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 Abstract 

 

The Maxwell equations of electrodynamics describe electrical and magnetic forces with great 
accuracy in the vacuum of space. But the equations of electrodynamics applied to material 
systems are usually written in a way that obscures their accuracy. The usual formulation of the 
Maxwell equations includes a dielectric constant as a single real number that grossly over-
approximates the actual properties of matter, particularly liquid matter so important in 
applications of electrodynamics to biology and chemistry. 

We rewrite two Maxwell equations here to make clear the precision of the Maxwell equations in 
the presence or absence of matter. We discuss and derive two well known corollaries that are as 
universal and precise as the Maxwell equations themselves: (1) a continuity equation that relates 
charge and flux and (2) a conservation equation in which total current never accumulates at all. 
The total current is the right hand side of the Ampere-Maxwell law. Total current is perfectly 
incompressible. It is conserved exactly, everywhere and at every time, independent of the 
microphysics of charge conduction. The total current combines the flux of charges and the 
ethereal current 𝜀𝑜 𝜕𝐄 𝜕𝑡⁄ . The ethereal current 𝜀𝑜 𝜕𝐄 𝜕𝑡⁄  exists everywhere, including the 
interior of atoms, because it is a property of space, not matter. The ethereal current exists, and 
thus flows, in a vacuum devoid of mass. The ethereal current is a consequence of the relativistic 
(Lorentz) invariance of charge. Charge does not change even if it moves at speeds approaching 
the velocity of light.  

Total current has properties quite distinct from flux of mass because of the ethereal current. 
Most strikingly, in the one dimensional unbranched systems of electronic circuits and biological 
ion channels, the total current is independent of location, even if the flux of charges varies a great 
deal. Indeed, the Maxwell equations—and thus conservation of total current—act as a perfect 
low pass spatial filter, converting the infinite variation of (the Brownian model of) thermal motion 
of charges to the zero variation of the total current. This action has important effects on the 
properties expected current noise in ion channels and shot noise in two terminal electronic 
devices. 
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Introduction 

The Maxwell equations of electrodynamics describe electrical and magnetic forces with great 
accuracy in the vacuum between stars. But they are usually written in a way that obscures their 
accuracy when applied to matter, particularly liquid matter so important in applications of 
electrodynamics to biology and chemistry. The usual material formulation seems to make the 
Maxwell equations immaterial and imprecise because it depends on a dielectric constant that is 
a gross over approximation to the actual properties of matter. We rewrite two Maxwell equations 
here to show at first glance that they are material and universal, in the presence or absence of 
matter.  

Theory 

The first Maxwell equation shows how charge creates the electric field. It is classically written 
in the presence of matter using an over approximated dielectric constant 𝜀𝑟 

𝜀𝑟𝜀𝑜𝐝𝐢𝐯 𝐄 = 𝝆𝒇𝒓𝒆𝒆 (1) 

𝐄 is the electric field. 𝜀𝑜 is the electrical constant, the permittivity of free space. Equation (1) 
helps define an ideal dielectric, in which 𝜀𝑟 is the dielectric constant, a single real number. 
Generalizations of the dielectric constant (to a complex or time dependent function(al)) require 
a rewriting of the Maxwell equations that describes how 𝝆𝒇𝒓𝒆𝒆 varies as 𝐄 changes. 𝝆𝑸 is the 

charge density of all types of charge, no matter how brief or transient are its movements. 𝝆𝒇𝒓𝒆𝒆 is 

the density of charge, after the ideal dielectric term (1 − 𝜀𝑟)𝝆𝑸 is subtracted from the total 

charge  
𝝆𝒇𝒓𝒆𝒆 = 𝜀𝑟𝝆𝑸  (2) 

𝝆𝑸 is much less than 𝝆𝒇𝒓𝒆𝒆 in water solutions, for example, where 𝜀𝑟(H2 O) ≅ 80 because most of 

the free charge is screened by the ideal dielectric constant 𝜀𝑟. Note that the intuitive relation 
between 𝐉𝒇𝒓𝒆𝒆 and  𝐉𝑸 is not true 

𝐉𝒇𝒓𝒆𝒆 ≠ 𝜀𝑟 𝐉𝑸 (3) 

as shown by eq. (18). 

