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Abstract  Complex fluids flow in complex ways in complex structures. Transport of water and various 

organic and inorganic molecules in the central nervous system are important in a wide range of 

biological and medical processes [C. Nicholson, and S. Hrabetova, Biophysical Journal, 113(10), 

2133(2017)]. However, the exact driving mechanisms are often not known. In this paper, we investigate 

flows induced by action potentials in an optic nerve as a prototype of the central nervous system (CNS). 

Different from traditional fluid dynamics problems, flows in biological tissues such as the CNS are 

coupled with ion transport. It is driven by osmosis created by concentration gradient of ionic solutions, 

which in term influence the transport of ions. Our mathematical model is based on the known structural 

and biophysical properties of the experimental system used by the Harvard group Orkand et al [R.K. 

Orkand, J.G. Nicholls, S.W. Kuffler, Journal of Neurophysiology, 29(4), 788(1966)]. Asymptotic 

analysis and numerical computation show the significant role of water in convective ion transport. The 

full model (including water) and the electrodiffusion model (excluding water) are compared in detail to 

reveal an interesting interplay between water and ion transport. In the full model, convection due to 

water flow dominates inside the glial domain. This water flow in the glia contributes significantly to the 

spatial buffering of potassium in the extracellular space. Convection in the extracellular domain does not 

contribute significantly to spatial buffering. Electrodiffusion is the dominant mechanism for flows 

confined to the extracellular domain. 

SIGNIFICANCE The central nervous system (“brain”) accumulates waste in tiny spaces between 

cells as thousands of signals move in billions of nerve cells every second. Potassium is dangerous 

waste because it can paralyze nerves and even kill them. Potassium moves as fluid flows and as it 

diffuses and migrates in electric fields. We describe glia, nerve cells, and extracellular space of optic 

nerves by unavoidable partial differential equations and show that potassium poisoning is prevented 

(mostly) by fluid flow through glia. We suggest that other wastes in the brain are removed by fluid 

flow through glia as part of the glymphatic system. Mathematics shows how glia pathways help 

‘cleanse the brain’ so it can keep on working for many years. 

1. Introduction 

The now classical experiments of Hodgkin, Huxley, and Katz (1, 2) were designed to avoid the 

artifact of concentration polarization, the (significant) change of concentration of ions as the currents 

maintaining their voltage clamp flowed across electrodes inside the axon and its membranes. Change 

of concentration of potassium was seen nonetheless after a few milliseconds of outward potassium 

currents ((3): p. 482, 485, 489, 494; (4)), but the change was slow enough to be ignored in their 

calculations of the action potential (5). 

The Kuffler group at Harvard was interested in the role of glia (6, 7) in the central nervous system and 

showed that the membrane potential of the optic nerve of Necturus reported the potassium 

concentration in the narrow extracellular space just outside axons, between glia and axon. Orkand et 

al (8) used this membrane potential of glia to report the change in potassium concentration—the 

polarization of concentration in the narrow extracellular space—as it accumulated during a train of 

nerve action potentials. Earlier work (3, 4) had inferred this concentration change. Orkand et al (7) 



 measured it quite directly. The artifact of concentration polarization that so worried Hodgkin and 

Huxley became the experimental reality of potassium accumulation (3) in the central nervous system 

(8), that interested the Kuffler group. Interest has only grown in the following fifty some odd years. 

Potassium accumulation and flow in the extracellular space have been shown to have important roles 

in many papers focused on aging, Alzheimers disease, anesthesia, dementia, diabetes, epilepsy, 

migraine, sleep, stroke and traumatic brain injury. Potassium accumulation and flow play an 

important role in the biology of the central nervous system (9) normal, and abnormal (10–16). The 

glymphatic model has received much interest in the last months. It links potassium accumulation, 

flows in the extracellular space—particularly in sleep and diseases of aging—with general disposal of 

waste through glial pathways to the circulatory system (9, 17–21). 

The accumulation of ions in a narrow extracellular space, like that between nerve and glia, or 

Schwann cell (4), depends on the diffusion, convection, and migration of ions in an electric field. 

Convection is likely to be important. Evolution uses the circulatory system to provide convective 

transport close to nearly every cell in a mammal, the lens of the eye being a notable exception, so the 

delays involved in electrodiffusion are overcome. Convection provides what diffusion denies: speed. 

The optic nerve, and the mammalian central nervous system in general, involves nerve, glia and 

narrow extracellular space. It involves three types of flow, convection, diffusion, and migration in the 

electric field in radial and longitudinal directions of a cylindrical structure. It involves (chiefly) three 

ions (K, Na, Cl), and a number of different types of channels and pumps (voltage activated Na 

channels and at least two types of K channels and the Na/K pump). The description and analysis, not 

to say the numerical computation of the optic nerve, must deal with what is actually in the optic nerve. 

It must deal with what evolution has actually built in the central nervous system in general. Thus, the 

analysis must involve many forces, flows, structures, and channels and transporters. Here we report 

the subset of our work that deals with the accumulation of potassium in the narrow extracellular space 

of optic nerve. 

The interactions between neuronal cells and glial cells have been included in models of the important 

phenomenon of spreading depression (22–25) thought to be related to epilepsy and migraine. Some 

two-compartment models for potassium clearance (or spatial buffering) include interactions between 

neuron cells and extracellular space (26) or interactions between glial cells and extracellular space 

(27–29). A tri-compartment model using ordinary differential equations (ODEs) was introduced by 

Sibille (30) to study the role of ir4K  channels. It shows that the flows play an important role in the 

central nerve system (31) via influx and efflux routes to help waste clearance, which has been called 

(with understandable enthusiasm if not hyperbole) a final frontier of neuroscience (32). Some models, 

including flow but not electrodiffusion, were introduced to study the pressure effect on the flow (33–

36). Mori (15) proposed a multidomain model for cortical spreading depression, where ionic 

electrodiffusion and osmosis between different compartments are considered. In this paper, we first 

extend those results and the two-compartment structural analysis of the spherical lens (37) to the 

three-compartment cylindrical optic nerve fiber of Necturus. Then we present some general 

conclusions based on the analysis of a specific set of experiments Orkand et al (7, 8) using a model 

distributed in space in both radial and longitudinal directions and that involves action potentials 

generated by Hodgkin Huxley equations. 

