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Abstract: When forces are applied to matter, the distribution of mass changes. Similarly, when an 
electric field is applied to matter with charge, the distribution of charge changes. The change in the 
distribution of charge (when a local electric field is applied) might in general be called the induced 
charge. When the change in charge is simply related to the applied local electric field, the polariza-
tion field P is widely used to describe the induced charge. This approach does not allow electrical 
measurements (in themselves) to determine the structure of the polarization fields. Many polariza-
tion fields will produce the same electrical forces because only the divergence of polarization enters 
Maxwell�s first equation, relating charge and electric forces and field. The curl of any function can 
be added to a polarization field P without changing the electric field at all. The divergence of the 
curl is always zero. Additional information is needed to specify the curl and thus the structure of 
the P field. When the structure of charge changes substantially with the local electric field, the in-
duced charge is a nonlinear and time dependent function of the field and P is not a useful framework 
to describe either the electrical or structural basis-induced charge. In the nonlinear, time dependent 
case, models must describe the charge distribution and how it varies as the field changes. One class 
of models has been used widely in biophysics to describe field dependent charge, i.e., the phenom-
enon of nonlinear time dependent induced charge, called �gating current� in the biophysical litera-
ture. The operational definition of gating current has worked well in biophysics for fifty years, 
where it has been found to makes neurons respond sensitively to voltage. Theoretical estimates of 
polarization computed with this definition fit experimental data. I propose that the operational def-
inition of gating current be used to define voltage and time dependent induced charge, although 
other definitions may be needed as well, for example if the induced charge is fundamentally current 
dependent. Gating currents involve substantial changes in structure and so need to be computed 
from a combination of electrodynamics and mechanics because everything charged interacts with 
everything charged as well as most things mechanical. It may be useful to separate the classical 
polarization field as a component of the total induced charge, as it is in biophysics. When nothing 
is known about polarization, it is necessary to use an approximate representation of polarization 
with a dielectric constant that is a single real positive number. This approximation allows important 
results in some cases, e.g., design of integrated circuits in silicon semiconductors, but can be seri-
ously misleading in other cases, e.g., ionic solutions. 
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1. Introduction 
When forces are applied to matter, the distribution of mass changes. Similarly, when 

electrical forces are applied matter with charge, the distribution of charge changes. 
The electric field  changes the spatial distribution of 

charge  producing polarization that has a central role in electrodynamics. 
In general, the change in charge distribution induced by the electric field will depend on 
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time and electric field in a complex nonlinear way. We will discuss that situation later. But 
even when the induced charge is that of a polarization field characterized by a single die-
lectric constant (a real number), the actual definition of the polarization field  
is problematic, as major textbooks point out. Purcell and Morin [1], p. 500�507, show how 
the same structure can be described by different fields . They conclude �The 
concept of polarization density  is more or less arbitrary� (slight paraphrase of [1], p. 
507) and leads to an auxiliary variable that �is an artifice that is not, on the whole, very 
helpful� [1], p. 500. 

Feynman shares this view. Feynman�s text says (on p. 10�17 of [2]) �One more point 
should be emphasized. An equation like  is an attempt to describe a property 
of matter. But matter is extremely complicated, and the equation is in fact not correct.�, as 
he then explains in some detail [3]. (Zangwill [2] uses quantum electrodynamics (p. 160) 
to deal with  and avoids (p. 44) the auxiliary variable . He concentrates on the funda-
mental variable  as we do here.) Neither Purcell nor Feynman propose a general expla-
nation for the ambiguity in . 

The significance of the Purcell and Morin and Feynman�s statements is great. If the 
concept of polarization is �more or less arbitrary� (Purcell and Morin�s words); and the 
distinction between bound and free charge is �ambiguous�, then the formulation of the 
Maxwell equations in textbooks is ambiguous and arbitrary. 

I hope it is not necessary to say the obvious: something as important as the Maxwell 
equations should not be presented in a way that two Nobel Laureates (Purcell and Feyn-
man) think is ambiguous and arbitrary (their words, not mine). It seems that � �. the 
conventional theory of electrodynamics inside matter needs to be redesigned�: p. 13 of [4] 

A general explanation is presented here following Griffiths, Ch. 4, [5]. The ambiguity 
in the definition of polarization arises from a mathematical property of vector fields and 
not from a particular physics or structure of charges. Only the divergence of the polariza-
tion field enters into the equations for the electric field  and so very different functions 
can be added to  without changing the observable electric field. Specifically, the curl of 
any function can be added to P without changing the electric field because the divergence 
of the curl of any function is zero. Thus, measurements of  cannot determine the polar-
ization field  uniquely. Different structures of polarization charge can give the same 
electric field and so measurements of the electric field cannot determine the structures 
producing polarization or there the structures of charge itself. 

A paradigm widely used in biophysics to define gating current allows resolution of 
this ambiguity in many cases beyond biophysics. This paradigm cannot be universally 
applied but when it can be applied it is very useful. The dependence of polarization on 
the electric field is as complicated as the motions of matter in an electric field. These mo-
tions are nearly as complicated as the motions of matter in general. It is unlikely that any 
single paradigm will be universal. Nonetheless, the gating current paradigm of biophysics 
may be generally useful and will surely make specific what is needed for paradigms in 
general. 

The paradigm of biophysics was developed to resolve the nonlinear displacement 
(i.e., capacitive) current of nerve that Hodgkin and Huxley [6] suggested might be the 
voltage sensor of nerve. This �gating current� was measured in nerve [7] using a paradigm 
developed by Schneider and Chandler [8,9] and significantly improved by Bezanilla and 
Armstrong [10,11] and has been studied in great detail [7,12�19] because of the insight it 
gives [17,18,20,21] into the physical mechanism of conformation change in a most im-
portant biological protein and process. The conformation change of the voltage sensor 
determines many properties of the action potential, which is the signal used by the nerv-
ous system, skeletal and cardiac muscle to send signals more than a few micrometers. 

