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Classical electrodynamics uses a dielectric constant to describe the polarization response of elec-
tromechanical systems to changes in an electric field. We generalize that description to include a
wide variety of responses to changes in the electric field, as found in most systems and applications.
Electromechanical systems can be found in many physical and biological applications, such as ion
transport in membranes, batteries, and dielectric elastomers. We present a unified, thermodynam-
ically consistent, variational framework for modeling electromechanical systems as they respond to
changes in the electric field; that is to say, as they polarize. This framework is motivated and devel-
oped using the classical energetic variational approach (EnVarA). The coupling between the electric
part and the chemo-mechanical parts of the system is described either by Lagrange multipliers or
various energy relaxations. The classical polarization and its dielectrics and dielectric constants
appear as outputs of this analysis. The Maxwell equations then become universal conservation laws
of charge and current, conjoined to an electromechanical description of polarization. Polarization
describes the entire electromechanical response to changes in the electric field and can sometimes
be approximated as a dielectric constant or dielectric dispersion.

I. INTRODUCTION

Electromagnetism is often described by Maxwell field
equations that form a general and precise description of
electrodynamics in the absence of matter, with only two
parameters, both of which are true constants that can be
measured directly by experiments and are found to be re-
markably constant in a wide range of conditions. In the
presence of matter, like dielectrics, things are more com-
plex, because the field changes things that are charged
and the charge changes the field [1]. These interactions
depend on the mechanical properties of the system, the
distribution of charge and mass, and the Maxwell equa-
tions themselves.
Classical electrodynamics was based on a particularly

simple idealized model of electromechanical charge in in-
sulating dielectrics. In the ideal linear dielectrics of the
classical Maxwell Equations, interactions are particularly
simple and described by a dielectric constant εr, a single
real number. That classical model is, however, unable to
adequately describe the complicated interaction between
charge and field in most materials as measured recently
[2–15]. It should not be a surprise that a model ade-
quate to deal with measurements available in the 1850’s
(typically on a time scale of a tenth of a second) would
need revision in the 2020’s when time scales of 10−9s are
commonplace in experiments and applications.
Other electromechanical systems (beyond insulating

dielectrics) are even more complex because other forces—
like diffusion and convection—come into play. Both dif-
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fusion and convection move charges, and so change elec-
tric fields, that in turn act on the charges. These com-
plex electro-mechanical systems involving diffusion and
transport play pivotal roles in physical and biological ap-
plications. Examples include ion transport in biological
cells and across biological membranes, in batteries and
other electromechanical technology. Indeed, similar in-
teractions of holes, electrons and fields underlie the semi-
conductor devices of our technology. In all these systems,
particles do not move independently. Interactions are of
great importance.

One of the most important electro-mechanical sys-
tems is the transport of charged particles in dilute so-
lutions, which is often described by a Poisson-Nernst-
Planck (PNP) equation [16]. The movement of charged
particles is a mechanical process, involving diffusion and
convection, but the motion of the charges changes their
positions, forms an electrical current, and thus changes
the electric field in the system, which in turn changes the
motion of the charged particles themselves.

In systems involving diffusion, the particles interact
through the electric field and use concentration gradi-
ents to create a PNP system [17, 18]. The classical PNP
equation can be written as [18]

∂ci
∂t

= ∇ ·
(
Di(∇ci +

qzi
kBT

ci∇ϕ)

)

−∆ϕ =
1

ε
(

n∑

i=1

qzici + ρ0(x)),

(1.1)

where ci(x, t) is the number density of the i-th species
of ions, ϕ(x, t) is the electrostatic potential, ρ0(x) rep-
resents the density of any immobile background charge,
q is the elementary charge, zi is the electric charge of
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one molecule of the i-th species, and ε is the permittivity
that measures electric polarizability of the solution. Here
the effects of magnetic fields are totally neglected, which
is only true when there are no time-dependent magnetic
fields so E = −∇ϕ is curl-free. The interaction between
ions 1 and field is imposed through the Poisson equation.

The understanding of electromechanical coupling is
rather limited. It is even unclear whether the PNP type
equation, which is a mechanical description for trans-
portation of charged point particles, is consistent with
the Maxwell field equations in general. The dielectrics of
classical Maxwell electrodynamics—without diffusion—
can be viewed as simple electromechanical systems in
which the electric field changes the location of charge
by a particularly simple rule. There exits a large litera-
ture developing variational theories for electromechanical
and magnetomechanical coupling in a range of systems of
this type (excluding diffusion for the most part) [19–32].
Inspired by these, we build a thermodynamically consis-
tent variational description of general electromechanical
systems and extend it to include diffusion.

The framework is motivated and developed using the
classical energetic variational approach (EnVarA) that
allows consistent incorporation of other fields, e.g., re-
actions [33] and even temperature [34]. We write ex-
plicit models of electromechanical systems that change
the distribution of charge (and mass) as the electric
field changes including elastic, electroelastic, and diffu-
sion forces. The key point is to isolate material properties
in the Maxwell equations and use the classical theories of
mechanics and diffusion to describe those material prop-
erties, using the EnVarA functional formulation. In this
paper, dynamics and fluctuation are imposed in the me-
chanical part only. The electrical part of electromechan-
ical coupling is imposed through models of the system
of interest, or by a Lagrance multiplier in a way less de-
pendent on a specific model. Imposing dynamics on the
electrical part—or on both the electrical and mechani-
cal parts of the system—appears possible, but leads to
complexities beyond the scope of this paper.