The electric field has strikingly different properties on charge and current in the vacuum and 
in matter but they are lumped into one variable in the classical treatment, the dielectric constant 
𝜀𝑟. This economy of notation obscures physical reality. Lumping joins (1) polarization of material 
charge that has properties as complex as the motions of matter itself (2) the polarization of space 
that is exactly simple. Polarization of space is described by a single time derivative and an 
unchanging constant 𝜀𝑜 within the accuracy of the Maxwell equations themselves. Polarization 
of matter is far too complex to summarize in a single treatment as can be verified by a search of 
the scientific literature on the subject. The literature of nonlinear optics, semiconductor physics 
and impedance spectroscopy in general are explicit statements of that complexity and involve a 
substantial fraction of modern work on charge movement in matter. 

A slight reformulation separates the material properties—more precisely the properties of 
charge with mass—from the properties of space. The latter are entirely independent of matter 
and arise from the relativistic properties of charge. Charge (unlike time, distance, and mass) is 
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independent of velocity even when charge moves at velocities approaching the speed of light. 
Textbooks on electrodynamics and relativity discuss this issue.  

𝜀𝑟𝜀𝑜 =   (𝜀𝑟 − 1)𝜀𝑜 
⏞      
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙

  +    𝜀𝑜    
⏞

𝐸𝑡ℎ𝑒𝑟𝑒𝑎𝑙

  (4) 

The properties of space are named ‘ethereal’ because they seem to include a flux of charge (that 
is a source for the curl of the magnetic field 𝐁) in a place—that Maxwell called an ‘ether’—where 
no mass or charge exists. See the ethereal term in eq. (6) ). Maxwell’s eq. (1) becomes 

 𝐝𝐢𝐯 (𝜀𝑟 − 1)𝜀𝑜𝐄 
⏞          

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙

  +    𝐝𝐢𝐯 𝜀𝑜𝐄 ⏞    
𝐸𝑡ℎ𝑒𝑟𝑒𝑎𝑙

 = 𝝆𝒇𝒓𝒆𝒆 (5) 

The second Maxwell equation is the Ampere-Maxwell law showing how the flux 𝐉𝒇𝒓𝒆𝒆 
 of free 

charge 𝝆𝒇𝒓𝒆𝒆 sums with the current of an ideal dielectric (𝜀𝑟 − 1)𝜀𝑜 𝜕𝐄 𝜕𝑡⁄  and the ethereal 
current 𝜀𝑜 𝜕𝐄 𝜕𝑡⁄  to create a magnetic field 𝐁.  

𝟏

𝜇0
𝐜𝐮𝐫𝐥 𝐁 = 𝐉𝒇𝒓𝒆𝒆 

+ 𝜀𝑟𝜀𝑜 𝜕𝐄 𝜕𝑡 ⁄ =     𝐉𝒇𝒓𝒆𝒆 
⏞    
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙

+   (𝜀𝑟 − 1)𝜀𝑜 𝜕𝐄 𝜕𝑡⁄    ⏞            
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙

+   𝜀𝑜 𝜕𝐄 𝜕𝑡⁄   ⏞      
𝐸𝑡ℎ𝑒𝑟𝑒𝑎𝑙

 
 (6) 

𝜇0 is the magnetic constant, the magnetic ‘permeability’. 