The ambiguity of  arises from the history of electrodynamics, in my view. Faraday 
and Maxwell thought all charge depends on the electric field ([3], p. 36; [22�24]. All charge 
would then be polarization. 
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Maxwell used the  and  fields as fundamental dependent variables. Charge only 
appeared as polarization, usually over-approximated [25�35] by a dielectric constant  
that is a single real positive number. Charge independent of the electric field was not in-
cluded, because the electron had not been discovered: physicists at Cambridge University 
(UK) did not think that charge could be independent of the electric field. The electron was 
discovered some decades later, in Cambridge, ironically enough [36,37]. (Thomson�s mon-
ograph�intended as a sequel to Professor Clerk-Maxwell's Treatise on electricity and mag-
netism� [38] does not mention charge, as far as I can tell. Clarendon Press: 1893. �intended 
as a sequel to Professor Clerk-Maxwell's Treatise on electricity and magnetism�; does not 
mention charge, as far as I can tell. Faraday�s chemical law of electrolysis was not known 
and so the chemist�s �electron� postulated by Richard Laming and defined by Stoney [39] 
was not accepted in Cambridge as permanent charge, independent of the electric field. It 
is surprising that the physical unit �the Faraday� describes a quantity of charged particles 
unknown to Michael Faraday. Indeed, he did not anticipate the existence or importance 
of permanent charge on particles or elsewhere.) It then became apparent to all that the 
permanent charge of an electron is a fundamental source of the electric field. The electron 
and permanent charge must be included in the equations defining the electric field, e.g., 
Equations (1) and (6) as it is in every textbook I have examined. 

For physicists today, the fundamental electrical variable is the  field that describes 
the electric force on an infinitesimal test charge. and fields are auxiliary derived 
fields that many textbooks think unnecessary, at best. 

2. Theory 
The setup used here is described in many fine textbooks and so detail is omitted [1�

5,40,41]. The specifics of the setup used to measure gating currents is described later, see 
Figures 1 and 2. 

 
Figure 1. Setup for estimating the potential across the membrane of a cylindrical nerve cell while measuring the current 
through the membrane. 
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Figure 2. shows the response to a step function change in potential and the charges measured that 
are proposed as an operational definition of polarization. 

Maxwell�s first equation for the composite variable  relates the �free charge� 
, units cou/m3, to the sum of the electric field  and polarization . It is usu-

ally written as 

 (1)

 (2)

The physical variable  that describes the electric field is not visible in the classical 
formulation Equation (1). Maxwell embedded polarization in the very definition of the 
dependent variable  is the electrical constant, sometimes called the �per-
mittivity of free space�. Polarization is described by a vector field  with units of dipole 
moment per volume, cou-m/m3, that can be misleadingly simplified to cou-m 2. The 
charge cannot depend on  or  in traditional formulations and so is a perma-
nent charge. 

When Maxwell�s first equation is written in a style appropriate since the discovery of 
the electron  is the dependent variable, as textbooks make clear. The source terms are 

 and the divergence of . 

 (3)

 does not have the units of charge and should not be called the �polarization 
charge�. does not enter the equation by itself. Only the divergence of  appears on the 
right-hand side of Equation (3). 

 and the polarization  are customarily over-approximated in 
classical presentations of Maxwell�s equations: the polarization is assumed to be propor-
tional to the electric field, independent of time. 
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 (4)

 (5)

The proportionality constant  involves the dielectric constant  which 
must be a single real positive number if the classical form of the Maxwell equations is 
taken as an exact mathematical statement of a system of partial differential equations. If 

 is generalized to depend on time, or frequency, or the electric field, the form of the 
Maxwell equations changes. If  is generalized, traditional equations cannot be taken 
literally as a mathematical statement of a boundary value problem. They must be changed 
to accommodate the generalization. 

Polarization and thus �however generalized�depend on time or frequency in 
complex ways in all matter as documented in innumerable experiments [33�35,42�44]. 
Many of the most interesting applications of electrodynamics arise from the dependence 
of polarization and  on field strength. 

 should be taken as a constant only when experimental estimates, or theoretical 
models are not available, in my view. 

It is difficult to imagine a physical system in which the electric field produces a 
change in charge distribution independent of time (see examples shown towards the end 
of Discussion). The time range in which Maxwell�s equations are used in the technology 
of our computers, smartphones, and video displays starts around  s. The time range 
in which Maxwell�s equations are used in biology start around  s in simulations of 
the atoms that control protein function. The time range of the X-rays that determine pro-
tein structure is s. The time range used to design and operate the synchrotrons 
that generate X-rays is very much faster than that, something like s. The Maxwell 
equations describe experiments to many significant figures over this entire range. 

It is evident that a dielectric constant  independent of time is an inadequate over-
approximation in many cases of practical interest today, in biology, engineering, chemis-
try, and physics. 

Maxwell�s first equation for  is well described in many textbooks, although the in-
adequacies of the usual representation of polarization with a single dielectric constant are 
not emphasized, if mentioned at all. Students are then often unaware of the over-approx-
imation, particularly if they have a stronger background in biology or mathematics than 
the physical sciences. 

 (6)

Polarization is particularly well described in Griffiths [5]. 
It is wise, in my view to combine the fields on the right-hand side of Equation (3) 

with the definition 

 (7)

yielding the version of Maxwell�s first law that does not involve a polarization field 
 at all. 

 (8)

We adopt this version of Maxwell�s first equation here. 

3. Results 
The traditional formulation of the differential equations shown in Equations (1) and 

(6) is ambiguous in an important way (Integral forms of the Maxwell equations show more 
clearly the need for boundaries. They display the charge on the surface as an integral and explicit 
part of the general solution of Poisson�s equation for the electrical potential, for example). They do 
not mention the shape or boundaries of the regions in question. In fact, if  varies from 
region to region, but is constant within each region, charge is absent within each region: 
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when  is constant,  Charge accumulates only at the boundaries of the re-
gions. In many situations involving dielectrics, including most of those described in clas-
sical textbooks Only the boundary charge has effects on the Maxwell Equations (1) and 
(6). The  field in the Maxwell Equation (7), and implied in Equations (1) and (6), is zero; 
only the boundary values of  are important and they are not visible in the Maxwell 
Equations (1) and (6) themselves. 

We turn now to applications in biology where the issue of charge at boundaries is 
particularly important, not to say that it is unimportant in semiconductor devices as well. 
Dielectric boundary charges have a particular role in biological systems involving mem-
branes or proteins. The membrane capacitance, so important in determining the electrical 
properties of cells, particularly cells with action potentials like nerve and muscle, is a 
boundary phenomenon. Boundary charges are of great importance in channel proteins 
that allow (nearly catalyze) ion flow through membranes, see Appendix A on Proteins 
and [45]. 