The constitutive properties are separated from the
Maxwell equations in this approach, allowing the
Maxwell equations to be universal and exact, and the
constitutive equations to describe (electro)material prop-
erties. Constitutive and Maxwell equations are joined
by the energy variational process either as functionals or
partial differential equations, with boundary conditions
appropriate for the model system and setup of interest.
As an illustration, we re-derive the classical PNP system
in the proposed framework.

1 Holes and electrons in semiconductors share many of the prop-
erties of ions in solutions.

II. PRELIMINARY

A. Mechanics: energy variational approach

Mechanical systems can often be described by their en-
ergy and the rate of energy dissipation as in the energetic
variational approach [35]. One of the simplest mechanical
systems is a spring-mass system

{
xt = v

mvt = −γxt −∇V (x),
(2.1)

where v is the velocity and V (x) is the potential energy.
For a linear spring, V (x) = 1

2k|x|2. It is straightforward
to show that the spring-mass system (2.1) satisfies an
energy-dissipation identity

d

dt

(m
2
|xt|2 + V (x)

)
= −γ|xt|2, (2.2)

where K = m
2 |xt|2 is the kinetic energy, U = V (x) is the

internal energy and γ|xt|2 is the rate of energy dissipation
due to the friction.

If the system also involves a stochastic force, modeled
by a Gaussian white noise, then the dynamics becomes

{
xt = v

mvt = −γv −∇V (x) + ξ(t),
(2.3)

where ξ(t) is a stochastic force satisfying 〈ξ, ξ′〉 =
2kBTm

−1γδ(t−t′) due to the fluctuation-dissipation the-
orem (FDT) [36]. The FDT ensures the system admits
an energy-dissipation law and reaches the correct equi-
librium state [36]. Here we adopt a Langevin represen-
tation, understanding fully well that this description is a
constitutive model that needs to be confirmed by exper-
iment and comparison with the actual properties of tra-
jectories in matter and in accurate simulations of atomic
motion. Let f(x,v, t) be the probability of a particle in
location x with velocity v, the Fokker-Planck equation of
f(x,v, t) corresponding to the Langevin dynamics (2.3)
is given by

∂tf +∇x · (vf) +∇v ·
(
(− γ

m
v − 1

m
∇V )f

)

=
kBTγ

m2
∆vf.

(2.4)

Note that this is the full Langevin equation including
the acceleration term. Direct calculation reveals that the
Fokker-Planck equation (2.4) for the full Langevin equa-
tion satisfies an energy-dissipation identity

d

dt

∫
m

2
f |v|2 + kBTf ln f + V fdvdx

=

∫
−γf |v + kBTm

−1∇v ln f |2dvdx ≤ 0.

(2.5)
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The kBTf ln f term comes from the noise, which corre-
sponds to the entropy TS in classical thermodynamics.

Much of the literature [37–41] follows Smoluchowski
and Einstein and is concerned with overdamped sys-
tems. Many applications occur in highly overdamped
systems, like ionic solutions or liquids. These are con-
densed phases, with almost zero empty space. In such
systems, atoms cannot move without strong interactions
(‘collisions’) which become frictional and dissipative af-
ter a very short time, of the order of 10−14s. This lit-
erature derives and discusses the over damped Langevin
equation from the perspective of the theory of stochas-
tic processes [37–39] or the Boltzmann transport integral
[39–41] while our perspective is energetic. Each treat-
ment uses slightly (but significantly) different definitions
of ‘overdamped’, ‘flux’, and ’mean velocity’. We are no
exception. If definitions are assumed to be identical in
these different approaches, confusion can result.

In an overdamped region (γ ≫ m), the inertial term
in (2.3) can be ignored and the dynamics can be reduced
to an overdamped Langevin equation (after rescaling but
keep the same notation)

γxt = −∇V (x) + ξ(t), (2.6)

where 〈ξ, ξ′〉 = 2kBTγδ(t − t′). The corresponding
Fokker-Planck equation of ρ(x, t) then becomes

ρt = ∇ ·
(
1

γ
(kBT∇ρ+ ρ∇V )

)
, (2.7)

where ρ(x, t) is the probability distribution of finding the
particle at location x, If we define the average velocity
as

u =
1

γ
∇ (kBT (ln ρ+ 1) + V ) , (2.8)

then energy-dissipation law of the Fokker-Planck equa-
tion (2.7) can be formulated as

d

dt

∫
((kBT )(ρ ln ρ) + V (x)) dx = −

∫
γρ|u|2 dx. (2.9)

Again, the (kBT )(ρ ln ρ) term corresponds to −TS with
S = −ρ ln ρ being the entropy.

In general, as in previous examples, an isothermal me-
chanical system can be well defined through an energy-
dissipation law

d

dt
(K + F) = −△, (2.10)

along with the kinematics of the employed variables.
Here K is the kinetic energy, F = U−TS is the Helmholtz
free energy, and △ is the rate of the energy dissipation,
which is the entropy production in the system [35]. From
the energy-dissipation law (2.21), the corresponding evo-
lution equation can be derived by the energetic varia-
tional approach (EnVarA).