The two Maxwell equations can be combined by taking the divergence of eq. (6). The 
divergence of the curl of any function is always zero, as proven in every textbook of vector algebra 
and most textbooks of electrodynamics, so we have  

𝐝𝐢𝐯 (
𝟏

𝜇0
𝐜𝐮𝐫𝐥 𝐁) = 0 =  𝐝𝐢𝐯 (   𝐉𝒇𝒓𝒆𝒆 

⏞  
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙

+    (𝜀𝑟 − 1)𝜀𝑜 𝜕𝐄 𝜕𝑡⁄   ⏞            
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙

+  𝜀𝑜 𝜕𝐄 𝜕𝑡⁄  ⏞      
𝐸𝑡ℎ𝑒𝑟𝑒𝑎𝑙

 
) (7) 

The corollary called the continuity equation relates flux and charge and is derived by combining 
eq (5) and (7), then interchanging the operations of divergence and time differentiation. 

𝐝𝐢𝐯 ( 𝟏
𝜇0
𝐜𝐮𝐫𝐥 𝐁) = 𝐝𝐢𝐯 (𝐉𝒇𝒓𝒆𝒆 

+ 𝜀𝑟𝜀𝑜 𝜕𝐄 𝜕𝑡⁄ ) = 𝐝𝐢𝐯 𝐉𝒇𝒓𝒆𝒆 + 𝜕𝝆𝒇𝒓𝒆𝒆 𝜕𝑡⁄ = 0     (8) 

giving 
𝐝𝐢𝐯 𝐉𝒇𝒓𝒆𝒆 + 𝜕𝝆𝒇𝒓𝒆𝒆 𝜕𝑡⁄ = 0   (9) 

The corollary called conservation of total current 𝐉𝒕𝒐𝒕𝒂𝒍 is a restatement of eq. (7).  

𝐝𝐢𝐯 𝐉𝒕𝒐𝒕𝒂𝒍  = 0  (10) 

𝐉𝒕𝒐𝒕𝒂𝒍  ≜ (   𝐉𝒇𝒓𝒆𝒆 
⏞  
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙

+   (𝜀𝑟 − 1)𝜀𝑜 𝜕𝐄 𝜕𝑡⁄   ⏞            
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙

+   𝜀𝑜 𝜕𝐄 𝜕𝑡⁄   ⏞      
𝐸𝑡ℎ𝑒𝑟𝑒𝑎𝑙

 
) (11) 
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Note that 𝐉𝒕𝒐𝒕𝒂𝒍 is perfectly incompressible. It cannot accumulate anywhere at any time or in 
any condition in which the Maxwell equations apply. 

𝐝𝐢𝐯 (   𝐉𝒇𝒓𝒆𝒆 
⏞  
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙

+   (𝜀𝑟 − 1)𝜀𝑜 𝜕𝐄 𝜕𝑡⁄   ⏞            
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙

+   𝜀𝑜 𝜕𝐄 𝜕𝑡⁄   ⏞      
𝐸𝑡ℎ𝑒𝑟𝑒𝑎𝑙

 
)

⏞                                
𝐉𝒕𝒐𝒕𝒂𝒍

= 0  (12) 

The flux of free charge 𝐉𝒇𝒓𝒆𝒆 can accumulate. As it accumulates, 𝝆𝒇𝒓𝒆𝒆 is created, according to 

eq. (9) , the continuity equation. The flux of charge 𝐉𝑸 can also accumulate. As it accumulates, it 

creates 𝝆𝑸 according to eq. (23) , the appropriate continuity equation. Only 𝐉𝒕𝒐𝒕𝒂𝒍 cannot 

accumulate. 

The dielectric constant 𝜀𝑟 is used traditionally to define perfect dielectrics, but those 
traditions arose in the 1880’s (if not earlier) when knowledge of dielectrics was limited. In 
applications involving the liquid state, including semiconductors, electrochemistry and biology, 
the material response to the electric field depends on many properties of the system and is far 
too complex to be described even approximately by a single real number dielectric constant 𝜀𝑟. 
Even in crystalline solids, the response of charge to the electric field has complex dependence on 
time that cannot be captured by a single real dielectric constant 𝜀𝑟 in the time range used in 
electronics applications, say times < 10−8 sec. A wide range of optical applications of 
electrodynamics involve responses of matter (mostly electrons) to the electric field that are too 
nonlinear to be described by the traditional formulation. 

