0.5;
end
% potential trap:
sphi=0.2;    % half of the interval between spring anchoring position on S4 for each arginine
K=input('Input spring constant K for each arginine connected to S4, default is 3: ');
if isempty(K)
    K=3;
end
KS=input('Input spring constant for S4, needing to be larger than 4K, default is 3: ');
if isempty(KS)
    KS=3;
end
b=input('Input damping coefficient for S4, must be positive, too small will make equations stiff, default is 1.5: ');
if isempty(b)
    b=1.5;
end
S4offset=input('Input offset of equilibrium position of S4 from middle of channel, must be positive, default is 1.591: ');
if isempty(S4offset)
    S4offset=1.591;
end
Spring_data=[sphi K KS b S4offset]
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% energy barrier inside channel:
Wmag=input('Input magnitude of energy barrier V inside channel, default is 5: ');
if isempty(Wmag)
    Wmag=5;
end
Wwidth=input('Input rise/fall rate in space for energy barrier V above, the purpose is to smooth, default is 5: ');
if isempty(Wwidth)
    Wwidth=5;
end
energy_barrier_data=[Wmag Wwidth]
W=Wmag*tanh(Wwidth*(z2-LR))-Wmag*tanh(Wwidth*(z2-LR-L))-Wmag;
Wz=Wmag*Wwidth*sech(Wwidth*(z2-LR)).^2-Wmag*Wwidth*sech(Wwidth*(z2-LR-L)).^2;
% figure(2); subplot(1,2,1); plot(z2,W,'b','LineWidth',2); xlabel('z','FontSize',18); ylabel('energy barrier 
V','FontSize',18); grid on;
% subplot(1,2,2); plot(z2,Wz,'b','LineWidth',2); xlabel('z','FontSize',18); ylabel('dV/dz','FontSize',18); grid on; 
drawnow;
% ODE parameters:
% if (abs(phiL+1.2)<=1)
tspan=input('Input time span of calculation to reach steady state, default is 0:0.01:800: ' );
if isempty(tspan)
tspan=(0:0.01:800)';
end
% else
% tspan=input('Input time span of calculation to reach steady state, default is 0:0.01:400: ' );
% if isempty(tspan)
% tspan=(0:0.01:400)';
% end
% end
end
mxstep=input('Input max numerical time step allowed, default is 0.005: ' );
if isempty(mxstep)
mxstep=0.005;
end
iplot=input('Input 1 to plot for the purpose of debugging during computation, default is 0: ' );
if isempty(iplot)
iplot=0;
end
options=odeset('RelTol',1e-3,'AbsTol',1e-5,'Mass',M,'MaxStep',mxstep);
%tic;
ton
% pause;
[t,uall]=ode15s(@pnp1d,tspan,u0,options);
%et=toc;
if ~isempty(ton)
tit=['arginine-s4qsbias-gij=' num2str(gij) '-phiLlow=' num2str(phiLlow) '-phiL=' num2str(phiL) '-K=' num2str(K) '-KS=' 
num2str(KS) ...
    '-b=' num2str(b) '-S4offset=' num2str(S4offset) '-Darg1=' num2str(Dq) '-Darg2=' num2str(Dq2) '-Q=' num2str(Q) '-
Gamma2=' num2str(Gamma2) ...
    '-Wmag=' num2str(Wmag) '-maxstep=' num2str(mxstep) '-tend=' num2str(t(end)) '-zq=' num2str(zq) '-Vwidtht=' 
num2str(Vwidtht)]
% tit=['arginine-s4qsbias-gij=' num2str(gij) '-phiLlow=' num2str(phiLlow) '-phiL=' num2str(phiL) '-K=' num2str(K) '-
KS=' num2str(KS) ...
%     '-b=' num2str(b) '-S4offset=' num2str(S4offset) '-Darg1=' num2str(Dq) '-Darg2=' num2str(Dq2) '-Q=' num2str(Q) '-
Gamma2=' num2str(Gamma2) ...
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%     '-Wmag=' num2str(Wmag) '-maxstep=' num2str(mxstep) '-toff=' num2str(toff)]
else
tit=['arginine-s4qsbias-gij=' num2str(gij) '-phiL=' num2str(phiL) '-K=' num2str(K) '-KS=' num2str(KS) ...
    '-b=' num2str(b) '-S4offset=' num2str(S4offset) '-Darg1=' num2str(Dq) '-Darg2=' num2str(Dq2) '-Q=' num2str(Q) '-
Gamma2=' num2str(Gamma2) ...
    '-Wmag=' num2str(Wmag) '-maxstep=' num2str(mxstep) '-tend=' num2str(t(end)) '-zq=' num2str(zq)]
end
tit1=['save ' tit '.mat'];
eval(tit1);
else
close all;
dir arginine-s4qsbias*.mat
dataini=input('Input the file to load: ','s'); 
dataini=dataini(dataini~=' ');
tit2=['load ' dataini];
eval(tit2); 
end
I1=[]; I3=[];
I2a=[]; I2b=[]; I2c=[]; I2d=[];  
Q1=[]; Q2=[]; Q3=[]; Q2half=[];
phiLv=[]; tv=[]; 
Na1all=[]; Cl1all=[]; Na3all=[]; Cl3all=[]; NamCl1=[]; NamCl3=[];
q1aall=[]; q1ball=[]; q1call=[]; q1dall=[]; 
q2aall=[]; q2ball=[]; q2call=[]; q2dall=[]; 
q3aall=[]; q3ball=[]; q3call=[]; q3dall=[]; 
phi1all=[]; phi2all=[]; phi3all=[];
S4dispall=[]; qaposall=[]; qbposall=[]; qcposall=[]; qdposall=[];
int=input('Input output time interval, default is 20: ' );
if isempty(int)
int=20;
end
for i=1:int:length(t)
tv=[tv;t(i)];
u=uall(i,:); u=u.';
Na1=u(1:N1); Cl1=u(N1+1:2*N1); q1a=u(2*N1+1:3*N1); q1b=u(3*N1+1:4*N1); q1c=u(4*N1+1:5*N1); 
q1d=u(5*N1+1:6*N1); stp=6*N1;
q2a=u(stp+1:stp+N2); q2b=u(stp+N2+1:stp+2*N2); q2c=u(stp+2*N2+1:stp+3*N2); q2d=u(stp+3*N2+1:stp+4*N2); 
stp=6*N1+4*N2;
Na3=u(stp+1:stp+N3); Cl3=u(stp+N3+1:stp+2*N3); q3a=u(stp+2*N3+1:stp+3*N3); q3b=u(stp+3*N3+1:stp+4*N3); 
q3c=u(stp+4*N3+1:stp+5*N3); q3d=u(stp+5*N3+1:stp+6*N3); S4disp=u(end);