In more detail: EnVarA consists of two distinct varia-
tional processes: the Least Action Principle (LAP) and
the Maximum Dissipation Principle (MDP) [35]. The
LAP states that the dynamics of a Hamiltonian system
are determined as a critical point of the action functional

A(x) =
∫ T

0
(K − F) dt with respect to x(X, t) (the tra-

jectory for mechanical systems, where X are Lagrangian
coordinates) [35], i.e.,

δA =

∫ T

0

∫

Ω(t)

(finertial − fconv) · δx dx dt. (2.11)

The dissipative force in such a system can be determined
by minimizing the dissipation functional D = 1

2△ with
respect to the “rate” xt in the linear response regime
[42], i.e.,

δD =

∫

Ω(t)

fdiss · δxt dx. (2.12)

This principle is known as Onsager’s MDP [43, 44]. Ac-
cording to force balance, which is Newton’s second law if
we view inertial force as ma, we have, in Eulerian coor-
dinates,

δA

δx
=

δD
δxt

(2.13)

This describes the dynamics of the system. It is worth
mentioning that in principle, mechanical systems are
totally determined by the trajectory or the flow map
x(X, t), as indicated by the above variational procedure.
To further illustrate the framework of EnVarA, we con-
sider a simple class of mechanical process, generalized
diffusions, which are concerned with the evolution of a
conserved quantity c(x, t) satisfying the kinematics (con-
servation of mass)

∂tc+∇ · (cu) = 0, (2.14)

where u is an average velocity.

In the framework of EnVarA, a diffusion process can
be described by the energy-dissipation law

d

dt

∫
ω(c) dx = −

∫
η(c)|u|2 dx, (2.15)

where ω(c) is the free energy, η(c) is the friction coef-
ficient. Then a standard variational process leads to a
force balance equation [35, 45]

η(c)u = −∇
(
∂ω

∂c
c− ω(c)

)
= −c∇µ, (2.16)

where

µ =
∂ω

∂c
is the chemical potential.

The complete derivation of (2.16) can be found in Ap-
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pendix A for self-consistency.
A typical example of ω(c) is

ω(c) = (kBT ) c ln c+
1
2

∫
K(x,y) c(y)c(x) dy,

where the first term is the entropy, and the second term is
the internal energy that models the interaction between
particles, with K(x,y) being the interaction kernel. The
interaction can include a steric potential as well as the
Coulomb potential [46]. In that way, the interactions
can include forces arising from the finite size of ions that
limit the total concentration of ions to a finite number
producing the saturation phenomena so characteristic of
biology. Then the variational procedure leads to expres-
sions like cu = −(kBT ∇c + c∇(K ∗ c)). Combing the
force balance equation (2.16) with the kinematics (2.14)
and taking η(c) = c (for simplicity), we obtain a non-local
diffusion equation

ct = ∇ · (kBT ∇c+ c∇(K ∗ c)). (2.17)

Similarly, the PNP equation (1.1) can be derived from
the energy-dissipation law [16]

d

dt

∫ n∑

i=1

kBT ci(ln ci−1)+
ε

2
|∇ϕ|2 = −

∫
kBT

Di

ci|ui|2dx

(2.18)
with the constraint

−∇ · (ε(∇ϕ)) = (
n∑

i=1

qzici + ρ0(x)), (2.19)

which is a differential form of the Gauss’s law. We re-
fer the interested readers to [16] for detailed derivation.
However, this formulation assumes the existence of a di-
electric constant ε, as well as the electric potential ϕ
in advance. Moreover, as proposed in [42, 47, 48], the
proper thermodynamic variable for a thermodynamically
consistent description of electrodynamics is the electric
field E (or D), rather than the electrostatic potential ϕ.

B. Electricity: Maxwell field equations in vacuum

The fundamental equations in classical electromag-
netism are Maxwell’s field equations, which can be for-
mulated as

∇ · (ε0E) = 0

∇ ·B = 0

∂B

∂t
= −(∇× E)

∇×B = µ0

(
ε0

∂E

∂t

)
,

(2.20)

in vacuum, whereE andB are electric and magnetic field,
ε0 is the electrical constant also called the permittivity
of free space and µ0 is the magnetic constant, also called

the permeability of free space.
Direct calculations show the Maxwell equations (2.20)

satisfy the energy-dissipation law

d

dt

∫

Ω

(
ε0
2
|E|2 + 1

2µ0
|B|2) dx = −

∫
1

µ0
∇ · (E×B) dx,

= −
∫

∂Ω

1

µ0
(E×B) · ν dS.

(2.21)
Motivated by the above calculation, we can define the
electric field energy density eF (E,B) as

eF (E,B) =
ε0
2
|E|2 + 1

2µ0
|B|2. (2.22)

The vector 1
µ0
E×B is the Poynting vector that represents

the directional energy flux (the energy transfer per unit
area per unit time) of an electromagnetic field.
Conventionally, one introduces the electric and mag-

netic displacement vectors D and H, defined by

D = ε0E, H =
1

µ0
B. (2.23)

Relations (2.23) are known as Lorentz-Maxwell æther re-
lations. It can be noticed that

D =
∂eF
∂E

, H =
∂eF
∂B

, (2.24)

which provides an energetic variational formulation for
D and E connecting the energies and these classic fields.