Results 

A revised formulation of the Maxwell equations focuses attention on the physics of charge 
movement in response to an electric field. The underlying physics is displayed more vividly if the 
charge and current of a perfect dielectric are not hidden in the definition of these dependent 
variables, but rather shown explicitly [1-10], so imperfect dielectric and polarization properties 
can be more easily described [6, 8, 10], in my opinion. 

The revision describes all material charge—that is to say, all charge with mass, no matter 
how transient its movement—in one variable 𝝆𝑸. The flux of that charge is 𝐉𝑸. That is to say, 𝐉𝑸 

is the flux of charge with mass, no matter how small or transient its movements. The component 
of that charge that describes an ideal dielectric is included here in the total material charge 𝝆𝑸 

and its flux 𝐉𝑸. To complete the theory, a description is needed of how material charge moves in 

response to a change in the electric field: a theory of polarization, ideal and nonideal is needed 
[10] as described in the Discussion Section. In fact, any version of the Maxwell equations needs 
such a description if it is to fit experimental data of great interest in many areas of science. The 
revised version of the Maxwell equations makes that need more explicit and perhaps lessens the 
temptations to ignore the important nonideal properties of polarization and dielectrics in the real 
world. 
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A revised version of Maxwell’s first equation involves only one material property, the charge 
density 𝝆𝑸. 

   𝐝𝐢𝐯 𝜀𝑜𝐄  ⏞      
𝐸𝑡ℎ𝑒𝑟𝑒𝑎𝑙

 =    𝝆𝑸  ⏞
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙

 (13) 

The revised version of Maxwell’s second equation, the Ampere Maxwell law, is 

𝟏

𝜇0
𝐜𝐮𝐫𝐥 𝐁 = 𝐉𝒕𝒐𝒕𝒂𝒍 (14) 

Indeed, eq. (14) can serve as a mathematical definition of total current 𝐉𝒕𝒐𝒕𝒂𝒍 although many 
have avoided this definition (in my opinion) so they did not have to call 𝜀𝑜 𝜕𝐄 𝜕𝑡⁄  a current.  

𝐉𝒕𝒐𝒕𝒂𝒍 =   𝐉𝑸 
⏞

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙

 +  𝜀𝑜 𝜕𝐄 𝜕𝑡⁄  ⏞      
𝐸𝑡ℎ𝑒𝑟𝑒𝑎𝑙

 
 (15) 

𝟏

𝜇0
𝐜𝐮𝐫𝐥 𝐁 =  (   𝐉𝑸 

⏞
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙

 +  𝜀𝑜 𝜕𝐄 𝜕𝑡⁄  ⏞      
𝐸𝑡ℎ𝑒𝑟𝑒𝑎𝑙

 
)

⏞                
𝐉𝒕𝒐𝒕𝒂𝒍

 (16) 

The ethereal current exists in a vacuum without mass, and thus without flow of charge, a 
fact that neither Maxwell nor the rest of us have found easy to digest. The ethereal current is in 
fact a property of space, not matter, as shown by the theory of relativity arising from the 
remarkable fact that charge—unlike mass, length, and time—does not change as velocities 
approach the speed of light. 

