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Field theory of reaction-diffusion: Law of mass action with an energetic variational approach
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We extend the energetic variational approach so it can be applied to a chemical reaction system with general
mass action kinetics. Our approach starts with an energy-dissipation law. We show that the chemical equilibrium
is determined by the choice of the free energy and the dynamics of the chemical reaction is determined by the
choice of the dissipation. This approach enables us to couple chemical reactions with other effects, such as
diffusion and drift in an electric field. As an illustration, we apply our approach to a nonequilibrium reaction-
diffusion system in a specific but canonical setup. We show by numerical simulations that the input-output
relation of such a system depends on the choice of the dissipation.
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I. INTRODUCTION

Many biological processes can be abstractly represented
as biochemical networks, in which chemical reactions are
catalyzed by enzymes and combined to perform many of the
functions of life. Examples include metabolic pathways and
the electron transport chain that power life [1,2]. In these
systems, reactions occur in different physical locations, so
the products of one reaction move, by diffusion (and perhaps
migration and convection), to become reactants for another
reaction in a different location. To describe a complex biolog-
ical system, and consistently deal with the coupling between
reaction and diffusion, as well as other mechanical effects, one
needs to turn to a variational theory. The variational principle
guarantees a consistent mathematical formulation, in which
all variables satisfy all equations, of all fields, and their bound-
ary conditions, with one set of parameters in a certain region.

For mechanical systems, inspired by the seminal work of
Rayleigh [3] and Onsager [4,5], various variational theories
have been developed. Examples include the energetic varia-
tional approach (EnVarA) [6,7], the general equation for the
nonequilibrium reversible-irreversible coupling (GENERIC)
[8–11], Doi’s Onsager principle [12,13], and the conservation-
dissipation formalism (CDF) [14,15]. However, it is not
straightforward to apply these variational principles to a
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chemical reaction system, which cannot be understood from
Newtonian mechanics [16].

The macroscopic dynamics of chemical reactions are of-
ten described by the law of mass action, which states that
the rate of a reaction is proportional to the concentrations
of the reactants [17,18]. The law of mass action originally
arose from the treatment of ideal gases (solutions) [19], where
molecules/atoms only interact when they collide. Although
the mass-action type kinetics has been widely used for dif-
ferent chemical reaction systems, it is a phenomenological
theory, of which the underlying physical foundation is unclear,
as molecules can interact in many different ways. As aptly
pointed out in Ref. [18], “The law of mass action is not a law in
the sense that it is inviolable, but rather is a useful model, much
like Ohm’s law or Newton’s law of cooling.” Since the 1950s,
a huge amount of work has studied the thermodynamics basis
and mathematical structures of chemically reacting systems
[14,16,20–54]. In particular, many papers extend variational
principles for mechanical systems to the reaction kinetics by
building analogies between Newtonian mechanics and chem-
ical reactions [34,35,55,56].

The goal of this paper is to extend the framework of En-
VarA [6,7,57], which has dealt with flows in systems with
many components successfully for many years, to a chemical
reaction system. We model a reaction system by a prescribed
energy-dissipation law, in which the free energies determine
the chemical equilibrium (if it exists), and the choice of the
dissipation determines the dynamics of the chemical reaction.
The classical law of mass action can be derived from a par-
ticular choice of the energy-dissipation law. Our approach is
nonequilibrium and provides a basis to couple the chemical re-
action with the effect of other fields, such as diffusion, drift in
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an electric field, as well as thermal effects. As an illustration,
we apply our approach to a nonequilibrium reaction-diffusion
system, which can be viewed as an abstract building block
of biological networks with inputs and outputs. Our analysis
shows that the input-output relation of such a system depends
on the choice of the dissipation, which implies that the dissi-
pation can be inferred from experimental measurements.

II. FIELD THEORY OF REACTION-DIFFUSION

To clarify our ideas, we first consider a single reversible
reaction

αA + βB � γ C, (1)

where α, β, and γ are stoichiometric coefficients. Let ci

(i = A, B,C) denote the concentration of each species. Due
to conservation of elements, one must have

d

dt
(γ cA + αcC ) = 0,

d

dt
(γ cB + βcC ) = 0, (2)

which is known as the stoichiometric constraint [27]. As a
consequence, each component of c = (cA, cB, cC )T satisfies
the ordinary differential equation

d

dt
ci = σir(c), (3)

where σ = (−α,−β, γ )T is the stoichiometric vector, and
r(c) is known as the reaction rate [17].

