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Abstract. We propose a Poisson-Bikerman (PBik) formula for calculating the differential

capacitance (DC) of electrical double layers (EDLs) in aqueous electrolytes or ionic liquids.

The PBik theory is a generalization of the classical Poisson-Boltzmann theory to include

different steric energies of different-sized ions and water similar to different electrical energies

for different-charged ions. Water and ions with interstitial voids in this molecular mean field

theory have their physical volumes as they do in molecular dynamics simulations. The PBik

formula derived from Fermi distributions of ions and water in arbitrary shape and volume

reduces to the Bikerman-Freise formula derived from the lattice model of equal-sized ions.

The DC curves predicted by the Gouy-Chapman formula are U-shaped (for point-like ions

with zero volume and very dilute solutions). The curves change from U shape to camel shape

(Bactrian) and then to bell shape (for finite size ions) as the volume fraction of ions and

water changes from zero to medium value then to large value. The transition is characterized
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by critical and inflection voltages in terms of the particle volume fraction. These voltages

determine steric and electrical energies that describe the space/charge competition and

saturation properties of ions and water packed in the condensed layer of EDLs under high

field conditions. Steric energy is as important as electrical energy in these conditions. PBik

computes symmetric DC curves from delicately balanced steric interactions of asymmetric-

size ions and water like the experimental data of KPF6 in aqueous solution. It computes

asymmetric curves and captures delicately balanced steric or electrical interactions of ions

having different volumes or charges in ionic liquids.

1. INTRODUCTION

Differential capacitance (DC) measures the voltage-dependent capacitance of electrolyte

capacitors [1]. It reflects the screening strength of electrical double layers (EDLs) that change

with the surface potential of electrodes and the composition, concentration, charge, and size

of ions and solvents that screen the potential in a complex way. The EDL determines most

of the properties of solutions because of the enormous strength of the electric field compared

to concentration fields, except in the most crowded situations. Studies of EDLs are of

fundamental importance in adsorbent, energy, and membrane technologies [2–20] as well as

in biological systems [21–29].

Classical theories of EDLs developed by Gouy and Chapman in the 1910s are based on the

Poisson-Boltzmann (PB) equation, where ions are treated as point charges without volumes

with distributions described by Boltzmann statistics [6, 8, 29]. These theories predict values

of capacitance that diverge to infinity as the surface potential tends to infinity [8]. The

divergence is not found experimentally and so it is not surprising that many authors have

modified the Gouy-Chapman theory since Stern [30] in 1924. Ions are not points so it is

natural to seek a remedy to divergence by including ionic volumes [2, 6, 8, 12, 19, 29]. Almost

all these modified models (including those developed in recent years [3, 5, 6, 8, 9]) start with

a lattice model of equal-sized ions proposed by Grimley and Mott [31] in 1947. This is

unfortunate in our view. The assumption of equal size seems to us to produce degenerate

models, because so few ions have equal volume. Unequal size must be expected to produce

layering, as a glance at the relative size of say Na and Rb shows, and so would have behavior

very different from the equal size case. It seems obvious that ions of different size must be
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considered if the theory is to be used for biological or electrochemical systems, and indeed to

have reasonably general validity, because all the solutions of biological interest and almost

all of electrochemical interest include ions of quite different size. The unequal-sized model

by Bikerman [32] in 1942 seems a much more reasonable place to start. We refer to recent

reviews [6, 8, 12, 19, 29] of PB and modified PB models for comprehensive surveys and

discussions of this topic.

To our knowledge, formulas are absent for the differential capacitance of solutions with

any number of particle species with arbitrary shapes, volumes, and interstitial voids. We

propose here such a formula derived from the Poisson-Bikerman (-Fermi) theory that yields

(a) different steric energies for different-sized ions and molecular water and (b) different elec-

trical energies for different-charged ions [29, 33]. In this molecular mean field theory, water

and ions have their volumes as they do in molecular dynamics simulations. Distributions of

these particles (ions and water molecules) are of Fermi type [6], i.e., ions saturate at large

or even infinite potentials [29, 33].

The correlations produced by the interactions of steric and electrostatic potentials are

well described in this theory over a range of conditions and length scales, or fits would

not be possible [29]. We point out that higher resolution models (such as in all atom

simulations) do not necessarily capture correlations as well as, let alone better than a mean

field theory. The higher resolution models must actually be shown to capture correlations

correctly in calibrated simulations; it is not obvious that simulations using periodic boundary

conditions and lacking realistic boundary conditions can capture the correlations produced

by the electric field. The electric field must be described by a continuum model because

Maxwell’s version of Ampere’s law must include a time-varying electric field that is not

associated with mass, and in fact extends into a vacuum reaching to the stars, if not infinity.

Boundary conditions must be specified saying how the electric and magnetic fields connect to

the outside world, or infinity. Thus the electric field cannot be described without boundary

conditions. It cannot be computed without boundary conditions because mathematically

speaking it does not exist without boundary conditions.

The Poisson-Bikerman (PBik) formula is analytical and semi-analytical for equal-sized

and unequal-sized particles, respectively. Steric energies of different-sized ions and water

molecules are analyzed with consistent mathematical models, consistently for both contin-

uum and molecular models. Steric energies are important in dealing with mass conservation,
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dehydration, dielectric, energetic, and selectivity properties. Indeed, steric energies are the

main controllers of function in the crucially important calcium channels, transporters, and

probably in the enzymes that control most biological systems. Steric energy controls func-

tion in the same sense that a gas pedal controls the speed of a car in these systems [34–40].