This paper is organized as follows. The full model for microcirculation of water and ions are proposed 

based on conservation laws in Section 2. Then the model is calibrated and aligned with the Orkand 

experiment results in Section 3. In Section 4, the calibrated model is used to study the flow and ion 

microcirculations during Potassium clearance. A discussion on the parameters is presented in Section 

5. Then the conclusions and future work are given in Section 6. 

2. Mathematical model 

In this section, we present a tridomain model for microcirculation of the optic nerve. The model deals 

with two types of flow: the circulation of water (hydrodynamics) and the circulation of ions 

(electrodynamics) in the 



 • glial compartment  Ω gl ; 

• axon compartment  Ωax ; 

• extracellular space  Ωex . 

The glial compartment and axon compartment exist only in the optic nerve, while extracellular space 

exists both in the optic nerve ΩOP

ex
 and subarachnoid space ΩSAS

ex
 (See Fig.1) 

 Ω Ω Ω Ω , Ω Ω .OP SAS

OP ax gl ex SAS ex    

The model is mainly derived from laws of conservation of ions and water for flow through 

membranes between intracellular compartments and extracellular space (38). 

Figure 1: Optic nerve structure. a: Key features of the optic nerve region and subarachnoid space 

(SAS); b: Longitudinal section of the optic nerve; c: cross section of the optic nerve. 

Figure 2: Domain of the axial symmetry model. The optic nerve ΩOP  consist of axon 

compartment Ωax , glial compartment Ωgl
 and extracellular space ΩOP

ex
. The subarachnoid space only 

has extracellular space ΩSAS

ex
. 48aR m  is the radius of optic nerve and 60bR m  is the radius 

from optical nerve center to the dura mater.  

2.1. Notations and Assumptions 

We first introduce the following notations used in the paper, where Na ,K ,Cli     for ion species, 

, ,l ex gl ax  for extracellular space, glial compartment and axon compartment, and ,k gl ax  for 

glial or axon membrane in the optic nerve. 

Fig.1 b shows the model with the whole domain Ω  that consists of the subarachnoid space (SAS) 

region ΩSAS  and optic nerve region ΩOP  (see Fig.2), 

 Ω Ω Ω .SAS OP   

In the optic nerve region ΩOP , the glial membrane and axon membrane separate domains Ωgl , Ωax  

from the extracellular region ΩOP

ex
, respectively (also see Fig. 1). Based on the structure of the optic 

nerve, we have the following global assumptions for the model: 

•Charge neutrality: In each domain, we assume that there is electroneutrality 

0,i i gl re

gl gl gl gl

i

z C z A     (1a)  

0,i i ax re

ax ax ax ax

i

z C z A     (1b)  

0,i i

ex

i

z C    (1c)  

where 0lA   with ,l ax gl  is the density of proteins in axons or glial cells. The proteins are 

negatively charged, but the charge density is customarily described by a positive number. The ax  

and gl  are the volume fraction of axon and glial compartments in the optic nerve and 
re

ax  and 
re

gl  

are the resting state volume fractions. 



 •Axial symmetry: For simplicity, axial symmetry is assumed. The model can be straightforwardly 

extended to three dimensions when data and needs justify the considerable extra computational 

resources needed to analyze such models. 

•Isotropy of glial compartment and extracellular space: 

1) The extracellular space forms a narrow structure of branching clefts surrounding the glial cells and 

nerve axons. 

2) The glial cells are connected to each other by connexins and form a syncytium. 

3) The extracellular space is continuous and forms a syncytium. 

Both syncytia are assumed isotropic here, until we know better. The axons are not connected to each 

other. For , ,l gl ex  and Na ,K ,Cli    , the ion flux and water flow velocity are in the following 

forms 

, ,
ˆ ,ˆi i i

l l r l zj j j r z   (2)  

ˆ .ˆr z

l l lu u u r z   (3)  

•Anisotropy of axon compartment: The axons are separated, more or less parallel cylindrical cells 

that do not form a syncytium. For Na ,K ,Cli    , the ion flux and water flow velocity are in the 

following forms 

,
ˆ,i i

ax ax zjj z   (4)  

ˆ.z

ax axuu z   (5)  

•Communications between compartments: The communications between intracellular 

compartments and extracellular space are through membranes. There is no direct interaction between 

glial and axon compartments. Interactions occur only through changes in concentration, electrical 

potential, and flows in the extracellular space (30). 

The interface of optic nerve and SAS is the pia mater denoted by 7Γ , 

 7Ω Ω Γ .OP SAS   

In our model, both pia mater 7Γ  and dura mater 4Γ  are modeled as macroscopic membranes and 

appropriate boundary conditions. The transmembrane water flow through pia mater (39) depends on 

hydrostatic pressure, osmotic pressure and electric potential, while that through dura mater only 

depends on the hydrostatic pressure. 

For the domain boundaries, 1Γ  is the radius center of the optic nerve; 2Γ  and 3Γ  are the far end 

(away from the eyeball) of the optic nerve which is connected to optic canal region (40). 5Γ  is used to 

model the dura mater connected to the sclera (the white matter of the eye) and assumed to be non-

permeable (41). 6Γ  is used to denote the lamina cribrosa where the optic nerve head exits the eye 

posteriorly through pores of the lamina cribrosa (42). 

2.2. Water circulation 

We model water circulation with the following assumptions 

• the loss or gain of water in axons and glial cells is only through membranes flowing into or out of 

the extracellular space. 

• the transmembrane water flux is proportional to the intra/extra-cellular hydrostatic pressure and 

osmotic pressure differences. 



 • the glial cell and axons can swell and shrink due to the water inflows and outflows. 

We use  , ,l r z t  to describe the volume fraction of l region  , ,l gl ax ex , which varies over time 

and space due to transmembrane water flows. The conservation of water in each domain yields 

  0,
gl m

gl gl gl glU
t





  


u   (6a)  

  0,m zax
ax ax ax axU u

t z




 
  

 
  (6b)  

      0,z

gl gl ex ex ax axu
z

  


   


u u   (6c)  

where we use the fact that density of water is constant. Here lu  with , ,l gl ax ex  is the velocity in 

the glial cells, axons, and extracellular space, respectively. The transmembrane water flow 
m

kU  with 

,k gl ax  follows the Starling’s law on the kth membrane, 

   ,m m

gl gl gl ex gl B gl exU L P P k T O O     

   .m m

ax ax ax ex ax B ax exU L P P k T O O     

The lP  with , ,l gl ax ex  are the hydrostatic pressure in the glial cells, axons, and extracellular 

space, respectively. And B lk TO  is the osmotic pressure (37, 43) defined by 

 , , , ,

re

ji i

ex ex l l l

i i l

O C O C A l gl ax



      

where 0
re

l
l

l

A



  is the density of the permanent negatively charged protein in glial cells and axons 

that varies with the volume (fraction) of the region. In this paper, we assume the permanent negatively 

charged protein is uniformly distributed within glial cells and axons and has valence 
lz , ,l gl ax . 

