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ABSTRACT There exists a large body of research on the lens of the mammalian eye over the past several decades. The objec-
tive of this work is to provide a link between the most recent computational models and some of the pioneering work in the 1970s
and 80s. We introduce a general nonelectroneutral model to study the microcirculation in the lens of the eye. It describes the
steady-state relationships among ion fluxes, between water flow and electric field inside cells, and in the narrow extracellular
spaces between cells in the lens. Using asymptotic analysis, we derive a simplified model based on physiological data and
compare our results with those in the literature. We show that our simplified model can be reduced further to the first-generation
models, whereas our full model is consistent with the most recent computational models. In addition, our simplified model cap-
tures in its equations the main features of the full computational models. Our results serve as a useful link intermediate between
the computational models and the first-generation analytical models. Simplified models of this sort may be particularly helpful as
the roles of similar osmotic pumps of microcirculation are examined in other tissues with narrow extracellular spaces, such as
cardiac and skeletal muscle, liver, kidney, epithelia in general, and the narrow extracellular spaces of the central nervous sys-
tem, the ‘‘brain.’’ Simplified models may reveal the general functional plan of these systems before full computational models
become feasible and specific.
INTRODUCTION
Biological systems require continual inputs of mass and en-
ergy to stay alive. They are open systems that require the
flow of matter and specific chemicals across their bound-
aries. Unicellular organisms can provide that flow by diffu-
sion to and across cell membranes. Diffusion is not adequate
over distances larger than a few cell diameters, i.e., larger
than 2 � 10�6 m, to pick a number. For that reason, multi-
cellular organisms cannot provide those flows to their cells
by diffusion itself. Multicellular organisms depend on con-
vection to bring materials close enough to cells so diffusion
to and across cell membranes can provide what the cell
needs to live.

The circulatory system of blood vessels—arteries,
veins, and capillaries—provides the convection in almost
all tissues. But there is one clear exception: the lens of
the (mammalian) eye. The lens does not have blood ves-
sels, presumably because even capillaries would seri-
ously interfere with transparency. The lens is large,
much larger than the length scale on which diffusion it-
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self is efficient. The lens must provide nutrients through
another kind of convection, a microcirculation of water
that moves nutrients into the lens and rinses wastes out
of it. The microcirculation is in fact driven by the lens
itself, without an external ‘‘pump.’’ The lens is itself an
osmotic pump.

The lens is an asymmetrical electrical syncytium in which
all cells are electrically coupled one to another, with a nar-
row extracellular space between the cells (see Fig. 1). The
extracellular space is filled with ionic solution in ‘‘free diffu-
sion’’ with the plasma outside cells. It may also contain
specialized, more or less immobile proteins and specialized
polysaccharides, as well as containing obstructions formed
by the connexin proteins themselves. The intracellular space
behaves very much as a large single cell would, with the bio-
ions of classical electrophysiology (Naþ, Kþ, Cl�) free to
move without much resistance from cell to cell and many
solutes of significant size (with a diameter less than
1.5 nm) able to move as well. The intracellular media con-
tains proteins, particularly the crystallins responsible for the
high refractive index of the lens. So, the lens is an example
of a bidomain tissue that has been studied in some detail,
first in skeletal muscle, then in cardiac muscle and syncytia
in general. Electrical models of bidomain tissues have been
developed, and a general approach combining morphology,
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FIGURE 1 Schematic diagram of lens. (A) The sphere of the lens is

shown with three landmarks: anterior pole (AP), posterior pole (PP), and

equator (EQ). (B) The control volume in the bidomain model is shown.

(C) The microstructure of the lens is shown: 1) intracellular region, 2) extra-

cellular region, 3) cell membrane, and 4) gap junction (connections). (D)

Distribution of the gap junctions between the cell membrane at EQ or AP

and PP are shown. (E) A single gap junction that allows the water and

ion flows is shown. To see this figure in color, go online.
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theory, and experiments has been applied in (1), showing
how the lens could be studied in this tradition.

A general approach to bidomain tissues was implemented
(2) involving detailed measurements of morphology (best
done with statistical sampling by stereological methods
(3)), impedance spectroscopy (4–10) using intracellular
probes (microelectrodes) that force current to flow across
membranes to the extracellular baths (1,11–15), electric
field theory to develop models appropriate to the structure
(16–20), analyzing the spectroscopic data with the field the-
ory (21,22), and checking that parameters change appropri-
ately (i.e., estimates of membrane capacitance are constant)
as extracellular solutions are changed in composition and
concentration (20,23). This work was extended to deal
1172 Biophysical Journal 116, 1171–1184, March 19, 2019
with transport by Mathias and co-workers (24–40), and
computational models of the water flow in the lens were
later developed in some detail (25,41,42) and exploited
with great success (reviewed in (43,44); also see (45–49)).

The original work on electrical models is cited here
because it provides coherent support, involving a range of
techniques and approaches, to the general view of syncytial
tissues used here and in later work. It also shows the range of
approaches needed to establish a (then) new view of a tissue.

Mathias (50,51) realized that an asymmetrical electrical
syncytium would produce convection, in particular in the
lens (31); he and co-workers systematically investigated
the flow of water, solutes, and current in the lens, and their
work is (in our opinion) a model of interdisciplinary
research, combining theory, simulation, and measurements
of many types (24–40). Computational models of the water
flow in the lens were later developed in great detail
(25,41,42) and compared to the more analytical models.
These models have been extensively tested, and we are
fortunate that comprehensive reviews have been written of
great value to newcomers to the field, particularly (43,44)
as well as (41,43–49).

Since the pioneering work on the models of lens
microcirculation system proposed by Mathias et al.
(21,51), numerous investigations have been carried out
(19,20,23,52,53). The microcirculation model has firstly
relied on a combination of electrical resistance and current
measurements and theoretical modeling (18,19,54). More
recently, to provide a better understanding of the electric
current flow and potential field, the detailed structure of
lens has been included (41,43–55), describing the asym-
metric biological properties of the lens, and measurements
of pressure have been made (28,47). Different types of fluid
flow (56,57) and transport properties of the ions have been
introduced. Meanwhile, the lens model (55) has been
extended to simulate age-related changes in lens physiology
(58) and a variety of physiological processes (26,59–61).
Reviews of current studies on microcirculation in lens are
most helpful (26,30,33). Despite this large body of experi-
mental and theoretical work, it is not completely clear
how they are related to each other. In particular, it is not
clear how the latest computational models are related to
the pioneering work and how theoretical analysis is related
to experimental findings. In this work, we will provide such
a link.

Based on the microscale model for semipermeable mem-
branes (62) and the bidomain method (51), we construct a
mathematical model to ensure that all interactions are
included and treated consistently. Using asymptotic anal-
ysis, we derive a reduced model, which can be used to obtain
most physiologically significant quantities except for the
intracellular pressure. This simplified model can be further
reduced to the model proposed by Mathias (51) with addi-
tional assumptions that Nernst potentials (which describe
gradients of chemical potential of each ionic species) and
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conductance are constant in space. However, we will show
that neither the Nernst potentials nor the conductance are
constant. On the contrary, they vary significantly from the
interior to the surface of the lens. Therefore, both of these
quantities need to be coupled as part of the solution.