The law of mass action gives a particular form of the
reaction rate r(c),

r(c) = k f cα
Acβ

B − krcγ

C, (4)

where k f and kr are rate constants for forward and reverse
directions. This form originally arose from the treatment of
ideal gases (solutions) [19], where molecules/atoms only in-
teract when they collide. At an equilibrium, in which the
concentrations are not changing, we have(

c∞
A

)α(
c∞

B

)β(
c∞

C

)γ = kr

k f
� Keq, (5)

where Keq = kr
k f

is called the equilibrium constant. The law of
mass action is an empirical law without a clear physical in-
terpretation, so it cannot be immediately applied to biological
and electrochemical systems in which chemical reactions are
coupled with other effects.

In the remainder of this section, we show that the simple
reaction kinetics Eq. (3) can be modeled by an extended ener-
getic variational approach, like a mechanical system, which
provides a basis of coupling chemical reactions with other
mechanisms, including mechanical effects such as diffusion,
drift in an electric field, as well as thermal effects. As an ap-
plication, we also provide an energetic variational formulation
to a reaction-diffusion system, which is a typical example of
mechanochemical or chemomechanical systems.

A. Energetic variational approach

We start with a brief introduction to the classical energetic
variational approach (EnVarA), which was developed from
the variational principle, proposed by Rayleigh [3] for purely

frictional systems, that Onsager tried to extend to physical
systems in general [4,5].

The starting point of an energetic variational approach is
a prescribed energy-dissipation law for an isothermal and
closed system, which comes from the first and second law
of thermodynamics [7]. Indeed, for a thermodynamic process
without transfer of matter, the first law of thermodynamics is
often formulated as

d

d
(K + U ) = Ẇ + Q̇, (6)

that is the rate of change of the kinetic energy K and the
internal energy U can be attributed to either the work Ẇ done
by the external environment or the heat Q̇. To analyze heat,
one needs to introduce the entropy S , which satisfies a time
dependent version of the second law of thermodynamics:

T
dS
dt

= Q̇ + �, � � 0, (7)

where T is the temperature and � is the entropy production.
Subtracting the two laws, one arrives at an energy-dissipation
law

d

dt
E total(t ) = −D(t ), (8)

for isothermal and closed system (Ẇ = 0). Here E total is the
total energy, which is the sum of the Helmholtz free energy
F = K − TS and the kinetic energy K. D is the rate of energy
dissipation that is related to the entropy production.

For a given energy-dissipation law, the energetic vari-
ational approach provides a paradigm to determine the
dynamics of system through two distinct variational pro-
cesses: the least action principle (LAP) and the maximum
dissipation principle (MDP) [6,7]. Specifically, the least ac-
tion principle states that the dynamics of a Hamiltonian
system is determined by a critical point of the action func-
tional A(x) = ∫ T

0 K − Fdt with respect to x (the trajectory in
Lagrangian coordinates, if applicable) [7,58], i.e.,

δA =
∫ T

0

∫
�

( finertial − fconv) · δxdxdt, (9)

where finertial is the inertial force and fconv is the conservative
force. Formally, the LAP represents the fact that force multi-
plies by distance is equal to the work, i.e., δE = force × δx,
where x is the location, δ represents the variation/differential.
In the meantime, for a dissipative system (D � 0), we follow
Onsager [4,5] and determine the dissipative force fdiss by min-
imizing the dissipation functional D with respect to the “rate”
xt , known as the maximum dissipation principle (MDP), i.e.,

δ

(
1

2
D

)
=

∫
�

fdiss · δxt dx. (10)

The dissipation D is often assumed to be quadratic in terms of
the “rate” xt [12], that is

D[x, xt ] =
∫

G(x)xt · xt dx, (11)

where G(x) is a positive semi-definite matrix for given x. The
assumption Eq. (11) corresponds to the linear response theory
of nonequilibrium thermodynamics [4,5,59].
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According to force balance (Newton’s second law, in which
the inertial force plays the role of ma), we have

δA

δx
= 1

2

δD
δxt

, (12)

which defines the dynamics of the system.
The EnVarA framework shifts the main task of modeling

to the construction of the energy-dissipation law. As an illus-
tration, we consider a simple example originally proposed by
Lord Rayleigh [3], a spring-mass system, in which a Hookean
spring of which one end is attached to a wall and another end
to a mass m. Then,

K = m

2
x2

t , F = k

2
x2, D = γ x2

t ,

where k is the spring constant, and γ is damping coefficient.
The corresponding action functional is defined as

A =
∫ T

0

m

2
x2

t − k

2
x2dt .