Na1all=[Na1all;Na1.']; Cl1all=[Cl1all;Cl1.']; Na3all=[Na3all;Na3.']; Cl3all=[Cl3all;Cl3.'];
q1aall=[q1aall;q1a.']; q1ball=[q1ball;q1b.']; q1call=[q1call;q1c.']; q1dall=[q1dall;q1d.']; 
q2aall=[q2aall;q2a.']; q2ball=[q2ball;q2b.']; q2call=[q2call;q2c.']; q2dall=[q2dall;q2d.']; 
q3aall=[q3aall;q3a.']; q3ball=[q3ball;q3b.']; q3call=[q3call;q3c.']; q3dall=[q3dall;q3d.']; 
q1=q1a+q1b+q1c+q1d; warning off; tmp=Dz1\(Az1.*q1); warning on; q1int=tmp(end)-tmp(1); Q1=[Q1;q1int];
q2=q2a+q2b+q2c+q2d; warning off; tmp=Dz2\(Az2.*q2); warning on; q2int=tmp(end)-tmp(1); Q2=[Q2;q2int];
q2half=q2a+q2b+q2c+q2d; q2half(z2>LR+L/2)=0; warning off; tmp=Dz2\(Az2.*q2half); 
warning on; q2halfint=tmp(end)-tmp(1); Q2half=[Q2half;q2halfint];
q3=q3a+q3b+q3c+q3d; warning off; tmp=Dz3\(Az3.*q3); warning on; q3int=tmp(end)-tmp(1); Q3=[Q3;q3int];
warning off; tmp=Dz1\(Az1.*(Na1-Cl1)); warning on; NamCl1int=tmp(end)-tmp(1); NamCl1=[NamCl1;NamCl1int];
warning off; tmp=Dz3\(Az3.*(Na3-Cl3)); warning on; NamCl3int=tmp(end)-tmp(1); NamCl3=[NamCl3;NamCl3int];
Vwidth=Vwidtht; 
if isempty(ton)
phiLactual=phiL;
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else
phiLactual=((phiL-phiLlow)*tanh(Vwidth*(t(i)-(ton+1)))-(phiL-phiLlow)*tanh(Vwidth*(t(i)-(toff-1))))/2+phiLlow; 
end
phiLv=[phiLv;phiLactual];
rhs1=-(zNa*Na1+zCl*Cl1+zq*(q1a+q1b+q1c+q1d))/Gamma1; rhs1(1)=phiLactual; rhs1(end)=0; 
rhs2=-(zq*(q2a+q2b+q2c+q2d))/Gamma2; rhs2([1 end])=0; 
rhs3=-(zNa*Na3+zCl*Cl3+zq*(q3a+q3b+q3c+q3d))/Gamma3; rhs3(1)=0; rhs3(end)=phiR;
rhs=[rhs1;rhs2;rhs3]; warning off; phi=Lap\rhs; warning on; 
phi1=phi(1:N1); phi2=phi(N1+1:N1+N2); phi3=phi(N1+N2+1:end);
phi1all=[phi1all;phi1.']; phi2all=[phi2all;phi2.']; phi3all=[phi3all;phi3.'];
Naz1=Dz1*Na1; Naz3=Dz3*Na3; Clz1=Dz1*Cl1; Clz3=Dz3*Cl3; 
qz1a=Dz1*q1a; qz1b=Dz1*q1b; qz1c=Dz1*q1c; qz1d=Dz1*q1d;
qz2a=Dz2*q2a; qz2b=Dz2*q2b; qz2c=Dz2*q2c; qz2d=Dz2*q2d;
qz3a=Dz3*q3a; qz3b=Dz3*q3b; qz3c=Dz3*q3c; qz3d=Dz3*q3d;
phiz1=Dz1*phi1; phiz3=Dz3*phi3; phiz2=Dz2*phi2; 
warning off;
tmp=Az1(1)*q1a.*z1; tmp=Dz1\tmp; tmp1=tmp(end)-tmp(1);
tmp=Az2(1)*q2a.*z2; tmp=Dz2\tmp; tmp2=tmp(end)-tmp(1);
tmp=Az3(1)*q3a.*z3; tmp=Dz3\tmp; tmp3=tmp(end)-tmp(1);
qapos=(tmp1+tmp2+tmp3)/Qint; qaposall=[qaposall;qapos];
tmp=Az1(1)*q1b.*z1; tmp=Dz1\tmp; tmp1=tmp(end)-tmp(1);
tmp=Az2(1)*q2b.*z2; tmp=Dz2\tmp; tmp2=tmp(end)-tmp(1);
tmp=Az3(1)*q3b.*z3; tmp=Dz3\tmp; tmp3=tmp(end)-tmp(1);
qbpos=(tmp1+tmp2+tmp3)/Qint; qbposall=[qbposall;qbpos];
tmp=Az1(1)*q1c.*z1; tmp=Dz1\tmp; tmp1=tmp(end)-tmp(1);
tmp=Az2(1)*q2c.*z2; tmp=Dz2\tmp; tmp2=tmp(end)-tmp(1);
tmp=Az3(1)*q3c.*z3; tmp=Dz3\tmp; tmp3=tmp(end)-tmp(1);
qcpos=(tmp1+tmp2+tmp3)/Qint; qcposall=[qcposall;qcpos];
tmp=Az1(1)*q1d.*z1; tmp=Dz1\tmp; tmp1=tmp(end)-tmp(1);
tmp=Az2(1)*q2d.*z2; tmp=Dz2\tmp; tmp2=tmp(end)-tmp(1);
tmp=Az3(1)*q3d.*z3; tmp=Dz3\tmp; tmp3=tmp(end)-tmp(1);
qdpos=(tmp1+tmp2+tmp3)/Qint; qdposall=[qdposall;qdpos];
warning on;
S4dispall=[S4dispall;S4disp];
Vz1a=K*(z1-(S4disp-3*sphi)); Vz1b=K*(z1-(S4disp-sphi)); Vz1c=K*(z1-(S4disp+sphi)); Vz1d=K*(z1-
(S4disp+3*sphi)); 
Vz2a=K*(z2-(S4disp-3*sphi)); Vz2b=K*(z2-(S4disp-sphi)); Vz2c=K*(z2-(S4disp+sphi)); Vz2d=K*(z2-
(S4disp+3*sphi)); 
Vz3a=K*(z3-(S4disp-3*sphi)); Vz3b=K*(z3-(S4disp-sphi)); Vz3c=K*(z3-(S4disp+sphi)); Vz3d=K*(z3-
(S4disp+3*sphi)); 
JNaz1=-Az1.*DNa.*(Naz1+zNa*Na1.*phiz1);
JClz1=-Az1.*DCl.*(Clz1+zCl*Cl1.*phiz1);
Jqz1a=-Az1.*Dq.*(qz1a+zq*q1a.*phiz1+q1a.*Vz1a+gij*q1a.*(qz1b+qz1c+qz1d));
Jqz1b=-Az1.*Dq.*(qz1b+zq*q1b.*phiz1+q1b.*Vz1b+gij*q1b.*(qz1a+qz1c+qz1d));
Jqz1c=-Az1.*Dq.*(qz1c+zq*q1c.*phiz1+q1c.*Vz1c+gij*q1c.*(qz1a+qz1b+qz1d));
Jqz1d=-Az1.*Dq.*(qz1d+zq*q1d.*phiz1+q1d.*Vz1d+gij*q1d.*(qz1a+qz1b+qz1c));
Jqz2a=-Az2.*Dq2.*(qz2a+zq*q2a.*phiz2+q2a.*(Wz+Vz2a)+gij*q2a.*(qz2b+qz2c+qz2d));
Jqz2b=-Az2.*Dq2.*(qz2b+zq*q2b.*phiz2+q2b.*(Wz+Vz2b)+gij*q2b.*(qz2a+qz2c+qz2d));
Jqz2c=-Az2.*Dq2.*(qz2c+zq*q2c.*phiz2+q2c.*(Wz+Vz2c)+gij*q2c.*(qz2a+qz2b+qz2d));
Jqz2d=-Az2.*Dq2.*(qz2d+zq*q2d.*phiz2+q2d.*(Wz+Vz2d)+gij*q2d.*(qz2a+qz2b+qz2c));
JNaz3=-Az3.*DNa.*(Naz3+zNa*Na3.*phiz3);
JClz3=-Az3.*DCl.*(Clz3+zCl*Cl3.*phiz3);
Jqz3a=-Az3.*Dq.*(qz3a+zq*q3a.*phiz3+q3a.*Vz3a+gij*q3a.*(qz3b+qz3c+qz3d));
Jqz3b=-Az3.*Dq.*(qz3b+zq*q3b.*phiz3+q3b.*Vz3b+gij*q3b.*(qz3a+qz3c+qz3d));
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Jqz3c=-Az3.*Dq.*(qz3c+zq*q3c.*phiz3+q3c.*Vz3c+gij*q3c.*(qz3a+qz3b+qz3d));
Jqz3d=-Az3.*Dq.*(qz3d+zq*q3d.*phiz3+q3d.*Vz3d+gij*q3d.*(qz3a+qz3b+qz3c));
J1=zNa*JNaz1+zCl*JClz1+zq*(Jqz1a+Jqz1b+Jqz1c+Jqz1d); 
J3=zNa*JNaz3+zCl*JClz3+zq*(Jqz3a+Jqz3b+Jqz3c+Jqz3d); 
J2a=zq*Jqz2a; J2b=zq*Jqz2b; J2c=zq*Jqz2c; J2d=zq*Jqz2d; 
I1=[I1;J1.']; I3=[I3;J3.'];
I2a=[I2a;J2a.']; I2b=[I2b;J2b.']; I2c=[I2c;J2c.']; I2d=[I2d;J2d.']; 