Turning back to classical electrodynamics, we remember that most of the properties 
of dielectric rods studied by Faraday�and predecessors going back to Benjamin Franklin, 
if not earlier�arise from the dielectric boundary charges. Textbooks typically spend much 
effort teaching why polarization charge appears on dielectric boundaries in systems with 
constant  where  (e.g., Ch. 6 of [3]). Students wonder why regions of dielec-
trics without polarization charge have polarization charge on boundaries. 

A general principle is at work here: a field equation in itself�like Equations (1) and 
(6) that are partial differential equations without boundary conditions�is altogether in-
sufficient to specify an electric field. A model is needed that has boundary conditions. 
Applications of electrodynamics to biology, electrochemistry, and semiconductors are not 
useful until they specify models and boundary conditions that realistically describe the 
system of interest. 

The model needs to include an explicit structure. It needs to describe the spatial var-
iation of . Indeed, the spatial variation of  may be a main determinant of properties 
[46�48] in (for example) many biological systems (e.g., channels), electrochemical systems 
(electrodes of batteries), and semiconductor devices. Without specifying boundary condi-
tions (defined explicitly in specific structures), using  in the differential Equation (7), 
and implied in Equations (1) and (6), is ambiguous and confusing. Indeed, using  with-
out boundary conditions is so incomplete that it might be called incorrect. 

The general nature of the ambiguity in  becomes clear once one realizes that: 

Adding  (9)

changes nothing (Ch. 4 of [5]) because [49,50] 

; (10)

The ambiguity in  in the Maxwell differential equations means that any model 
 of polarization can have  added to it, without making any 

change in the  in Maxwell�s first equation (7), and implied in Equations (1) 
and (6). 

In other words, the polarization  in Maxwell�s first Equations (7), and 
implied in Equations (1) and (6), does not provide a unique structural model of polariza-
tion . In particular, a model drawn from an atomic detail structure can be 
modified by adding a polarization  to its representation (i.e., 
�drawing�) of polarization without changing electrical properties at all: 

. 
Models of the polarization  and  of the same structure written by dif-

ferent authors may be strikingly different but they can give the same electrical results even 
though the models can appear to be very different. The  field can be quite 
complex and hard to recognize in a model, particularly for structural biologists who may 
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not be comfortable with vector calculus and its curl and div operators. The two mod-
els  and  produce the same charge distribution  and div  
in Maxwell�s first equation Equation (11) and so they cannot be distinguished by electrical 
measurements. 

As we have seen, the P field is arbitrary, as certainly has been known previously Ch. 
4 of [5]. Purcell and Morin [1], see pp. 500�507, describe structural models and ways to 
construct different fields  from the same structure as stated in the introduction 
to this paper. P fields are not unique. 

Purcell and Morin are not guilty of overstatement�indeed they may be guilty of un-
derstatement�when they say �The concept of polarization density is more or less arbi-
trary� (slight paraphrase of [1], p. 507) and the  field is �is an artifice that is not, on the 
whole, very helpful� [1], p. 500. 

The classical approach criticized by Purcell and Morin [1] does not allow unique 
specification of a polarization field  from electrical measurements. 

An arbitrary artificial formulation is prone to artifact and likely to produce misun-
derstanding and unproductive argument: �what is the true description of a dielectric ob-
ject (e.g., protein)?� is a question likely to arise and be unanswerable if the polarization 
field P is itself not unique. 

The  of classical theory is not a firm foundation on which to build an un-
derstanding of the structural basis of the phenomena of polarization, or the electrodynam-
ics of matter, with problems particularly apparent in the understanding of the polarization 
arising from the structure of proteins (see Appendix A). 

It seems clear that most formulations of electrodynamics of dielectrics in classical 
textbooks are �more or less arbitrary� and depend on an �artifice� (quotations from Feyn-
man and Purcell and Morin). Because dielectrics, polarization and a dielectric constant (as 
a single real number) are central to the classical treatments of electrodynamics, the con-
clusion (p. 13) of a modern monograph on electrodynamics, using mathematics (exterior 
differential forms) appropriate for relativistic theories of electrodynamics, [4] quoted pre-
viously seems worth restating �We believe that the conventional theory of electrodynam-
ics inside matter needs to be redesigned�. That redesign begins with a revised treatment 
of polarization that reflects the ambiguity of the curl, see [5]. Ambiguity and its problems 
can be avoided if Maxwell�s First Equation is rewritten without a polarization field 

 as shown previously in Equation (8). The phenomena of polarization�the re-
sponse of charges to an electric field�is then included in a variable , spe-
cifically as (part of) its dependence on  

 (11)

Here  describes all charge whatsoever, no matter how fast, small or 
transient are their movements, including what is usually called dielectric charge and per-
manent charge, as well as charges driven by other fields, like convection, diffusion or tem-
perature. The charge  can be parsed into components in many ways (see Equation 
(1),(3),(6) and (8) and [43,51]). Updated formulations of the Maxwell differential equations 
[43,51] are needed, in my opinion, to avoid the problems produced by ambiguous and 
over-simplified . 

We turn now to a quite different property of charge matter, the flow of charges. 
Most applications of electrodynamics involve flow. The most prominent application 

of electrodynamics is surely computational and semiconductor electronics [52�61] and 
that involves flow, usually described by Kirchhoff�s current law. Semiconductor electron-
ics has remade our world increasing computer power by nearly 109× in the last seventy 
years [62�67]. Biology and electrochemistry (batteries) scarcely exist without flow: what 
physical chemists call equilibrium (no flows of any kind) is hardly worth studying in bio-
logical or electrochemical systems. Unlike thermodynamics, electrodynamics nearly al-
ways involves flow. 
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Thus, we study the flux of charges  as well as their density. Maxwell�s second 
equation describes the flow of charges, electrical current, and the magnetic field. It is un-
derstandable that Maxwell�and his Cambridge contemporaries and followers�had dif-
ficulty understanding current flow when their models did not include permanent charge, 
electrons or their motions. 

Maxwell�s extension of Ampere�s law describes the special properties of current flow 
 (Equation (13) that make it so different from the flux of matter. Maxwell�s field equa-

tions include the ethereal current  that makes the equations resemble those of a 
perfectly incompressible fluid: the ethereal current always exists, whether matter is pre-
sent or not, unlike the dielectric current  that exists only when matter is 
present. 

Maxwell�s field equations describe the incompressible flow  over the dynamic 
range of something like  that is safely accessible within laboratories. The dynamic 
range of the Maxwell equations is much larger if one includes the interior of stars, and the 
core of galaxies in which light is known to follow the same equations of electrodynamics 
as in our laboratories. 