The k  and k , ,k gl ax  are the glial cells (or axons) membrane area per unit volume and 

membrane reflection coefficient (44) respectively. 
m

glL  and 
m

axL  are the surface membrane hydraulic 

permeabilities of glial cells and axons. The membrane reflection coefficient ( , )k k gl ax   is the 

ratio between the observed osmotic pressure and theoretical osmotic pressure. Bk  is Boltzmann 

constant, and T is temperature. 

For the volume fraction , , ,l l gl ax ex  , we have 

1,  in Ω.gl ax ex       (7)  

Remark 2.1. 

Note the glial cells and axons are found only in the ΩOP  region. In other words, 0ax gl    and 

1ex   are fixed in ΩSAS . Therefore, the solution is incompressible in the ΩSAS , and we have 

0,  in  Ω .ex SAS u   (8)  



 The relation between the hydrostatic pressure lP  and volume fraction ( , , )l l gl ax ex   is connected 

by the force balance on the membrane ( , )k k gl ax .  The membrane force is balanced with the 

hydrostatic pressure difference on both sides of the semipermeable membrane (15, 43). Then the 

variation of volume fraction from the resting state is proportional to the variation of hydrostatic 

pressure difference from the resting state. 

    ,re re re

gl gl gl gl ex gl exK P P P P        (9a)  

    ,re re re

ax ax ax ax ex ax exK P P P P        (9b)  

where 
,gl axK  is the stiffness constant and 

re

l  and ( , , )re

lP l gl ax ex  are the resting state volume 

fraction and hydrostatic pressure. 

Remark 2.2. 

The osmotic pressure influences the volume fraction in an implicit way. Due to Eq. (6) and the 

definition of transmembrane water flow 
m

glU , the osmostic pressure difference induces the 

transmembrane water flow going in and out of compartments, and the hydrostatic pressure changes 

correspondingly. 

Remark 2.3. 

In reality, both dura mater 7Γ  and pia mater 4Γ  are deformable. However, the stiffness of them are 

much larger than glial cells’ (45–47). For the sake of simplicity, we neglect the deformation of dura 

mater and pia mater so the system could be solved in fixed domains Ω  and Ω
OP

. We are aware that 

in some important clinical applications the deformation is of great importance and that our model 

will need to be extended to deal with them. The extensions do not produce analytical challenges but 

they are likely to add significant complexity to the numerical methods and make the computations 

much more involved and longer. 

Note that the concentrations of ions and effective concentration of water vary a great deal and so are 

described by equations in which the number density of ions and effective number density of water 

vary in both the radial and longitudinal directions according to conservation laws, without using 

compartments that may not have unique definitions or relations to anatomical structures. Indeed, the 

variation of concentration is one of the main determinants of the properties of ionic solutions. The 

solution is incompressible, the components are not (48). 

Next, we define the velocity in each domain. 

Water Velocities in the Glial Compartment. As we mentioned before, the glial cells are connected 

through the narrow connections on the membranes and form a syncytium. The fluid velocity inside 

the compartment is limited by the transmembrane fluid velocity, which is determined by the 

difference of hydro pressure and osmotic pressure on both sides of the membrane (15, 43). On the 

macro-scale, by using averaging process (37, 49, 50), the glial compartment is treated with 

membranes everywhere. So the velocity of fluid in glial syncytium glu  depends on the gradients of 

hydrostatic pressure and osmotic pressure: 

,
gl gl gl glr

gl gl B

P O
u k T

r r

 




  
   

  
  (10a)  

.
gl gl gl glz

gl gl B

P O
u k T

z z

 




  
   

  
  (10b)  

Substituting Eq. (10a) into the incompressibility (6a) yields a Poisson equation for pressure in the 

glial compartment. The boundary conditions in the glial syncytium are as follows 



 

1 7

2 6

0,  on Γ Γ ,

0, on Γ Γ ,

gl

gl

P

r

P

z


 


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 





  (11)  

where homogeneous Neumann boundary condition is applied at all four of these boundaries. 

Water Velocity in the Axon Compartment. Axons are arranged parallel in the longitudinal direction 

and are isolated from each other. The fluid velocity in the axon compartment is defined along z 

direction as 

0,r

axu    (12a)  

.z ax ax
ax

P
u

z






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
  (12b)  

Similarly, substituting above velocity into the incompressibility equation gives the Poisson equation 

for pressure in the axon compartment. A homogeneous Neumann condition for pressure is used on the 

left and right boundaries of the axon compartment 

2 60,  on Γ Γ .axP

z





   (13)  

Velocity in the Extracellular Space. The extracellular space is a narrow connected domain, where 

the electro-osmotic effect needs to be considered (37, 51, 52). The extracellular velocity is determined 

by the gradients of hydrostatic pressure and electric field 

,r ex ex ex ex
ex e ex

P
u k

r r

  




 
  

 
  (14a)  

,z ex ex ex ex
ex e ex

P
u k

z z

  




 
  

 
  (14b)  

where ex  is the electric potential in the extracellular space, ex  is the tortuosity of extracellular 

region (38, 53) and μ is the viscosity of water, ek  describes the effect of electro-osmotic flow (51, 52, 

54), ex  is the permeability of the extracellular space. Here the hydro permeability ex , tortuosity ex  

and electric-osmotic parameter ek  have two distinguished values in the region ΩOP

ex
 and ΩSAS

ex
, 

,  in Ω , ,  in Ω ,

,  in Ω , ,  in Ω ,

OP OP

ex OP ex OP

ex exSAS SAS

ex SAS ex SAS

 
 

 

 
  
 

  (15)  

,  in Ω ,

,  in Ω ,

OP

e OP

e SAS

e SAS

k
k

k


 


 

Remark 2.4. 

By substituting the definitions of velocities Eqs. (12a), (10a) and (14a), and volume fractions Eq.(9a) 

into the mass conservation law Eq. (6), it yields the evolution equations of hydrostatic pressure in 

different compartments, which are solved during the simulations in Session 4. 

Since 2 3Γ Γ  are the far end of optic nerve away from eyeball and connect to the optic canal, we 

assume the hydrostatic pressure of extracellular fluid is equal to the cerebrospinal fluid pressure. On 

the other hand, the intraocular pressure (IOP) is imposed at 6Γ  where the extracellular space is 



 connected to the retina. At the boundary 5Γ , we assume a non-permeable boundary. We are aware of 

the significance of the pressures and flows at these boundaries for clinical phenomena including 

glaucoma (36, 55, 56) and will return to that subject in later publications. 