Eq. (15) and eq. (11) are alternate descriptions of the right hand side of Maxwell’s version 
of Ampere’s law, so   

  𝐉𝑸 
⏞

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙

 +  𝜀𝑜 𝜕𝐄 𝜕𝑡⁄  ⏞      
𝐸𝑡ℎ𝑒𝑟𝑒𝑎𝑙

= 𝐉𝒇𝒓𝒆𝒆 
+ 𝜀𝑟𝜀𝑜 𝜕𝐄 𝜕𝑡⁄   (17) 

Implying  

 𝐉𝒇𝒓𝒆𝒆 = 𝐉𝑸 + (𝜀𝑟 − 1)𝜀𝑜 𝜕𝐄 𝜕𝑡⁄   (18) 

Implying  

𝐉𝒇𝒓𝒆𝒆 ≠ 𝜀𝑟  𝐉𝑸 (19) 

although 

 𝝆𝒇𝒓𝒆𝒆 = 𝜀𝑟𝝆𝑸 (20) 

The tension between eq. (19) and eq. (20) reflects the artificial definition of free charge 𝝆𝒇𝒓𝒆𝒆 

and its flux 𝐉𝒇𝒓𝒆𝒆,  in my opinion, arising from its treatment of ethereal current 𝜀𝑜 𝜕𝐄 𝜕𝑡⁄ . 

A rewriting of Maxwell’s second equation anticipates its description of radiation that moves 
at the velocity of light 𝑐, where  

 𝑐2 = 1  𝜇0𝜀𝑜 ⁄   (21) 

giving an illuminating formulation of the Ampere Maxwell law  
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𝐜𝐮𝐫𝐥 𝐁 =   𝜇0𝐉𝑸 
⏞  
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙

 +   
1

𝑐2
𝜕𝐄 𝜕𝑡⁄   

⏞      
𝐸𝑡ℎ𝑒𝑟𝑒𝑎𝑙

 
 (22) 

The revised versions of Ampere Maxwell law do not involve any material properties other 
than the flux of material charge. The term 𝜀𝑜 𝜕𝐄 𝜕𝑡⁄  creates a magnetic field as if it were a 
current, even if the term exists in a space devoid of mass. Hence the name ethereal. The ethereal 
term 𝜀𝑜 𝜕𝐄 𝜕𝑡⁄  is separated in eq. (16) and (22) so the revised Maxwell equations can be applied 
(as written) to a vacuum devoid of matter 𝝆𝑸 = 0 where  𝐉𝑸(𝑣𝑎𝑐𝑢𝑢𝑚) = 0 . 

The revised continuity equation is one corollary of the Maxwell equations 

𝐝𝐢𝐯 𝐉𝑸 + 𝜕𝝆𝑸 𝜕𝑡⁄ = 0   (23) 

The revised conservation of total current is another corollary of the Maxwell equations  

𝐝𝐢𝐯 (   𝐉𝑸 
⏞

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙

 +  𝜀𝑜 𝜕𝐄 𝜕𝑡⁄  ⏞      
𝐸𝑡ℎ𝑒𝑟𝑒𝑎𝑙

 
)

⏞                
𝐉𝒕𝒐𝒕𝒂𝒍

= 0 (24) 

𝐉𝒕𝒐𝒕𝒂𝒍 is perfectly incompressible. It cannot accumulate anywhere at any time. The flux of material 
charge 𝐉𝑸 can accumulate. As it accumulates, 𝝆𝑸 is created according to the continuity eq. (23) . 

Only 𝐉𝒕𝒐𝒕𝒂𝒍 does not accumulate at all. For that reason, 𝐉𝒕𝒐𝒕𝒂𝒍 obeys Kirchhoff’s current law at the 
technologically crucial time scales < 10−8 sec in the electronic circuits of our computers and 
digital technology (which are one dimensional branched systems), while 𝐉𝑸 and 𝐉𝒇𝒓𝒆𝒆 do not. 

A third corollary is the vector wave equation describing the propagation of light 
(i.e., electromagnetic signals). It is written here for completeness without the derivation easily 

available in textbooks. 𝛁𝟐 is the vector Laplacian defined in textbooks of vector algebra and 
electrodynamics. 

𝛁𝟐𝐄 = 1

𝑐2
𝜕2𝐄 𝜕𝑡2⁄  (25) 

The revised approach requires a separate theory to describe how material charge  𝝆𝑸 changes 

and flows as the electric field is changed.1 This revised formulation allows other force fields—like 
convection, diffusion, or temperature—to drive flux and change charge density by specifying  𝝆𝑸 

and  𝐉𝑸.  