Maxwell�s field equations are different from material field equations (like the Na-
vier�Stokes equations) because they are meaningful and valid universally [68], both in a 
vacuum devoid of mass and matter and within and between the atoms of matter [43]. 

The ethereal current  responsible for the special properties of Maxwell�s 
equations arises from the Lorentz (un)transformation of charge. Charge does not vary 
with velocity, unlike mass (this is the mass that determines inertia, called the �relativistic 
mass� nowadays. This was the meaning of the word �mass� in Einstein�s original papers, 
presumably because he wanted an operational definition of �mass� that was based on the 
observable properties, inertia and momentum, and that was independent of Lorentz 
transformations, and theoretical considerations) [69], length, and time, all of which change 
dramatically as velocities approach the speed of light, strange as that seems. This topic is 
explained in any textbook of electrodynamics that includes special relativity. Feynman�s 
discussion of �The Relativity of Electric and Magnetic Fields� was an unforgettable revela-
tion to me as a student, see Section 13-6 of reference [2]: an obervers moving at the same 
speed as a stream of electrons sees zero current, but the forces measured by that observer 
are the same as the forces measured by an observed who is not moving at all. The moving 
observer describes the force as an electric field . The unmoving observer de-
scribes the force as a magnetic field . The observable forces are the same, what-
ever they are called, according to the principle and theory of relativity. (The principle and 
theory of relativity are confirmed to many significant figures every day in the GPS (global 
positioning systems) software of the map apps on our smartphones, and in the advanced 
photon sources (synchrotrons) that produce X-rays to determine the structure of proteins.) 

The ethereal current reveals itself in magnetic forces which have no counterpart in 
material fields. The ethereal current is apparent in the daylight from the sun, that fuels life 
on earth, and in the night light from stars that fuels our dreams as it decorates the sky. 
The ethereal current is the term in the Maxwell equations that produces propagating 
waves in a perfect vacuum like space. 

Magnetism  is described by Maxwell�s version of Ampere Law, Maxwell�s Second 
Equation: 
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 (12)

 (13)

 (14)

If we are interested in flux and current, we must turn to Maxwell�s second equation 
and deal explicitly with magnetism, even if magnetic fields themselves do not carry sig-
nificant energy (as in almost all biological applications). Only by dealing with Maxwell�s 
second equation can we derive conservation of total current and compare it with the con-
servation of charge. Indeed, the derivation of the continuity equation used here depends 
on equations involving the magnetic field. 

Note that includes the movement of all charge  with mass, no matter how 
small, rapid or transient. It includes the movements of charge classically approximated as 
the properties of an ideal dielectric. It describes all movements of the charge described by 

;  is one of the components of  Indeed, can be written in terms 
of  the velocity of mass with charge. In simple cases, such as a plasma of ions each with 
charge  

  (15)

where  is the charge per particle and is the number density of particles. In a mix-
ture, sets of fluxes , velocities , charges  number densities , and charge den-
sities are needed to keep track of each elemental species  of particles. Plasmas are 
always mixtures because they must contain both positive and negative particles to keep 
electrical forces within safe bounds, as determined by (approximate) global electroneu-
trality. 

In cases other than plasmas, the relationship of  and  to material proper-
ties is complex. The relationship often involves convection and diffusion fields and ex-
tends over a range of scales from atomic to macroscopic, in both space and time. For ex-
ample, the Maxwell equations do not describe charge and current driven by other fields, 
like convection, diffusion, or temperature. They do not describe constraints imposed by 
boundary conditions and mechanical structures. Those must be specified separately. If the 
other fields, structures, or boundary conditions involve matter with charge, they will re-
spond to changes in the electric field. The other fields and constraints thus contribute to 
the phenomena of polarization and must be included in a description of it, as we shall 
discuss further below in the examples shown towards the end of Discussion. The theory 
of complex fluids has dealt with many such cases, often with the label �micro macro�, 
spanning scales, connecting micro (even atomic) structures with macro phenomena. 

The charge density and current  can be parsed into components in many 
ways, some helpful in one historical context, some in another. References [33,43,51,70�75] 
define and explore those representations in tedious detail. Simplifying those representa-
tions led to the treatment in this paper. 

Maxwell�s Ampere�s law Equation (12) implies two equations of great importance 
and generality. First, it implies a continuity equation that describes the conservation of 
charge with mass. The continuity equation is the relation between the flux of charge with 
mass and density of charge with mass. 

Derivation: Take the divergence of both sides of Equation (12), use  
[49,50], and get 

 (16)

when we interchange time and spatial differentiation. 
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However, we have a relation between  and charge  from Maxwell�s first 
equation, Equation (11), giving the Maxwell Continuity Equation: 

 (17)

, (18)

for a biophysical or astrophysical plasma of ions. 
Note that sets of fluxes  and sets of charge densities are needed to keep track 

of each elemental species  of particles in a mixture, along with sets of velocities , 
charges  and number densities , as described near Equation (15). 

Maxwell�s Ampere�s law Equation (12) implies a second equation of great im-
portance. Indeed, it is this equation that allows the design of the one-dimensional 
branched circuits of our digital technology using the relatively simple mathematics of 
Kirchhoff�s current law [72,74]. 

Derivation: Taking the divergence of both sides of Maxwell�s Second law Equation 
(12) yields Conservation of Total Current 

 (19)

 (20)

or 

 (21)

It is easy to overlook the importance of one-dimensional systems. They may seem 
trivial, almost unworthy of analysis using the powerful beauty of vector calculus. How-
ever, one-dimensional systems are of great importance despite, or because of their sim-
plicity. 

Nearly all of our electronic technology occurs in one-dimensional systems, networks 
of branching one-dimensional conductors. Our electronic technology is driven by batter-
ies that are one-dimensional systems. Our technology is at the hands of animals, humans 
in which all information transfer is done by one-dimensional circuits, unbranched in ion 
channels, and barely branched in nerve cells. Branched one-dimensional systems describe 
the metabolic pathways of biological cells that make life possible. 

The importance of one-dimensional systems may come from their design. The design 
of one-dimensional systems is relatively easy for engineers or evolution. Design requires 
Kirchhoff�s laws and little else. One-dimensional systems are widely used for another rea-
son. They are reliable. The dimensionality of these circuits rules out spatial singularities. 
Systems are more robust when steep slopes near infinities are not present to create severe 
sensitivity. 

Kirchhoff�s laws are used to design semiconductor circuits that work over an enor-
mous range of sizes and times, from say 

Current flow over these ranges of 
time space involves a wide range of physics, described by many constitutive equations. 