end
I2=I2a+I2b+I2c+I2d;
dt=tv(2)-tv(1);
% figure(4); 
% subplot(1,2,1); plot(z1,gz1,'b','LineWidth',2); ylim([-8 8]); grid on; xlabel('z','FontSize',18); ylabel('r','FontSize',18); 
hold on; 
% plot(z2,gz2,'b','LineWidth',2); plot(z3,gz3,'b','LineWidth',2); 
% plot(z1,-gz1,'b','LineWidth',2); plot(z2,-gz2,'b','LineWidth',2); plot(z3,-gz3,'b','LineWidth',2); 
% plot([LR LR],[-AR AR],'r','LineWidth',2); plot([LR+L LR+L],[-AR AR],'r','LineWidth',2); hold off; 
% title('3-zone channel shape','FontSize',18); drawnow;
% subplot(1,2,2); plot(z2,W,'b','LineWidth',2); xlabel('z','FontSize',18); ylabel('energy barrier V','FontSize',18); 
% grid on; xlim([LR L+LR]); ylim([-1 Wmag+1]); 
% I at several location
[tmp,izmid]=min(abs(z2-(LR+L/2)));
Imid=I2(:,izmid); Imida=I2a(:,izmid); Imidb=I2b(:,izmid); Imidc=I2c(:,izmid); Imidd=I2d(:,izmid); 
Imidtmp=Imid(1:end-1);
NImid=length(Imidtmp); Ttv=tv(end);
ky=[0:NImid/2 -NImid/2+1:-1]'; iky=1i*[eps:NImid/2-1 eps -NImid/2+1:-1]';
Imidh=fft(Imidtmp); tmp=Imidh./iky; tmp(1)=0; tmp(NImid/2+1)=0;  Imidint=real(ifft(tmp)*Ttv/(2*pi)); Imidint=
[Imidint;Imidint(end)];
Imidint=Imidint-Imidint(1); 
Qmid=zq*(Q1+Q2half)+NamCl1; ImidQ=zeros(size(tv)); ImidQ(2:end-1)=(Qmid(3:end)-Qmid(1:end-2))/(2*dt); 
ImidQ(1)=(-3*Qmid(1)+4*Qmid(2)-Qmid(3))/(2*dt); ImidQ(end)=(-3*Qmid(end)+4*Qmid(end-1)-Qmid(end-
2))/(-2*dt); 
ImidQ=(Az2(1)*Imid-ImidQ)/Az1(1);
if ~isempty(ton)
figure(7); 
subplot(3,1,1); plot(tv,phiLv*25,'Color','b','LineWidth',2); xlabel('t (a.u.)','FontSize',20); 
ylabel('V (mV)','FontSize',20); grid on; xlim([0 tv(end)]);
ylim([(phiLlow-1)*25 (phiL+1)*25]); 
subplot(3,1,2); 
plot(tv,Imid,'Color','b','LineWidth',2); xlabel('t (a.u.)','FontSize',20); ylabel('I (a.u.)','FontSize',20); grid on; xlim([0 
tv(end)]); 
hold on; plot(tv,Imida,'Color','r','LineWidth',2); plot(tv,Imidb,'Color','k','LineWidth',2); 
plot(tv,Imidc,'Color','m','LineWidth',2); plot(tv,Imidd,'Color','c','LineWidth',2); hold off; 
hh=legend('total','1','2','3','4');
subplot(3,1,3);
plot(tv,ImidQ,'Color','b','LineWidth',2); xlabel('t (a.u.)','FontSize',20); ylabel('I voltage clamp (a.u.)','FontSize',20); 
grid on; xlim([0 tv(end)]); 
end
if ~isempty(ton)
[tmp,imax]=max(Imid); 
[tmp,imin]=min(abs(tv-140)); 
xdata=tv(imax:imin); ydata=Imid(imax:imin);
options=optimset('MaxFunEvals',10000,'MaxIter',10000);
x0 = [0.02;10;0.02;10]; 
lb=[0;0;0;0];ub=[1e4;1e4;1e4;1e4];
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[x2,resnorm2] = lsqcurvefit(@myfun2,x0,xdata,ydata,lb,ub,options);
x2
resnorm2
ydatafit2=myfun2(x2,xdata);
x0 = [0.02;10;0.02;10;0.02;10]; 
lb=[0;0;0;0;0;0];ub=[1e4;1e4;1e4;1e4;1e4;1e4];
[x3,resnorm3] = lsqcurvefit(@myfun3,x0,xdata,ydata,lb,ub,options);
x3
resnorm3
ydatafit3=myfun3(x3,xdata);
x0 = [0.02;10;0.02;10;0.02;10;0.02;10]; 
lb=[0;0;0;0;0;0;0;0];ub=[1e4;1e4;1e4;1e4;1e4;1e4;1e4;1e4];
[x4,resnorm4] = lsqcurvefit(@myfun4,x0,xdata,ydata,lb,ub,options);
x4
resnorm4
ydatafit4=myfun4(x4,xdata);
figure(70);
plot(xdata,ydata,'Color','b','lineWidth',2); xlabel('t','FontSize',18); ylabel('Imiddle','FontSize',18); grid on; hold on;
plot(xdata,ydatafit2,'Color','g','lineWidth',2); plot(xdata,ydatafit3,'Color','r','lineWidth',2);
plot(xdata,ydatafit4,'Color','k','lineWidth',2); hold off; legend('original','2','3','4');
x0 = [0.02;10;0.02;10;1;1]; 
lb=[0;0;0;0;0;0];ub=[1e4;1e4;1e4;1e4;1e4;1e4];
[x5,resnorm5] = lsqcurvefit(@myfun5,x0,xdata,ydata,lb,ub,options);
x5
resnorm5
ydatafit5=myfun5(x5,xdata);
x0 = [0.02;10;0.02;10;0.02;10;1;1;1]; 
lb=[0;0;0;0;0;0;0;0;0];ub=[1e4;1e4;1e4;1e4;1e4;1e4;1e4;1e4;1e4];
[x6,resnorm6] = lsqcurvefit(@myfun6,x0,xdata,ydata,lb,ub,options);
x6
resnorm6
ydatafit6=myfun6(x6,xdata);
x0 = [0.02;10;0.02;10;0.02;10;0.02;10;1;1;1;1]; 
lb=[0;0;0;0;0;0;0;0;0;0;0;0];ub=[1e4;1e4;1e4;1e4;1e4;1e4;1e4;1e4;1e4;1e4;1e4;1e4];
[x7,resnorm7] = lsqcurvefit(@myfun7,x0,xdata,ydata,lb,ub,options);
x7
resnorm7
ydatafit7=myfun7(x7,xdata);
figure(71);
plot(xdata,ydata,'Color','b','lineWidth',2); xlabel('t','FontSize',18); ylabel('Imiddle','FontSize',18); grid on; hold on;
plot(xdata,ydatafit5,'Color','g','lineWidth',2); plot(xdata,ydatafit6,'Color','r','lineWidth',2);
plot(xdata,ydatafit7,'Color','k','lineWidth',2); hold off; legend('original','2','3','4');
Qint
end
V=Qint*4;
figure(8); 
plot(tv,4*Q1/V,'Color','b','LineWidth',2); xlabel('t (a.u.)','FontSize',20); ylabel('arginine','FontSize',20); grid on; hold on;
plot(tv,4*Q3/V,'Color','g','LineWidth',2); plot(tv,4*Q2/V,'Color','r','LineWidth',2); 
% plot(tv,(Q1+Q2+Q3)/V,'Color','k','LineWidth',2); 
hold off; 
ylim([-0.5 4.5]); 
if isempty(ton)