Our model also shows explicitly that the intracellular
pressure is decoupled from the rest of the variables. Evolu-
tion has chosen parameters, so the intracellular pressure
does not affect the other parameters of the lens in a signifi-
cant way. They are robust to variations of intracellular pres-
sure. The evolutionary advantage of this adaptation is not
clear to us but may be more obvious to other workers with
a greater knowledge of clinical realities that show how the
lens becomes diseased (46,48,49,63). Our simplified model
suggests that all the quantities can be computed without
knowing the intracellular pressure. On the other hand, we
need to solve the full model to find the value of the intracel-
lular pressure. Our model is also calibrated by experimental
data and predicts the effects of gap junctions (28,47)
described by a ‘‘membrane’’ permeability kin.

Our new results extend but do not fundamentally change
previous work on the lens. We strengthen the view that the
lens provides an osmotic pump to maintain the microcircu-
lation necessary to sustain a living lens for the life of the
animal. We imagine that similar osmotic pumps create
microcirculation in other cells and tissues of the body.

This study is organized as follows. The full model for
microcirculation of water and ions are proposed based on
conservation laws in Mathematical Model. In Simplified
Model, we obtain the leading-order model by identifying
small parameters in the full model. Based on the boundary
conditions and partial differential equation analysis, a simpli-
fied version of the leading-order model is proposed and
compared with the existing models. The model calibration
and simulation results are shown in Results and Discussion.
The conclusions and future work are given in Conclusions.
METHODS

Mathematical model

In this section, we present a one-dimensional spherical symmetric nonelec-

troneutral model for microcirculation of the lens with radius R by using the

bidomain method (17). The model deals with two types of flow: the circu-

lation of water (hydrodynamics) and the circulation of ions (electrody-

namics), generalizing previous bidomain models that deal only with

electrodynamics. The model is mainly derived from laws of conservation

of ions and water in the presence of membrane flow between intra- and

extracellular domains. We note that a similar approach may be useful in

other tissues with narrow extracellular space, such as the heart, cardiac

muscle, and the central nervous system, including the cerebral cortex, the

‘‘brain.’’

Water circulation

We assume the following:

1. the loss of intracellular water is only through membranes flowing into

the extracellular space and vice versa (17);
2. the transmembrane water flux is proportional to the intra/extracellular

hydrostatic pressure and osmotic pressure differences (i.e., Starling’s

law, classically applied to capillaries, here applied to membranes

(64)). In a system like nonideal ionic solutions in which ‘‘everything in-

teracts with everything else’’ (65,66), this statement needs derivation as

well as assertion. A complete and rigorous derivation can be found in

(62);

3. in the rest of this work, the subscript l ¼ in, ex denotes the intra/extra-

cellular space and superscript i ¼ Naþ, Kþ, Cl� denotes the ith species

ion.

Then, we obtain the following system for intra- and extracellular veloc-

ities in domain U ¼ [0, R]:

1

r2
d

dr

�
r2Mexuex

�
¼ �MvLmðPex � Pin þ gmkBTðOin � OexÞÞ

(1a)

and

1

r2
d

dr

�
r2ðMexuex þMinuinÞ

� ¼ 0; (1b)

where ul and Pl are the velocity and pressure in the intracellular and extra-

cellular space, respectively, and Ol is the osmotic pressure with definition

Oex ¼
X
i

Ci
ex; Oin ¼

X
i

Ci
in þ

Ain

Vin

;

where Ci
l is the concentration of ith species ion in l space and Ain=Vin is the

density of the permanent negatively charged protein. In this work, we as-

sume the permanent negative charged protein is uniformly distributed

within intracellular space with a valence of z. Here,Ml is the ratio of intra-

cellular area (l ¼ in) and extracellular area (l ¼ ex), Mv is the membrane

area per volume unit, gm is the intracellular membrane reflectance, Lm is

intracellular membrane hydraulic permeability, kB is the Boltzmann con-

stant, and T is temperature.

As we mentioned before, the intracellular space is a connected space,

where water can flow from cell to cell through connexin proteins joining

membranes of neighboring cells, and the extracellular space is narrow,

with a high tortuosity. The intracellular velocity depends on the gradients

of hydrostatic pressure and osmotic pressure (41,51,62), and the extracel-

lular velocity is determined by the gradients of hydrostatic pressure and

electric potential (41,67),

uex ¼ �kex

m
tc

d

dr
Pex � ketc

d

dr
fex (2a)

and

uin ¼ �kin

m

�
d

dr
Pin � gmkBT

d

dr
Oin

�
; (2b)

where fl is the electric potential in the l space, tc is the tortuosity of extra-

cellular region, m is the viscosity of water, ke is introduced to describe the

effect of electro-osmotic flow, and kl is the permeability of the intracellular

region (l ¼ in) and the extracellular region (l ¼ ex), respectively.

Thanks to Eq. 2, Eq. 1 can be treated as an equation of hydraulic pressure.

Because of the axis symmetry condition, homogeneous Neumann boundary

conditions are used for pressure at r¼ 0. At the surface of lens r¼ R, we set

the extracellular hydrostatic pressure to be zero, and the intracellular veloc-

ity is consistent with Eq. 2
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8>>>>>>>><
>>>>>>>>:

vPex

vr
¼ vPin

vr
¼ 0; at r ¼ 0;

Pex ¼ 0; at r ¼ R;

�kin

m

�
d

dr
Pin � gmkBT

d

dr
Oin

�

¼ LsðPin � gskBTðOin � OexÞÞ; at r ¼ R;

(3)

where gs is surface membrane reflectance and Ls is surface membrane hy-

draulic permeability.

Ion circulation

With similar assumptions, the conservation of ion concentration yields the

following ion flux system:

1

r2
d

dr

�
r2MexJ

i
ex

� ¼ Mvj
i
m (4a)

and

1

r2
d

dr

�
r2
�MexJ

i
ex þMinJ

i
in

�� ¼ 0: (4b)

The ion flux in the intracellular region Jiin and ion flux in the extracellular
region Jiex are defined as

Jiex ¼ Ci
exuex � Di

extc
d

dr
Ci

ex � Di
extc

zie

kBT
Ci

ex

d

dr
fex; (5a)
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d zie d

Jiin ¼ Ci

inuin � Di
indr

Ci
in � Di

inkBT
Ci

indr
fin; (5b)

whereDi
l is the diffusion coefficient of the ith species ion in the l space. The

intracellular medium can be well described by a single diffusion coefficient

despite it being crowded with solute: current and ions move around the sol-

utes, rather like water flowing around a ship, changing the effective diffu-

sion coefficient and little else, as they do in skeletal muscle (68,69),

where the cytoplasm (i.e., myoplasm) is even more crowded with ions

and structures than the lens.

The Ohm’s law conductance formulation is used to describe the trans-

membrane flux of ions across intracellular membrane and surface

membrane

jim ¼ gi

ezi
�
fin � fex � Ei

�
; (6a)

i Gi �
i
�

js ¼
ezi

fin � fex � E ; (6b)

where Ei ¼ kBT=ez
ilogðCi

ex=C
i
inÞ is the Nernst potential (an expression of

the difference of chemical potential) of the ith species ion.

In Eq. 6, the intracellular ion conductance gi and surface ion conductance

Gi depends on the ion channel distribution on the membrane (see Fig. 2).