The water flow across the semi-permeable membrane 4Γ  is produced by the lymphatic drainage on 

the dura membrane, which depends on the difference between extracellular pressure and orbital 

pressure (OBP). We assume the velocity across the pia membrane 4Γ , is continuous and determined 

by the hydrostatic pressure and osmotic pressure. To summarize, the boundary conditions of the 

extracellular fluid are 

 
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2 3
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ex dr ex OBP

ex

ex IOP

OP SAS

ex ex
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

u r

u r

u z

u r u r

  (16)  

where CSFP  is the cerebrospinal fluid pressure (36) and IOPP  is the intraocular pressure and OBPP  is 

the orbital pressure on the dura mater. 

2.3. Ion Transport 

For ion circulation, we assume 

• only three types of ions are considered: Na ,K 
 and Cl . 

• the sodium-potassium ATP pump is present on both glial and axon membranes. 

• ion channel conductance on glial cell membranes is a fixed constant, independent of the voltage and 

time. The sodium conductance is assumed small, and its channel origin unknown. The potassium 

conductance is large and comes from the 4irK  channels (31, 57). When experimental evidence is 

available, other types of pumps and channels can be added to the model. 

• sodium channel and potassium channel conductance on axons are voltage-gated, while the 

conductance of chloride channel is fixed. 

The conservation of ions implies the following system of partial differential equations to describe the 

dynamics of ions in each region, for Na ,K ,Cli     
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where the last equation reduces to the following in the ΩSAS  region, 
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The transmembrane ion flux 
, ( , )m i

kJ k gl ax  consists of active ion pump source 
i

ka  and passive ion 

channel source 
i

kb , for ion i on the axons  k ax  or glial cells membranes  k gl . In the glial 

cell membranes, 
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In the glial cell membranes, 
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where the Nernst potential is used to describe the gradient of chemical potential 
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 and the conductance 
i

glg  for each ion on the glial membrane is a fixed 

constant, independent of voltage and time. On the axon’s membrane, 
i

axb  is defined as 
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g
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The time-dependent dynamic of open probability, often loosely called ‘gating’ is governed by the 

Hodgkin-Huxley model (58, 59) 

 1 ,n n

dn
n n

dt
      (21a)  

 1 ,m m

dm
m m

dt
      (21b)  

 1 .h h

dh
h h

dt
      (21c)  

We assume that the only pump is the Na/K active transporter. We are more than aware that other 

active transport systems can and likely do move ions and water in this system. They will be included 

as experimental information becomes available. 

In the case of the Na/K pump , ,i

la l ax gl , the strength of the pump depends on the concentration in 

the intracellular and extracellular space (59, 60), i.e. 

3 2
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,1kI  and 
,2kI  are related to 1   and 2   isoform of Na / K  pump. 

The definitions of ion flux in each domain are as follows, for Na ,K ,Cli    , 
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For the axon compartment boundary condition, we have 
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where the Dirichlet boundary conditions are used at locations 2 6Γ Γ  for axons and glial cell, and a 

non-flux boundary condition is used for glial cells ions flux on the radius center 1Γ  and pia mater 7Γ  

. 

For the extracellular space boundary condition, similar boundary conditions are imposed except on 

the pia mater 7Γ . The flux across the pia mater is assumed continuous and Ohm’s law is used (37). 

Additionally, a non-permeable boundary condition is used at location 5Γ  and a homogeneous 

Neumann boundary condition is applied at the location of the dura mater 4Γ , 
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 Multiplying equations in (17a-17c) with iz e  respectively, summing up, and using equation (1a-1c) 

and equations (23), we have following system for the electric potential in , ,ax gl ex  
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which describe the spatial distributions of electric potentials in three compartments. 

In the subarachnoid space ΩSAS , the governing equation for extracellular electric potential reduces to 
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The boundary conditions for electric fields ax , gl  and ex  are given below. 

In the axon compartment: 
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In the glial compartment: 
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and in the extracellular space: 
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3. Model calibration 

Our work is possible because of, and was motivated by the paper of Orkand et al (7, 8) that measured 

the accumulation of potassium in the narrow extracellular space (ΩOP

ex
) of the optic nerve of the 

amphibian salamander Necturus, in the spirit of the original work of Frankenhaeuser and Hodgkin (4), 

that first identified and analyzed accumulation of potassium outside a nerve fiber. The existence and 

qualitative properties of that accumulation of potassium were known to, and a cause for concern for 

Hodgkin, from his first work on the voltage clamp (1, 2), if not earlier. Hodgkin described the 

phenomena as part of what was called [concentration] ‘polarization’ and discussed it extensively with 

students sometime later (Eisenberg, personal communication,  1962) 

The key experiment in the Orkand paper (8) measures the change in potential across the glial 

membrane produced by a train of action potentials. The glial membrane potential is used to estimate 

and report the potassium concentration in the narrow extracellular space, because the glial membrane 

is populated with more or less voltage independent potassium channels and not much else. 

In the experiment, optic nerve has been put in three different K
 concentrations (1.5 mM, 3 mM, 4.5 

mM) in the bathing solution to change the resting potential across the glia membrane. Then the axon 

was stimulated to give a train of action potentials. The action potentials increased K
 in ΩOP

ex
. The 

accumulated K
 then made the glia membrane potential more positive. Stimuli were applied at both 

ends of a region of the optic nerve thereby producing a more uniform (in space) potential within that 

region. 

The model of this system is solved by using the Finite Volume Method with mesh size 1/ 20h   and 

temporal size 1/10t   in dimensionless units. The code is written and executed in the Matlab 

environment. The flowchart for the simulation is shown in Fig. 3. In the first step, we obtain the 

resting state of the system by iteration and fixed volume fraction (7) 

 0.5, 0.4, 0.1.re re re

ax gl ex      

In the dynamic process, the resting state values are taken as initial values. Then, we first solve the 

concentration governing equations, followed by electrical potentials equation and pressure equations. 

We update the volume fraction by using Eqs. (9a) and (9b). 