title(['Final Q1/V=' num2str(Q1(end)/V) ', Q3/V=' num2str(Q3(end)/V)]); 
end
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hh=legend('zone 1','zone 3','zone 2');
figure(81); 
plot(tv,zq*Q1+NamCl1,'Color','b','LineWidth',2); xlabel('t (a.u.)','FontSize',20); ylabel('total net charge','FontSize',20); 
grid on; hold on; plot(tv,zq*Q3+NamCl3,'Color','g','LineWidth',2); hold off; 
hh=legend('zone 1','zone 3');
figure(9); 
% qpos=0.25*(qaposall+qbposall+qcposall+qdposall);
% qposmax=max([qaposall-qaposall(1);qbposall-qbposall(1);qcposall-qcposall(1);qdposall-qdposall(1)]);
% Imidintmax=max(Imidint);Imidint=Imidint*qposmax/Imidintmax;
subplot(2,1,1);
plot(tv,Imidint*4/V,'b','LineWidth',2); grid on; xlabel('t (a.u.)','FontSize',20); ylabel('charges moved, Q','FontSize',20); 
subplot(2,1,2);
plot(tv,qaposall-qaposall(1),'r','LineWidth',2); grid on; xlabel('t (a.u.)','FontSize',20); 
ylabel('\Delta z_{i,CM}, \Delta z_{S4} (nm)','FontSize',20); hold on;
plot(tv,qbposall-qbposall(1),'k','LineWidth',2); 
plot(tv,qcposall-qcposall(1),'m','LineWidth',2); 
plot(tv,qdposall-qdposall(1),'c','LineWidth',2); 
plot(tv,S4dispall-S4dispall(1),'b','LineWidth',2); 
hold off;
hh=legend('\Delta z_{1,CM}','\Delta z_{2,CM}','\Delta z_{3,CM}','\Delta z_{4,CM}','\Delta z_{S4}');
figure(91); 
subplot(2,2,1);
% qpos=0.25*(qaposall+qbposall+qcposall+qdposall);
% qposmax=max([qaposall-qaposall(1);qbposall-qbposall(1);qcposall-qcposall(1);qdposall-qdposall(1)]);
% Imidintmax=max(Imidint);Imidint=Imidint*qposmax/Imidintmax;
plot(tv,qaposall,'r','LineWidth',2); grid on; xlabel('t (a.u.)','FontSize',20); 
ylabel('z_{i,CM}, z_{S4} (nm)','FontSize',20); hold on;
plot(tv,qbposall,'k','LineWidth',2); 
plot(tv,qcposall,'m','LineWidth',2); 
plot(tv,qdposall,'c','LineWidth',2); 
plot(tv,S4dispall,'b','LineWidth',2); 
hold off;
hh=legend('z_{1,CM}','z_{2,CM}','z_{3,CM}','z_{4,CM}','z_{S4}');
ymax1=max([Na1all(:);Na3all(:);Cl1all(:);Cl3all(:)]);
ymax2=max([phi1all(:);phi2all(:);phi3all(:)]);
ymin2=min([phi1all(:);phi2all(:);phi3all(:)]);
% ymax3=max(Ileft);
% ymin3=min(Ileft);
subplot(2,2,2);
plot(tv,qaposall-qaposall(1),'r','LineWidth',2); grid on; xlabel('t (a.u.)','FontSize',20); 
ylabel('\Delta z_{i,CM}, \Delta z_{S4} (nm)','FontSize',20); hold on;
plot(tv,qbposall-qbposall(1),'k','LineWidth',2); 
plot(tv,qcposall-qcposall(1),'m','LineWidth',2); 
plot(tv,qdposall-qdposall(1),'c','LineWidth',2); 
plot(tv,S4dispall-S4dispall(1),'b','LineWidth',2); 
hold off;
subplot(2,2,3)
qav=zeros(size(qaposall)); qbv=qav; qcv=qav; qdv=qav; S4v=qav;
qav(2:end-1)=(qaposall(3:end)-qaposall(1:end-2))/(2*dt); 
qbv(2:end-1)=(qbposall(3:end)-qbposall(1:end-2))/(2*dt);
qcv(2:end-1)=(qcposall(3:end)-qcposall(1:end-2))/(2*dt);
qdv(2:end-1)=(qdposall(3:end)-qdposall(1:end-2))/(2*dt);
S4v(2:end-1)=(S4dispall(3:end)-S4dispall(1:end-2))/(2*dt);
qav(1)=qav(2); qav(end)=qav(end-1);
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qbv(1)=qbv(2); qbv(end)=qbv(end-1);
qcv(1)=qcv(2); qcv(end)=qcv(end-1);
qdv(1)=qdv(2); qdv(end)=qdv(end-1);
S4v(1)=S4v(2); S4v(end)=S4v(end-1);
plot(tv,qav,'r','LineWidth',2); grid on; xlabel('t (a.u.)','FontSize',20); 
ylabel('v_{i,CM}, v_{S4} (nm)','FontSize',20); hold on;
plot(tv,qbv,'k','LineWidth',2); 
plot(tv,qcv,'m','LineWidth',2); 
plot(tv,qdv,'c','LineWidth',2); 
plot(tv,S4v,'b','LineWidth',2); 
subplot(2,2,4)
plot(tv,qav,'r','LineWidth',2); grid on; xlabel('t (a.u.)','FontSize',20); 
ylabel('v_{i,CM}, v_{S4} (nm)','FontSize',20); hold on;
plot(tv,qbv,'k','LineWidth',2); 
plot(tv,qcv,'m','LineWidth',2); 
plot(tv,qdv,'c','LineWidth',2); 
plot(tv,S4v,'b','LineWidth',2); 
if isempty(ton)
figure(10); 
plot(z1,Na1all(end,:).','b','LineWidth',2); hold on; 
plot(z1,Cl1all(end,:).','g','LineWidth',2); 
plot(z1,q1aall(end,:).','r','LineWidth',2); 
plot(z1,q1ball(end,:).','k','LineWidth',2); 
plot(z1,q1call(end,:).','m','LineWidth',2); 
plot(z1,q1dall(end,:).','c','LineWidth',2); 
plot(z2,q2aall(end,:).','r','LineWidth',2); 
plot(z2,q2ball(end,:).','k','LineWidth',2); 
plot(z2,q2call(end,:).','m','LineWidth',2); 
plot(z2,q2dall(end,:).','c','LineWidth',2); 
plot(z3,q3aall(end,:).','r','LineWidth',2); 
plot(z3,q3ball(end,:).','k','LineWidth',2); 
plot(z3,q3call(end,:).','m','LineWidth',2); 
plot(z3,q3dall(end,:).','c','LineWidth',2); 
plot(z3,Na3all(end,:).','b','LineWidth',2); 
plot(z3,Cl3all(end,:).','g','LineWidth',2); 
hold off; grid on; xlabel('z','FontSize',18); ylabel('Na, Cl, Arginine','FontSize',18); xlim([0 L+2*LR]);
ylim([-0.1 ymax1]); hh=legend('Na','Cl','c_1','c_2','c_3','c_4','Location','SouthEast');   
else
figure(10);
subplot(2,4,1);
plot(z1,Na1all(1,:).','b','LineWidth',2); hold on; 