We show here the delicate effects of steric properties of ions and water on differential capaci-

tance. Tiny changes in steric properties produce large changes in differential capacitance, or

to say the same thing another way, measurements of differential capacitance can be used to

determine the steric potential in some detail, as it changes with composition, concentration,

and potential.

Bazant and co-workers [5, 8] and Kornyshev [6] revitalized the Bikerman-Freise [41] for-

mula [8] which shows how DC curves change from U shape (predicted by the Gouy-Chapman

formula for very dilute solutions or point-like ions at any concentration) to camel shape (Bac-

trian) and then to bell shape (for realistic finite size ions). They introduced a mean volume

fraction of ions to characterize the steric effects of uniform ions and use it to derive a crit-

ical (diffuse-layer) potential and explain the transition mechanism of these DC shapes [5].

The mean volume fraction is the product of the size and the bulk concentration of ions.

We generalize the mean volume fraction to ions and water having nonuniform volumes and

arbitrary shapes, where the volumes are physical.

The critical potential approximately separates monotonic and non-monotonic DC curves

as the voltage varies from small to large [5, 8]. The critical potential can also be a voltage at

a hypothetical interface between condensed and diffuse layers of electrical double layers at

large voltage [5, 8]. We use our DC formula to define critical and inflection voltages, where a

DC curve attains its extrema and inflection points (at which the curvature changes its sign),

respectively. These voltages give a precise description of the transitions between condensed

and diffuse layers, on the one hand, and monotonic and non-monotonic DC curves on the

other.

The DC formula shows that the symmetric DC curves of experimental data of KPF6

aqueous solution observed by Valette [42] arise from delicately balanced steric interactions of

asymmetric-size ions and water. Asymmetric curves of ionic liquids result from asymmetric

ions in size or charge, and the transitions of DC curves are characterized by the general

mean volume fraction with its critical and inflection voltages.
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2. THEORY

The total volume of an aqueous electrolyte system with K species of ions in a solvent

domain Ω is

V =

K+1∑

i=1

viNi + VK+2, (1)

where K+1 and K+2 denote water and voids, respectively, vi is the volume of each species

i particle, Ni is the total number of species i particles, and VK+2 is the total volume of all the

voids [36]. Dividing this volume equation in bulk conditions by V , we get the bulk volume

fraction of voids

Γb = 1−
K+1∑

i=1

vic
b
i =

VK+2

V
, (2)

where cbi =
Ni

V
are bulk concentrations. If the system is spatially inhomogeneous with variable

electric or steric fields, as in realistic systems, the constants cbi then change to functions ci(r)

for all r in Ω and so does Γb to a function of void fractions

Γ(r) = 1−
K+1∑

i=1

vici(r). (3)

We define the concentrations (distributions) of ions and water in Ω as [33]

ci(r) = cbi exp
(
−βiφ(r) +

vi
v
S(r)

)
, S(r) = ln

(
Γ(r)

Γb

)
, (4)

for all i = 1, · · · , K+1, where φ(r) is an electrical potential, S(r) is called a steric potential

[33], βi = qi/kBT with qi being the charge on species i ions, qK+1 = 0 for water, kB is the

Boltzmann constant, T is an absolute temperature, and v =
∑K+1

i=1 vi/(K +1) is an average

volume.

These distributions are of Fermi type (see Appendix A). The steric potential S(r) depends

on φ(r) and is an entropic measure of crowding or emptiness of particles at r. If φ(r) = 0

and ci(r) = cbi then S(r) = 0. The factor vi/v shows that the steric energy −vi
v
S(r)kBT

of a type i particle at r depends not only on S(r) but also on its volume vi similar to

the electrical energy βiφ(r)kBT depending on both φ(r) and qi [33]. The charge density

ρ(r) =
∑K

i=1 qici(r) now includes different-sized ions as first proposed by Bikerman [32]. We

extend his work in the following ways. We (a) introduce water as a molecule, (b) introduce

the factor vi/v, (c) introduce the steric potential, and (d) prove the Fermi distribution. We
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thus call the resulting equation

− ǫ∇2φ(x) = ρ(x), x ∈ Ω (5)

a Poisson-Bikerman equation [29] in contrast to the classical Poisson-Boltzmann equation.

Different names are needed because these two equations yield very different distributions

(Appendix A). Here, ǫ = ǫwǫ0 with ǫw being a dielectric constant (taken as 78.4 at room

temperature) of water and ǫ0 the vacuum permittivity.

To derive the differential capacitance formulas, we consider the domain Ω as a half real

line. Eq 5 is then a 1D equation with r = x ∈ [0,∞) and two boundary conditions

−ǫ dφ
dx

∣∣
x=0

= σ and φ(∞) = 0, where σ is a surface charge density. The differential ca-

pacitance of EDLs is

Cvi = ǫ
d

dφ0

{
− dφ

dx

∣∣∣∣
x=0

}
, (6)

where φ0 = φ(0) is the surface potential, the subscript vi indicates that φ depends on

vi in eq 5, and Cvi is thus highly nonlinear in φ(x), S(x), and vi. It is very difficult, if

not impossible, to derive an analytical formula for Cvi. We can derive (Appendix B) the

analytical DC formula

Cv(φ0) =
±C

∑K
i=1 qic

b
i exp(−βiφ0)

exp(−S0) ·
√
−S0

(7)

only for a special case of equal-sized ions and water, i.e., vi = v, i = 1, · · · , K + 1, where