Then the LAP, i.e., taking the variation of A with respect to
the trajectory x(t ) gives rise to

δA
δx

= −mxtt − kx. (13)

Meanwhile, the MDP, taking the variation of D with respect
to xt gives

1

2

δD
δxt

= γ xt . (14)

Hence, the force balance condition Eq. (12) yields

mxtt + kx + γ xt = 0. (15)

In an overdamped case (m � γ ), the mxtt term can be ne-
glected [60], and the system becomes a gradient flow with the
dynamics given by

xt = − 1

γ

δF
δx

.

In the following, we work in the overdamped regime and
neglect the kinetic energy in Eq. (8).

B. EnVarA with chemical reaction

As well as any other variational principles, classical en-
ergetic variational approaches deal with mechanical systems,
which are indeed based on the Newton’s second law F = ma.
In general, chemical reactions cannot be understood from
Newtonian mechanics, as there is no clear mechanical inter-
pretation for the chemical potential [16].

Many papers try to build an Onsager type variational the-
ory for chemical reaction systems [20,35,37,56,61–64]. For
example, Mielke established the gradient flow structure for
reaction-diffusion systems with reversible mass-action kinet-
ics by using the dissipation potential [37]. As an extension
of the GENERIC framework, Grmela showed the geometry
associated with the law of mass action is the the contact
geometry. He extended the mass-action kinetics to account for
the influence of inertia and fluctuations, which can be adopted
to complicated reaction systems involving many intermediate
reactions [38].

For the reaction (1) with the law of mass action, it has
been known for a long time that there exists a Lyapunov
functional [16,21,37,38,46,50,65,66], which is the free energy
of the system. The free energy can be written down in various
equivalent form; here we adopt a thermodynamics based form,

F (cA, cB, cC ;UA,UB,UC )

=
∫

�

RT[cA(ln cA − 1) + cB(ln cB − 1) + cC (ln cC − 1)]

+ cAUA + cBUB + cCUC dx, (16)

for the chemical reaction Eq. (1). The first three terms in
Eq. (16) form the free energy of a mixture of ideal gases
without chemical reactions, which corresponds to the entropy.
Indeed, for a mixture of ideal gases with N species, the chem-
ical potential of a substance j is expressed by [67]

μ j = μ0 + RT ln x j, (17)

where μ0 is the reference chemical potential, and x j is the
concentration of the substance j. Since the chemical potential
is defined relative to its value at an arbitrary reference state,
we can take μ0 = 0. The free energy of the mixture of ideal
gases, corresponding to the chemical potential Eq. (17) with
μ0 = 0, is given by

F[xi] =
∫

�

RT
N∑

i=1

xi(ln xi − 1)dx. (18)

The last three terms in Eq. (16) can be viewed as inter-
nal energies stored inside the molecular A, B, and C. In
the case without chemical reaction, since cA, cB, and cC do
not change with respect to time, these terms are constants
that can be ignored. From a modeling perspective, as also
pointed out in Ref. [38], Ui are parameters that determine
the equilibrium of the system. For the given free energy
F (cA, cB, cC ;UA,UB,UC ) defined in Eq. (16), the correspond-
ing chemical potential of each species is given by

μi = δF
δci

= RT ln ci + Ui, i = A, B,C. (19)

At a chemical equilibrium, the chemical potential of both
sides of the reaction are equal, i.e., the affinity

γμC − αμA − βμc = 0, (20)

which indicates that

ln

(
c∞

A

)α(
c∞

B

)β(
c∞

C

)γ = 1

RT
(γUC − αUA − βUB) := �U

RT
. (21)

Here �U = γUC − αUA − βUB is the difference
of internal energy between the state {αA, βB}
and the state {γC}. Then the equilibrium constant
Keq is defined as [18]

Keq �
(
c∞

A

)α(
c∞

B

)β(
c∞

C

)γ = e
�U
RT , (22)

which is an exponential representation of the difference in
internal (“chemical”) energies.