Current is not just the movement of point permanent charges as assumed in the text-
book derivations of Kirchhoff�s current law I have consulted, both in electrical engineering 
and electrodynamics. The derivations of Kirchhoff�s current law are usually restricted to 
the simplest case of the long-time translation of point permanent charges, although it is 
very well known that is a poor model for current flow under conditions actually found in 
the integrated circuits of our digital technology. It is possible to show, however, that cur-
rent flow in one-dimensional systems can be described accurately by a simple generaliza-
tion of Kirchhoff�s current law that arises naturally from the treatment of Maxwell�s equa-
tions found in this paper: all the  that flows into a node must flow out [51,72�74]. 
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This result seems to be rather new, although of course it seems elementary and obvious. 
Indeed, it is so obvious that it must exist somewhere in the literature, even though I do 
not know where. 

Kirchhoff�s current law take on simplest form in unbranched one-dimensional sys-
tems. Unbranched one-dimensional systems are important despite their utter simplicity. 
Indeed, the ion channels of biological systems control a wide range of biological function 
and are unbranched one-dimensional series systems. They cannot be considered degen-
erate. Nor can be the diodes of electronic technology that are also series systems. How-
ever, the greatest importance of unbranched one-dimensional systems may be the insight 
they give to the importance of the ethereal current  

Unbranched one-dimensional systems have components in series, each with its own 
current voltage relation arising from its microphysics. In a series one-dimensional system, 
the total current  is equal everywhere at any time in every location no matter what 
the microphysics of the flux  of charge with mass. The current through a battery is an 
exceedingly complicated mixture of the microphysics of electrodes, ion movement and 
electron flow. If that battery is connected by a wire to a vacuum capacitor, the microphys-
ics of the vacuum capacitor  is as simple as the microphysics of 
the battery is complex, yet the total currents in the capacitor and the battery are equal at 
any time, in any conditions. Indeed, the microphysics of the wire linking the capacitor and 
the battery is totally different from the microphysics of the capacitor and battery. The mi-
crophysics of the wire actually resemble that of a waveguide at frequencies important in 
our digital integrated circuits. The microphysics of the wire, capacitor and battery do not 
change the fact that the total current through each is exactly the same, always, at every 
location and at every time. 

How can that possibly be true? The answer is found in the Maxwell equations. They 
can be solved for the electric field and magnetic fields that make the total currents equal. 

The solutions of Maxwell�s equations ensure that the ethereal current  and 
the other dependent variables, take on the values at every location and every time needed 
to make the total currents  equal everywhere. A practical example, not difficult to 
build in any laboratory, including resistor, capacitor, diode, capacitor, cylinder of salt wa-
ter, and wire is described in detail near Figure 2 of [73]. 

There is no spatial dependence of total current in a series one-dimensional system. 
No spatial variable or derivative is needed to describe total current in such a system [75], 
although of course spatial variables are needed to describe other variables, including (1) 
the density of mass with charge (2) the flux  of charge with mass (3) the electrical 
current  of individual elemental species (4) the velocities, charge, and number den-
sities and . 

It is important to realize that the flux of charge with mass  is not conserved, only 
the total current  is conserved. Charges carry  can accumulate. In 
fact, supplies the flow of charge that is the current nec-
essary to change as described by the following continuity equation. 

 (22)

That is to say,  can accumulate as  Total current cannot accumulate, not 
at all, not anywhere, not at any time. 

Because conservation of total current applies on every time and space scale, including 
those of thermal motion, the properties of  differ a great deal from the properties of 

. For example, in one-dimensional channels, the material flux  can exhibit all the 
complexities of a function of infinite variation, like a trajectory of a Brownian stochastic 
process, that reverses direction an uncountably infinite number of times in any interval. 
A Brownian trajectory of a Brownian stochastic process is a continuous function that does 
not have a (well defined) time derivative anywhere. 
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In marked contrast to the infinite variation of , the electrical current  has no 
spatial variation at all. It is spatially uniform [75]. 

The fluctuations of  (in time and space) and other variables are exactly what 
are needed to completely smooth the infinite fluctuations of  into the spatially uniform 

. 
Maxwell�s equations serve as the perfect low pass (spatial) filter converting the infi-

nite variation of Brownian motion into a spatial constant, as strange as that seems. 
These universal and exact properties of Maxwell�s equations are hidden in the usual 

treatment of Maxwell�s equations. The usual treatment includes a grossly approximate 
treatment of polarization as the property of a perfect dielectric. Everyone knows how bad 
this approximation is, so everyone understands that Maxwell�s equations as usually writ-
ten are not universal or exact. They are as sloppy as is the dielectric constant as a descrip-
tion of the polarization of matter. 

ONLY when Maxwell�s equations are written without a dielectric constant, with a 
perfectly general treatment of induced charge, does it become clear that Maxwell�s equa-
tions are universal and exact independent of any property of matter. 

How then is polarization included in a modified version of the Maxwell equations 
that does not include a dielectric constant. One needs an explicit model of polarization 
appropriate for the system of interest. 

It is obvious that one cannot describe material flow unless one knows how matter 
moves in response to forces. It should be obvious that one cannot describe the flux of 
charges unless one knows how material charge moves in response to forces. 

The use of a single real dielectric constant in Maxwell�s equations is no more neces-
sary than the use of a single spring constant (i.e., elasticity) is in material equations. But 
Maxwell�s equations describe the total electrical current�that includes the ethereal cur-
rent�not the flux of charges. Because of the ethereal current, Maxwell�s equations de-
scribe light in the vacuum of space between stars. 

Because of the ethereal current, Maxwell�s equations are universal and exact. They 
describe total current as exactly as they describe anything, and their description of total 
current flow is entirely independent of the properties of matter. Total current flow de-
pends on no constitutive equations, except perhaps the constitutive equation of a vacuum, 
more or less determined by special relativity. Electrodynamics are very different in this 
respect from the equations of material movement. They always depend on constitutive 
equations in important respects. The fundamental properties of electrodynamics do not 
depend on constitutive equations. 

4. Discussion: From Electrodynamics to Biophysics and Back 
A fundamental question arises with the updated version of Maxwell�s equations. 

How is the phenomenon of polarization included in Equation (11) and Equation (14)? 
To answer this question, we first need a general paradigm to define polarization, 

even when dielectrics are far from ideal, when they might be time and frequency depend-
ent, and voltage dependent as well. We need a paradigm that describes how the charge 
distribution varies with the electric field in as general a system as possible, including sys-
tems with charge movement driven by forces not in the Maxwell equations at all, such as 
convection and diffusion. 