Large communities of scientists work on systems in which diffusion and convection move 
charge and create current. It is hard to exaggerate the importance of applications in which 
diffusion moves charge. Semiconductor devices, electrochemical systems, and biological cells 
(tissues and organs) use diffusion to create and control electric fields and flows. Models of 
electrodynamics in these sciences must include diffusion of charges in a concentration field as 
much as migration in an electric field. Convection of charges is a central property of complex 
fluids that cannot be ignored. And temperature driven flows are important throughout physics 
and engineering.  

 
1 The change and flow of 𝝆𝑸 has many effects that all interact. It (1) creates 𝐉𝑸; (2) The change of 𝝆𝑸 changes the 

charge distribution and thus electric field. (3) The flow 𝐉𝑸 creates a magnetic field 𝐁. 
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It seems useful to have a form of the Maxwell equations that easily includes charge 𝝆𝑸  and 

flows 𝐉𝑸 created by diffusive and other fields. The same equations that describe the polarization 

response of matter to the electric field can be used to describe the movement of charge driven 
by convection, diffusion, and temperature gradients. Charge movements of polarization, 
diffusion, convection and other fields can be combined with electrodynamics using models of 𝝆𝑸  

and 𝐉𝑸 and combining those models with the Maxwell equations in the revised form (13), (15), 

and their corollaries.  

Discussion 

Most models start simply and (in their initial forms) do not need to specify realistically the 
polarization process by which matter moves when the electric field is changed. The classical 
formulations of the Maxwell equations is then appropriate, eq.(1) or (5) and (6) (and corollaries). 
It is better to use an over-simplification than nothing.  

When models are refined, they need to describe the polarization process more realistically. 
Conversion to the revised formulation (13), (16) (and corollaries) is then needed, and fortunately 
quite straightforward: just set 𝜀𝑟 = 1 and thereby remove the dielectric constant 𝜀𝑟 from the 
equations eq. (1) or (5) and (6) (and corollaries). A model or lookup table is then needed to 
describe the polarization phenomena and the material charge 𝝆𝑸  and its flow 𝐉𝑸. Those models 

can easily accommodate the charges and flows created by fields other than classical 
electrodynamics, e.g., concentration fields that drive the diffusion of charges or pressure fields 
that drive the convection of charges. 

The polarization model is a description of the movement of mass in response to the electric 
and magnetic fields and must be solved together with the Maxwell equations in a joint field 
problem that so far lacks a general name. Variational methods are helpful in dealing with such 
joint problems because their solutions are always consistent. Their solutions automatically satisfy 
all field equations and boundary conditions with one set of unchanging parameters. 

A simple but helpful model of polarization in many systems includes charged masses on 
damped springs that (perhaps) interact according to Maxwell’s equations or in their 
approximation, the Poisson equation. It is important that these models do not simply assume the 
shape or strength of the electric (or magnetic) fields because the shape of those fields is not a 
constant (in space or time or with conditions) in most applications. Rather the models must 
calculate the electric and magnetic fields from the charges, currents, and boundary conditions. 

Polarization in other applications will need other models. Models are most useful if they 
include (idealizations of) the setups used in actual experiments, like the conductivity cell of 
electrochemistry and biophysics. Analysis of those setups provide operational definitions of 
polarization and dielectric phenomena as described in experimental publications. General 
models of polarization are likely to be too vague to be of particular use. 

The corollaries of the Maxwell equations have striking implications. The forces exerted by 
electric and magnetic fields 𝐄 and 𝐁 move atoms so total current is exactly conserved at all times 
and places, in a result that might seem magical if it were not the immediate consequence of the 
mathematical identity 𝐝𝐢𝐯 𝐜𝐮𝐫𝐥 =  0. 
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These electrodynamic forces are the dominant forces between atoms in many, even most 
conditions. They are usually much more important than the steric forces (including van der Waals 
forces). Indeed, the classical systems of ideal gases, or ideal ionic solutions do not include steric 
forces at all. 