In our approach, we always assume the existence of the
free energy F , which is different from most of previous
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approaches. Those approaches start with the mass-action ki-
netics and show the existence of the free energy under the
detailed balance condition [37,65]. For a general system, the
free energy F might contain various different mechanisms
and cannot be derived by mathematics alone until a physical
model is specified. Here we assume that Ui are constants to
illustrate our approach. Confrontation with real experimen-
tal data will undoubtedly motivate more complex models.
It should be emphasized that the choice of the free energy
F determines the chemical equilibrium (if it exists) of the
system.

As pointed out in Ref. [27], one of the difficulties in apply-
ing variational principles to a chemical reaction system arises
from the stoichiometric constraint Eq. (2). To overcome this
difficulty, Oster and Perelson treated the reaction kinetics in a
differential geometric context and introduced the “a reaction
trajectory”. The idea of using reaction trajectory, also known
as extent of reaction or degree of advancement, as a new
stable variable can be traced back to De Donder [56] and has
been used for both deterministic and stochastic descriptions of
chemical reactions for a long time [34,39,46].

Roughly speaking, a reaction trajectory accounts for the
“number” of the forward chemical reaction that has occurred
by time t . By introducing the reaction trajectory R(t ), the
concentrations of A, B, and C for the single chemical reaction
Eq. (1) are given by

ci(t ) = ci(0) + σiR(t ), (23)

which can be viewed as the kinematics of the chemical reac-
tion that embodies the constraint Eq. (2).

By using the reaction trajectory, we can reformulate the
free energy F (cA, cB, cC ;UA,UB,UC ) defined in Eq. (16) in
terms of R(t ), and use the energy-dissipation law,

d

dt
F[R;UA,UB,UC] = −D[R, Rt ], (24)

to model the reaction kinetics of the chemical reaction Eq. (1).
Here D[R, Rt ] is the dissipation of the system. Different
choices of D[R, Rt ] determine different reaction kinetics.

Unlike mechanical systems, chemical reactions are of-
ten far from thermodynamic equilibrium, so the dissipation
D[R, Rt ] may not be quadratic in terms of Rt [35,59]. To deal
with the general form of the dissipation, we need to extend the
classical EnVarA. Assume D(R, Rt ) takes the form

D[R, Rt ] = (	(R, Rt ), Rt ) � 0, (25)

where (·, ·) is an inner product, since

d

dt
F[R] =

(
δF
δR

, Rt

)
, (26)

the energy-dissipation law Eq. (24) implies

	(R, Rt ) = −δF
δR

, (27)

which is the equation for the chemical kinetics. Interestingly,
notice that

δF
δR

=
∑
i=1

σiμi (28)

is exactly the affinity of chemical reaction, as defined by De
Donder [68,69]. The affinity plays a role of the “force” that
drives chemical reactions, and Rt can be identified as the
reaction velocity (or rate of conversion [56]). Just as in a
mechanical system, the dissipation of this chemical reaction
system gives the relation between the reaction velocity Rt and
the chemical force. Next we discuss two typical choices of the
dissipations.

1. General law of mass action

The law of mass action can be derived from the energy-
dissipation law Eq. (24) by choosing

D[R, Rt ] = RT Rt ln

(
Rt

krcγ

C

+ 1

)
. (29)

Indeed, the energetic variational procedure gives

RT ln

(
Rt

krcγ

C

+ 1

)
= − δ

δR
F[R]. (30)

Notice that

δ

δR
F[R] = RT ln

(
cγ

c

cα
Acβ

B

)
− αUA − βUB + γUC,

which indicates that

ln

(
Rt

krcγ

C

+ 1

)
= ln

(
cα

Acβ
B

cγ

C

)
− �U

RT
, (31)

where the right-hand side is determined by the difference of
internal energy �U between the state {αA, βB} and the state
{γC}. Although Eq. (31) looks complicated, direct computa-
tion shows that

Rt = krcγ

C

(
1

Keq

cα
Acβ

B

cγ

C

− 1

)
= k f cα

Acβ
B − krcγ

C, (32)

which is the classical law of mass action. Here the relation
Keq = e

�U
RT = kr

k f
is used to get the last equality. It is worth

mentioning that the dissipation Eq. (29) is identical to a widely
used form of the entropy production [16,49],