It seems obvious that a general paradigm cannot be found. After all the motions of 
matter in response to a change in electric field are more or less as complex as the motions 
of matter itself! Nonetheless, a paradigm of that may be helpful in many cases has been in 
use for many years, even if it is not perfectly general. 

This problem has been addressed in membrane biophysics. A community of scholars 
has studied the nonlinear currents that control the opening of voltage sensitive protein 
channels for nearly fifty years, [7,12�19] inspired by [6]. They have developed protocols 
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that may be useful in other systems, as they have been in biophysics. Schneider and Chan-
dler followed by Bezanilla and Armstrong are responsible for this paradigm, more than 
anyone else [7�9]. 

The basic setup used in these experiments is that of an electrochemical cell modified 
to deal with a cylindrical cell as shown in Figure 1. Membrane potential is measured across 
a biological membrane, with defined concentrations on both sides of the membrane. Cur-
rent is applied through electrodes to control the potential, in the classical voltage clamp 
set up of Cole [76] and Hodgkin, Huxley, and Katz [77,78]. It is best to apply that current 
in electrodes different from those that record membrane potential using a so-called four 
electrode setup [79�81], like those described in textbooks of electrochemistry. 

I propose using the operational definition of �gating current� used to define nonlinear, 
time and voltage dependent polarization by biophysicists as a useful setup and definition 
of many types of polarization. Obviously, this definition is not general, but the hope is 
that it may be generally useful. 

The basic idea is to apply a set of step functions of potential across the system�in 
biology across the membrane�and observe the currents that flow. The currents observed 
are transients that decline to a steady value, often to near zero after a reasonable (biologi-
cally relevant) time. The measured currents are perfectly reproducible. If a pulse is ap-
plied, the charge moved (the integral of the current) can be measured when the voltage 
step is applied. The integration goes on until when the current  is nearly inde-
pendent of time, often nearly zero. That integral is called the ON charge . 

When the voltage is returned to its initial value (the value that was present before the 
ON pulse), another current is observed that often has quite different time course [7�9], 
much more so than in Figure 1. The integral of that current is the OFF charge . 

If , and the physical processes involved depend fundamentally on poten-
tial and not its time derivative, the biophysical paradigm is likely to be useful. In other 
cases, another paradigm is needed. If the current produced by the step in potential is in 
fact actually transient, the steady current will be what it was before the voltage step was 
applied. The transient will disappear with time as the word �transient� implies. In that case 
it seems that the biophysical paradigm is not only useful but may even provide a unique 
definition of gating current and the corresponding polarization 

Gating current as measured in biophysical experiments depends on the membrane 
voltage before the step, as well as the voltage just after and during the step. It also depends 
separately on the voltage after the step, although Figure 1 does not illustrate the depend-
ence documented in the literature [7�9]. The voltage and time dependence arises from the 
molecular motions underlying the gating current. The voltage and time dependence de-
fines the mean molecular motions [7,16,17,19,21,82�86] and is called �the gating current� 
in the biophysics literature. 

If the ON charge is found experimentally to equal the OFF charge, for a variety of 
pulse sizes and range of experimental conditions, the current is said to arise in a nonlinear 
(i.e., voltage dependent) polarization capacitance and is interpreted as the movement of 
charged groups in the electric field. The charged groups move to one location after the 
ON pulse, and return to their original location following the OFF pulse. The charge is 
called �gating charge�, and the current that carries the charge is called �gating current�. 

The macroscale current observed in the set-up is equal to the sum of the micro (actu-
ally atomic scale) currents carried by the charged groups inside a channel protein, even 
though the recording electrodes are remote from the protein. Indeed, there might be 

charged atoms (ions) between the electrodes and the protein. 
The currents in the electrodes and the channel protein are equal because the setup is 

designed to be an unbranched one-dimensional circuit with everything in series. In a one-
dimensional series setup the total current is equal everywhere in the series system at any 
one time, even though the total current varies significantly with time. The Maxwell equa-
tions guarantee spatial uniformity of total current (including the ethereal current 

) independent of the microphysics of movement of charge (with mass): Figure 2 
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of [73], and [43,75,87]. The equality of current can be checked by measuring current in 
different locations in the experiment. The spatial equality of current needs also to be 
checked in simulations as in [18,21,88] because tiny inadvertent errors in numerical pro-
cedures or coding can produce substantial deviations from spatial equality and thus mis-
leading artifacts. Imposing periodic boundary conditions on nonperiodic systems is an-
other possible source of such artifacts. 

If the currents reach a steady value independent of time, but not equal to zero, as in 
Figure 1, the signal is not transient, in the strict meaning of the word. In biophysics, the 
steady current  is then usually considered to flow in a resistive path that is time in-
dependent, but perhaps voltage dependent, in parallel with the path or device in which 
the gating charges  and  flow. If the current does not reach a steady value, or if 
the areas in Figure 2 are not equal, the currents are not considered �capacitive� and are 
interpreted as those through a time and voltage dependent �resistor�. This is a biological 
and biophysical assumption. It is not a physical or mathematical necessity. Thus, it is im-
portant to investigate the properties of the currents through the resistive path�e.g., those 
that are not transient and do not return to zero and those that make  by inde-
pendent methods to see if they are time independent. In biophysics, currents can be done 
by blocking the resistive path with drugs, or with mutations of the channel protein. If the 
resistive currents are not time independent, the definition of  and  in Figure 1 
needs to be changed. Indeed, experiments of another type must be designed that allow 
separation of polarization from conduction currents. The simplest version of the biophys-
ics paradigm then needs to be extended. 

Clearly, this approach will only work if step functions can reveal all the properties of 
the underlying mechanism. If the underlying mechanisms depend on the time rate of 
change of voltage, step functions are clearly insufficient because  is zero or infinity 
but nothing else in a step function. In the classical language of membrane biophysics, the 
ionic conductances  and must not depend on the rate of change of voltage. 