Remark II.1. The field energy eF per unit volume can
be formulated by choosing different primitive variables.
For instance, in [22], the field energy eF is defined as

eF (B,D) =
|B|2
2µ0

+
|D|2
2ε0

(2.25)

by using B and D as independent variables. The electric
and magnetic field E and H can be defined as

E =
∂eF
∂D

=
1

ε0
D, H =

∂eF
∂B

=
1

µ0
H. (2.26)

We refer the interested readers to [19] for detailed dis-
cussions on different variational formulations.

The simplest electromechanical system has a point
charge in the electric field. In general, a charge in the
electric field is not only subjected to a force exerted by
the field, but also changes the field in turn. In such
systems the electric field must be computed from the
charges, in models combining electrical and mechanical
theories, as we do here [17].
The electric potential can be constant and indepen-

dent of a charge at a particular location if it is ‘volt-
age clamped’ by an experimental apparatus that sup-
plies charge and energy as in the classical voltage clamp
systems of membrane biophysics. The electric field can
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be similarly constant only if many potentials, at many
points are each separately voltage clamped by their own
apparatus. We are unaware of experiments that do this,
see [49].

For a particle of charge qk and velocity vk, the Lorentz
force on the particle is given by

f = qk(E+ vk ×B). (2.27)

Then the movement of the particle can be described by

mẍk = qk(E+ vk ×B), (2.28)

where vk = ẋk is the velocity of the particle. It is easy
to show the following energy identity

d
dt(

1
2mv2

k) = qkE · vk (2.29)

since (vk ×B) · vk = 0.

The Maxwell field equation in this case can be formu-
lated as

∇ · (ε0E) = ρ

∇ ·B = 0

∂B

∂t
= −(∇×E)

∇×B = µ0

(
ε0

∂E

∂t
+ j

)
,

(2.30)

where the charge density ρ and the (particle) current den-
sity j [10, 50] is defined by

ρ = qkδ(x− xk), j = qkvkδ(x− xk) = ρvk, (2.31)

with δ being the Dirac delta function. Here, we assume
that placing a charged particle in a vacuum does not
change the Maxwell equations themselves.

It is straightforward to show that the equation (2.30)
satisfies the following energy identity

d

dt

∫

Ω

ε0
2
|E|2 + 1

2µ0
|B|2) dx

=

∫

Ω

−E · j dx−
∫

∂Ω

1

µ0
(E×B) · ν dS.

(2.32)

Combining (2.29) with (2.32), we obtain the energy-
dissipation law of the total electromechanical system

d

dt

∫
m

2
|vk|2δ(x− xk) +

ε0
2
|E|2 + 1

2µ0
|B|2 = 0. (2.33)

We can define c = δ(x − xk) as the number den-

sity of the charged particles, then formally, the energy-
dissipation law can be written as

d

dt

∫
(
m

2
c|u|2 + ε0

2
|E|2 + 1

2µ0
|B|2) dx = 0 (2.34)

where u(xk) = vk.

Remark II.2. Similarly, if a charge particle is placed in
a medium and satisfies the ordinary differential equation
(the force balance between the mechanical force and the
Lorentz force on the particle)

mẍk + γẋk +∇V (xk) = qk(E+ ẋk ×B), (2.35)

then the energy-dissipation law is formally given by

d

dt

∫ (
mc(x)

2
|u|2 + c(x)V (x) +W (E,B)

)
dx

= −
∫

γc(x)|u|2dx,
(2.36)

where c(x) = δ(x − xk), u(xk) = vk, V (x) is the po-
tential energy and W (E,B) is the electromagnetic field
energy in such a medium. The formulation also works
for the case with N -particles although one must be care-
ful in evaluating interactions of the different particles.

III. VARIATIONAL TREATMENT OF
ELECTRO-MECHANICAL SYSTEMS

Motivated by the calculations in the last section, we
present a general framework for deriving a thermody-
namically consistent model involving electromechanical
coupling by using an energetic variational approach. The
EnVarA framework allows a general treatment of the re-
sponse of an electromechanical system to a change of the
electric field. It includes classical polarization, even with
complex time dependence and the classical model of an
ideal dielectric. It also includes electromechanical sys-
tems that involve diffusion and translation, and other
energy sources not present in the classical Maxwell equa-
tions. This framework makes minimal assumptions about
the electric displacement field and the properties of its
polarization component.
The framework starts with a general electromechanical

free energy

F(E, ζ) =

∫
W (E, ζ)dx, (3.1)

where W (E, ζ) is the electromechanical free energy per
unit volume, E is the electric field and ζ represents other
mechanical variables, such as densities of ions, the defor-
mation tensor, order parameters in liquid crystals.
We can generalize the definition of electric displace-

ment field D in vacuum (2.24) and define D as [10, 19,
24, 30]

D =
∂W (E, ζ)

∂E
. (3.2)

Consequently, the electric polarization field P is defined
by [23]

P = D− ε0E. (3.3)
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So both D and P are derived from the electromechanical
free energy W (E, ζ).