� = (r f − rr ) ln

(
r f

rr

)
,

where r f and rr are the forward and the reverse reaction rates.
As a generalization of Eq. (29), we can consider a more

general form of the dissipation

D[R, Rt ] = η1(R)Rt ln

(
Rt

η2(R)
+ 1

)
, (33)

where η1(R) > 0 and η2(R) > 0, then D[R, Rt ] � 0 for the
admissible R. By choosing η1(R) and η2(R) properly, we can
have a concentration dependent reaction rate, which is often
used to provide a thermodynamic description of an autocat-
alytic chemical reaction [18].

2. Linear response theory

In nonequilibrium thermodynamics, it is often assumed
that the dissipation of the total energy is a quadratic function
the “rate” of change of state variables, which is known as the
linear response theory [4,5,59].
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In our case, the linear response theory gives a form of the
dissipation term,

D[R, Rt ] = η(R)|Rt |2. (34)

Then the variational procedure gives

η(R)Rt = − ∂

∂R
F[R] = RT ln

(
cγ

C

cα
Acβ

B

)
− �U .

By choosing η(R) = RT, the reaction rate is given by

r = Rt = ln

(
1

Keq

cα
Acβ

B

cγ
C

)
, (35)

a form of which is more complicated than the law of mass
action.

Remark II.1. The law of mass action gives a simple form
of the reaction rate r in terms of concentrations; however,
the dissipation in terms of R and Rt becomes complicated
[see Eq. (29)]. By contract, if the dissipation is taken to be
simple and described by the linear response theory, then the
reaction rate r becomes complicated [see Eq. (35)].

Some early variational treatments of chemical reactions are
based on the linear response assumption [55], which arises
from the near equilibrium assumption. Indeed, for the chem-
ical reaction, we have Rt ≈ 0 near the equilibrium, then the
Taylor expansion gives us

η1(R)Rt ln

(
Rt

η2(R)
+ 1

)
≈ η1(R)

η2(R)
|Rt |2. (36)

Thus, one can view the dissipation Eq. (34) as a linear ap-
proximation to the dissipation Eq. (33). However, it is believed
that, except for the special case that is close to equilibrium, the
driving force for chemical reaction is a nonlinear functional of
the system variables [35,59].

It is straightforward to extend the above EnVarA descrip-
tion to a general reversible chemical reaction system contains
N species {X1, X2, . . . XN } and M reactions, given by

αl
1X1 + αl

2X2 + . . . αl
N XN � β l

1X1 + β l
2X2 + . . . β l

N XN ,

for l = 1, . . . , M. Let c = (c1, c2, . . . , cN )T ∈ RN be the con-
centrations of all species. The kinematics of the system are
then given by

c = c0 + σR, (37)

where c0 is the initial concentrations, R ∈ RM represents M
reaction trajectories of M reactions, σ ∈ RN×M with σil =
β l

i − αl
i is the stoichiometric matrix. The reaction kinetics

of this chemical reaction network can be described by the
energy-dissipation

d

dt
F[c(R)] = −D[R, ∂t R], (38)

where

F[c] =
N∑

i=1

ci(ln ci − 1) + ciUi, (39)

with Ui be the internal energy, and the dissipation can be taken
as

D[R, ∂t R] = −
M∑

l=1

∂t Rl ln

[
∂t Rl

ηl (c(R))
+ 1

]
, (40)

to be consistent with mass action kinetics. Then the variational
procedure gives the dynamics of the chemical reaction

ln

[
∂t Rl

ηl (c(R))
+ 1

]
= − δF

δRl
, (41)

where δF
δRl

is the affinity of the l-th chemical reaction.

C. Reaction-diffusion system

The above EnVarA description of a chemical reaction
provides a way to couple chemical reactions with other
mechanisms, such as diffusion and electrodiffusion, in a uni-
fied variational framework. As an illustration, we apply the
EnVarA to a reaction-diffusion system, which is a simple
example of a mechanochemical or chemomechanical system.
Reaction-diffusion type partial differential equations are used
widely to model biological processes [66], such as molecular
motors [70], prion diseases [71], and tumor growth [72].