Based on previous work (17,41,51), we assume that 1) only Naþ and Cl�

can leak between intracellular and extracellular through ion channels inside

the lens and 2) there is no transmembrane flux for Kþ between the extracel-

lular and intracellular region, i.e., jKm ¼ 0.

Similarly, homogeneous Neumann boundary conditions are used at r¼ 0.

At r ¼ R, the extracellular concentrations are fixed, and Robin boundary
FIGURE 2 (A) Schematic diagram of ion circu-

lation and the distributions of ion channels and

pumps. The purple line represents the sodium cir-

culation, the light green represents the potassium

circulation, and the brown line represents chloride

circulation. The surface epithelial cells (dark blue

square) connect with the intracellular cells (light

blue hexagon) by the gap junctions (orange rect-

angle). The sodium and chlorine ion channels are

located on the intracellular membranes, whereas

the potassium ion channel and sodium-potassium

ATP pumps are found only on the surface mem-

brane. (B) A schematic diagram of water circula-

tion is shown. Transmembrane water transport is

through AQP0 and AQP1 gap junctions. APQ0

gap junctions are located on the intracellular mem-

branes, and AQP1 is on the surface membrane. To

see this figure in color, go online.
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conditions are used for intracellular concentrations because of the trans-

membrane flux and pump:

�
Jiex ¼ Jiin ¼ 0; at r ¼ 0

Ci
ex ¼ Ci

o; J
i
in ¼ jis þ ai; at r ¼ R;

(7)

where ai is an active ion pump on the surface membrane. Here, we only

consider the sodium-potassium pump on the surface. The strength of the

pump depends on the ion’s concentration as in (29,41),

aNa ¼ 3
Ip
e
; aK ¼ �2

Ip
e
; aCl ¼ 0; (8)

where

Ip ¼ Imax1

�
CNa

in

CNa
in þ KNa1

�3�
CK

o

CK
o þ KK1

�2

þImax2

�
CNa

in

CNa
in þ KNa2

�3�
CK

o

CK
o þ KK2

�2
: (9)

Because of the capacitance of the cell membrane, assumptions of exact

charge neutrality can easily lead to paradoxes because they oversimplify

Maxwell’s equations by leaving out altogether the essential role of charge.

We use the analysis of (70) and thus introduce a linear correction term re-

placing the charge neutrality condition (41,51) without introducing signif-

icant error (see also (71)),

ð1� hÞ
 X

i

eziCi
ex

!
¼ �MvCmðfin � fexÞ (10a)

and

h

 X
i

eziCi
in þ ze

Ain

Vin

!
¼ MvCmðfin � fexÞ; (10b)

where h is the porosity of intracellular region and Cm is capacitance per unit

area.

Multiplying each ion concentration equation in Eq. 4 with ezi, respec-

tively, summing up, and using Eq. 10, the sodium equations are replaced

by the following equations:

1

r2
d

dr

 
r2Mex

 
rexuex � etc

X
i

Di
exz

i d

dr
Ci

ex � sex

d

dr
fex

!!

¼ Mv

 
gmðfin � fexÞ �

X
i

giEi

! ;

(11a)

  X !!

1

r2
d

dr
r2Min rinuin � e

i

Di
inz

i d

dr
Ci

in � sin

d

dr
fin

¼ �Mv

 
gmðfin � fexÞ �

X
i

giEi

! ;

(11b)
with boundary conditions8>>>>>>>>>>><
>>>>>>>>>>>:

dfex

dr
¼ dfin

dr
¼ 0; at r ¼ 0;

fex ¼ 0; at r ¼ R; 
rinuin � e

X
i

Di
inz

i d

dr
Ci

in � sin

d

dr
fin

!

¼ Gsfin �
X
i

GiEi þ Ifp ; at r ¼ R;

where rin ¼ MvCm=hðfin � fexÞ þ jz j eAin=Vin and rex ¼ MvCm=1�
hðfex � finÞ
gm ¼
X
i

gi; Gs ¼
X
i

Gi; Ifp ¼ e
X
i

ziai:

In Eq. 11, we define the intracellular conductance sin and extracellular

conductance sex as

sex ¼ e2tc
kBT

 X
i

Di
ex

�
zi
�2
Ci

ex

!
;

sin ¼ e2

kBT

 X
i

Di
in

�
zi
�2
Ci

in

!
:

It is obvious that system 11 might be derived using either Eqs. 4 or 10.

Therefore, we should drop either Eqs. 4 or 10 when Eq. 11 is used.

Nondimensionalization

Because lens circulation is driven by the sodium-potassium pump, it is nat-

ural to choose the characteristic velocity u�in by the pump strength aNa*:

u�in ¼ aNa�

O� ; (12)

where O� ¼ 2ðCNa
o þ CK

o Þ is characteristic osmotic pressure. Using Eq. 1b,

we obtain the scale of uex as
u�ex ¼ d�1
0 u�in; (13)

where d0 ¼Mex=Min. With the characteristic values for f, P, Ci, chosen as

kBT=e, mRu
�
ex=kextc, and C

Na
o þ CK

o , we obtain the dimensionless system for

lens problem as follows (a detailed derivation is given in Appendix C in the

Supporting Materials and Methods):

uex ¼ � d

dr
Pex � d1

d

dr
fex; (14a)

d d

d2uin ¼ �d3

dr
Pin þ

dr
Oin; (14b)

1 d � 2
�

d4
r2 dr

r uin ¼ d3ðPex � PinÞ þ ðOin � OexÞ; (14c)

uex ¼ �uin; (14d)
X
i i Ain
i

z Cin þ z
Vin

¼ d6ðfin � fexÞ; (14e)
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X
ziCi ¼ �d ðf � f Þ; (14f)
i
ex 7 in ex

1 d � 2 Cl
� Mex

v
�

Cl
�

r2 dr
r Jex ¼

zCl
fin � fex � E ; (14g)

1 d �
r2JCl

� ¼ �d8 d �
r2JCl

�
; (14h)
r2 dr in r2 dr ex

1 d �
r2JK

� ¼ 0; (14i)

r2 dr ex

1 d � 2 K
�

r2 dr
r Jin ¼ 0; (14j)

  X !!

1

r2
d

dr
r2 Peexrexuex �

i

Di
exz

i d

dr
Ci

ex � sex

d

dr
fex

¼ Mex
v

�
2ðfin � fexÞ � ENa � ECl

� ;

(14k)

  X !!

1

r2
d

dr
r2 Peinrinuin �

i

Di
inz

i d

dr
Ci

in � sin

d

dr
fin

¼ �d8

r2
d

dr

 
r2

 
Peexrexuex �

X
i

Di
exz

i d

dr
Ci

ex � sex

d

dr
fex

!! ;

(14l)

with homogeneous Neumann boundary conditions at r ¼ 0 and the

following boundary conditions at r ¼ 1:8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

Pex ¼ 0;

d5uin ¼ d3Pin � ðOin � OexÞ;

CK
ex ¼ CK

o ; JKin ¼ Rs

zK

�
fin � EK

�� aK;

CCl
ex ¼ ~C

Na

o þ ~C
K

o þ d7
�
~fin � ~fex

�
; JClin ¼ 0;

fex ¼ 0;

Peinrinuin �
X
i

Di
inz

i d

dr
Ci

in � sin

d

dr
fin

¼ Rs

zK

�
fin � EK

�þ Ifp ;

where

rin ¼ r0 þ d6ðfin � fexÞ; r0 ¼ jz j Ain

Vin

; (15a)

rex ¼ d7ðfex � finÞ; (15b)
X
i
�

i
�2 i
sl ¼

i

Dl z Cl; (15c)
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1
�
Ci
�

Ei ¼
zi
log ex

Ci
in

; (15d)

If ¼ IpR
; (15e)
p eD�

inC
�

and
Jil ¼ PelC
i
lul � Di

l

�
d

dr
Ci

l þ ziCi
l

d

dr
fl

�
: (15f)

Simplified model

The full model given by system 14 with boundary condition 15 is a coupled

nonlinear system. In this section, we present a simplified version of the full

model that captures the main features of the lens circulation. We first obtain

the leading-order model by identifying the small parameters. Then, by us-

ing boundary conditions and theoretical analysis, the leading-order model is

further simplified as only one partial differential equation with serial

algebra equations.