± = ∓sgn(σ), C =
√

ǫv
2kBT

, S0 = S(φ(0)), and eq 3 simplifies to

1 = exp(S)

[
Γb +

K+1∑

i=1

vic
b
i exp(−βiφ)

]
. (8)

The equal size assumption of particles (vi
v

= 1) is the key to obtaining the formula 7

using eq 8 (Appendix B). The assumption yields the steric potential S0, a critical term in

eq 7, that separates from φ0 in eq 8. For different-sized particles (vi
v
6= 1), eq 8 becomes

1 = exp(S)

[
Γb +

K+1∑

i=1

vic
b
i exp

(
−βiφ+ (

vi
v
− 1)S

)]
. (9)

We could not derive a formula from this equation like eq 7 because S cannot sep-

arate from φ in the exponential term when sizes are unequal. The steric potential S

is a function of φ, namely, S(φ). Eq 8 yields an explicit (known) function S(φ) =

− ln
[
Γb +

∑K+1
i=1 vic

b
i exp(−βiφ)

]
whereas eq 9 does not, i.e., S(φ) and φ mingle together
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in a nonlinear (exponential) way via the volume term vi
v
− 1. It is not surprising that un-

equal sizes require a special treatment. A glance at the distribution of ionic charge that can

occur if ions have opposite charges and very different sizes suggests that the reversal in the

sign of the potential should be possible, because reversal in the net charge density is clearly

possible [43]. Such disparate behavior is difficult to capture in an explicit algebraic formula.

We propose an empirical version of eq 7 as

Cvi(φ0) =
±C

∑K
i=1 qic

b
i exp(−βiφ0 + Ŝ)

exp(−S0)
√
−S0

, (10)

which is not analytical but semi-analytical from eq 7 by adding Ŝ := Ŝ(φ0), an unknown

(implicit) function of φ0 to be determined by experimental data (Appendix C). Other per-

haps better empirical expressions may be possible, although they are unknown to us. The

differential capacitance Cvi(φ0) is thus exponentially sensitive to nonuniform vi because

Ŝ(φ0) ≈ (vi
v
− 1)S(φ0).

It is important to check that the general differential capacitance formula 10 that we

use reduces to known forms in appropriate special cases. (i) Formula 10 reduces to eq 7

obviously if vi
v
= 1 and Ŝ = 0. (ii) It reduces to the Bikerman-Freise formula [5, 6, 8, 41]

in Appendix D if K = 2, q1 = −q2 = e (the elementary charge), and v1 = v2 6= 0 (1:1 ionic

liquids with equal-sized ions without water). (iii) It reduces to the Gouy-Chapman formula

if v1 = v2 = 0 (point charges) [6]. (iv) It reduces to the Debye capacitance if φ0 = 0 in

addition to those in (iii) [6].

Kornyshev introduced a mean volume fraction γ = N/N in his Poisson-Fermi theory

of ionic liquids based on the lattice-gas model [6], where N = N1 + N2 is the total num-

ber of cations N1 and anions N2 in the bulk of a binary ionic liquid and N is the total

number of uniform lattice sites. We show in Appendix D that the general distribution

model in eq 1 reduces to Kornyshev’s uniform lattice model as a special case. Equiva-

lently, the mean volume fraction γ is a special case of the sum of particle volume fractions

γ̃ =
∑K+1

i=1 viNi/V =
∑K+1

i=1 vic
b
i , i.e.,

γ̃ =
v(N1 +N2)

(vN)
=

N

N
= 2vcb = γ. (11)

Eq 11 is in fact Bikerman’s bulk ionic volume fraction (derived by Bazant and co-workers as

well [5, 8]), where v = 6v/π is the volume of each site (assuming a primitive cubic lattice),

q1 = −q2 = e, v1 = v2 = v 6= 0, and cb = cb1 = cb2.
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In Appendix E, we obtain the inflection points (voltages)

|φ∗∗
0 | = −αVT ln(vcb) (12)

of Cv(φ0), i.e., C
′′
v (φ

∗∗
0 ) = 0, where VT = kBT/e is the thermal voltage and α is a factor

of the diffuse-layer voltage [5, 8] φd
0 = −VT ln(vcb) in C ′

v(φ
d
0) ≈ C ′

v(φ
∗
0) = 0. This factor is

only a ratio of inflection φ∗∗
0 and diffuse-layer φd

0 voltages without physical meaning. The

diffuse-layer φd
0 (critical φ∗

0) voltage approximately (exactly) separates monotonic and non-

monotonic DC curves as φ0 varies from small to large [5, 8]. It is also a hypothetical voltage

at the interface between condensed and diffuse layers of EDLs at large voltage [5, 8]. The

inflection voltage φ∗∗
0 is where a DC curve changes its curvature provided that vcb 6= 0 and

vcb 6= 1.

Therefore, we further show the following. (v) The sum of volume fractions γ̃ =
∑K+1

i=1 vic
b
i

is more general than the mean volume fraction γ = 2vcb in ref 5 and γ = N/N in ref 6

(Appendix D). It is more general because it includes ions and water having different volumes,

arbitrary shapes, and any number of solution species.

(vi) From eq 12, if vcb → 0 (point-like ions (v → 0) or infinite dilute solution (cb → 0)),

then limv→0 |φ∗∗
0 | = limcb→0 |φ∗∗

0 | = ∞, i.e., the inflection voltages φ∗∗
0 tend to ±∞ (they

do not exist). The DC curve Cv(φ0) is therefore U-shaped for all φ0 with only a unique

minimum at φ∗
0 = 0 (Appendix E) as predicted by the Gouy-Chapman theory [5, 6].