Consider the reaction-diffusion system in a fixed domain
� with the reaction given by Eq. (1), then the kinematics for
the concentrations cA, cB and cC are given by

∂t ci(x, t ) + ∇ · (ciui ) = σi∂t R(x, t ), i = A, B,C, (42)

where ui is the macroscopic velocity of different species in-
duced by the diffusion process, R is the reaction trajectory for
the chemical reaction Eq. (1).

The energy-dissipation law of the reaction-diffusion sys-
tem can be formulated as

d

dt
F (cA, cB, cC ) = −(Dchem + Dmech), (43)

where the free energy F (cA, cB, cC ) is given by Eq. (16),
which is same as for a pure reaction system. Dchem is the
dissipation that arises from the chemical reaction, which is
given by Dchem = (	(R, Rt ), Rt ) � 0 as in the last subsection.
Dmech is the dissipation due to the diffusion process, which is
often taken as [73]

Dmech =
∫

ηA(c)|uA|2 + ηB(c)|uB|2 + ηC (c)|uC |2dx,

to model the friction of the fluid fluxes. It is important to
notice that in this case, the dynamics of both the mechanical
and chemical parts are derived from the same free energy.

Notice that

d

dt
F (cA, cB, cC ) =

3∑
i=1

(∇μi, u) +
(

δF
δR

, Rt

)
, (44)

by using the generalized energetic variational approach, the
equations for R and ui can be derived as

	(R, Rt ) = −δF
δR

,

ηi(c)ui = −ci∇
(

δF
δci

)
, i = A, B,C. (45)
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FIG. 1. Setup of an open nonequilibrium system.

Here the first equation is the same as Eq. (27), and the second
equation is actually Fick’s Law of diffusion [7]. By choosing
ηi(c) = ci(i = A, B,C) and combining Eq. (45) with Eq. (42),
we can obtain a reaction-diffusion system

∂t ci = ∇ · (∇ci ) + σir(x, t ),

where r(x, t ) is the reaction rate determined by the choice of
Dchem(R, Rt ) as discussed in the last subsection.

Remark II.2. It is worth mentioning that here we only cou-
ple the chemical reaction with dissipation mechanics (e.g.,
diffusion). The chemical and mechanical parts share the same
free energy but have different dissipation mechanisms [32,40].
In Ref. [43], the authors develop a novel approach that cou-
ples chemical kinetics with nondissipative time reversible
mechanics, such as elastic deformations, which has poten-
tial applications in biology. We refer interested readers to
Refs. [11,43] for the mathematical formula of such a type of
coupling.

III. INPUT-OUTPUT RELATION AND THE DISSIPATION

As pointed out previously, in the EnVarA description, the
dynamics of a chemical reaction system is determined by the
choice of the dissipation. Notice that the equilibrium constant
Keq is determined by the choice of the free energy, mea-
surements of just Keq cannot distinguish different dissipation
mechanisms. In the meantime, although chemical reactions
are believed to operate far away from equilibrium [35,59],
directly simulating the ODE system for the two dissipations
Eqs. (32) and (35) produces almost identical results since both
systems move to the equilibrium so quickly. To distinguish
different reaction kinetics, it is necessary to study a nonequi-
librium system, which can predict different dependence of rate
on concentrations and different time courses of the chemical
reaction. In this section, we study a particular setup, shown in
Fig. 1, that can be realized in experiments.

Such a setup is chosen to give reproducible input-
output functions for different dissipations. In this
system, a narrow channel connects two bath, as shown
in Fig. 1. We assume the chemical reaction

A + B � C (46)

happens inside the channel, and the average concentration of
A and B in the left bath can be maintained by the boundary
condition. The species in the left bath are sources, and the

species in the right bath are outputs. The chemical reaction
is the “transfer function.” The sources provided by the “left
bath” can keep the system away from the equilibrium.

This system can be viewed as an abstract representation of
one component of complex biological networks, in which a
enzyme localizes a particular chemical reactions and moves
the reactants into products. This representation links chemical
reactions to the two terminal devices of electrical and elec-
tronic engineering [1,28,47,52]. Each reaction is a separately
defined device (loosely speaking) with an input and output and
its own input-output relation. The enzymes can be thought as
two terminal devices, as diodes, that move reactants into prod-
ucts, from one chemical state to another, much as channels are
diodes that move ions from one physical location to another
through a reaction path [28,74]. Although treating chemical
reaction systems by electric circuit theory has existed for a
long time, the spatial effect seems to be overlooked. Reac-
tions in biology occur in different physical locations, so the
products of one enzyme’s reaction move, by diffusion (and
perhaps migration and convection), to become reactants for
the reaction catalyzed by an enzyme in a different location.