Figure 3: Flowchart for simulation process 



 In our simulation study, we first set the ECS (ΩOP

ex
) concentration of K

 to be 3mM  and obtained a 

resting potential across the glial membrane  89mV  . In Orkand’s work (7, 8), suction electrodes 

were used for stimulating; The two ends of the optic nerve were placed in suction electrodes as 

described in their Methods Section. We modeled the suction electrodes by applying a train of 

rectangular function (sometimes called a ‘box car’ stimulus in the engineering literature) currents 

through the axon membrane at 2.25mm,13.5mm,and 0 48az r R m    . Each stimulus in 

the train lasted 3ms  (as Orkand’s paper indicated) with current strength 
23mA / m . The stimulus 

was large enough to exceed the threshold and generate action potentials. After a train of stimuli with a 

frequency of 17 / s  for 1 s , the first panel of Figure 4 shows the train of axon membrane action 

potentials and its return to the initial level  89mV   after 1s . The profiles of the first action 

potential and the last action potential in the train are presented in the second panel. The third and 

fourth panels are used to illustrate the increase in glial cell membrane potential and extracellular 

potassium concentration during and after the train of stimuli. The fourth panel of Figure 4 shows that 

during stimulus, the K
 concentration in ΩOP

ex
 keeps increasing due to the opening of the voltage-

gated potassium channel of the axon membrane. As a result of the accumulated K
 in ΩOP

ex
, the 

membrane potential of glial cells also continues to increase until the stimulus stops. 

Figure 4:  Recording axon membrane potential, glial membrane potential and extracellular K
 at 

center axis point (where 0r   and / 2z L ) when the extracellular solution with 3mM  K


. 

Then, we vary the K
 to be 1.5 mM, 3 mM, 4.5 mM in ΩOP

ex
 and record the magnitude of the 

maximum glial membrane depolarized potential in each case as in the Fig. 5. The black symbols are 

used for experimental data, red ones are the simulations results of our model, respectively. Fig. 5 

shows that our model could match the experimental resting potentials (solid symbols) and 

depolarization potentials (open symbols) very well with different K
 concentrations in ΩOP

ex
. 

Our work is limited by the lack of other types of data for calibration, although it is important to 

remember that the structural parameters, values of membrane capacitance, many conductance 

variables, and resistivities of bulk solutions are known quite well because of the work of generations 

of anatomists, physiologists, and biophysicists. 

Figure 5: Comparison between the experiment in (8) and simulation on the effect of nerve 

impulses on the membrane potential of glial cells. The solid symbols are resting potentials and the 

open symbols are depolarization potentials with different K
 concentrations in ΩOP

ex
 . 

4. Potassium clearance 

In this section, we compare the potassium clearance under various conditions based on the full model. 

In Section 4.1, by applying the stimuli at alternative locations on the axon, we show how the 

interaction between the extracellular pathway and glial transmembrane pathway helps potassium 

clearance. The microcirculation patterns of water and ions between glial compartment and 

extracellular space is presented. In Section 4.2, we have a glimpse of the effect of the glial membrane 

conductance changes as well as variations in the pia mater boundary conditions. We introduce the 

NKCC channel into the glial membrane and a non-selective pathway on the pia mater and compare 

the potassium clearance with the baseline model. The NKCC channels on the glial membrane increase 

potassium clearance efficiency. An additional non-selective pathway in the pia mater does not have 

significant effect on potassium clearance due to the limited surface area of pia mater. 

4.1. Alternative Distribution of Stimulus Location 

In this section, current is applied at several different radial locations. We wondered whether the 

choice of radial location would change our calculations of potassium clearance and fluid velocity. 



 This approach is used for many variables to crudely estimate the sensitivity of our results to 

assumptions. 

To facilitate the discussion of the interaction between the extracellular pathway and the glial 

transmembrane pathway for K
 clearance, we define the following regions which potassium flux 

could pass through, 

• SM : Glial membrane in stimulated region, 

• TE : Extracellular pathway on transition interface. 

• NSM : Glial transmembrane in non-stimulated region. 

• TG : Glial pathway on transition interface. 

The normal directions on SM  and NSM  point to extracellular space and the normal direction of TE  

and TG  is the radial direction. We mainly focus on the two particular periods of time, (1) during a 

train of axon firing  [0, ]stiT  (2) after axon firing  [ , ]sti afT T  after the axon stimulation stops. In the 

simulations below, we take 0.2sstiT   and 10safT  . The frequency of the stimuli is 

50Hz( 0.02s)T   and each single stimulus has current strength 
3 23 10 A / mstiI    with duration 

3ms . 

4.1.1. Inner and Outer radial regions stimulated 

We first make a comparison between the inner radial region stimulated case in which the current is 

applied at  0 2.25mmz z   cross-section: 
0( {( , ) | , })

2

in a
sti

R
S r z r z z    and outer radial region 

stimulated case in which 
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2
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R
S r z r R z z    . Since the axon signal propagates in 

the z direction, for the inner radial region stimulated case, the stimulated region is 
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R
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R
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ns sV V . The transition interface {( , ) | , [0, ]}
2

a
sti

R
S r z r z L    is the same for both cases. 

(a) During a train of neuron firing 
In Fig. 6, we show the total potassium flux (potassium flux density integrated over area) and 

cumulative potassium flux (total potassium flux integrated over time) during the axon firing period 

[0, ]stiT . In both cases, the figures show that the transmembrane flow from extracellular to glial and 

the communication inside the extracellular act together to help the potassium clearance. The strength 

of fluxes is gradually increased during axon firing period as in Fig. 6a & b. The results confirm that 

the potassium flux during stimulus flows from the stimulus region to the non-stimulus region, in both 

the extracellular space and glial compartment. The cumulative potassium flux through the glial 

membrane  SM  is twice as large as that through the extracellular pathway in the transition interface 

 TE  as shown in Fig. 6e&f. 

Figure 6: a-d: Potassium flux through , ,S T NSM E M  and TG  during a train of axon firing. e-h: 

cumulative potassium flux during axon firing period [0, ]stiT . 



 The glial compartment serves as an important and quick potassium transport device to remove 

potassium accumulated while the neuron fires action potentials. In the stimulated region, the 

accumulated potassium makes the potassium Nernst potential more positive. The change in the 

potassium Nernst potential induces potassium movement into the glial compartment from the 

extracellular space (Fig. 6a). This inflow makes the glial compartment electric potential more positive 

and moves potassium ions from the stimulated region to the unstimulated region (Fig. 6d). In the 

unstimulated region, the glial membrane potential also becomes more positive as it does in the 

stimulated region, because the glia is an electrical syncytium in the longitudinal and radial directions. 

However, the glial potassium Nernst potential in the unstimulated region is not very different from 

that in the resting state. These potentials produce the outward potassium flux from the glial 

compartment in the unstimulated region (Fig. 6c). Interacting regions of this sort depend on spatial 

variables and the properties of the glia as a syncytium in the longitudinal as well as radial directions. 