(vii) If 0 < vcb < 1, then 0 < |φ∗∗
0 | < ∞, i.e., there are four finite inflection voltages

±φ∗∗
0 6= 0 and hence two more critical voltages ±φ∗

0 6= 0. It is mathematically impossible

to have vcb = 1, the volume v completely filed by ions or water molecules without voids

(Appendix A). Therefore, the DC curve has three critical points (φ∗
0 < 0, φ∗

0 = 0, φ∗
0 > 0)

and four inflection points (two for φ∗∗
0 < 0 and two for φ∗∗

0 > 0) and hence is camel-shaped.

Furthermore, DC curves change from U shape in (vi) to camel shape [5, 6] as vcb changes

from zero to a medium number in the interval (0, 1).

(viii) If vcb → 1, then limvcb→1 |φ∗∗
0 | = 0 = φ∗

0. Again, the inflection voltages do not exist

in this case because the limit value 0 is a critical voltage which yields a unique maximum

of a DC curve (Appendix E). The curve is thus bell-shaped [5, 6]. DC curves hence change

from camel shape in (vii) to bell shape as vcb changes from the medium number to a larger

number closer to one.
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3. RESULTS

We first report PBik results by formula 10 for different sizes of ions and water to fit

the experimental data of the differential capacitance Cvi(φ0) from Valette [42] for an electro-

chemical interface between a single-crystal Ag electrode (crystal plane (110)) and an aqueous

KPF6 electrolyte solution with negligible surface adsorption of ions. These results are par-

ticularly significant because they report the properties of an atomically clean surface in a

defined plane of a perfect crystal structure. Measurements have been plagued for more than

a century by surface contamination (the charge on the surface rapidly attracts charged ‘dirt’

in the solution). Different planes in a crystal obviously have different structures and charge

distributions (in most cases) [42]. Thus they have different electrical properties and different

EDLs. The plane must then be defined experimentally if results are to be reproducible, and

that plane must be used in the corresponding theory.

The diameters of cation, anion, and water we use are d+ = 2.66, d− = 4.69, and dw = 2.8

Å [42, 44], respectively. The potential shift at the interface is -0.97 V [16, 42] so we define

φ0 = φ0−0.97. Since the dielectric constant of various ionic liquids is about 15.5 on average

[45], we use the permittivity function

ǫ(φ0) =

[
(78.4− 15.5) exp(−(φ0 + 0.97)2

2 · 0.12 ) + 15.5

]
ǫ0 (13)

as a normal distribution of φ0 with the mean value -0.97 V and the standard deviation 0.1

V at the experimental temperature 25 ◦C.

Figure 1 presents the PBik curves Cvi(φ0) from eq 10 using the spline method described

in Appendix C fit to the experimental data (symbols) of aqueous KPF6|Ag double layers.

The bulk concentrations are 2.5, 10, 40, and 100 mM. These curves are nearly symmetrical

about φ0 = 0.97 (φ0 = 0) with respect to the surface potential φ0 while the diameters of

K+ (v+/v = 0.39 in eq 4) and PF−
6 (v−/v = 2.15) are very different. The steric interactions

among K+, PF−
6 , and water (vw/v = 0.46) play a significant role in the inner-layer capacity

of ions in EDL [42]. The asymmetry (i.e., inequality) in size of K+, PF−
6 , and water produces

the asymmetry of the empirical steric potential Ŝ (shown in Figure 2). On the other hand,

the analytical steric potential S0 profiles are nearly symmetrical (shown in Figure 3). The

DC curves in φ0 and also in S0 are nearly symmetrical.

The steric energy at φ0 = −1.5 V (−ŜK+kBT ) in Figure 2 is larger than that at −0.5 V
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FIG. 1: PBik fitting curves by eq 10 to the DC experimental data [42] (symbols) of aqueous

KPF6|Ag double layers at various concentrations.

(−ŜPF−

6
kBT ), for example, because it is more crowded near the electrode for smaller K+ ions

at −1.5 V than for larger PF−
6 ions at −0.5 V. The effective width of the ‘EDL capacitor’ is

larger for larger ions [5, 8]. Therefore, the change of −ŜPF−

6
kBT (the right wing in Figure

2) is larger than that of −ŜK+kBT (the left wing) because of more room for rearranging of

ions and water when the capacitance decreases from a global maximum in Figure 1 to lower

values as the voltage varies (from small to large). Ŝ also varies with the bulk concentration

cb of KPF6 as shown in Figure 2.

Figure 4 shows that the symmetry of Figure 1 is broken when we slightly change the

diameters from d+ = 2.66 to d+ = 3 and d− = 4.69 to d− = 4 Å. The same Ŝ(φ0) in formula

10 is used in both cases. The results show that Ŝ(φ0) is very sensitive to ionic diameter due

to the factor vi
v
− 1 in eq 9. In this work, Ŝ(φ0) is empirical, strongly nonlinear in φ0, and

highly sensitive to the sizes of ions and water. It also depends on the bulk concentrations

of ions and water. It will be interesting to develop analytical Ŝ(φ0) in future studies.

We next present results using eq 7 for ionic liquids (K = 2) of equal-sized ions (vi = v)

with the dielectric constant ǫion = 10 at T = 25 ◦C. The results demonstrate that the

analytical formula 7 can successfully describe several important properties of differential
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FIG. 2: Asymmetry of the steric energies −ŜkBT ≈ − vi
v S0kBT of K+ and PF−

6 in size (vi) with

respective to φ0 about φ0 = −0.97 V.

capacitance in electrical double layers. The success is possible because of the treatment of

steric effects of molecules (including molecular water) within the mean-field framework.