plot(z1,Cl1all(1,:).','g','LineWidth',2); 
plot(z1,q1aall(1,:).','r','LineWidth',2); 
plot(z1,q1ball(1,:).','k','LineWidth',2); 
plot(z1,q1call(1,:).','m','LineWidth',2); 
plot(z1,q1dall(1,:).','c','LineWidth',2); 
plot(z2,q2aall(1,:).','r','LineWidth',2); 
plot(z2,q2ball(1,:).','k','LineWidth',2); 
plot(z2,q2call(1,:).','m','LineWidth',2); 
plot(z2,q2dall(1,:).','c','LineWidth',2); 
plot(z3,q3aall(1,:).','r','LineWidth',2); 
plot(z3,q3ball(1,:).','k','LineWidth',2); 
plot(z3,q3call(1,:).','m','LineWidth',2); 
plot(z3,q3dall(1,:).','c','LineWidth',2); 
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plot(z3,Na3all(1,:).','b','LineWidth',2); 
plot(z3,Cl3all(1,:).','g','LineWidth',2); 
hold off; grid on; xlabel('z (nm)','FontSize',20); ylabel('Na, Cl, Arginine','FontSize',20); xlim([0 L+2*LR]);
ylim([-0.1 ymax1]); title('t=0 (a.u.)','FontSize',20);
hh=legend('Na','Cl','c_1','c_2','c_3','c_4','Location','SouthEast');    
subplot(2,4,2);
[tmp,itonp3]=min(abs(tv-(ton+3)));
plot(z1,Na1all(itonp3,:).','b','LineWidth',2); hold on; 
plot(z1,Cl1all(itonp3,:).','g','LineWidth',2); 
plot(z1,q1aall(itonp3,:).','r','LineWidth',2); 
plot(z1,q1ball(itonp3,:).','k','LineWidth',2); 
plot(z1,q1call(itonp3,:).','m','LineWidth',2); 
plot(z1,q1dall(itonp3,:).','c','LineWidth',2); 
plot(z2,q2aall(itonp3,:).','r','LineWidth',2); 
plot(z2,q2ball(itonp3,:).','k','LineWidth',2); 
plot(z2,q2call(itonp3,:).','m','LineWidth',2); 
plot(z2,q2dall(itonp3,:).','c','LineWidth',2); 
plot(z3,q3aall(itonp3,:).','r','LineWidth',2); 
plot(z3,q3ball(itonp3,:).','k','LineWidth',2); 
plot(z3,q3call(itonp3,:).','m','LineWidth',2); 
plot(z3,q3dall(itonp3,:).','c','LineWidth',2); 
plot(z3,Na3all(itonp3,:).','b','LineWidth',2); 
plot(z3,Cl3all(itonp3,:).','g','LineWidth',2); 
hold off; grid on; xlabel('z (nm)','FontSize',20); ylabel('Na, Cl, Arginine','FontSize',20); xlim([0 L+2*LR]);
ylim([-0.1 ymax1]); title(['t=' num2str(tv(itonp3)) ' (a.u.)'],'FontSize',20);
subplot(2,4,3);
[tmp,itoffm2]=min(abs(tv-(toff-2)));
plot(z1,Na1all(itoffm2,:).','b','LineWidth',2); hold on; 
plot(z1,Cl1all(itoffm2,:).','g','LineWidth',2); 
plot(z1,q1aall(itoffm2,:).','r','LineWidth',2); 
plot(z1,q1ball(itoffm2,:).','k','LineWidth',2); 
plot(z1,q1call(itoffm2,:).','m','LineWidth',2); 
plot(z1,q1dall(itoffm2,:).','c','LineWidth',2); 
plot(z2,q2aall(itoffm2,:).','r','LineWidth',2); 
plot(z2,q2ball(itoffm2,:).','k','LineWidth',2); 
plot(z2,q2call(itoffm2,:).','m','LineWidth',2); 
plot(z2,q2dall(itoffm2,:).','c','LineWidth',2); 
plot(z3,q3aall(itoffm2,:).','r','LineWidth',2); 
plot(z3,q3ball(itoffm2,:).','k','LineWidth',2); 
plot(z3,q3call(itoffm2,:).','m','LineWidth',2); 
plot(z3,q3dall(itoffm2,:).','c','LineWidth',2); 
plot(z3,Na3all(itoffm2,:).','b','LineWidth',2); 
plot(z3,Cl3all(itoffm2,:).','g','LineWidth',2); 
hold off; grid on; xlabel('z (nm)','FontSize',20); ylabel('Na, Cl, Arginine','FontSize',20); xlim([0 L+2*LR]);
ylim([-0.1 ymax1]); title(['t=' num2str(tv(itoffm2)) ' (a.u.)'],'FontSize',20);
subplot(2,4,4);
plot(z1,Na1all(end,:).','b','LineWidth',2); hold on; 
plot(z1,Cl1all(end,:).','g','LineWidth',2); 
plot(z1,q1aall(end,:).','r','LineWidth',2); 
plot(z1,q1ball(end,:).','k','LineWidth',2); 
plot(z1,q1call(end,:).','m','LineWidth',2); 
plot(z1,q1dall(end,:).','c','LineWidth',2); 
plot(z2,q2aall(end,:).','r','LineWidth',2); 
plot(z2,q2ball(end,:).','k','LineWidth',2); 
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plot(z2,q2call(end,:).','m','LineWidth',2); 
plot(z2,q2dall(end,:).','c','LineWidth',2); 
plot(z3,q3aall(end,:).','r','LineWidth',2); 
plot(z3,q3ball(end,:).','k','LineWidth',2); 
plot(z3,q3call(end,:).','m','LineWidth',2); 
plot(z3,q3dall(end,:).','c','LineWidth',2); 
plot(z3,Na3all(end,:).','b','LineWidth',2); 
plot(z3,Cl3all(end,:).','g','LineWidth',2); 
hold off; grid on; xlabel('z (nm)','FontSize',20); ylabel('Na, Cl, Arginine','FontSize',20); xlim([0 L+2*LR]);
ylim([-0.1 ymax1]); title(['t=' num2str(tv(end)) ' (a.u.)'],'FontSize',20);
subplot(2,4,5);
plot(z1,25*phi1all(1,:).','b','LineWidth',2); hold on;
plot(z2,25*phi2all(1,:).','r','LineWidth',2); 
plot(z3,25*phi3all(1,:).','b','LineWidth',2); hold off;
grid on; xlabel('z (nm)','FontSize',20); ylabel('\phi (mV)','FontSize',20); 
xlim([0 L+2*LR]); ylim([(ymin2-0.5)*25 (ymax2+0.5)*25]); set(gca,'Ytick',(-4:1:0)*25);
subplot(2,4,6);
plot(z1,25*phi1all(itonp3,:).','b','LineWidth',2); hold on;
plot(z2,25*phi2all(itonp3,:).','r','LineWidth',2); 
plot(z3,25*phi3all(itonp3,:).','b','LineWidth',2); hold off;
grid on; xlabel('z (nm)','FontSize',20); ylabel('\phi (mV)','FontSize',20); 