The different W (E, ζ) correspond to different constitu-
tive relations between D and E. For a ‘linear’ dielectric,
we have

F(E, ζ) = ω(ζ) +
ε(ζ)

2
|E|2 (3.4)

Then

D = ε(ζ)E (3.5)

and ε(ζ) = ε0εr(ζ) is the conventional permittivity and
εr(ζ) is the dielectric constant. The form of free energy
W (E, ζ) can be obtained from experiments by solving
some inverse problems or from more-detailed model [51,
52]. In general, the relation between D and E can be
fully nonlinear.

As an illustration, let us first consider dielectric fluids.
We can take ρ and E as the state variables, and assume
the free energy is given by [31]

F(ρ,E) = FM (ρ) + Felec(ρ,E), (3.6)

where FM (ρ) =
∫
ω(ρ)dx is a purely mechanical compo-

nent of the free energy, i.e., the free energy of the system
in absence of the electric field E. Felec(ρ,E) is the elec-
tromechanical energy, which is assumed to be

Felec(ρ,E) =
ε(ρ)

2
|E|2, (3.7)

for linear dielectrics. Then, the variational procedure
(3.2) leads to D = ε(ρ)E and P = D−ε0E. For the pure
dielectric case without any free charges, we have

∇ ·D = 0, ∇×E = 0, (3.8)

which indicates that there exists an electrostatic poten-
tial ϕ such that

E = −∇ϕ (3.9)

and ϕ satisfies the Poisson equation

−∇ · (ε(ρ)∇ϕ) = 0. (3.10)

The electrostatic potential ϕ can be viewed as a La-
grange multiplier for the constraint ∇·D = 0, along with
the quasi-equilibrium condition, i.e., E minimize the free
energy (3.6) without delay [10]. Indeed, we can introduce
a Lagrange multiplier ϕ for the constraint ∇ · D = 0,
which leads to

F(ρ,E;ϕ) = FM (ρ)+
ε(ρ)

2
|E|2−ϕ(∇· (ε(ρ)E)). (3.11)

By assuming that the electric field reaches equilibrium

without delay, we have

0 =
δF(ρ,E;ϕ)

δE
= ε(ρ)E+ ε(ρ)∇ϕ, (3.12)

which leads to

E = −∇ϕ, (3.13)

and ∇ × E = 0. Delays will introduce additional dis-
persions into the impedance response, which will be dis-
cussed in future work.

Next we discuss the dynamics of the system, which
is described by a suitable dissipation functional on the
mechanical part. A simple choice of the dissipation is

△ = 2D =

∫
η(ρ)|u|2dx, (3.14)

where η(ρ) is the friction coefficients. By a standard
variational procedure (see Appendix A), we have

− η(ρ)u = ρ∇(ω′(ρ) +
1

2
ε′(ρ)|E|2), (3.15)

which is equivalent to the results in [10] [page 68, eq.
(15.12)].

For systems involving free charges, the electric dis-
placement field D satisfies a differential version of
Gauss’s law

∇ ·D = ρf (x), (3.16)

where ρf (x) is the total (electric) free charge density at
x. From the mechanical part of the system, one can
calculate the (mechanical) charge density ρ̂f (ζ). How-
ever, in general, ρ̂f (ζ) may not be exactly the same as
ρf in the Gauss’s law. For instance, polarization arises
from the separation of the centers of positive and neg-
ative charges, which produces a difference between the
mechanical charge density ρ̂f (ζ) and the electric charge
density ρf (x). In the energetic variational formulation,
ρf (x) and ρ̂f (ζ) can be linked by either a Lagrange mul-
tiplier or various energy relaxations. Energy relaxations
are a general way of describing electromechanical cou-
pling.

In the following, we illustrate both approaches by mod-
eling the transportation of charged particles in dilute so-
lutions. We assume the free energy is given by

F(c,E) =

∫ n∑

i=1

KBTci(ln ci − 1) +Welec(c,E)dx,

(3.17)

andD = ∂Welec

∂E
. From the mechanical part of the system,

one can calculate the (mechanical) charge density as

ρ̂f (c) =

n∑

i=1

qzici + ρ0(x), (3.18)
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ρ0(x) is the density of any immobile background charge,
zi is the electric variance of i-th species, and q is the
elementary charge. Both approaches can lead to PNP
type systems with suitable dissipations.

A. PNP equation with a Lagrange multiplier

In the first approach, we can introduce a Lagrange
multiplier to link ρ̂f (c) and ρf (x) [10, 26, 53, 54], i.e.,

F(ρ,E;ϕ) =

∫

Ω

n∑

i=1

KBTci(ln ci − 1) +Welec(c,E)

− ϕ

(
∇ ·
(
∂Welec

∂E

)
−

n∑

i=1

qzici − ρ0(x)

)
dx,

(3.19)
where ϕ is the Lagrange multiplier. In the situation when
electric part can reach equilibrium without delay, we will
have δF

δE
= 0. We are aware that introducing a delay will

add a dispersion to the impedance response we calculate.
Adding multiple delays of various types is likely to create
most of the dispersions seen in the impedance literature
[2, 3, 8, 9, 11–15].