Figure 5 shows two sets of DC curves Cv(φ0) for 1:1 ionic liquids with (a) cb = 0.01, 0.05,

0.1, 0.5, 1, 2 M at fixed d± = 8 Å and (b) d± = 2, 4, 6, 8, 14, 20 Å at fixed cb = 0.02 M,

where the capacitance Cv is scaled by the Debye capacitance CD and the surface potential

φ0 scaled by VT . Figures 5a and 5b clearly demonstrate the transitions of DC curves Cv(φ0)

from bell shape (with large cb and d±, respectively) to camel shape (medium cb and d±)

then to U shape (small cb and d±) as predicted by eq 12.

Figure 6 illustrates the main properties of our theory by showing three curves of the first

derivative C ′
v(φ0) (Appendix E) for a 1:1 ionic liquid with vcb = (a) 0.323, (b) 0.0161, and

(c) 0.0016. Curves a, b, and c correspond to Curves 1, 2, and 3 in Figure 5a. Curve 1 is

bell-shaped because vcb = 0.323 is large for large ions v or large concentration cb as shown

in Point (viii) above. Curves 2 and 3 are camel and U-shaped because vcb = 0.0161 and

vcb = 0.0016 are medium and small as shown in Points (vii) and (vi), respectively.

Curves a, b, and c show three sets of reflection voltages (φ∗∗
0 ) {1.38}, {2.87, 6.82}, and

{5.14, 9.19} (marked by circles), which yield {1.22}, {0.69, 1.65}, and {0.8, 1.43} for α in
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FIG. 3: Symmetry of the steric potential S0 of aqueous KPF6|Ag double layers.

eq 12, respectively. The critical voltages (φ∗
0) are 0, 4.95, and 7.34 (squares). Voltages are

all in VT . For Curve b (Curve 2 in Figure 5a), for example, φ∗
0 = 0, 4.95; φ∗∗

0 = 2.87, 6.82;

and α = 0.69, 1.65. The ionic liquid with vcb = 0.0161 attains its maximal capacitance at

φ∗
0 = 4.95 ≈ φd

0 = − ln(vcb) = 4.13.

The critical voltage φ∗
0 = 4.95 determines a critical steric potential S∗

0 of the ionic liquid

that yields the maximal capacitance

Cmax
v (φ∗

0) =
ecbC [exp(φ∗

0/VT )− exp(−φ∗
0/VT )]

exp(−S∗
0)
√
−S∗

0

= 2.5CD (14)

shown in Figure 5a and produces a condensed layer [5, 8] of ions packed along the electrode

due to the excluded volume v. When φ0 increases from φ∗
0 to larger values (φ0 > 4.95), the

capacitance Cv(φ0) decreases from Cmax
v (φ∗

0), i.e.,

Cv(φ0)

Cmax
v (φ∗

0)
=

[exp(φ0/VT )− exp(−φ0/VT )] exp(−S∗
0)
√

−S∗
0

[exp(φ∗
0/VT )− exp(−φ∗

0/VT )] exp(−S0)
√
−S0

< 1,

exp(φ0/VT )− exp(−φ0/VT )

exp(φ∗
0/VT )− exp(−φ∗

0/VT )
<

exp(−S0)
√
−S0

exp(−S∗
0)
√
−S∗

0

. (15)

Both sides of the inequality 15 are positive and increasing with φ0. The inequality hence

shows that the steric potential S0 (crowding energies) becomes more dominant than the
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FIG. 4: Broken symmetry of Figure 1 by slight changes of the diameters d±.
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FIG. 5: Transition of DC curves Cv(φ0) for 1:1 ionic liquids by eq 12 from bell shape (Curve 1, for

example) with large (a) cb and (b) d± to camel shape (Curve 2) with medium cb and d± then to U

(Curve 3) shape with small cb and d±.

electrical potential φ0 (charging energies) when the surface potential φ0 is greater than the

critical voltage φ∗
0. This implies that the concentration

c−(φ0) = cb− exp (−β−φ0 + S0) (16)

of packed ions (anions) decreases with φ0 because S0 is more negative yielding larger steric
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FIG. 6: Critical (squares) and inflection (circles) voltages determined approximately, i.e., C ′
v(φ

∗
0) =

0 and C ′′
v (φ

∗∗
0 ) = 0, respectively, by the curves of C ′

v(φ0)/CD with vcb = (a) 0.323 (Curve 1 in

Figure 5a), (b) 0.0161 (Curve 2), and (c) 0.0016 (Curve 3).

(positive) energies −S0kBT for more anions to leave the packed region, i.e., the capacitance

Cv(φ0) decreases with φ0 as shown in Figure 5a.