Much work has been conducted showing that step functions are enough to under-
stand the voltage dependent mechanisms in the classical action potential of the squid axon 
[89�91], starting with [78], Figure 10 and Equation (11). Hodgkin kindly explained the 
significance of this issue to colleagues, including the author (around 1970). He explained 
the possible incompleteness of step function measurements: if sodium conductance had a 
significant dependence on the action potential computed from voltage clamp data 
would differ from experimental measurements. He mentioned that this possibility was an 
important motivation for Huxley�s heroic hand integration [6] of the Hodgkin Huxley dif-
ferential equations. Huxley confirmed this in a separate personal communication, Huxley 
to Eisenberg. Those computations and many papers since [89�91] have shown that voltage 
clamp data (in response to steps) is enough to predict the shape and propagation of the 
action potential in nerve and skeletal muscle. It should be clearly understood that such a 
result is not available for biological systems in which the influx of Ca++ drives the action 
potential and its propagation [92]. 

The conductance of the voltage activated calcium channel has complex dependence 
on the current through the channel because the concentration of Ca++ in the cytoplasm is 
so low (~10 8 M at rest) that the current almost always changes the local concentration in 
and near the channel on the cytoplasmic side. Those concentration changes, in turn, alter 
the gating and selectivity characteristics of the channel protein, as calcium ions are prone 
to do int many physical and biological systems, particularly at interfaces. 

It seems unlikely that the resulting properties of voltage dependent calcium channels 
can be comfortably described by the same formalism [6] used for voltage-controlled so-
dium and potassium channels of nerve and skeletal muscle. That formalism uses variables 
that depend on membrane potential and not membrane current because Cole [93] and 
Hodgkin [94�96] guessed that neuronal action potentials were essentially voltage depend-
ent, not current dependent. They found action potentials in �space clamped� axons with 
wires down their middle [76,77,97,98] that ensured spatial uniformity of potential. These 
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axons had very different patterns of current flow from normal axons, and so Cole and 
Hodgkin were confirmed in their view that the membrane processes generating the action 
potential were voltage dependent, much more than current dependent (personal commu-
nication Cole to Eisenberg 1960; Hodgkin to Eisenberg 1961, et al.). 

Hodgkin, Huxley, Katz, and Cole did not know of action potentials driven by calcium 
channels [99�103], nor of the extraordinarily small concentration of calcium ions inside 
cells. There may of course be other reasons the formalism [6] is inadequate. In summary, 
experiments, theory, computations and perhaps simulations are needed to show that re-
sponses to steps of voltage allow computation of a calcium driven action potential. 

The polarization protocol described here can be applied to simulations of polariza-
tion as well as experimental measurements of polarization. Indeed, the operational defi-
nition of polarization has been applied even when theories [18] or simulations are enor-
mously complicated by atomic detail that includes the individual motions of thousands 
of atoms [21,88]. 

Another question of general interest is how does the polarization defined this way 
correspond to the polarization  in the classical formulation of the Max-
well Equations (7) and implied in Equations (1) and (6)? Does the estimated polarization 
equal ? 

The answer is not pleasing. Polarization cannot be defined in general. The variety of 
possible responses of matter to a step of potential prevents a general answer. Indeed, a 
main point of this paper is that polarization must be defined by a protocol in a specific 
setting that specifies how the local electric field changes the distribution of charge. 

Polarization cannot be defined in general because there are too many possible mo-
tions of mass with charge in response to a change in the electric field. Every possible mo-
tion of mass (with charge), including rotations and translations and changes of shape and 
density of charge, would produce a polarization. Polarization currents can be as compli-
cated as the motions of matter. 

In mechanical systems in general these issues do not attract much attention. It seems 
obvious that one must have a model and theory of how a system changes shape (and 
distribution of mass) when forces are applied. Seeking a general treatment is silly. In elec-
trodynamics, for illogical reasons of history, tradition, and respect for our elders, scientists 
have sought the general treatment that would be considered silly for mechanical systems. 

Scientists, certainly including me, have used the simple electromechanical model of 
an ideal dielectric to describe how charge moves in response to an electric field, using the 
name polarization to describe the phenomena. They have tried to apply it everywhere, as 
is seen because that model is embedded in the traditional formulation of the Maxwell 
equations found universally in textbooks. 

It seems to me time to abandon this forlorn hope of a general description of the re-
sponse of charged matter to a change in the electric field, and to move to a more reasonable 
approach, in which explicit models of the response of charge to the electric field are con-
structed, with different models for different systems. 

Insight can be developed into various kinds of polarization by constructing �toy� 
models of simple systems. Those models must specify the mechanical variables  
and  (or their equivalent) and solve the field equations of mechanics, perhaps includ-
ing diffusion, along with the Maxwell equations. The models are then studied using the 
operational definition of polarization, described previously (Figure 1) or other operational 
definitions more suitable for other systems. One can hope some of the models resemble 
some of the more elaborate models of polarization already in the literature [26�
29,31,32,34]. 

Toy models might include: 
(1) Simple electro-mechanical models, like a charged mass on a spring with damping. 
(2) Ideal gases of permanently charged particles, i.e., biological and physical plasmas. 
(3) Ideal gases of dipoles (point [104] and macroscopic), quadrupoles, and mixtures of 

dipoles and quadrupoles, that rotate and translate while some are attached by bonds 
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that vibrate (see (1)). These mixtures should provide decent representations of liquid 
water in ionic solutions, if they include a background dielectric, even if the dielectric 
is over-approximated with a single dielectric constant . Indeed, there is 
a substantial literature of such models, including [105,106] but one must be sure that 
the models include the unavoidable interactions of atoms, molecules, and structures 
often dominated by their electrodynamics. Atoms, molecules and structures are al-
most always charged and so never move independently. Their motions are correlated 
by the electric field, and those correlations are likely to dominate the properties of 
greatest interest in applications. Of course, the extensive analysis of these authors can 
be of great use once it is focused on issues and applications of interest and combined 
with experimental measurements (see (5) and (6) below). 

(4) Molecular models of ionic solutions that include water as a molecule. It is best to use 
models that are successful in predicting the activity of solutions of diverse composi-
tion and content and include water and ions as molecules of unequal nonzero size 
[107]. 

(5) Classical models of impedance, dielectric, and molecular spectroscopy [26�
29,31,32,34]. 

(6) Well-studied systems of complex fluids, spanning scales, connecting micro (even 
atomic) structures with macroscopic functions, often called �micro-macro models� in 
the literature. 
These examples, taken together, will help form a handbook of practical examples 

closely related to the classical approximations of dielectrics. 
These problems have time dependent solutions except in degenerate, uninteresting 

cases. Time dependence poses particular problems for the classical formulations of Max-
well equations. As stated in [51] on p. 13. 