To derive the classical PNP equation (1.1), we take
Welec(E) as

Welec =
ε

2
|E|2, (3.20)

with ε being a constant, andD = εE. In the case, δF
δE

= 0
leads to

E = −∇ϕ (3.21)

The Lagrange multiplier ϕ is the usual electrostatic po-
tential ϕ.

Next we look at the dynamics of the system, which are
on mechanical part only. As we did in eq.(2.18), we can
impose the dissipation as

△ = 2D =

∫ n∑

i=1

kBT

Di

ci|ui|2dx, (3.22)

where ui is the average velocity of i-th species. By a
standard energetic variational approach (see Appendix
A), we obtain

kBT

Di

ciu = −ci∇µi (3.23)

where

µi =
δF
δci

= kBT ln ci + ϕciq. (3.24)

The final PNP equation can be written as

∂tci = ∇ ·
(
Di(∇ci +

qzi
kBT

ci∇ϕ)

)

−∇ · (ε∇ϕ) =

n∑

i=1

qzici + ρ0(x).

(3.25)

Although many studies assume that there exists a di-
electric constant in ionic solution, the dielectric constant
usually depends strongly on time and is typically het-
erogenous. It often depends on other mechanical vari-
ables, such as the concentration of ions [55]. Within the
above framework, it is easy for us to derive a PNP equa-
tion with heterogenous dielectric properties. As an ex-
ample, consider a free energy

F(c,E) =

∫ N∑

i=1

ci(ln ci − 1) +
ε(c)

2
|E|2 dx, (3.26)

where ε(c) = ε0εr(c) is the concentration-dependent per-
mittivity. In this case, the electric displacement vector is
given by

D = ε(c)E. (3.27)

The Lagrange multiplier approach and the quasi-
equilibrium assumption for the electric field E leads to

δF
δE

= ε(c)E+ ε(c)∇ϕ = 0. (3.28)

We still have E = −∇ϕ in this case and the Lagrange
multiplier ϕ is the usual electric potential.

We are aware that replacing the quasi-equilibrium with
a typical monotonic approach to equilibrium will add
a dipsersion to the impedance response. It is likely
that multiexponential approaches to equilibrium, or over-
shoots, will produce the range of dispersions found in the
impedance [2, 3, 8, 9, 11–15].

For the mechanical part, a standard variational proce-
dure (see Appendix A) leads to

kBT

Di

ciui = ci∇µi

= kBT∇ci − ci∇
(

1
2

∂ε
∂ci

|E|2
)
+ ziqci∇ϕ

(3.29)
The final PNP equation with a concentration-dependent
dielectric coefficient is given by

∂tci = ∇ ·Di

(
∇ci +

1
kBT

ci∇
(
ziqϕ− 1

2
∂ε
∂ci

|∇ϕ|2
))

−∇ · (ε(c)∇ϕ)) =

n∑

i=1

qzici + ρ0(x),

(3.30)
The final equation is the same as (Eq. 40) of [56] .
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B. PNP equation with an energy relaxation

As mentioned earlier, ρf (x) may not be exactly the
same as the mechanical charge ρ̂f (c). The difference
may arise from charge displacement or a coarse grain-
ing procedure used in the analysis, e.g., if a stochastic
term is involved, or atomic scale structures are present,
coarse graining is hard to avoid as one reaches to meso-
scopic and macroscopic scales of biological and techno-
logical systems. Instead of using a Lagrange multiplier,
which forces ρf (x) to be the same to ρ̂f (c), we can use
the following form of the free energy

F(c,E) =

∫

Ω

n∑

i=1

ci(ln ci − 1) +Welec(E)

+
M

2

(
∇ ·
(
∂Welec

∂E

)
−

n∑

i=1

ziciq − ρ(x)

)2

dx,

(3.31)
where the last term is the energy cost for the difference
between mechanical charge density ρ̂f (c) and the electric
charge density ρf (x).

Again, we take Welec(E) as Welec(E) = ε
2 |E|2 to illus-

trate the idea. Similar to the previous calculations, in
the case when the electrical part can immediately go to
equilibrium, we have

δF(c,E)

δE

= εE− ε∇
(
M

(
∇ · (εE)−

n∑

i=1

ziciq − ρ0(x)

))
= 0,

(3.32)
which leads to

E = ∇
(
M

(
∇ · (εE)−

n∑

i=1

ziciq − ρ(x)

))
. (3.33)

Once again, we note that monotonic delays in reach-
ing equilibrium are likely to produce the additional dis-
persions found throughout the literature of dielectric,
impedance, and molecular spectroscopy [2, 3, 8, 9, 11–15].
Overshoot will lead to even more intriguing frequency re-
sponses and dispersions.

Studying the dispersions found experimentally will in-
clude determining the energy functions, etc., needed to
fit observed data. Note this is an inverse problem and
must be approached as such because of the inherent ill-
posed nature of inverse problems, whether presented as
reverse engineering, parameter estimation, curve fitting,
or inverse problem theory itself.