The inflection voltage φ∗∗
0 = 6.82 describes the saturation property of the ionic liquid

at even greater φ0 because ions have physical volumes. The steric potential S0 = S(φ0)

is non-positive and bounded, i.e., there exists Smin
0 = ln

Γmin
0

Γb such that Smin
0 ≤ S0 ≤ 0,

Γmin
0 = 1− vcmax

− , and cmax
− < 1

v
(Appendix A). From eq 16, we have

lim
φ0→φmax

0

c−(φ0) = cb− exp
(
−β−φ

max
0 + Smin

0

)
= cmax

− , (17)

a saturating concentration with the limits φmax
0 and Smin

0 to which the electrical and steric

potentials of the system cannot surpass. This implies that the DC curve Cv(φ0) approaches

a flat line shown in Figure 5a as φ0 → φmax
0 . The curve changes its curvature at φ∗∗

0 = 6.82

from concave down in 2.87 < φ0 < 6.82 to concave up in 6.82 < φ0 ≤ φmax
0 so anions can

saturate at cmax
− having balanced electrical (β−φ

max
0 kBT ) and steric (−Smin

0 kBT ) energies.

The electrical and steric energies at φ0 = 20VT in Figure 5a are −20kBT and 15.87kBT ,

respectively. Steric energy is as important as electrical energy in this condition. These two
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FIG. 7: Asymmetry of DC curves for charge-asymmetric ions in (a) 2:1, 1:2 and (b) 4:1, 1:4 ionic

liquids at various concentrations and fixed d± = 4 Å.

energies are in fact competing with each other in the high field (packed) region similar to

the space/charge competition in the binding site of biological ion channels crowded with

ions [29, 48–50].

Finally, Figure 7 shows that DC curves are asymmetric for ions with unequal charges in

(a) 2:1, 1:2 and (b) 4:1, 1:4 ionic liquids at various concentrations and fixed d± = 4 Å. The

more the charge difference is between ions (4:1 vs 2:1 for example), the larger the difference

is between global maximal and minimal capacitance (800 vs 400 for Cv in Figures 7b and 7a).

The maximal capacitance doubles (800 vs 400) if the charge of ions doubles (4:1 vs 2:1).

Comparing green and red curves in Figure 7a shows the underlying qualitative principle.

The more the concentration of an ionic liquid is (cb+ = 1 vs cb+ = 0.001), the smaller the

capacitance difference is and the narrower between two peaks of a curve (green vs red).

4. CONCLUSION

We propose and analyze the differential capacitance (DC) using a formula derived from

the Poisson-Bikerman theory. The formula accounts for varying steric energies of ions and

water in aqueous electrolytes and in ionic liquids (without water) with different sizes, charges,

concentrations, and compositions. The formula reduces to its classical or contemporary

counterpart when the steric energy vanishes or the ionic size is uniform, displaying the

degenerate nature of models that assume equal diameters, or no volume at all, or no volume
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for water molecules. The analysis shows that the differential capacitance of electrolytes

near highly electrified interfaces is determined by the interplay between electrical and steric

energies of ions and water.

The differential capacitance is characterized by critical and inflection voltages that are

defined by a sum of particle volume fractions. It is important to note that the sum is

more general than the mean volume fraction of equal-sized ions proposed in earlier work.

The sum of particle volumes in the present paper includes any arbitrary species of ions

and water with any shapes and volumes. The critical and inflection voltages describe the

transition mechanism of DC curves changing from (i) bell shape (for large values of ionic

size or concentration) to (ii) (double-humped Bactrian) camel shape (for medium value) and

then to (iii) U shape (for small values). The critical voltage also shows that the steric energy

of ions and water becomes more important than the electrical energy of ions in the adsorbed

region of strongly electrified interfaces. The inflection voltage also describes the saturation

property of ions and water in the adsorbed region as the applied voltage of the electrolyte

system reaches to its physical maximum.

Numerical results illustrate the transition of shapes of DC curves and the symmetry of

experimental DC data for aqueous KPF6 electrolyte solution, which results from delicate

interactions of asymmetric ions and water in size. The asymmetry of DC curves come from

the unequal charge of ions of the same size; or it can come from the unequal size of ions of

the same charge. The more the charge difference is between ions, the larger the difference

is between global maximal and minimal capacitance.

5. APPENDICES

Appendix A. We show here the fundamental difference between classical Poisson-

Boltzmann and present Poisson-Bikerman theories that yield Boltzmann and Fermi dis-

tributions of particles, respectively. Substituting eqs 2 and 3 into eq 4 and rearranging

terms give

[ci(r)]
v =

[cbi exp(−βiφ(r))]
v

(Γb)vi

(
1−

K+1∑

j 6=i

vjcj(r)− vici

)vi

[ci(r)]
v/vi + αivici(r) = αi

(
1−

K+1∑

j 6=i

vjcj(r)

)
,
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where αi = [cbi exp(−βiφ(r))]
v/vi/Γb for i = 1, · · · , K + 1. Define f(t) = tv/vi + αivit which

is an increasing function and satisfies

f(ci(r)) = αi

(
1−

K+1∑

j 6=i

vjcj(r)

)
< αi = αivi · (1/vi) < f(1/vi).

Therefore, ci(r) are bounded from above (Fermi distributions), i.e., ci(r) cannot exceed the

maximum value 1/vi for any arbitrary (or even infinite) potential φ at any location r in the

domain Ω.

In these mean-field Fermi distributions, it is impossible for a volume vi to be completely

filled with ions, i.e., it is impossible to have vici(r) = 1 (and thus Γ(r) = 1 − vici(r) = 0 )

since that would make S(r) = ln Γ(r)
Γb = −∞ and hence ci(r) = 0, a contradiction. Therefore,

we must include the void as if it were a separate species if we treat ions and water having

volumes in a model. This is a critical property distinguishing our theory from others that

do not consider explicitly the steric potential S(r) with the factor vi/v and the variable

volume vi [29]. The steric potential is consistent with the classical theory of van der Waals

in molecular physics [29], which describes nonbond interactions between any pair of atoms

as a distance-dependent potential such as the Lennard-Jones potential that cannot have zero

distance between the pair [29].