Mathematically, since the channel is very narrow, we can
treat this problem as one one-dimensional, with the domain
given by [−ε, ε]. We fix ε = 0.1 through this section. As
mentioned previously, the concentrations of A and B in the left
bath are maintained, which gives us the Dirichlet boundary
conditions of A and B in the left-end of the channel. We can
impose the boundary conditions

cA(−ε, t ) = c0, ∂xcA(ε, t ) = 0,

cB(−ε, t ) = c0, ∂xcB(ε, t ) = 0,

∂xcC (−ε, t ) = 0, cC (ε, t ) = 0.1,

and treat c0 as the single input of our system.
Since cC satisfies the Dirichlet boundary condition on the

right-end of the channel, we can define the amount of C
diffuses into right bath by time T as

Cout(T ) =
∫ ε

−ε

R(x, T )dx −
∫ ε

−ε

[c(x, T ) − c0(x)]dx, (47)

which is the output of our system. The flux of C or the rate of
change of amount of C in the right bath is defined as d

dt Cout.
The initial concentrations of A, B, and C in the channel are
constants c0

A(x) = c0
B(x) = c0 and c0

C (x) = 0.1.
We fix Keq = 0.1 and assume the free energy is given by

F =
∫

cA[ln (0.1cA) − 1] + cB[ln (0.1cB) − 1]

+ cC[ln (cC ) − 1]dx.

We focus on two types of dissipations, a generalized law of
mass action,

D1(R, ∂t R) = Rt ln(Rt + 1), (48)

and the dissipation based on the linear response assumption,

D2(R, ∂t R) = |Rt |2. (49)

These two dissipations Eqs. (48) and (49) are almost the same
near equilibrium [see Eq. (36)]. By numerical simulations, we
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FIG. 2. The output Cout(t ) as a function of input c0 when t = 1
for dissipation Eq. (48) [circle] and dissipation Eq. (49) [square].

show that the input-output relation depends on the choice of
the dissipation in this nonequilibrium setup.

Figure 2 shows the output Cout(t ) as a function of input c0 at
t = 1 for these two dissipations. For small c0, the outputs are
nearly the same for the two dissipation functionals. However,
the output for dissipation Eq. (48) is much larger than that for
the dissipation Eq. (49) when c0 is large. Formally, from the
computations in Sec. II, we know Rt = ln ( 1

Keq

cAcB
cC

), for the

dissipation Eq. (48), while Rt = 1
Keq

cAcB
cC

− 1 for the dissipa-
tion Eq. (49). For c0 = 0.1, the system is at the equilibrium,
so Cout = 0. When c0 is large, the dissipation Eq. (49) will
determine a larger reaction rate.

We also consider d
dt Cout as a function of t for two dissipa-

tions with various of c0. The results are shown in Fig. 3. The
time courses in Fig. 3 show that for different dissipations and
different inputs, d

dt Cout tends to a constant, which is a function
of the input for a given dissipation.

Although the dissipation Eqs. (48) and (49) are almost the
same when near equilibrium, the above simulations indicate
that in a nonequilibrium setting, the input-output relationship
might be very different for different choices of dissipations
since the system is maintained far from equilibrium due to
inputs of reactants through the boundary condition. This sug-
gests that one might be able to determine the dissipation
through experimental measurements and solving the inverse
problem [75].

IV. SUMMARY

In this paper, we apply a generalized energetic variational
approach (EnVarA) to a reversible chemical reaction system,
which enables us to couple chemical reactions with other
mechanical effects, such as diffusion, as well as thermal ef-
fects. In our approach, the chemical equilibrium (if it exists) is
determined by the choice of the free energy, and the dynamics
of a chemical reaction is determined by the choice of the
dissipation. The classical law of mass action can be derived
through a particular form of the dissipation.