According to (3.2), we take

ϕ = −
(
M

(
∇ · (εE)−

n∑

i=1

ziciq − ρ(x)

))
, (3.34)

which corresponds to usual definition of electrostatic po-

tential formulations. From (3.34), we can then obtain a
equation for ϕ, given by

−∇ · (ε∇ϕ)−
n∑

i=1

ziciq − ρ(x) =
−ϕ− C

M
(3.35)

for any constant C that can be taken as 0. Formally, we
can recover the Poisson equation

−∇ · (ε∇ϕ) =
n∑

i=1

ziciq + ρ(x) (3.36)

for the limit M → ∞.
For the mechanical part, the chemical potential for the

i-th species can be computed as

µi = ln ci −M

(
∇ · (εE)−

n∑

i=1

ciziq − ρ0(x)

)
ziq,

= ln ci + ϕziq,
(3.37)

which is exactly the same as the classical PNP case,
although ϕ no longer satisfies the Poisson equation for
given M with the free energy (3.22). The final PNP sys-
tem is given by

∂tci = ∇ ·
(
Di(∇ci +

qzi
kBT

ci∇ϕ)

)

−∇ · (ε∇ϕ) =

n∑

i=1

ziciq + ρ(x) +
−ϕ

M
.

(3.38)

For more complicated the systems, other forms of energy
relaxation can be used.

IV. NUMERICS: CURRENT-VOLTAGE
RELATION

In this section, we consider a model system, shown in
Fig. 4.1. We study the current-voltage relation for the
model system by applying a sinusoidal external poten-
tial in the tradition reaching back to the 1800’s and the
invention of the Wheatstone bridge.

! " #$ ! " $

FIG. 4.1: A schematic illustration of a model system.
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FIG. 4.2: Impedance plots for η = 1 [circle] and η = 0 [triangle] with ε = 0.1 with different ω: (a) log(ω) v.s. I0, (b) log(ω) v.s. θ , (c)

log(ω) v.s. R = V0

I0
cos(θ) , (d) log(ω) v.s. X = V0

I0
sin(θ)

The purpose of this section is to show that differ-
ent energy functionals will lead to different impedance
responses. The extensive literature on dielectric and
impedance and molecular spectroscopy [2, 3, 8, 9, 11–
15] thus can be used to determine the energy functions,
and other parameters of our theory.

The advantages of using a single energy based represen-
tation of these complex phenomena seem clear to us. The
enormously valuable experimental literature can then be
viewed in a single modern representation. Without this
representation, it is possible that the experimental liter-
ature will fall away, out of sight. The understandably
ad hoc models of the classical literature are unfamiliar to
our contemporaries—and their students and successors
no doubt–and so a modern representation is needed to
include classical experiments in future thinking, in our
opinion.

It is important to reach to the older literature because
it used sinusoidal analysis to provide detailed information
about literally thousands of systems that remain of in-
terest today. The advantages of the classical impedance
spectra approach using a sinusoidal analysis for small sig-
nals is clear. It provides data that is most useful in de-
termining the linear constitutive relations needed before
more complex nonlinear properties are studied. Without
the linear constitutive relations, it would be difficult, if
not impossible to formulate the nonlinear relations in a
well posed reasonably unique way.

Frequency domain measurements play a special role in
determining linear consititutive laws. The identification
of underlying mechanisms is a great deal easier when the
data is in the frequency domain.

Time domain measurements are not as helpful because
of their huge dynamic range (because the underlying
functions are exponentials that cannot be captured by

ordinary electronic instrumentation) and the strong cor-
relations between different data points, that make inverse
problems particularly difficult to solve. In frequency do-
main analysis, the perfect correlations of neighboring
time domain points are replaced in the frequency do-
main by uncorrelated (actually orthogonal) neighboring
points. If the frequency domain points are determined by
stochastic methods (e.g. that use sums of sinusoids with
random phase as inputs), the points remain orthogonal
and uncorrelated as discussed in textbooks of (digital and
discrete) signal processing.

As a generalization of the classical PNP systems, we
consider a PNP system with inertial terms that introduce
a delay in the approach to equilibrium. More precisely,
we consider a one-dimensional PNP equation with iner-
tial term

∂tn = −∂x(nun)

η(∂tun + un(∂xun)) +
1

Dn

un = −∂xµn

∂tp = −∂x(nup)

η(∂tup + up(∂xup)) +
1

Dp

up = −∂xµn

(4.1)

where n(x) and p(x) are concentrations for negative and
positive ions respectively. The chemical potential µn and
µp are given by

µn = lnn− φ(x) µp = ln p+ φ(x) (4.2)

and ϕ satisfies the Poisson equation

− ∂x(ε(n, p)∂xϕ(x)) = p− n, (4.3)

The system can be reduced to a standard PNP equation
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when η = 0. One can derive this system from the energy-
dissipation law

d

dt

∫ 2∑

i=1

η

2
ci|ui|2 +

2∑

i=1

KBTci(ln ci − 1) +
ε

2
|E|2

= −
∫ 2∑

i=1

1

Di

ci|ui|2dx,
(4.4)

subject to the constraint

∇ · (εE) = c2 − c1, (4.5)

where c1 = n and c2 = p.