�It is necessary also to reiterate that  is a single, real positive constant in Maxwell�s 
equations as he wrote them and as they have been stated in many textbooks since then, 
following [108�110]. If one wishes to generalize  so that it more realistically describes 
the properties of matter, one must actually change the differential Equation (6) and the set 
of Maxwell�s equations as a whole. If, to cite a common (but not universal) example,  is 
to be generalized to a time dependent function, (because polarization current in this case 
is a time dependent solution of a linear, often constant coefficient, differential equation 
that depends only on the local electric field), the mathematical structure of Maxwell�s 
equations changes.� 

Perhaps it is tempting to take a short cut by simply converting  into a function of 
time in Maxwell�s equations, as classically written. �Solving the equations with a 
constant  and then letting  become a function of time creates a mathematical chimera 
that is not correct. The chimera is not a solution of the equations.� The full functional form, 
or differential equation for  must be written and solved together with the Maxwell 
equations. This is a formidable task in any case, but becomes an even more formidable 
challenge if convection or electrodiffusion modify polarization, as well as the electric field. 

If one confines oneself to sinusoidal systems (as in classical impedance or dielectric 
spectroscopy [27,42,111,112]), one should explicitly introduce the sinusoids into the equa-
tions and not just assume that the simplified treatment of sinusoids in elementary circuit 
theory [113�117] is correct. It is not at all clear that Maxwell�s equations joined with con-
stitutive equations; and boundary conditions always have steady state solutions in the 
sinusoidal case. The Maxwell equations joined with diffusion and convection equations 
(like Navier�Stokes [118�135] or PNP  Poisson Nernst Planck  drift diffusion 
[52,53,55,57,59,61,123,136�145]) certainly do not always have solutions that are linear 
functions of just the electric field [146�149].� 

It seems clear that the classical Maxwell equations with the over-approximated die-
lectric coefficient cannot emerge in the time dependent case. Of course, the classical 
Maxwell equations cannot emerge when polarization has a nonlinear dependence on the 
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electric field, or depends on the global (not local) electric field, or depends on convection 
or electrodiffusion. 

Indeed, in my opinion, when confronted with the models of polarization listed on 
the previous page, the classical Maxwell equations will be useful only when knowledge 
of the actual properties of polarization is not available. All the models listed involve time 
dependence in the polarization fields that are not included in the classical Maxwell equa-
tions as usually written. 

5. Conclusions 
A generalization of Maxwell�s useful in a range of systems may emerge. The gen-

eralization would describe how the local electric field changes the distribution of charge, 
as one imagines that Maxwell hoped  and  would be. 

Until then, one is left with: 
(1) Bewilderingly complete measurements, over an enormous range of frequencies (e.g., 

[26�29,31,32,34,35]) of the dielectric properties and conductance of ionic solutions of 
varying composition and content. These measurements embarrass the theoretician 
with their diversity and complexity. They have not yet been captured in any formulas 
or programs less complicated than a look-up table of all the results. 

(2) Computations of the motion of all charges on the atomic scale [21,88], described by 
the field equations of mechanics and electrodynamics [18]. 

(3) Reduced models. It is unlikely that the reduced models can be derived solely by 
mathematics. It is more likely that they must be �guessed and checked� one by one, 
as most models are checked in science. 
What should be done when little is known? Sadly, the actual properties of polariza-

tion are often unknown. Then, one is left with the over-approximated Equation (6) or 
nothing at all. It is almost never wise to assume polarization effects are negligible. Equa-
tion (6) is certainly better than nothing: Equation (6) can be particularly helpful if it is used 
gingerly: toy models can successfully represent an idealized view of a part of the real 
world of technological or biological importance, for example, electronic circuits or several 
properties of ion channels. 

In some cases, the toy models can be enormously helpful. They allow the design of 
circuits in our analog and digital electronic technology [150�153]. They allow the under-
standing of selectivity [107,154�156] and current voltage relations of several important 
biological channel proteins in a wide range of solutions [107,157�159]. In other cases�for 
example, the description of ionic solutions with many components�the toy models can 
be too unrealistic to be useful. Experiments and experience can tell how useful the toy 
model actually is in a particular case: pure thought usually cannot. 
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Appendix A.  in Proteins 
Ambiguities in the meaning of the polarization field  can cause serious 

difficulties in the understanding of protein function. Understanding protein function is 
greatly aided by knowledge of protein structure. The protein data bank contains 173,754 
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structures in atomic detail today (24 January 2021) and the number is growing rapidly as 
cryo-electron microscopy is used more and more. 

Protein structures are usually analyzed with molecular dynamics programs that as-
sume periodic boundary conditions and chemical equilibrium, i.e., no flows. Most pro-
teins control large flows as part of their natural biological functions. Equilibrium hardly 
ever occurs in living biological systems. It seems obvious that equilibrium systems cannot 
provide general insight into flows, any more than a nonfunctional amplifier without a 
power supply can show how a functional amplifier works. Proteins are not periodic in 
their natural setting. It seems obvious that periodic systems with flow cannot conserve 
total current  in general�or perhaps even in particular�as required by the Maxwell 
equations, see Equation (19). In other words, it is likely that molecular dynamics analyses 
of periodic structures do not satisfy the Maxwell equations, although almost all known 
physics does satisfy those equations. 

It is also unlikely that standard programs of molecular dynamics compute electrody-
namics of nonperiodic systems correctly, despite their use of Ewald sums, with various 
conventions, and force fields (tailored to fit macroscopic, not quantum mechanical) data. 
Compare the exhaustive methods used to validate results in computational electronics 
[61] with those in the computation of electric fields in proteins. 

The electrostatic and electrodynamic properties of proteins are of great importance. 
Many of the atoms in a protein are assigned permanent charge greater than  in the 
force fields used in molecular dynamics, where  is the elementary charge, and these 
charges tend to cluster in locations most important for biological function, just as they 
cluster at high density near the electrodes of batteries and other electrochemical systems. 
Enormous densities of charge ( sometimes much larger) are found in and near 
channels of proteins [107,160�162] and in the �catalytic active sites� [163] of enzymes. Such 
densities are also found near nucleic acids, DNA and (all types of) RNA and binding sites 
of proteins in general. 

It seems likely that a hierarchy of models of different resolutions will be needed to 
compute the electrodynamics of proteins accurately enough to explain how the electrical 
properties of side chains (polarizability [21] and others) of a protein determine biological 
function. Analysis of gating currents suggests such an approach is feasible 17,18,20,21]. 
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