It is difficult to capture these effects in models that do not include radial and longitudinal directions as 

independent variables. Compartment models are possible but it is very difficult to uniquely define 

invariant parameters over the range of conditions of interest. If additional information becomes 

available experimentally, the “new” conductances and pumps cannot be introduced in a unique way, 

without much thought. As the model is adapted to other structures in the brain, the parameters of a 

compartment model become quite difficult to specify. The distributed model uses structurally defined 

parameters with structural or specific biophysical meaning. These can be adjusted in a reasonably 

specific way in different versions of this model, appropriate for different systems in the brain. The 

schematic graph of potassium circulation in the optic nerve is summarized in the Fig. 10a. 

The spatial distributions of K
 concentration changes from resting state over time are shown in the 

Fig. 7 and Fig. 8. Fig. 7 shows that the K


 concentration varies in the stimulus region along the 

longitudinal direction during one action potential, while there is no change of K
 in the non-stimulus 

region. Fig. 8 a & b show there an obvious potassium concentration difference in the radial direction 

after a train of stimuli over time 0.2stiT s . In Fig. 8c, the potassium concentration difference 

vanishes due to the communication of the extracellular space and glial compartment shown in Fig 

11fg. 

Figure 7: Spatial distribution of potassium changes from the resting state 

during an action potential. 

Figure 8: Spatial distribution of potassium changes from the resting state during and after a train of 

stimuli. 

Figure 9: a-d: Average water velocity through , ,S T NSM E M  and TG  during a train of axon firing 

period [0, ]stiT . e-f: the extracellular volume fraction variation in the stimulated region and non-

stimulated region. 

Figure 10: a: Schematic graph of the potassium flux when axon is stimulated. In the stimulated 

region, the potassium moves through the extracellular pathway and through the glial compartment by 

way of the glial membrane. In the non-stimulated region, the potassium leaks out to the extracellular 

space through the glial membrane. b: Schematic graph of the water circulation when the inner part of 

the axon is stimulated. In the stimulated region, the glial transmembrane water flow goes from 

extracellular space into glial compartment as the effect of osmosis difference. In the extracellular 

space, water goes from non-stimulated region to stimulated region in the radial direction. In the glia 

compartment goes in the opposite direction. Note these graphs summarize outputs of large numbers of 

calculations solving partial differential equations in longitudinal and radial spatial directions and time. 

They do not represent a compartmental model. They are the output of a model distributed in space. 

The water circulation in the optic nerve is driven by the gradient of osmotic pressure in the stimulated 

region. In the stimulated region, the extracellular osmotic pressure B exk TO  decreased, and glial 

compartment osmotic flow of water is increased. This is because there is more potassium flux moving 

into the glial compartment through the glial membrane, but a smaller amount of sodium flux out of 



 the glial compartment because of the ion channel conductance difference between the potassium and 

sodium channels in the glial membrane. In the glial compartment in the stimulated region of the optic 

nerve fiber, there is an increase in the water flux into the glial compartment from the extracellular 

space (Fig. 9a). The volume fraction of the glial compartment and the hydrostatic pressure have also 

increased. The increased hydrostatic pressure in the stimulated region also raises the hydrostatic 

pressure in locations far away from the stimulated region. The increased pressure also drives the flow 

from stimulated region to the unstimulated region because the glial compartment is a connected space 

(Fig. 9d), a longitudinal syncytium. In the unstimulated region, the water flows out of the glial 

compartment into the unstimulated region because of the increased hydrostatic pressure in the glial 

compartment (Fig 9c). Then, because the fluid is incompressible, the fluid in the unstimulated region 

flows back to the stimulated region (Fig. 9b). The schematic graph of water circulation in the optic 

nerve is summarized in Fig. 10b. This is a summary of our results. It is not a compartment model. Our 

models are distributed. 

In Fig. 9e&f, we show the volume change of extracellular space. In the stimulated region, the 

extracellular space decreases because the water flows into the glial cell; while in the unstimulated 

region, the extracellular space swells because of spatial buffering water flow (61). 

In sum, during a train of action potentials in the axon, the potassium flux transport pattern and 

potassium flux strength across the glia membrane and through the extracellular pathway are the same 

for both radial regions, inner and outer. The glial compartment pathway is the dominant clearance 

mechanism of the potassium accumulated in the extracellular stimulated region, in both cases. 

(b) After axon firing period 
After the stimulus period, the main potassium clearance mechanism is the passive flow from 

extracellular space to glial compartment through the glial membrane. The potassium flux in 

extracellular region and glial compartment is negligible. In these calculations, the extracellular region 

and the glial compartment could be approximated as a single compartment. We show a schematic 

figure of potassium flux pattern in Fig. 13a. This is a summary and sketch of our results. We did not 

use a compartment model. Our model is distributed. 

Figure 11: a-d: potassium flux through , ,S T NSM E M , and TG  after a train action potentials. e-h: 

cumulative potassium flux after axon firing. 

In the Fig. 11, we show the total potassium flux and cumulative potassium flux through 

, ,S T NSM E M , and TG  after axon firing period [ , ]sti afT T . For both cases, the strength of potassium 

fluxes through the glial transmembrane pathway  SM  and extracellular pathway have dramatically 

decreased after the axon stopped firing. 

Fig. 11e shows that in both cases (inner stimulus and outer stimulus), the potassium flows into the 

stimulated glial compartment after the axon firing period. Fig. 11g shows that the potassium flux 

through the glial membrane in the non-stimulated region reverses its direction for a short time after 

axon stop firing. This occurs because the extracellular potassium concentration becomes evenly 

distributed in both the stimulated and non-stimulated extracellular space. 

Figure 12: a-d: Average water velocity through , ,S T NSM E M  and TG  after a train of axon firing. 

Figure 13: a: Schematic graph of the potassium flux after the axon was stimulated. The potassium 

flux leaks into the glial compartment from the extracellular space through the glial membrane in both 

stimulated and unstimulated regions. The potassium flux in the extracellular space and glial 

compartment is negligible. b: Schematic graph of the water flux after the axon was stimulated. Note 

these graphs are graphs that summarize outputs of large numbers of calculations solving partial 

differential equations in longitudinal and radial spatial directions and time. They do not represent a 

compartmental model. They are the output of a model distributed in space. 

In the Fig. 11f, in the extracellular space, potassium flows back to the stimulus region from the non-

stimulus region via the extracellular pathway (in both cases). Accordingly, Fig. 12 shows that after the 



 axon stops firing, the water flow inside the compartments becomes almost zero. The water flows 

through both stimulated and unstimulated glial membrane into the glial compartment, which is the 

same as the schematic graph Fig. 13b. 

In sum, after the axon stops firing action potentials, the extracellular potassium concentration is 

quickly transported in the glial compartment and extracellular pathway. The main clearance of 

potassium is through the glia membrane in both stimulated and unstimulated regions. The potassium 

flux through the extracellular pathway becomes weaker after the axon stops firing action potentials. 