xlim([0 L+2*LR]); ylim([(ymin2-0.5)*25 (ymax2+0.5)*25]); set(gca,'Ytick',(-4:1:0)*25);
subplot(2,4,7);
plot(z1,25*phi1all(itoffm2,:).','b','LineWidth',2); hold on;
plot(z2,25*phi2all(itoffm2,:).','r','LineWidth',2); 
plot(z3,25*phi3all(itoffm2,:).','b','LineWidth',2); hold off;
grid on; xlabel('z (nm)','FontSize',20); ylabel('\phi (mV)','FontSize',20); 
xlim([0 L+2*LR]); ylim([(ymin2-0.5)*25 (ymax2+0.5)*25]); set(gca,'Ytick',(-4:1:0)*25);
subplot(2,4,8);
plot(z1,25*phi1all(end,:).','b','LineWidth',2); hold on;
plot(z2,25*phi2all(end,:).','r','LineWidth',2); 
plot(z3,25*phi3all(end,:).','b','LineWidth',2); hold off;
grid on; xlabel('z (nm)','FontSize',20); ylabel('\phi (mV)','FontSize',20); 
xlim([0 L+2*LR]); ylim([(ymin2-0.5)*25 (ymax2+0.5)*25]); set(gca,'Ytick',(-4:1:0)*25);
end
iplot=input('Input 1 for showing animation, default is 1: ' );
if isempty(iplot)
iplot=1;
end
if iplot==1
int=input('Input animation time interval, default is 10: ' );
if isempty(int)
int=10;
end
ipause=input('Input 1 to pause at each time frame, default is 0: ' );
if isempty(ipause)
ipause=0;
end
for i=1:int:length(tv)
figure(11); 
subplot(2,2,1); plot(tv,phiLv,'Color','b','LineWidth',2); xlabel('t','FontSize',18); ylabel('phiL','FontSize',18); grid on;
title(['t=' num2str(tv(i))],'Fontsize',18); ylim([ymin2-1 ymax2+1]); hold on;
plot(tv(i),phiLv(i),'LineStyle','None','Marker','.','MarkerSize',20,'Color','r'); 
 set(gca,'Ytick',-6:2:6); hold off; xlim([0 tv(end)]);
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subplot(2,2,2); plot(z1,Na1all(i,:).','b','LineWidth',2); hold on; 
plot(z1,Cl1all(i,:).','g','LineWidth',2); 
plot(z1,q1aall(i,:).','r','LineWidth',2); 
plot(z1,q1ball(i,:).','k','LineWidth',2); 
plot(z1,q1call(i,:).','m','LineWidth',2); 
plot(z1,q1dall(i,:).','c','LineWidth',2); 
plot(z2,q2aall(i,:).','r','LineWidth',2); 
plot(z2,q2ball(i,:).','k','LineWidth',2); 
plot(z2,q2call(i,:).','m','LineWidth',2); 
plot(z2,q2dall(i,:).','c','LineWidth',2); 
plot(z3,q3aall(i,:).','r','LineWidth',2); 
plot(z3,q3ball(i,:).','k','LineWidth',2); 
plot(z3,q3call(i,:).','m','LineWidth',2); 
plot(z3,q3dall(i,:).','c','LineWidth',2); 
plot(z3,Na3all(i,:).','b','LineWidth',2); 
plot(z3,Cl3all(i,:).','g','LineWidth',2); 
hold off; grid on; xlabel('z','FontSize',18); ylabel('Na, Cl, Arginine','FontSize',18); ylim([-0.1 1.1*ymax1]); xlim([0 
L+2*LR]);
% hh=legend('Na','Cl','Arg a','Arg b','Arg c','Arg d','Location','North'); 
% set(hh,'FontSize',8);
subplot(2,2,3); 
plot(z1,phi1all(i,:).','k','LineWidth',2); hold on;
plot(z2,phi2all(i,:).','k','LineWidth',2); 
plot(z3,phi3all(i,:).','k','LineWidth',2); hold off;
grid on; xlabel('z','FontSize',18); ylabel('phi','FontSize',18); 
ylim([-6.5 6.5]); xlim([0 L+2*LR]); set(gca,'Ytick',-8:2:8);
% set(gca,'Ytick',-60:20:60); 
if ~isempty(ton)
subplot(2,2,4)
plot(tv,Imid,'Color','b','LineWidth',2); xlabel('t','FontSize',18); ylabel('Imiddle','FontSize',18); grid on; xlim([0 tv(end)]);
% subplot(2,3,5)
% plot(tv,Q1/V,'Color','b','LineWidth',2); xlabel('t','FontSize',18); ylabel('arginine fraction','FontSize',18); grid on; hold 
on;
% plot(tv,Q3/V,'Color','g','LineWidth',2); plot(tv,Q2/V,'Color','r','LineWidth',2); hold off; 
% hh=legend('zone 1','zone 3','zone 2'); set(hh,'FontSize',18); xlim([0 tv(end)]);
% subplot(2,3,6)
% plot(z1,Ileft(i)*ones(size(z1)),'b','LineWidth',2); xlabel('z','FontSize',18); ylabel('total current','FontSize',18); grid on; 
hold on;
% plot(z2,Ileft(i)*ones(size(z2)),'g','LineWidth',2); plot(z3,Ileft(i)*ones(size(z3)),'r','LineWidth',2); 
% hold off; ylim([1.1*ymin3 1.1*ymax3]); xlim([0 L+2*LR]);
end
drawnow; 
if ipause==1
    pause;
else
    pause(0.01);
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function dudt=pnp1d(t,u)
global z1 z2 z3 N1 N2 N3 Dz1 Dz2 Dz3
global DAz1 DAz2 DAz3 Az1 Az2 Az3 
global sphi K KS b S4offset LR L Qint
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global NaL NaR ClL ClR phiL phiR phiLlow
global DNa Dq Dq2 DCl
global zNa zCl zq Lap Gamma1 Gamma2 Gamma3
global iplot
global ton toff Vwidtht
global gij Wz
Vwidth=Vwidtht;
if isempty(ton)
phiLactual=phiL;
else
phiLactual=((phiL-phiLlow)*tanh(Vwidth*(t-(ton+1)))-(phiL-phiLlow)*tanh(Vwidth*(t-(toff-1))))/2+phiLlow; 
% if t<ton | t>toff
% phiLactual=phiLlow;
% else
% phiLactual=((phiL-phiLlow)*(1-exp(-Vwidth*(t-ton)))+(phiL-phiLlow)*(1-exp(-Vwidth*(toff-t))))/2+phiLlow;  
% end    
end
Na1=u(1:N1); Cl1=u(N1+1:2*N1); q1a=u(2*N1+1:3*N1); q1b=u(3*N1+1:4*N1); q1c=u(4*N1+1:5*N1); 
q1d=u(5*N1+1:6*N1); stp=6*N1;
q2a=u(stp+1:stp+N2); q2b=u(stp+N2+1:stp+2*N2); q2c=u(stp+2*N2+1:stp+3*N2); q2d=u(stp+3*N2+1:stp+4*N2); 
stp=6*N1+4*N2;