According to those dimensionless parameters presented in Appendix B in

the Supporting Materials and Methods, we identify the scale of the param-

eters as follows:

fd1; d8g3OðεÞ; fd0; d3g3O
�
ε
2
�
;

fd2; d4; d5; d6; d7g3o
�
ε
2
�
:

(16)

If we denote d9 ¼ DCl
l � DK

l and d10 ¼ DCl
l � DNa

l , l ¼ in, ex, it yields

d9 ¼ O
�
ε
2
�
; d10 ¼ OðεÞ: (17)
A priori estimation

In this section, we provide the priori estimation of the JClin as follows. By

using the homogeneous Neumann boundary condition at r ¼ 0, Eq. 14l

yields

d

dr
fin ¼ 1

sin

�
Peinrinuin þ d9

d

dr
CK

in þ d10
d

dr
CNa

in

�

þd8

sin

�
Peexrexuex þ d9

d

dr
CK

ex þ d10
d

dr
CNa

ex � sex

d

dr
fex

� :

(18)

From Eq. 18, because Pein ¼ O(ε) and order of d8, d9, d10 in Eqs. 16 and

17, we obtain that

d

dr
fin ¼ OðeÞ: (19)

Meanwhile, from Eq. 14b, we can have

d

dr
Oin ¼ O

�
e2
�
; (20)

and in Eq. 14e, we know

d

dr
CCl

in ¼ d

dr

�
CNa

in þ CK
in

�þ o
�
e2
�
: (21)
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With Eqs. 20 and 21 and Ain=Vin as constants, we obtain

d

dr
CCl

in ¼ O
�
e2
�
: (22)

Furthermore, using Eq. 14d and boundary conditions for CCl
ex in Eq. 15

yields

CCl
in ¼ CNa

o þ CK
o � 1þ j z j

2

Ain

Vin

þ O
�
e2
�
: (23)

From the experimental setting of lens (41,51,55), we assume that

CNa
o þ CK

o � 1þ j z j
2

Ain

Vin

¼ OðeÞ: (24)

Therefore,

CCl
in ¼ OðeÞ: (25)

In all, we claim that

JClin ¼ PeinC
Cl
in uin � DCl

in

�
d

dr
CCl

in þ zClCCl
in

d

dr
fin

�

¼ O
�
e2
�
:

(26)

By dropping the terms involving these small parameters, the leading or-

der of water circulation system 14a, 14b, 14c, and 14d is as follows:

u0ex ¼ � d

dr
P0
ex � d1

d

dr
f0
ex; (27a)

d 0
dr
Oin ¼ 0; (27b)

O0 � O0 ¼ 0; (27c)
in ex

u0 ¼ �u0 ; (27d)
ex in

where the superscript ‘‘0’’ denotes the leading-order approximation. From

Eq. 27, we deduce O0
ex ¼ O0

in are constants, and the intracellular and extra-

cellular flow are counterflow. The total charge in the leading-order systems

is neutral: X
i

ziCi;0
in þ z

Ain

Vin

¼ 0; (28a)

X
ziCi;0 ¼ 0: (28b)
i
ex

Combining constant osmotic pressure and charge neutrality yields

O0
exðrÞ ¼ O0

inðrÞ ¼ 2
�
CNa;0

ex ð1Þ þ CK;0
ex ð1Þ�; (29a)

dCCl;0 dCCl;0

in

dr
¼ ex

dr
¼ 0; (29b)
which means CCl;0
in and CCl;0

ex are constants and

dCNa;0
l

dr
¼ �dCK;0

l

dr
; l˛fin; exg: (30)

The leading order of potassium and chloride concentrations satisfy

1

r2
d

dr

�
r2JK;0in

� ¼ 0; (31a)

1 d � 2 K;0
�

r2 dr
r Jex ¼ 0; (31b)

1 d � 2 Cl;0
� Mex

v
�

0 0 Cl;0
�

r2 dr
r Jex ¼

zCl
fin � fex � E ; (31c)

and

1

r2
d

dr

�
r2JCl;0in

� ¼ �1

r2
d

dr

�
r2d8J

Cl;0
ex

�
; (31d)

where Ji;0l ¼ PelC
i;0
l u0l � Di

lðd=drCi;0
l þ ziCi;0

l d=drf0
l Þ with i ¼ K, Cl and

l ¼ in, ex, ECl;0 ¼ 1
zCl logðCCl;0

ex =CCl;0
in Þ:

For the electric potential, using the homogeneous Neumann boundary

condition at r ¼ 0 and Eqs. 29a, 29b, 30, and 14l yields

d

dr
fin ¼ 1

sin

�
Peinrinuin þ d9

d

dr
CK

in þ d10
d

dr
CNa

in

�

þd8

sin

�
Peexrexuex þ d9

d

dr
CK

ex þ d10
d

dr
CNa

ex � sex

d

dr
fex

� :

(32)

At the same time, based on the intracellular equation of potassium

(Eq. 14j), the homogeneous Neumann boundary condition at r ¼ 0, and

Eqs. 29a, 29b, and 30, we have

DK
in

d

dr
CK

in ¼
�
PeinC

K
inuin � DK

inz
KCK

in

d

dr
fin

�
: (33)

Substituting Eq. 32 into Eq. 33 yields�
1� zKCK

in

d10

sin

�
DK

in

dCK
in

dr

¼
��

1� zKDK
in

rin

sin

�
Peinuin þ zKDK

in

d8sex

sin

dfex

dr

�
CK

in

þO
�
ε
2
�
;

(34)

where we used the fact that rex ¼ o(ε2), d9 ¼ O(ε2), and dCK
l =dr ¼

� dCNa
l =drþ Oðe2Þ; l˛fin; exg. Because Pein ¼ O(ε) and d8 ¼

O(ε), in Eq. 34, we claim

dCK
in

dr
¼ OðeÞ: (35)

Combining Eqs. 32 and 35 yields the leading-order approximation of

intracellular potential
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d

dr
f0
in ¼ 1

s0
in

Peinr0u
0
in �

d8

s0
in

s0
ex

d

dr
f0
ex ¼ OðεÞ; (36)

where s0in ¼PiD
i
inðziÞ2Ci;0

in , s
0
ex ¼PiD

i
exðziÞ2Ci;0

ex .