Steric forces appear when charged particles have finite size, in (nonideal) gases and ionic 
solutions. They appear when atoms approach each other and (nearly) collide. Steric forces tend 
to dominate only when atoms are crowded at very large densities, of the order of 10 M ≅
6 × 1021 cm-3, as found in some important biological applications, where steric forces balance 
electrical forces to create selectivity between different elements or molecules. For reference, 
solid Na+Cl– is about 37 M, water is 55 M. 

Calculating forces between the enormous numbers of atoms in macroscopic systems is 
challenging and so it is difficult to implement the continuity equation (23) on an atomic scale. In 
simulations of proteins, for example, it is difficult to keep track of all the movements of atoms as 
they interact. Conservation of total current eq. (24) is much easier to implement. It does not 
require calculation of forces between atoms at all.  

The striking generality of conservation of total current 𝐉𝒕𝒐𝒕𝒂𝒍 is not magic. It arises because the 
Maxwell equations specify precisely those 𝐄 and 𝐁 fields needed to enforce the corollaries. 𝐄 and 
𝐁 fields are solutions of the Maxwell equations that change (as conditions, parameters, locations, 
or time change) so total current 𝐉𝒕𝒐𝒕𝒂𝒍 is conserved exactly, everywhere, at any time that the 
Maxwell equations apply, independent of the microphysics of conduction of 𝐉𝒇𝒓𝒆𝒆 or 𝐉𝑸. In 

particular, the fields change the forces on atoms so those atoms move in ways that conserve total 
current 𝐉𝒕𝒐𝒕𝒂𝒍, even on the fastest time scales of atomic motion. 

𝐉𝒕𝒐𝒕𝒂𝒍 can have very different properties from 𝐉𝑸 or 𝐉𝒇𝒓𝒆𝒆.  The total current is a special variable 

(surprisingly different from other flux variables) because of its ethereal component 𝜀𝑜 𝜕𝐄 𝜕𝑡⁄  
that is a property of space, not matter. (Models of mass flow have no such term because those 
models describe nothing in a vacuum. Only electrical total current contains an ethereal 
component.) 

When systems are one dimensional, as in many biological and engineering applications, 
conservation of current is particularly easy to understand. The electric and magnetic fields 𝐄 and 
𝐁 assume values that enforce equality of current (in unbranched systems) or enforce Kirchhoff’s 
current law in general. The changing 𝐄 field creates an ethereal current 𝜀𝑜 𝜕𝐄 𝜕𝑡⁄ . The changing 
𝐄 field also helps move charges 𝝆𝑸 to make a material current 𝐉𝑸 . The sum of the ethereal current 

𝜀𝑜 𝜕𝐄 𝜕𝑡⁄  and material current  𝐉𝑸  is the total current 𝐉𝒕𝒐𝒕𝒂𝒍  that is exactly conserved.  

Conservation of total current is not just a restatement of the Maxwell equations. Eq. (24) is 
enough to allow the design and understanding of important devices. For example, the circuits of 
our electronic technology or the ion channels of biological membranes (or their biomimetic 
analogs) can be designed with little else. Kirchhoff’s current law applied to 𝐉𝒕𝒐𝒕𝒂𝒍  is often all that 
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is needed for design, without knowing atomic locations or forces at all. 2 Indeed, circuits of 
electronic devices designed using Kirchhoff’s law function as expected at times < 10−9 sec, even 
though the original derivations of Kirchhoff’s law for the material fluxes  𝐉𝑸 or 𝐉𝒇𝒓𝒆𝒆 

 are not 

helpful on those time scales. 

The special properties of total current are particularly striking when thermal noise is 
important, as it always is in ion channels, and as it often is in semiconductor devices, where shot 
noise can be so important.  