Na3=u(stp+1:stp+N3); Cl3=u(stp+N3+1:stp+2*N3); q3a=u(stp+2*N3+1:stp+3*N3); q3b=u(stp+3*N3+1:stp+4*N3); 
q3c=u(stp+4*N3+1:stp+5*N3); q3d=u(stp+5*N3+1:stp+6*N3); S4disp=u(end);
Naz1=Dz1*Na1; Naz3=Dz3*Na3; Clz1=Dz1*Cl1; Clz3=Dz3*Cl3; 
qz1a=Dz1*q1a; qz1b=Dz1*q1b; qz1c=Dz1*q1c; qz1d=Dz1*q1d;
qz2a=Dz2*q2a; qz2b=Dz2*q2b; qz2c=Dz2*q2c; qz2d=Dz2*q2d;
qz3a=Dz3*q3a; qz3b=Dz3*q3b; qz3c=Dz3*q3c; qz3d=Dz3*q3d;
% electric field:
rhs1=-(zNa*Na1+zCl*Cl1+zq*(q1a+q1b+q1c+q1d))/Gamma1; rhs1(1)=phiLactual; rhs1(end)=0; 
rhs2=-(zq*(q2a+q2b+q2c+q2d))/Gamma2; rhs2([1 end])=0; 
rhs3=-(zNa*Na3+zCl*Cl3+zq*(q3a+q3b+q3c+q3d))/Gamma3; rhs3(1)=0; rhs3(end)=phiR;
rhs=[rhs1;rhs2;rhs3]; warning on; phi=Lap\rhs; warning off;
phi1=phi(1:N1); phi2=phi(N1+1:N1+N2); phi3=phi(N1+N2+1:end);
phiz1=Dz1*phi1; phiz2=Dz2*phi2; phiz3=Dz3*phi3;
% trap:
warning off;
tmp=Az1(1)*q1a.*z1; tmp=Dz1\tmp; tmp1=tmp(end)-tmp(1);
tmp=Az2(1)*q2a.*z2; tmp=Dz2\tmp; tmp2=tmp(end)-tmp(1);
tmp=Az3(1)*q3a.*z3; tmp=Dz3\tmp; tmp3=tmp(end)-tmp(1);
qapos=(tmp1+tmp2+tmp3)/Qint;
tmp=Az1(1)*q1b.*z1; tmp=Dz1\tmp; tmp1=tmp(end)-tmp(1);
tmp=Az2(1)*q2b.*z2; tmp=Dz2\tmp; tmp2=tmp(end)-tmp(1);
tmp=Az3(1)*q3b.*z3; tmp=Dz3\tmp; tmp3=tmp(end)-tmp(1);
qbpos=(tmp1+tmp2+tmp3)/Qint;
tmp=Az1(1)*q1c.*z1; tmp=Dz1\tmp; tmp1=tmp(end)-tmp(1);
tmp=Az2(1)*q2c.*z2; tmp=Dz2\tmp; tmp2=tmp(end)-tmp(1);
tmp=Az3(1)*q3c.*z3; tmp=Dz3\tmp; tmp3=tmp(end)-tmp(1);
qcpos=(tmp1+tmp2+tmp3)/Qint;
tmp=Az1(1)*q1d.*z1; tmp=Dz1\tmp; tmp1=tmp(end)-tmp(1);
tmp=Az2(1)*q2d.*z2; tmp=Dz2\tmp; tmp2=tmp(end)-tmp(1);
tmp=Az3(1)*q3d.*z3; tmp=Dz3\tmp; tmp3=tmp(end)-tmp(1);
qdpos=(tmp1+tmp2+tmp3)/Qint;
warning on;
qarel=qapos-(S4disp-3*sphi); qbrel=qbpos-(S4disp-sphi); qcrel=qcpos-(S4disp+sphi); qdrel=qdpos-(S4disp+3*sphi); 
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dS4dispdt=(-KS*(S4disp-(LR+L/2+S4offset))+K*(qarel+qbrel+qcrel+qdrel))/b;
Vz1a=K*(z1-(S4disp-3*sphi)); Vz1b=K*(z1-(S4disp-sphi)); Vz1c=K*(z1-(S4disp+sphi)); Vz1d=K*(z1-
(S4disp+3*sphi)); 
Vz2a=K*(z2-(S4disp-3*sphi)); Vz2b=K*(z2-(S4disp-sphi)); Vz2c=K*(z2-(S4disp+sphi)); Vz2d=K*(z2-
(S4disp+3*sphi)); 
Vz3a=K*(z3-(S4disp-3*sphi)); Vz3b=K*(z3-(S4disp-sphi)); Vz3c=K*(z3-(S4disp+sphi)); Vz3d=K*(z3-
(S4disp+3*sphi)); 
% flux:
JNaz1=-Az1.*DNa.*(Naz1+zNa*Na1.*phiz1);
JClz1=-Az1.*DCl.*(Clz1+zCl*Cl1.*phiz1);
Jqz1a=-Az1.*Dq.*(qz1a+zq*q1a.*phiz1+q1a.*Vz1a+gij*q1a.*(qz1b+qz1c+qz1d));
Jqz1b=-Az1.*Dq.*(qz1b+zq*q1b.*phiz1+q1b.*Vz1b+gij*q1b.*(qz1a+qz1c+qz1d));
Jqz1c=-Az1.*Dq.*(qz1c+zq*q1c.*phiz1+q1c.*Vz1c+gij*q1c.*(qz1a+qz1b+qz1d));
Jqz1d=-Az1.*Dq.*(qz1d+zq*q1d.*phiz1+q1d.*Vz1d+gij*q1d.*(qz1a+qz1b+qz1c));
Jqz2a=-Az2.*Dq2.*(qz2a+zq*q2a.*phiz2+q2a.*(Wz+Vz2a)+gij*q2a.*(qz2b+qz2c+qz2d));
Jqz2b=-Az2.*Dq2.*(qz2b+zq*q2b.*phiz2+q2b.*(Wz+Vz2b)+gij*q2b.*(qz2a+qz2c+qz2d));
Jqz2c=-Az2.*Dq2.*(qz2c+zq*q2c.*phiz2+q2c.*(Wz+Vz2c)+gij*q2c.*(qz2a+qz2b+qz2d));
Jqz2d=-Az2.*Dq2.*(qz2d+zq*q2d.*phiz2+q2d.*(Wz+Vz2d)+gij*q2d.*(qz2a+qz2b+qz2c));
JNaz3=-Az3.*DNa.*(Naz3+zNa*Na3.*phiz3);
JClz3=-Az3.*DCl.*(Clz3+zCl*Cl3.*phiz3);
Jqz3a=-Az3.*Dq.*(qz3a+zq*q3a.*phiz3+q3a.*Vz3a+gij*q3a.*(qz3b+qz3c+qz3d));
Jqz3b=-Az3.*Dq.*(qz3b+zq*q3b.*phiz3+q3b.*Vz3b+gij*q3b.*(qz3a+qz3c+qz3d));
Jqz3c=-Az3.*Dq.*(qz3c+zq*q3c.*phiz3+q3c.*Vz3c+gij*q3c.*(qz3a+qz3b+qz3d));
Jqz3d=-Az3.*Dq.*(qz3d+zq*q3d.*phiz3+q3d.*Vz3d+gij*q3d.*(qz3a+qz3b+qz3c));
% conservation law:
dNadt1=-DAz1*JNaz1; dNadt3=-DAz3*JNaz3; dCldt1=-DAz1*JClz1; dCldt3=-DAz3*JClz3; 
dqdt1a=-DAz1*Jqz1a; dqdt1b=-DAz1*Jqz1b; dqdt1c=-DAz1*Jqz1c; dqdt1d=-DAz1*Jqz1d;
dqdt2a=-DAz2*Jqz2a; dqdt2b=-DAz2*Jqz2b; dqdt2c=-DAz2*Jqz2c; dqdt2d=-DAz2*Jqz2d;
dqdt3a=-DAz3*Jqz3a; dqdt3b=-DAz3*Jqz3b; dqdt3c=-DAz3*Jqz3c; dqdt3d=-DAz3*Jqz3d;
% BC:
dNadt1(1)=Na1(1)-NaL; 
dNadt1(end)=JNaz1(end);
dNadt3(1)=JNaz3(1); 
dNadt3(end)=Na3(end)-NaR;
dCldt1(1)=Cl1(1)-ClL; 
dCldt1(end)=JClz1(end);
dCldt3(1)=JClz3(1); 
dCldt3(end)=Cl3(end)-ClR;
dqdt1a(1)=Jqz1a(1);            dqdt1a(end)=q2a(1)-q1a(end); 
dqdt2a(1)=Jqz2a(1)-Jqz1a(end); dqdt2a(end)=q2a(end)-q3a(1); 
dqdt3a(1)=Jqz3a(1)-Jqz2a(end); dqdt3a(end)=Jqz3a(end);
dqdt1b(1)=Jqz1b(1);            dqdt1b(end)=q2b(1)-q1b(end); 
dqdt2b(1)=Jqz2b(1)-Jqz1b(end); dqdt2b(end)=q2b(end)-q3b(1); 
dqdt3b(1)=Jqz3b(1)-Jqz2b(end); dqdt3b(end)=Jqz3b(end);
dqdt1c(1)=Jqz1c(1);            dqdt1c(end)=q2c(1)-q1c(end); 
dqdt2c(1)=Jqz2c(1)-Jqz1c(end); dqdt2c(end)=q2c(end)-q3c(1); 
dqdt3c(1)=Jqz3c(1)-Jqz2c(end); dqdt3c(end)=Jqz3c(end);
dqdt1d(1)=Jqz1d(1);            dqdt1d(end)=q2d(1)-q1d(end); 
dqdt2d(1)=Jqz2d(1)-Jqz1d(end); dqdt2d(end)=q2d(end)-q3d(1); 
dqdt3d(1)=Jqz3d(1)-Jqz2d(end); dqdt3d(end)=Jqz3d(end);
dudt=[dNadt1;dCldt1;dqdt1a;dqdt1b;dqdt1c;dqdt1d;dqdt2a;dqdt2b;dqdt2c;dqdt2d; ...