Similarly, the leading-order approximation of extracellular potential is

�1

r2
d

dr

�
r2
�
d10

d

dr
CNa;0

ex þ s0
ex

d

dr
f0
ex

��

¼ Mex
v

�
2
�
f0
in � f0

ex

�� ENa;0 � ECl;0
� ; (37)

where ENa;0 ¼ 1
zNa logðCNa;0

ex =CNa;0
in Þ.

To summarize, the leading-order approximation of system 14a, 14b, 14c,

14d, 14e, 14f, 14g, 14h, 14i, 14j, 14k, 14l, and 15 is given by, in domain

U ¼ [0, 1],

u0ex ¼ � d

dr
P0
ex � d1

d

dr
f0
ex; (38a)

d 0
dr
Oin ¼ 0; (38b)

O0 � O0 ¼ 0; (38c)
in ex

u0 ¼ �u0 ; (38d)
ex in

X
i i;0 Ain
i

z Cin þ z
Vin

¼ 0; (38e)

X
ziCi;0 ¼ 0 (38f)
i
ex

1 d � 2 K;0
�

r2 dr
r Jin ¼ 0; (38g)

1 d � 2 K;0
�

r2 dr
r Jex ¼ 0; (38h)

1 d � 2 Cl;0
� Mex �

0 0 Cl;0
�

r2 dr
r Jex ¼ v

zCl
fin � fex � E ; (38i)

1 d � 2 Cl;0
� 1 d � 2 Cl;0

�

r2 dr

r Jin ¼ �
r2 dr

r d8Jex ; (38j)

d 0 1 0 d8 0 d 0
dr
fin ¼

s0
in

Peinr0uin � s0
in

sexdr
fex; (38k)

1 d
� �

d d
��
�
r2 dr

r2 d10
dr
CNa;0

ex þ s0
exdr

f0
ex

¼ Mex
v

�
2
�
f0
in � f0

ex

�� ENa;0 � ECl;0
� ; (38l)

with boundary conditions at r ¼ 1
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8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

P0
ex ¼ 0;CCl;0

ex ¼ CNa
o þ CK

o ;C
K;0
ex ¼ CK

o ;

PeinC
K;0
in u0in � DK

in

�
d

dr
CK;0

in þ zKCK;0
in

d

dr
f0
in

�

¼ Rs

zK

�
f0
in � EK;0

�� aK;

Peinr0u
0
in þ d10

d

dr
CNa;0

in � sin

d

dr
f0
in

¼ Rs

zK

�
f0
in � EK;0

�þ Iep;

f0
ex ¼ 0:

(39)

In the following, we will further simplify Eqs. 38a, 38b, 38c, 38d, 38e,

38f, 38g, 38h, 38i, 38j, 38k, 38l, and 39 and obtain the relationships be-

tween f0
ex and other leading-order variables by using assumptions concern-

ing the boundary conditions.

Relation between f0
in and f0

ex

Combining Eqs. 38a, 38d, and 38k and integrating with respect to r yields

the relation between f0
in and f0

ex as

f0
inðrÞ ¼

�
Peinr0d1

s0
in

� d8s
0
ex

s0
in

�
f0
exðrÞ

þPeinr0
s0
in

P0
exðrÞ þ f0

inð1Þ
; (40)

where we used the boundary conditions f0
exð1Þ ¼ P0

exð1Þ ¼ 0:

Relation between P0
ex and f0

ex

By the homogeneous Neumann boundary condition on r ¼ 0 and Eq. 38j,

we have

JCl;0in þ d8J
Cl;0
ex ¼ 0: (41)

By Eq. 29b, we can divide Eq. 41 by CCl;0
ex on both sides, and we get 

Pein
CCl;0

in

CCl;0
ex

u0in � DCl
in z

ClC
Cl;0
in

CCl;0
ex

df0
in

dr

!

þd8

�
Peexu

0
ex � DCl

exz
Cldf

0
ex

dr

�
¼ 0

: (42)

Based on the charge neutrality Eq. 28, constant osmotic pressure Eq. 29a,

and parameters in Appendix B in the SupportingMaterials andMethods, we

define

d11 ¼ CCl;0
in

CCl;0
ex

¼ CNa
o þ CK

o � 1þ j z j
2

Ain
Vin

CCl;0
o

¼ OðeÞ: (43)

Then, combining Eq. 36 and Pein ¼ O(ε), Eq. 42 yields the following

equation by omitting the higher-order terms:

Peexu
0
ex � DCl

exz
Cldf

0
ex

dr
¼ 0: (44)
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Finally, by using the boundary condition, we have the relation between

extracellular pressure and electric potential as

P0
ex ¼ DCl

ex � Peexd1
Peex

f0
ex: (45)

Expression of ENa

Based on potassium equation and relation in Eqs. 40 and 45, we have the

expression for CK
in and CK

ex as

CK;0
ex ¼ CK;0

0 exp

�
�
�
1þ DCl

ex

DK
ex

�
f0
ex

�
; (46a)

��
Pe DCl Pe DClr

� �

CK;0

in ¼ CK;0
in ð1Þexp in ex

PeexD
K
in

� in ex 0

Peexs
0
in

f0
ex

exp

��
d9s

0
ex

s0
in

�
f0
ex

� ; (46b)

where

CK;0
in ð1Þ ¼ CK;0

o exp

�
aK

Rs

� finð1Þ
�
: (47)

Based on Eq. 28, we can get

ENa;0 ¼ 1

zNa
log

�
CNa;0

ex

CNa;0
in

�

¼ 1

zNa
log

0
BB@ CCl;0

ex � CK;0
ex

CCl;0
in þ

���� z
����Ain

Vin

� CK;0
in

1
CCA

: (48)

Extracellular electric potential system

By Eqs. 40 and 45, we have fin as

f0
inðrÞ ¼

�
DCl

exPeinr0
s0
inPeex

� d9s
0
ex

s0
in

�
f0
exðrÞ þ f0

inð1Þ: (49)

The value f0
inð1Þ is determined by the boundary condition of f0

in in Eq.

39, where

�Min
v

Z 1

0

�
2
�
f0
in � f0

ex

�� ENa;0 � ECl;0
�
s2ds ¼ aNa; (50)

where we use

aNa ¼ �aK þ Ifp ;
Rs

zK
�
fin � EK

� ¼ �aK:

To summarize, we obtained the simplified model of system 38a, 38b, 38c,

38d, 38e, 38f, 38g, 38h, 38i, 38j, 38k, 38l, and 39 as follows:
� 1

r2
d

dr

�
r2
�
d10

d

dr
CNa;0

ex þ s0
ex

d

dr
f0
ex

��

¼ Mex
v

�
2
�
f0
in � f0

ex

�� ENa;0 � ECl;0
� ; (51a)

�
DClPeinr d9s

0
�

f0
inðrÞ ¼ ex 0

s0
inPeex

� ex

s0
in

f0
exðrÞ þ f0

inð1Þ; (51b)

Z 1� � � �
�Min
v

0

2 f0
in � f0

ex � ENa;0 � ECl;0 s2ds

¼ aNa
; (51c)

0 d 0 d 0
uex ¼ �
dr
Pex � d1

dr
fex; (51d)

u0 ¼ �u0 ; (51e)
in ex

� �
DCl
� �
CK;0
ex ¼ CK;0

0 exp � 1þ ex

DK
ex

f0
ex ; (51f)

��
Pe DCl Pe DClr

� �

CK;0

in ¼ CK;0
in ð1Þexp in ex

PeexD
K
in

� in ex 0

Peexs
0
in

f0
ex

exp

��
d9s

0
ex

s0
in

�
f0
ex

�
;