Fig. 14a&b, we show the variation of the potassium concentration in the extracellular stimulated and 

unstimulated regions, respectively. The peak potassium concentration in the stimulated region is 

higher in the outer stimulated case compared to the inner stimulated case. As discussed previously, the 

strength of potassium clearance is the same for both cases, while in the outer radial stimulated case, 

there is three times as much potassium in the extracellular space during the axon firing as in the inner 

radial stimulated case. 

The equality of potassium clearance in both cases also explains why the potassium concentration 

drops faster in the inner radial stimulated case than the outer one after axon stop firing. We provide a 

decay timetable in the appendix. 

Figure 14: a-b: potassium concentration variation in the extracellular stimulated region and non-

stimulated region. 

4.1.2. Randomly distributed stimulation  

Spatially uniform patterns of stimulation might produce systematic artifacts as occur in Moire patterns 

and aliasing. In this section, we study whether random stimulation patterns in space differ from 

spatially uniform patterns. We apply a train of stimuli to four randomly distributed stimulated regions 

in the radial direction. The strength and duration of the stimulus is same as in the section 4.1.1 and the 

current is applied at the same longitudinal location  0z z . The details of the radial stimulated 

location in each case is shown in Fig. 15. 

Figure 15: The stimulated radial segments in each case. The intervals with value 1 are stimulated 

segments and the intervals with value 0 are unstimulated segments. 

(a) During a train of axon firing 
We compare the spatially random stimulated case (case 1, the rest of the cases are similar and shown 

in an appendix) with the inner radial region stimulated case in the Fig. 16a-d. During a train of axon 

firing, Fig. 16a&b, shows, in the randomly stimulated case, that the potassium clearance through the 

glial transmembrane  SM  has been reduced while the potassium flux through extracellular pathway 

in transition interface  TE  has dramatically increased. Fig. 16e&f shows that the major clearance 

pathway in the randomly stimulated cases becomes the extracellular pathway in transition interface 

 TE . More potassium flux goes though the extracellular path in the transition interface in 

comparison to how much goes through glial membrane in the stimulated region. This differs from the 

outer and inner stimulated cases, where the glial transmembrane  SM  dominates as seen in Fig. 

6e&f. 

Figure 16: a-d: the comparison between the spatially random stimulated case with the spatially 

uniform radial (inner) case during a train of axon firing. e-f: the cumulative flux comparison in 

, ,S T NSM E M , and TG  during a train of axon action potentials.  

Fig. 16a-d shows that in the inner stimulated case (blue line), the potassium flux strength gradually 

increased with small oscillation in each axon stimulus time period, while in the spatially random 

stimulated case (red line), the potassium flux strength shows a periodic pattern in time with larger 

oscillation in each stimulus period. The reason for this quite different potassium flux pattern is that the 

extra potassium in the extracellular stimulated region has been cleared quicker in the random selected 

case. So, in each stimulus period, the potassium flux decreases dramatically since the potassium goes 



 back to its resting state. While in the inner stimulus case, for each stimulus period, the clearance of 

potassium is slower and there is accumulation of potassium in the stimulated extracellular space. 

In sum, Fig. 16e&f, during a train of axon firing, much more potassium flux goes through the 

extracellular pathway through transition interface  TE , which reduces the effect of glial 

compartment pathway in the stimulated region  SM . 

(b) After axon firing period 
After the axon stops firing action potentials, both the spatially random case and the uniform inner case 

have similar reduced potassium fluxes, See , ,S T NSM E M , and TG  In Fig. 17e&g shows that the 

main pathway for potassium clearance (after the action potentials cease) is through the glial 

transmembrane pathway. 

Figure 17: a-d: the comparison between the spatially random case with the uniform inner radial 

case after a train of action potentials Vector directions as defined previously. e-f: the cumulative flux 

comparison in , ,S T NSM E M , and TG  after a train of action potentials. 

Fig. 17h shows a large difference between the spatially random and the spatially uniform case in some 

properties as we feared might occur. The cumulative transport of potassium flux through the glial 

compartment transition interface in the spatially random cases is much smaller than it is in the 

uniform inner case. This is because during axon firing period, the extracellular potassium in the 

stimulated region has been quickly removed in the random cases. The potassium concentration 

became more homogeneous and there was less difference between the stimulated region and non-

stimulated regions. As a result, the glial compartment electric potential gl  becomes homogeneous in 

entire glial compartment and the electric drift flow in the glial transition interface was reduced for 

potassium. These results show the importance of checking for artifacts produced by artificial 

assumptions of spatial uniformity or periodicity. 

(c) Potassium clearance and fluid velocity in the extracellular space and glial compartment 
 

Since the potassium goes less through the glial transmembrane pathway in the stimulated region, the 

osmosis in the extracellular B exk TO  and in glial B glk TO , and variation in the stimulated region has 

been reduced. Therefore, the strength of the velocities decreases in both glia and extracellular 

compartment since the decrease of the glial transmembrane water flow as shown in Fig. 18c&d. The 

average potassium concentration changes in both stimulated region and non-stimulated region as 

shown in the Fig. 18a&b and its decay time in each case is in the appendix. 

Figure 18: a-b: variation of potassium concentration in the extracellular simulated region and 

unstimulated regions. c-d: average glial compartment radial absolute velocity and extracellular space 

radial absolute velocity. 

4.2. Effect of NKCC and non-selective pathway  

In this section, we consider the effect of glial membrane conductance and a non-selective pathway on 

the pia boundary on the potassium clearance process. We first introduce the NKCC channel into the 

glial membrane, as widely studied in the literature. We compare simulation results between the model 

with NKCC and without NKCC. In the second part, we consider the effect of a non-selective pathway 

in the pia mater boundary. That pathway allows the convection flux through an extracellular pathway 

out of the optic nerve. We investigate how these factors affect the potassium clearance. While the 

contribution of the NKCC channel is significant, it is important to realize that in the present state of 

knowledge, other relevant channels may not yet have revealed themselves. Some channels become 

activated only under special conditions that are hard to find. Some channels may become activated 

only to protect systems under severe stress, as in clinical situations like oxygen deprivation, swelling, 

and so on. It will be important to identify such channels as the model is applied to clinical situations, 

some of which are of considerable importance. 



 4.2.1. Effect of NKCC on the glial membrane 

We introduce a model of NKCC channels in the glial membrane as in the (29, 62), We describe the 

K
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and Cl  flux through the NKCC channel in the glial membrane as in (29, 62) 
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  (28)  

To compare the effect of NKCC without NKCC, we keep the potassium and sodium concentration as 

well as the resting electric potential in the glial compartment and extracellular space the same. In the 

resting state, we set sodium and potassium current through NKCC channel to be comparable with 

respect to the Na/K pump current as in the paper (29, 62). In the appendix, we provide the two sets of 

parameters (NKCCa and NKCCb) that balance the additional NKCC current through the glial 

membrane. 