To perform sinusoidal analysis, we impose a Dirichlet
boundary condition for ϕ

φ(±l, t) = ±V0 cos(ωt), (4.6)

where φ0 is the amplitude of the sinusoidal external
potential, f = ω/2π is the frequency. Moreover, for
the velocity field, we impose the boundary condition
un = up = 0. The initial condition is taken as

n(x, t) = 1, p(x, t) = 1. (4.7)

The diffusion coefficients are taken as Dn = Dp = 0.1.
We look at current at x = 0. The current at a steady-
state can be written as

I(t) = I0 cos(ωt− θ(ω)), (4.8)

where the phase angle θ depends on ω.

In the complex-valued representation used widely in
the classical literature, and throughout electrical and
electronic engineering,

V = V0 exp(i(ωt)), I = I0 exp(i(ωt− θ)) (4.9)

and the impedance is defined by

Z =
V

I
=

V0

I0
exp(iθ) = R+ iX, (4.10)

where R = V0

I0
cos θ is the resistance, and X = V0

I0
sin θ is

the reactance. We plot I0, θ, R andX with respect log(ω)
in impedance plots. The impedance plots for η = 1 and
η = 0.1 with ε = 0.1 and different ω are show in Fig.
(4.2). One can build an analogy between a PNP system
and a classical circuit or network [57]. In an LRC-series

electric circuit, the current i = dq
dt can be computed by

solving the following ODE

L
d2q

dt2
+R

dq

dt
+

1

C
q = V0 cosωt, (4.11)

where L is the inductance, R is the resistance, C is capac-
ity, and V0 cosωt is the applied voltage. The steady-state

current can be computed as steady-state is given by

ip(t) =
V0

Z
cos(ωt− α), (4.12)

where X = Lω − 1
Cω

, Z =
√
X2 +R2, cosα = R

Z
, and

sinα = X
Z
. The impedance plots (4.2) suggest that the

classical PNP system, without inertial terms, can be de-
scribed by circuits without inductors, in which RC ele-
ments account for the time delays and dispersions. Iner-
tial terms appear as inductors.

V. CONCLUSION

In this paper, we develop a new electric-field based
variational formulation to model electromechanical sys-
tems. This framework is motivated and developed using
the classical energetic variational approach (EnVarA).
The dynamics and fluctuation are imposed in the me-
chanical part only. Imposing dynamics on the electrical
part, or on both the electrical and mechanical parts of
the system appears possible, but leads to complexities
beyond the scope of this paper.
The coupling between the electric part and the chemo-

mechanical part is described either by Lagrange multi-
pliers or various energy relaxations. It is straightfor-
ward to extend the current formulation to non-isothermal
cases and to systems that also involve chemical reactions
as done by [33, 34] in the EnVarA framework. As an
illustration, we re-derive the classical PNP system by
both approaches and show the consistency of the cur-
rent approach with the previous formulations. Numer-
ical simulations show that different energy functionals
(as estimated from experiments, for example) will lead
to different impedance responses under a sinusoidal ex-
ternal potential. The form of the energy function can
be sought then by solving an inverse problem, using ad-
ditional structural information to reduce ill-posedness
characteristic of inverse problems. The variational for-
mulation can be applied more general electromechanical
systems and opens a new door for developing structure-
preserving numerical methods.
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Appendix A: Derivation of (2.16)

In this appendix, we give a detailed derivation of the
force balance equation (2.16) by the energetic variational
approach.
As mentioned earlier, a mechanical system is totally

determined by the flow map x(X, t) and the kinematics
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of the employed variables. Here X ∈ Ω0 are Lagrangian
coordinates and x ∈ Ω are Eulerian coordinates.

To apply the LAP, we need first reformulate the free
energy in terms of the flow map x(X, t). To this end, a
Lagrangian description to the system is necessary. For a
given flow x(X, t), one can define the deformation tensor

F(X, t) = ∇Xx(X, t). (1.1)

Due to the conservation of mass, c(x, t) can be written
as

c(x(X, t), t) =
c0(X, t)

detF
. (1.2)

As a consequence, the free energy can be reformulated
as a functional of x(X, t) in Lagrangian coordinates, i.e.,

F [x] =

∫

Ω0

ω

(
c0(X)

detF

)
detFdX. (1.3)

Then we can compute the variation of A =
∫ T

0

∫
ωdx

with respect to x(X, t).

Indeed, a direct computation leads to

δA = −δ

∫ T

0

∫

Ω0

ω(c0(X)/ detF ) detF dX

= −
∫ T

0

∫

Ω0

(
−∂ω

∂c

(
c0(X)

detF

)
· c0(X)

detF
+ ω

(
c0(X)

detF

))

× (F−T : ∇Xδx) detF dX,

where δx is the test function satisfying δ̃x · n = 0 and n

is the outer normal of Ω. When we pull back to Eulerian
coordinate, we have

δA = −
∫ T

0

∫

Ω

(−∂ω

∂c
c+ ω)∇ · (δx)dx

=

∫ T

0

∫

Ω

−∇(
∂ω

∂c
c− ω) · δxdx

(1.4)

Hence,

δA
δx

= −∇(
∂ω

∂c
c− ω) = −c∇µ,

where µ = ∂ω
∂c

is the chemical potential. For the dissipa-

tion part, since D = 1
2

∫
η(c)|xt|2dx it is easy to compute

that δD
δxt

= η(c)xt.
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