In general, we have Γ(r) < Γb (or S(r) < 0) when φ(r) 6= 0 since cbi exp(−βiφ(r)) > cbi

for −βiφ(r) > 0 meaning that negative (positive) φ(r) at r attracts positive (negative) ions

of type i to r and yields ci(r) > cbi . We also obtain Boltzmann distributions that diverge

if −βiφ(r) → ∞ at some r for βi 6= 0 (ions not water), i.e., lim−βiφ(r)→∞ cbi exp(−βiφ(r) +

vi
v
S(r)) = ∞ when S(r) = 0, i.e., as vi → 0 for all i = 1, · · · , K + 1 (all ions and water are

treated without volumes).

It is important to note that we discovered the importance of the ‘extra volume’ when we

started treating water as a molecule with definite volume. We could not compute our model

without including the extra volume [35]. When water was described in a primitive way as a

uniform background dielectric, the computation was not so severely affected. It is possible

that workers using the simple primitive model [28, 43, 51] of classical fluid theory may have

been frustrated by similar unresolved problems.

Appendix B. We now derive eq 7 for equal-sized ions and water, which is a key formula

in the present work and displays a novel and explicit relationship between electrostatic (the

numerator term) and steric (denominator) potentials. From eqs 5 and 8 with a change of
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variable u = dφ/dx, we have

−ǫudu = ρdφ =
K+1∑

i=1

qic
b
i exp(−βiφ+ S)dφ

= exp(S)

K+1∑

i=1

qic
b
i exp(−βiφ)dφ (B1)

=

∑K+1
i=1 qic

b
i exp(−βiφ)

Γb +
∑K+1

i=1 vicbi exp(−βiφ)
dφ (B2)

Introducing w = Γb +
∑K+1

i=1 vic
b
i exp(−βiφ) and using

dw

dφ
= v

K+1∑

i=1

−βic
b
i exp(−βiφ) (B3)

yield

−
∫

ǫudu =

∫ ∑K+1
i=1 qic

b
i exp(−βiφ)

w
dφ =

∫ −kBT/v

w
dw

−ǫu2

2
=

−kBT

v
lnw + c,

where c = 0 since φ(∞) = 0 implying that w = 1 and u(∞) = 0, i.e., the electric field

vanishes at ∞. We thus have

u =
dφ

dx
= ±

√√√√2kBT

ǫv
ln

[
Γb +

K+1∑

i=1

vicbi exp(−βiφ)

]
.

The boundary condition −ǫφ′(0) = −ǫu0 = σ implies that u0 < 0 if σ > 0 and u0 > 0 if

σ < 0 and hence ± = ∓sign(σ). We thus obtain the formula 7 by eq 6, eq 8, and

Cv = ∓ǫ
d

dφ0





(
2kBT

ǫv
ln

[
Γb +

K+1∑

i=1

vic
b
i exp(−βiφ0)

])1/2




= ±ǫ

√
kBT

2ǫv

(
ln

[
Γb +

K+1∑

i=1

vic
b
i exp(−βiφ0)

])−1/2

∑K+1
i=1 βivic

b
i exp(−βiφ0)

Γb +
∑K+1

i=1 vicbi exp(−βiφ0)
. (B4)

The equal size assumption of particles (vi
v
= 1) is a key to derive eq 7 as shown in eqs B1,

B2 by 8, B3, and B4 to 7 by 8.

Appendix C. The differential capacitance eq 10 is for any arbitrary species of ions and

water with any shapes and volumes. The steric term Ŝ in eq 10 is a nonlinear function of

the surface potential φ0 for which we cannot obtain an explicit formula.
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We approximately determine Ŝ by the following fitting method to the experimental data

Cexp(φ0,k) of Valette [42]. Setting Cvi(φ0,k) = Cexp(φ0,k) yields Ŝk := Ŝ(φ0,k), i.e., n + 1

values of Ŝ at φ0,0 < φ0,1 < · · · < φ0,n =: [a, b] for k = 0, . . . , n. We then use the cubic spline

method to find a function s(φ0) at these n + 1 interpolation points such that

sk = Ŝk, k = 0, . . . , n

s
(j)
k− = s

(j)
k+, k = 1, . . . , n− 1, j = 0, 1, 2,

where sk := s(φ0,k) and s
(j)
k± is the jth derivative of s(φ0) with respect to φ0 at φ0,k± :=

lim∆φ0→0 φ0,k ±∆φ0 . Introducing the notation Mk := s
(2)
k = s

(2)
k±, the spline function

s(φ0) =
(φ0,k+1 − φ0)

3Mk + (φ0 − φ0,k)
3Mk+1

6hk
+

(φ0,k+1 − φ0)Ŝk + (φ0 − φ0,k)Ŝk+1

hk

− hk

6
[(φ0,k+1 − φ0)Mk + (φ0 − φ0,k)Mk+1]

and its second derivative s(2)(φ0) are continuous functions on the interval [a, b], where

k = 0, 1, . . . , n − 1, φ0 ∈ [φ0,k, φ0,k+1], and hk = φ0,k+1 − φ0,k. To determine the unknown

constants M0, · · · ,Mn, we impose s(1)(φ0) to be continuous in [a, b] as well, i.e.,

hk−1

6
Mk−1 +

hk + hk−1

3
Mk +

hk

6
Mk+1 =

Ŝk+1 − Ŝk

hk
− Ŝk − Ŝk−1

hk−1

s
(1)
0 = 0, s(1)n = 0.

for k = 1, . . . , n− 1.