(51g)

CNa;0 ¼ CCl;0 � CK;0; (51h)
ex ex ex

Na;0 Cl;0 Ain K;0
Cin ¼ Cin þ z
Vin

� Cin ; (51i)

Cl;0 Na;0 K;0 1þ jz j Ain

Cin ¼ Co þ Co �

2 Vin

; (51j)

CCl;0 ¼ CNa;0 þ CK;0; (51k)
ex o o

DCl � Peexd1

P0
ex ¼ ex

Peex
f0
ex; (51l)

with boundary conditions8><
>:

df0
ex

dr
¼ 0; at r ¼ 0;

f0
ex ¼ 0; at r ¼ 1:

(52)

Under the same assumptions in (51)—for example, uniform diffusion

constants for all ions and constant Nernst potential—our simplified model

system 51 recovers the model proposed by Mathias. The main contribution

here is that we remove the assumptions that Nernst potentials and effective

conductance should be constants. By using the relationships between ion

concentrations and external potential, we obtain the space-dependent
Biophysical Journal 116, 1171–1184, March 19, 2019 1179
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Nernst potential, which yields a much better approximation to the full

model (see Fig. 4).
RESULTS AND DISCUSSION

In this section, we present numerical simulations using both
the full and simplified models. The finite volume method
(70) is used to preserve mass conservation of ions. The
convex iteration (72) is employed to solve the nonlinear
coupled system. The numerical algorithm is implemented
in MATLAB (The MathWorks, Natick, MA).
Model calibration: Membrane conductance
effects intracellular hydrostatic pressure

In this section, we first calibrate the full model by compar-
ison with the experimental data to study the effect of con-
nexin on intracellular hydrostatic pressure.

Intracellular hydrostatic pressure is an important physio-
logical quantity (63). In some studies (28,47), the authors
showed that the connexin (gap-junction; see Fig. 1, D and
E) conductance plays an important role in the microcircula-
tion of lens. It is said that if the intracellular conductance
kin=min in lenses is approximately doubled, the hydrostatic
pressure gradient in the lenses should become approxi-
mately half of the original one. In this section, we calibrate
our model. We choose a value of the intracellular conduc-
tance (kin=min) that correctly calculates the experimental re-
sults in (28,47).
FIGURE 3 Comparison between different kin. (A) Comparison between simul

and rat come from (47). Mice and Cx46 KI mice come from (28). According to (2

channels compared to mice. The parameter kwin ¼ 4.6830� 10�20/m2, and radius

of intracellular osmotic pressure (Oin). (C) Space distribution of intracellular el

(uin). To see this figure in color, go online.
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In Fig. 3 A, the value kwin ¼ 4:6830� 10�20=m2 (black
line) yields a good approximation to experimental data
(blue markers). When the conductivity of the connexins is
doubled so that parameter value kin is 2kwin (in the lens of
mice Cx46 knock-in [KI] lens) as in the experiments
(28,47), which doubled the conductivity of the connexins
by using Cx46 KI mice lens, our model (black dot) can
also match the experimental data (red markers): the intracel-
lular hydrostatic pressure drops to half. This result shows
that our full model can correctly predict the effect of perme-
ability of membrane on hydrostatic pressure.

Interestingly, Fig. 3, B–D show that other intracellular
quantities and extracellular ones (Supporting Materials
and Methods) are insensitive to increases in the permeability
by a factor of 20, even to 20kwin. The reason for this can be
explained by using our simplified system 51. If the variation
of intracellular conductance still keeps the d2 to be a small
quantity in the dimensionless system 14, our simplified
model will be still valid. In the simplified model, all the
quantities except intracellular hydrostatic pressure are
related to the extracellular electric potential. However, the
extracellular electric potential will not be affected by the
change of the intracellular conductance because Eq. 51a
does not involve intracellular conductance.
Full model versus simplified model

In this section, we compare the full model 14a, 14b, 14c,
14d, 14e, 14f, 14g, 14h, 14i, 14j, 14k, 14l, and 15 with the
ation results and experimental results. The experimental data of dog, rabbit,

8), the Cx46 KI mice lens has twice the number density of lens gap-junction

is written in dimensionless units for different species. (B) Space distribution

ectric potential (fin). (D) Space distribution of intracellular water velocity
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simplified model 51 and Mathias model in (51). The nu-
merical results of full model (black lines) in Fig. 4, A–C
suggest that the variations in intracellular electric poten-
tial, extracellular conductance, and Nernst potential of
Cl� are rather small. The assumption of constant
values for those variables (potential, extracellular conduc-
tance, and Nernst, i.e., chemical potential of Cl�) in the
Mathias model (shown as red dash-dot lines) is reason-
FIGURE 4 Comparison of electroneutral and simplified and the Mathias mod

Space distribution of extracellular conductance (sex). (C) Space distribution o

potential (ENa). (E) Space distribution of potassium nernst potential (EK). (F) S

extracellular velocity (uex). (H) Space distribution of extracellular electric poten
able. However, the Nernst potentials of sodium and
potassium (Fig. 4, D and E) have large variations because
of the effect of sodium-potassium pump. Our simplified
model (blue dash lines) describes these variations with
small errors. The comparisons for extracellular pressure,
velocity, and potential (Fig. 4, F–H) confirm that our
simplified model yields good approximations to the full
model.
el in (51). (A) Space distribution of intracellular electric potential (fin). (B)

f chloride nernst potential (ECl). (D) Space distribution of sodium nernst

pace distribution of extracellular pressure (Pex). (G) Space distribution of

tial (fex).To see this figure in color, go online.
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CONCLUSIONS

In this work, we propose a bidomain model to study the
microcirculation of lens. We include a capacitor in the rep-
resentation of the membrane, and so our model is consistent
with classical electrodynamics. Consistency produces a
linear correction term in the classical charge neutrality
equation. This full model is calibrated by comparison with
the experiment studying effect of connexin on hydrostatic
pressure. By changing only the intracellular membrane
conductance (strength of connection), our model could
match the two experimental results with different connexins
very well. Our model is capable of making predictions about
the circulation of the lens. Furthermore, the numerical sim-
ulations show that the velocity, potential, and osmotic pres-
sure in the intra- and extracellular spaces are not sensitive to
increasing intracellular membrane conductance.

Based on the asymptotic analysis, we proposed a simpli-
fied model that allows us to obtain a deep understanding of
the physical process without making unrealistic assump-
tions. Our results showed that the simplified model is a
good approximation of the full model in which Nernst po-
tentials and conductivity vary significantly inside the lens.

Our model allows calculation of variables that determine
the role and life of the lens as an organ. Particularly impor-
tant are the factors that determine the transparency of the
lens because that is the main function of the organ. The
dependence of the size of the extracellular space, and thus
the pressure in extracellular and intracellular spaces and
the difference between those two, is likely to be an impor-
tant determinant of transparency. One imagines that
swelling of the extracellular space will scatter light, partic-
ularly because the swelling is likely to be irregular (in a way
our model does not yet capture). Changes in the osmolarity
(i.e., activity of water estimated by the total concentration of
solutes) are likely to be important as well.