Consider the special case when 𝐉𝒕𝒐𝒕𝒂𝒍 is just thermal noise. 𝐉total (thermal) satisfies 
conservation of current like any other total current, because the Maxwell equations (and its 
corollaries) are valid on all time and space scales including those of thermal motion.  The 
consequences are dramatic in the one dimensional systems of biological ion channels and the 
two terminal devices of electronic circuits.  In those systems 𝐉total (thermal) is a constant in space 
because in those systems conservation of total current guarantees equality of total current in 
space. 

 𝐉total (thermal) is not a constant in all respects. 𝐉total (thermal)  varies in time, for example,  as 
shot noise does in models inspired by the pioneering work of Landauer.  

The properties of thermal movement of material charge 𝐉𝑸 (thermal) are very different from 

the properties of the thermal total current 𝐉total (thermal). The spatial dependence of thermal 
movement of charge 𝐉𝑸 (thermal) is nearly a Brownian stochastic process that reverses direction 

(in one dimensional systems) an infinite number of times in any finite distance, no matter how 
short. But the thermal total current 𝐉𝒕𝒐𝒕𝒂𝒍(thermal) does not reverse itself at all. It is a constant 
in space in these important systems at all times, including the time/space scale of thermal 
motion. 

The Maxwell equations act as a perfect low pass spatial filter, converting the infinite variation 
of material movement  𝐉Q (thermal) in a Brownian trajectory to the zero variation of total current 
𝐉total (thermal). The ethereal current simplifies the system quite remarkably, suggesting that it 
should be included explicitly in models, not just as part of ad hoc stray capacitances. 

 
2This is not true for 𝐉𝑸 or 𝐉𝒇𝒓𝒆𝒆 . Only 𝐉𝒕𝒐𝒕𝒂𝒍 follows Kirchhoff’s law under all conditions, because only 𝐉𝒕𝒐𝒕𝒂𝒍 does not 

accumulate. 𝐉𝑸 or 𝐉𝒇𝒓𝒆𝒆  accumulate net charge that must be described by a circuit element added to the original 

circuit, often called a ‘stray’ capacitance. 𝐉𝑸 and 𝐉𝒇𝒓𝒆𝒆  have much more complicated circuit properties than 𝐉𝒕𝒐𝒕𝒂𝒍. 
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Appendix: Sources and References 

 

References are grouped here by topic to keep the text less cluttered,. 

Electrodynamics texts of great quality are widely available, including [11-26]. Ref. [25] is a 
modern place to start. Ref. [13, 21] explicitly recommend a revision in the classical treatment of 
polarization. Ref. [22] describes specific models of polarization. Many of these texts describe the 
relation of special relativity and the Maxwell equations because as Einstein put it “The special 

theory of relativity ... was simply a systematic development of the electrodynamics of Clerk Maxwell 
and Lorentz” (p. 57 of [27]). Special focus is found in [15, 28, 29]. 

Vector algebra is described to my taste in ref. [30] and [31] and there are innumerable other 
references and treatments in texts of electrodynamics. 

Dielectric properties are described in thousands of papers which can be accessed directly or 
though the classical papers [32-37]. Ref. [38] shows explicitly how the descriptions of molecular 
spectroscopy are equivalent to descriptions of electrodynamics.  

Optical applications are found in [39-42]. 

Theory of electronic devices and networks are described in innumerable books [43-49], 
including neglected classics [50]. Kirchhoff’s law is derived for total current in [5, 7]. 
Computational electronics and Landauer inspired models of shot noise are found in [51-61]. 

‘Crowded Charge’ as a determinant of selectivity in biological systems has received a great 
deal of attention starting with the early work of Nonner and Eisenberg [62, 63] reviewed in [64, 
65]. Recent reviews include [66-68]. Physical systems receive emphasis in [69-72].   

A number of preprints and papers describe the slow evolution of my understanding of these 
issues [1-10].  
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