    dNadt3;dCldt3;dqdt3a;dqdt3b;dqdt3c;dqdt3d;dS4dispdt];
[t max(abs(dudt))]
if iplot==1 & t>0
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figure(50); subplot(1,2,1);   
plot(z1,Na1,'b','LineWidth',2); hold on; plot(z3,Na3,'b','LineWidth',2); plot(z1,Cl1,'g','LineWidth',2); 
plot(z3,Cl3,'g','LineWidth',2); 
plot(z1,q1a,'r','LineWidth',2); plot(z1,q1b,'k','LineWidth',2); plot(z1,q1c,'m','LineWidth',2); 
plot(z1,q1d,'c','LineWidth',2); 
plot(z2,q2a,'r','LineWidth',2); plot(z2,q2b,'k','LineWidth',2); plot(z2,q2c,'m','LineWidth',2); 
plot(z2,q2d,'c','LineWidth',2); 
plot(z3,q3a,'r','LineWidth',2); plot(z3,q3b,'k','LineWidth',2); plot(z3,q3c,'m','LineWidth',2); 
plot(z3,q3d,'c','LineWidth',2); 
hold off; grid on; xlabel('z'); ylabel('Na, Cl, q'); title(['t=' num2str(t)]);
subplot(1,2,2);
plot(z1,phi1,'k','LineWidth',2); hold on; plot(z2,phi2,'k','LineWidth',2); plot(z3,phi3,'k','LineWidth',2); 
grid on; xlabel('z'); ylabel('\phi'); hold off; drawnow;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CHEB  compute D = differentiation matrix, x = Chebyshev grid

  function [D,x] = cheb(N)
  if N==0, D=0; x=1; return, end
  x = cos(pi*(0:N)/N)'; 
  c = [2; ones(N-1,1); 2].*(-1).^(0:N)';
  X = repmat(x,1,N+1);
  dX = X-X';                  
  D  = (c*(1./c)')./(dX+(eye(N+1)));      % off-diagonal entries
  D  = D - diag(sum(D'));                 % diagonal entries
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
function [x, DM] = chebdif(N, M)

%  The function [x, DM] =  chebdif(N,M) computes the differentiation 
%  matrices D1, D2, ..., DM on Chebyshev nodes. 
% 
%  Input:
%  N:        Size of differentiation matrix.        
%  M:        Number of derivatives required (integer).
%  Note:     0 < M <= N-1.
%
%  Output:
%  DM:       DM(1:N,1:N,ell) contains ell-th derivative matrix, ell=1..M.
%
%  The code implements two strategies for enhanced 
%  accuracy suggested by W. Don and S. Solomonoff in 
%  SIAM J. Sci. Comp. Vol. 6, pp. 1253--1268 (1994).
%  The two strategies are (a) the use of trigonometric 
%  identities to avoid the computation of differences 
%  x(k)-x(j) and (b) the use of the "flipping trick"
%  which is necessary since sin t can be computed to high
%  relative precision when t is small whereas sin (pi-t) cannot.
%  Note added May 2003:  It may, in fact, be slightly better not to
%  implement the strategies (a) and (b).   Please consult the following
%  paper for details:   "Spectral Differencing with a Twist", by
%  R. Baltensperger and M.R. Trummer, to appear in SIAM J. Sci. Comp. 

%  J.A.C. Weideman, S.C. Reddy 1998.  Help notes modified by 
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%  JACW, May 2003.

     I = eye(N);                          % Identity matrix.     
     L = logical(I);                      % Logical identity matrix.

    n1 = floor(N/2); n2  = ceil(N/2);     % Indices used for flipping trick.

     k = [0:N-1]';                        % Compute theta vector.
    th = k*pi/(N-1);

     x = sin(pi*[N-1:-2:1-N]'/(2*(N-1))); % Compute Chebyshev points.

     T = repmat(th/2,1,N);                
    DX = 2*sin(T'+T).*sin(T'-T);          % Trigonometric identity. 
    DX = [DX(1:n1,:); -flipud(fliplr(DX(1:n2,:)))];   % Flipping trick. 
 DX(L) = ones(N,1);                       % Put 1's on the main diagonal of DX.

     C = toeplitz((-1).^k);               % C is the matrix with 
C(1,:) = C(1,:)*2; C(N,:) = C(N,:)*2;     % entries c(k)/c(j)
C(:,1) = C(:,1)/2; C(:,N) = C(:,N)/2;

     Z = 1./DX;                           % Z contains entries 1/(x(k)-x(j))  
  Z(L) = zeros(N,1);                      % with zeros on the diagonal.

     D = eye(N);                          % D contains diff. matrices.
                                          
for ell = 1:M
          D = ell*Z.*(C.*repmat(diag(D),1,N) - D); % Off-diagonals
       D(L) = -sum(D');                            % Correct main diagonal of D
DM(:,:,ell) = D;                                   % Store current D in DM
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function F = myfun2(x,xdata)
F = x(1)*exp(-xdata/x(2))+x(3)*exp(-xdata/x(4));
function F = myfun3(x,xdata)
F = x(1)*exp(-xdata/x(2))+x(3)*exp(-xdata/x(4))+x(5)*exp(-xdata/x(6));
function F = myfun4(x,xdata)
F = x(1)*exp(-xdata/x(2))+x(3)*exp(-xdata/x(4))+x(5)*exp(-xdata/x(6))+x(7)*exp(-xdata/x(8));
function F = myfun5(x,xdata)
F = x(1)*xdata.^x(5).*exp(-xdata/x(2))+x(3)*xdata.^x(6).*exp(-xdata/x(4));
function F = myfun6(x,xdata)
F = x(1)*xdata.^x(7).*exp(-xdata/x(2))+x(3)*xdata.^x(8).*exp(-xdata/x(4))+x(5)*xdata.^x(9).*exp(-xdata/x(6));
function F = myfun7(x,xdata)
F = x(1)*xdata.^x(9).*exp(-xdata/x(2))+x(3)*xdata.^x(10).*exp(-xdata/x(4))+x(5)*xdata.^x(11).*exp(-
xdata/x(6))+x(7)*xdata.^x(12).*exp(-xdata/x(8));
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