This hydrodynamic bidomain model can point the way to
dealing with other cells, tissues, and organs in which current
flow, water flow, and cell-volume changes are important.
These include the kidney, the central nervous system (where
the narrow extracellular space poses many of the biological
problems facing the lens), the t-tubular system of skeletal
and much cardiac muscle, and so on. We show that a mathe-
matically well-definedmodel can deal with the reality of bio-
logical structure and its complex distribution of channels, etc.

Conservation laws applied to simplified structures are
enough to provide quite useful results because they were
in three-dimensional electrical problems of cells of various
geometries (16) and syncytia (3,23). The exact results are
analyzed with perturbation methods, described in general
in (73), and these methods allow dramatic simplifications
without introducing large or even significant errors. It is
as if evolution chose systems in which parameters and struc-
tures allow simple results and in which parameters can con-
trol biological function robustly.
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Of course, we only point the way. Additional compart-
ments and additional structural complexity will surely be
needed to deal with the workings of evolution. But these
can be handled in a mathematically defined way, yielding
approximate results with clear physical and biological inter-
pretation. By combining the multidomain model and mem-
brane potential dependent conductances, one can model
depolarization induced by extra potassium in the lens
(53,55) and the cortical spreading depression problem
(71,74,75). The ultimate goals will be 1) to provide as
much precision in the mathematics and physics as we can,
starting from first principles (62), and 2) to provide a general
basis for treatments of convection in other tissues that
involve microcirculation. Computational models of these
are not in hand and may be hard to construct because so little
is known of those systems compared to the lens. With what
we have learned here, we hope a general mathematical
approach and model of the type we present here may be con-
structed and prove helpful in other systems with narrow
extracellular spaces that are likely to need microcirculation
to augment diffusion, such as cardiac and skeletal muscle,
kidney, liver, epithelia, and the extracellular space of the
brain.
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Supporting Materials and Methods, one figure, and two tables are avail-
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Appendix A. Model Parameters

Parameters Mathias [1] Malcolm [2] Parameters Mathias [1] Malcolm [2]

R 1.6× 10−3 m 1.6× 10−3 m Lm 3.75× 10−13m/(Pa · s) 1.34× 10−13m/(Pa · s)

Ain/Vin 78 mM 78 mM Ls 3.75× 10−13m/(Pa · s) 8.89× 10−13m/(Pa · s)

CNa
o 107 mM 107 mM Min 0.988 0.99

CK
o 3 mM 3 mM Mex 0.012 0.01

Cm - 1× 10−2 F/m2 Mv 6× 105/m 5× 105/m

DNa
ex - 1.39× 10−9 m2/s T - 310 K

DK
ex - 2.04× 10−9 m2/s ke 1.72× 10−8 m2/(V · s) 1.45× 10−8 m2/(V · s)

DCl
ex - 2.12× 10−9 m2/s kB 1.38× 10−23 J/K 1.38× 10−23 J/K

DNa
in - 1.39× 10−11 m2/s KK1 - 1.6154 mM

DK
in - 2.04× 10−11 m2/s KK2 - 0.1657 mM

DCl
in - 2.12× 10−11 m2/s KNa1,Na2 - 2.3393 mM

e 1.6× 10−19 A · s 1.6× 10−19 A · s η 0.988 0.99

gNa 2.2× 10−3 S/m2 2.2× 10−3S/m2 κex 1.141× 10−16 m2 1.33× 10−16 m2

gCl 2.2× 10−3 S/m2 2.2× 10−3 S/m2 κin - 9.366× 10−19 m2

GK 2.1 S/m2 2.1 S/m2 γm,s 1 1

Ip 2.3× 10−2 A/m2 - τc 0.16 0.16

Imax1 - 0.478 A/m2 µ 7× 10−4 Pa · s 7× 10−4 Pa · s

Imax2 - 0.065 A/m2 z̄ -1.5 -1.5
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Appendix B. Dimensionless Parameters and Scales

The following dimensionless parameters’ value and scales calculation based on values in [2]

Scales/Parameters Value Parameters Value

aNa∗ 6.9× 10−2 A/m2 δ0
1
99

C∗ 110 mM δ1 1.2031× 10−1

O∗ 220 mM δ2 6.861× 10−3

P∗ 16.937 KPa δ3 2.9894× 10−2

u∗in 3.2506 nm/s δ4 3.5323× 10−5

u∗ex 3.2181 µm/s δ5 4.3022× 10−3

φ∗ 26.7 mV δ6 1.2745× 10−5

D∗ex 3.392× 1010 m2/s δ7 1.2617× 10−3

D∗in 2.12× 10−11 m2/s δ8 1.6162× 10−1

Peex 1.5180 δ9
12.5
110

Pein 2.4533× 10−1 δ10 3.443× 10−1

D̃Na
in,ex 0.6557 δ11 3.77× 10−2

D̃K
in,ex 0.9623 ρ0

117
110

D̃Cl
in,ex 1 M̃in

v 3.3859× 10−1

Rs 4.00× 10−1 M̃ex
v 2.095

2



Appendix C. Non-dimensionalization

In this section, we derive the dimensionless model based on the lens, which has been widely stud-

ied. The major ions we considering here are sodium (Na+), potassium (K+) and chloride (Cl−) and the

sodium-potassium pump which distributed on the surface of the lens. Although we restrict ourselves in

this particular problem, the following procedure can be applied in a wide range of practical problems in

biological syncytia.

Appendix C.1. Water circulation

In the following, we assume the typical length of lens is R. The fluid system is driven by the osmotic

gradient, which is generated by the sodium-potassium pump on the surface. In Eq. 7, the strength of

sodium-potassium pump at surface depends on the ion’s concentration , which leads

aNa = 3
Ip

e
, aK = −2

Ip

e
, aCl = 0, (C.1)

where

Ip = Imax1

(
CNa

in
CNa

in + KNa1

)3 (
CK

o
CK

o + KK1

)2

+ Imax2

(
CNa

in
CNa

in + KNa2

)3 (
CK

o
CK

o + KK2

)2

. (C.2)

We assume that the velocity at surface determines the characteristic velocity scale for the problem. We have

ion fluxes in the intracellular, extracellular region in Eq. 5 and trans-membrane source of ion in Eq. 6 for

ion Na+, K+, Cl−.

At boundary of the intracellular space, due to the ion pump in Eq. C.1 and assumption of conductance at

surface that GNa = GCl = 0 [1, 3], we have

JNa
in = aNa, JK

in = jK
s + aK, JCl

in = 0. (C.3)

Since gK = 0 inside of the lens, we obtain

jK
s + aK = 0. (C.4)

This assumption obviously will have to be replaced in applications to other tissues, with a less particular

distribution of channel proteins.

By the conservation of fluxes for each ion in Eq. 4, we get

Ji
in = −δ0 Ji

ex, i = Na, K, Cl, (C.5)

3



where δ0 = Mex
Min

. Therefore, Eq. C.3 becomes

−δ0 JNa
ex = aNa, −δ0 JK

ex = 0, −δ0 JCl
ex = 0. (C.6)

Adding up all three fluxes in Eq. C.6 and since in the extracellular region each ion diffusion coefficient are

at the same level of approximation, i.e.