Appendix D. This appendix shows that the DC formula 7 derived from eq 1 is more

general than that from the uniform lattice model. The sum of particle volume fractions

γ̃ =
∑K+1

i=1 viNi/V =
∑K+1

i=1 vic
b
i for arbitrary species of ions and water with any shapes and

volumes is also more general than the mean fraction formulas of Kornyshev (γ = N/N) [6]

and Kilic et al. (γ = 2vcb) [5] with two species ions of the same size.

As a special case, formula 7 reduces to the Bikerman-Freise formula [8]

CBF =
CD cosh( φ0

2VT
)
√

2γ sinh2( φ0

2VT
)

(1 + 2γ sinh2 φ0

2VT
)
√

ln(1 + 2γ sinh2 φ0

2VT
)

also derived by Kornyshev (eq 20 in ref 6) and Kilic et al. [5] if we replace the mean fraction

γ with

γ̃ =
(v1N1 + v2N2)

V
=

v(N1 +N2)

(vN)
=

N

N
= 2vcb. (D1)
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Here N = N1+N2 is the total number of cations N1 and anions N2 in the bulk, N is the total

number of uniform lattice sites [6], v = 8 · 3v
4π

is the volume of each site (assuming a primitive

cubic system), K = 2, q1 = −q2 = e, v1 = v2 = v 6= 0, cb = cb1 = cb2, and CD =
√

2ǫe2cb

kBT
is

the Debye capacitance. Note that γ̃ = γ and γ̃ < γ for two different volumes v and v of two

equal-sized ions occupying their sites without and with voids, respectively, because v > v.

We assume v1 = v2 = v in the general γ̃ as that in the special γ.

Since probabilities have to sum up to 1, we have

1 = Γ + v(c1 + c2)

= exp(S)Γb + vcb(e
− φ0

VT + e
φ0
VT ) exp(S)

= exp(S)(1− 2vcb + 2vcb cosh
φ0

VT
).

This yields the key relation

exp(−S) = 1− γ + γ cosh(
φ0

VT
) = 1 + 2γ sinh2 φ0

2VT
. (D2)

Thus,

Cv =
±C

∑2
i=1 qic

b
i exp(−βiφ0)

exp(−S0) ·
√
−S0

=
±
√

ǫv
2kBT

· ecb(exp(−φ0/VT )− exp(φ0/VT ))

(1 + 2γ sinh2 φ0

2VT
)
√
ln(1 + 2γ sinh2 φ0

2VT
)

=
±
√

2ǫe2cb

kBT
·
√
vcb

2
(exp(−φ0/VT )− exp(φ0/VT ))

(1 + 2γ sinh2 φ0

2VT
)
√

ln(1 + 2γ sinh2 φ0

2VT
)

=
∓CD

√
γ sinh( φ0

VT
)

√
2(1 + 2γ sinh2 φ0

2VT
)
√
ln(1 + 2γ sinh2 φ0

2VT
)
,

and we have the desired result Cv = CBF and the Gouy-Chapman law limv→0Cv = CGC =

CD cosh( φ0

2VT
) [6].

Appendix E. Figure 6 illustrates three curves of the first derivative C ′
v(φ0) of the DC

Cv(φ0) in eq 7 with respect to the surface potential φ0. Those curves yield critical (φ∗
0)

and inflection (φ∗∗
0 ) voltages which describe the transition, space/charge competition, and

saturation properties of ions and water in the condensed layer of EDLs. We explain how to

obtain those curves and voltages.



21

Differentiating Cv(φ0) yields the numerator part

[−β1 exp(−β1φ0) + β2 exp(β2φ0)] exp(−S0)
√
−S0

− [exp(−β1φ0)− exp(β2φ0)]

[
exp(−S0)

√
−S0 +

1

2
(−S0)

−1/2 exp(−S0)

]
d(−S0)

dφ0
.

Setting this expression to zero and omitting all the intermediate algebra, we obtain the

equation

−S0

[(
1− 2vcb

) (
t+ t−1

)
+ 4vcb

]
− vcb

(
t− t−1

)2
/2 = 0

for finding critical voltages, i.e., C ′
v(φ

∗
0) = 0, where t = exp(−β1φ0). If φ0 = 0, then

1 = exp(S0)
[
Γb + 2vcb

]
= exp(S0) by eqs 2 and 8, S0 = 0, and C ′

v(0) = 0. Therefore, the

DC curve Cv(φ0) has a local minimum or maximum at φ∗
0 = 0. If v = 0 as in the Gouy-

Chapman theory, then Cv(φ0) = CD cosh( φ0

2VT
) (Appendix D) is of U shape and has a global

minimum at φ∗
0 = 0. If 0 < vcb < 1, we can numerically draw the graph of C ′

v(φ0) as shown

in Figure 6, then get two inflection voltages ±φ∗∗
0 , i.e., C ′′

v (±φ∗∗
0 ) = 0, and thus obtain the

camel shape of DC curves as shown in Figures 5a and 5b. If vcb → 1, then φ∗∗
0 → 0 = φ∗

0 by

eq 12, i.e., the inflection voltage does not exist, C ′
v(φ0) has only one root φ∗

0, and the curve

is of bell shape as shown in Figure 5a for the case of vcb = 0.323 with v = π44/3 Å3 and

cb = 2 M = 2/(1660.6 Å3), for example.
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