To distinguish different dissipations, we study a nonequi-
librium reaction-diffusion system with boundary effects. This
system can be viewed as an abstract representation of a build-
ing block of complex biological networks, in which a enzyme
that localizes a particular chemical reaction and moves reac-
tants into products. Our simulation results show that the input-
output relation of such a system depends on the choice of the
dissipation. If the experimental system is reasonably repro-
ducible, then the dissipation mechanism can be obtained by
experimental measurements and studying an inverse problem.

The energetic variational form proposed here also opens a
new door to design a positiveness preserving and energy stable
numerical schemes for reaction-diffusion type equations. For
instance, such an energetic variational form will enable us
to design Lagrangian-Eulerian schemes for reaction-diffusion
systems by applying some recently developed methods for
general diffusions [73,76–78].

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

0.25
0.50
1.00

(a)

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

0.25
0.50
1.00

(b)

FIG. 3. d
dt Cout as a function of t for two dissipations for various of c0 (c0 = 1, 0.5 and 0.25 from top to bottom in each figure). (a) Dissipation

Eq. (48), (b) dissipation Eq. (49).
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FIG. 4. Change of the discrete energy for two dissipations with
respect to time in numerical simulations (τ = 10−4).
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APPENDIX: NUMERICAL METHOD

In the Appendix, we give a detailed description of the
numerical method that we used to study the reaction-diffusion
system in Sec. III, which is based on the energetic variational
formulation proposed in this paper.

From a numerical perspective, it is often a challenge to
construct a numerical scheme that preserves the positivity
and conservation of elements for reaction-diffusion systems
[79,80]. The energetic variational formulation presented in
this paper opens a new door to design a positive, energy-stable
numerical schemes to reaction-diffusion type equations.

Here we only proposed a numerical scheme for the one-
dimensional reaction-diffusion system considered in Sec. III.
Our numerical discretization is based a discrete energetic
variational approach [73,81], which follows the strategy of
“discretize-then-variation”. More specifically, we can adopt
a finite difference scheme on a staggered grid for the spatial
discretization of R and the accumulated fluxes Ji = ∫ t

0 ciuidt

(i = A, B,C). Assume [0, l] is the computational domain, let
Xj = jh ( j = 0, . . . , N) be the equidistant grid point and
Xj+1/2 = ( j + 1/2)h ( j = 0, . . . , N − 1) be the correspond-
ing half-integer grid point, where h = k/N .

Let EN and CN be the spaces of functions defined on
{Xj | j = 0, . . . , N} and {Xj+1/2 | j = 0, . . . , N − 1}, respec-
tively, We can approximate R and ci in EN and approximate
Ji in CN . Then the kinematic ci = c0

i + σiR + ∂xJ becomes

(ci ) j (t ) = (
c0

i

)
j
+ σiR j (t ) + (Ji ) j+1/2 − (Ji ) j−1/2

h
, (A1)

where i = A, B,C. Inserting Eq. (A1) into Eq. (43), we get the
discrete energy in terms of Rj and Jj+1/2. On the meantime,
for the dissipation Eqs. (48) and (49), the discrete dissipation
functional can be written as

Dh =
N∑

j=1

	[R′
j (t )]R′

j (t )

+
N−1∑
k=1

(|(JA)′k+1/2|2 + |(JB)′k+1/2|2 + |(JC )′k+1/2|2).

By employing a discrete energetic variational approach, we
get

	(R′
j (t )) = [−(μA) j − (μB) j + (μC ) j]

(Ji )
′
k+1/2 = (μi )k+1 − (μi )k

h
, (A2)

where

(μi )
n+1
j = ln(ci )

n+1
j − ln(c∞

i ) j, (A3)

j = 0, . . . N, and k = 0, . . . N − 1. The fully discrete scheme
can be obtained by applying the implicit Euler discretization
to Eq. (A2), that is

	

(
Rn+1

j − Rn
j

τ

)
=

[
−

3∑
i=1

σi(μi )
n+1
j

]
,

(Ji )n+1
k+1/2 − (Ji )n

k+1/2

τ
= (μi )n+1

k+1 − (μi )n+1
k

h
. (A4)

As a numerical test, we compute our system with c0 = 0.25
for dissipations Eqs. (48) and (49). The computed discrete free
energy as a function of time is shown in Fig. 4. The simulation
result indicates that our numerical scheme is energy stable,
although a careful numerical analysis is certainly needed.
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