Di
ex = O (Dex) , i = Na, K, Cl, (C.7)

and based on Eq. 10 , we get

Oexuin + δ0Dexτc
d
dr

Oex +
Dexτcδ0

kBT
ρex

d
dr

φex = aNa. (C.8)

The strength of the ion pump aNa depends on the ion concentration in Eq. C.2 . We choose the scale of aNa

is aNa∗ based on an experimental estimation [1]. Using Eq. C.8, we take the scale for Oin,ex and uin to be O∗

and u∗in as

O∗ = 2
(

CNa
o + CK

o

)
, u∗in =

aNa∗

O∗
. (C.9)

By mass conservation expressed in Eq. 1, we naturally get the scale of uex as

u∗ex = δ−1
0 u∗in. (C.10)

Furthermore, φ∗ = kBT
e is used for the scale of electric potential φin and φex. For the extracellular velocity

in Eq. 2, we have

u∗exũex = − κex

µR
τcP∗ex

d
dr̃

P̃ex − keτc
kBT
eR

d
dr̃

φ̃ex, (C.11)

We think the d
dr Pex term balance the velocity uex. The scale for extracellular pressure P∗ex is then choose

P∗ex =
µRu∗ex
κexτc

.

Therefore, we get

ũex = − d
dr̃

P̃ex − δ1
d
dr̃

φ̃ex, (C.12)

4



where δ1 = keτckBT
eRu∗ex

. For the intracellular velocity, we have

u∗inũin = −
κinP∗in

µR
d
dr̃

P̃in +
κinγmkBTO∗

µR
d
dr̃

Õin. (C.13)

We claim term d
dr Pin and d

dr Oin balance at the same level. Therefore, we choose the same scale for the

intracellular and extracellular pressure, namely,

P∗ = P∗in = P∗ex.

Then Eq. C.13 becomes

δ2ũin = −δ3
d
dr̃

P̃in +
d
dr̃

Õin, (C.14)

where

δ2 =
µRu∗in

κinγmkBTO∗
, δ3 =

P∗

γmkBTO∗
.

In all, the fluid system Eq. 1 becomes


ũex = −ũin,

δ4
1
r̃2

d
dr̃

(
r̃2ũin

)
= δ3

(
P̃ex − P̃in

)
+
(

Õin − Õex

)
,

(C.15)

with boundary condition 
P̃ex = 0,

δ5ũin = δ3P̃in −
(

Õin − Õex

)
,

where

δ4 =
Minu∗in

RMvLmγmkBTO∗
, δ5 =

u∗in
LsγskBTO∗

.

Appendix C.2. Ions circulation

The velocity scales and diffusion coefficients in the extracellular and intracellular space are at different

levels of approximation in our approach. In the following, we put the characteristic diffusion coefficients

at intracellular and extracellular region and scale of concentration as

D∗ex = DCl
ex τc, D∗in = DCl

in , C∗ = CNa
o + CK

o .

5



In this way, we get Peclet number in the extracellular and intracellular and dimensionless Nernst potential

as

Pein =
u∗inR
D∗in

, Peex =
u∗exR
D∗ex

, Ẽi =
1
zi log

(
C̃i

ex

C̃i
in

)
.

Because gNa = 0 inside of lens, we have K+ system as in Mathias’s model [1],


1
r̃2

d
dr̃

(
r̃2
(

PeexC̃K
exũex − D̃K

ex

(
d
dr̃

C̃K
ex + zKC̃K

ex
d
dr̃

φ̃ex

)))
= 0,

1
r̃2

d
dr̃

(
r̃2
(

PeinC̃K
inũin − D̃K

in

(
d
dr̃

C̃K
in + zKC̃K

in
d
dr̃

φ̃in

)))
= 0,

(C.16)

with boundary condition


C̃K

ex = C̃K
o ,

PeinC̃K
inũin − D̃K

in

(
d
dr̃

C̃K
in + zKC̃K

in
d
dr̃

φ̃in

)
=

Rs

zK

(
φ̃in − ẼK

)
+ ãK,

and Cl− system as



1
r̃2

d
dr̃

(
r̃2
(

PeexC̃Cl
ex ũex − D̃Cl

ex

(
d
dr̃

C̃Cl
ex + zClC̃Cl

ex
d
dr̃

φ̃ex

)))
=
M̃ex

v
zCl

(
φ̃in − φ̃ex − ẼCl

)
,

1
r̃2

d
dr̃

(
r̃2
(

PeinC̃Cl
in ũin − D̃Cl

in

(
d
dr̃

C̃Cl
in + zClC̃Cl

in
d
dr̃

φ̃in

)))
= −δ8

1
r̃2

d
dr̃

(
r̃2
(

PeexC̃Cl
ex ũex − D̃Cl

ex

(
d
dr̃

C̃Cl
ex + zClC̃Cl

ex
d
dr̃

φ̃ex

)))
,

(C.17)

with boundary condition


C̃Cl

ex = C̃Na
o + C̃K

o + δ7
(
φ̃in − φ̃ex

)
,

PeinC̃Cl
in ũin − D̃Cl

in

(
d
dr̃

C̃Cl
in + zClC̃Cl

in
d
dr̃

φ̃in

)
= 0.

where

Rs =
GKkBTR
e2D∗inC∗

, ãK =
aKR

D∗inC∗
, M̃ex

v =
MvgClkBTR2

Mexe2D∗exC∗
, δ8 =

MexD∗ex
MinD∗in

.

The concentration of Na+ can be solved from the following equations


∑

i
ziC̃i

in + z̄
Ãin
Vin

= δ6
(
φ̃in − φ̃ex

)
,

∑
i

ziC̃i
ex = −δ7

(
φ̃in − φ̃ex

)
,

(C.18)
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where

δ6 =
MvCmkBT

e2C∗η
, δ7 =

MvCmkBT
e2C∗(1− η)

. (C.19)

From Eq. 11 and use the fact zNa = zK = 1 and assumption that gNa = gCl and GNa = GCl = 0, we

have



1
r̃2

d
dr̃

(
r̃2

(
Peex ρ̃exũex −∑

i
D̃i

exzi d
dr̃

C̃i
ex − σ̃ex

d
dr̃

φ̃ex

))
= M̃ex

v

(
2
(
φ̃in − φ̃ex

)
− ẼNa − ẼCl

)
,

1
r̃2

d
dr̃

(
r̃2

(
Peinρ̃inũin −∑

i
D̃i

inzi d
dr̃

C̃i
in − σ̃in

d
dr̃

φ̃in

))

= −δ8
1
r̃2

d
dr̃

(
r̃2

(
Peex ρ̃exũex −∑

i
D̃i

exzi d
dr̃

C̃i
ex − σ̃ex

d
dr̃

φ̃ex

))
,

(C.20)

with boundary condition


φ̃ex = 0,

Peinρ̃inũin −∑
i

D̃i
inzi d

dr̃
C̃i

in − σ̃in
d
dr̃

φ̃in =
Rs

zK

(
φ̃in − ẼK

)
+ Ĩφ

p ,
(C.21)

where

ρ̃in = |z̄| Ãin
Vin

+ δ6
(
φ̃in − φ̃ex

)
, ρ̃ex = δ7

(
φ̃ex − φ̃in

)
, Ĩφ

p =
IpR

eD∗inC∗
,

and

σ̃in = ∑
i

D̃i
in(z

i)2C̃i
in, σ̃ex = ∑

i
D̃i

ex(z
i)2C̃i

ex.

Appendix D. Effect of permeability
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Figure D.1: Comparison between different κin.
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