In the simulation below, we compare the models with and without NKCC. The stimulated region Fig. 

19, shows the cumulative potassium flux through the , ,S T NSM E M , and TG  during and after stimuli. 

Figure 19: a-d: the cumulative flux comparison in , ,S T NSM E M , and TG  during a train of action 

potentials. e-h: the cumulative flux comparison in , ,S T NSM E M , and TG  after a train of action 

potentials. 

Fig. 19a shows that more potassium goes through the glial membrane in the simulated region during 

axon firing when NKCC is present, which is hardly surprising. The NKCC channel has enhanced the 

transport of potassium through the glial membrane after the axon stopped firing as in Fig. 19e&g. 

Fig. 4.13a&b shows the variation of potassium concentration in the extracellular space in the 

stimulated and unstimulated cases. The potassium decay in much faster when NKCC is present 

presumably because NKCC allows larger movement of potassium into the glial compartment. We 

provide the decay timetable in the appendix. 

The quicker potassium is taken into glial compartment by the NKCC, the slower the return of 

potassium concentration back to resting state. Fig. 4.13c, shows the variation of the potassium 

concentration in the stimulated region. After action potentials cease, the potassium movement back to 

the axon compartment is reduced in the model with NKCC channel. Fig. 4.13c, shows that the 

average potassium concentration in the baseline model increases faster after the axon stops firing than 

in the model with NKCC. 

Figure 20: a-b: extracellular potassium concentration variation comparison between the model 

with NKCC and baseline model (without NKCC). c: average potassium variation in the axon 

stimulated region. 

4.2.2. Non-selective pathway through the pia matter 

In this section, we consider the effect of a non-selective pathway across the pia boundary. The 

nonselective pathway allows both ion and water fluid transport through the cleft between the cells in 

the pia mater. We assume that the water fluid goes through the non-selective pathway only depends 

on the hydrostatic pressure difference. Therefore, the fluid condition on pia boundary  7Γ  in (16) 

become 
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nsG  is the additional conductance due to the non-selective pathway and 
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convection flux through the non-selective pathway on pia boundary. 

In the simulation below, we compare the model with non-selective pathway with the model without 

the non-selective pathway. We choose the comparison parameter to be 
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In the Fig. 21, we show the potassium variation in extracellular space and the cumulative potassium 

flux through the pia mater and glial membrane. 

Figure 21: a-b: extracellular potassium concentration variation comparison between the model 

with non-selective pathway on pia boundary and baseline model (without non-selective pathway).c: 

total cumulative potassium flux through glial membrane. d: total cumulative potassium flux though 

pia boundary.  

The amount of potassium leak out of the optic nerve through the pia boundary is dramatically 

increased when the pathway is present in Fig. 21d. However, the dominant pathway of potassium 

clearance is still through the glial membrane as previously in Fig. 21c. This is because the total glial 

membrane area is much larger than the surface area on pia boundary, 
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where the oV n  is the total optic nerve volume and gM l  is the glial membrane per unit volume. Fig. 

21a&b shows that with the non-selective pathway on the pia boundary does not accelerate the 

potassium clearance rate very much. 

5. Historical Comments and Discussion 

There may be a concern about the large number of parameters in this and similar models. Models that 

contain large numbers of parameters can be difficult to compare and thus difficult to use in the 

scientific process of conjecture and refutation needed to understand these complex systems. 

The need to deal with the complexity of the system as it is presented to us by evolution and used by 

animals should be clearly understood. Perhaps it is best understood by comparison with engineering 

systems. Engineering systems use enormous complexity—consider the 
1310  components in our 



 computers and their connections—to perform specific functions. If the complexity is not described in 

a model, the model cannot describe the functions. Biological systems perform definite functions and 

use structures to do so. They are often devices in the exact engineering sense of the word. Complexity 

is needed to define these systems because without that complexity, the systems do not function. 

Of course, the complexity cannot be uniquely defined in either engineering or biological systems. One 

can always appeal to an atomic description in the desperation of ignorance, but it is not at all clear that 

much detail helps, and the problems of dealing with irrelevant thermal motion, and difficulties in 

computation, have made such an approach so difficult that it is rarely used in engineering. Here we do 

the best we can by choosing structures and parameters that are needed considering their role in other 

similar biological systems. 

The work here is done in the spirit of the structural analysis of physiological problems started by Falk 

and Fatt (63), continued by their student Eisenberg and his colleagues (64, 65) and applied to the lens 

of the eye with Rae and Mathias. This approach uses measured anatomical parameters (best by 

application of statistical sampling methods to biological systems, which was pioneered by Eisenberg 

and then extended generally by Brenda Eisenberg (66)), and impedance spectroscopy (67), to 

determine parameters exploiting the invariance of the capacitance (per unit area) of biological 

membranes. Mathias and his group showed how to extend these methods to include water flow (68, 

69, 70) in a bidomain tissue, the lens of the eye. We extend that structural approach here to a 

tridomain model of an optic nerve. 

In the electrical case, the parameters of a structural model are quite well specified by this approach. 

When dealing with water flow, it is important to include measurements of flow and pressure. In our 

situation the electrical information is available from the enormous knowledge of the properties of 

nerve fibers and action potential conduction developed since Hodgkin showed (71) that nerve 

conduction is electrical and not chemical (72). Measurements of pressure and flow are not available 

and they are surely needed if the model is to be further refined or extended to other analogous systems 

of the central nervous system, of great clinical importance. Measurements of a crucial property 

modified by water flow are possible thanks to the work of the Harvard group (Orkand et al). That 

work allows us to define our system as well as we have, but surely not well enough. 

As this work is developed to become a model of the important phenomena of the recently discovered 

glymphatic system (20, 21), measurements of flow and pressure, as well as stereological 

measurements of structure and biophysical measurements of channel and pump distribution will 

assume crucial importance, in our view. Extensions of our theory and appropriate simplifications will 

also be helpful. 

6. Conclusion 

In this work, we propose a tridomain model to study potassium clearance in the optic nerve of 

Necturus in a series of experiments from Richard Orkand and the Harvard group (7, 8). Our model, 

analysis, and simulations provide a detailed picture of the role of glial cells in buffering the 

concentration of ions, mostly in the narrow extracellular space. While the nerve axons are being 

stimulated, both the extracellular space and glial cells play important roles. They both clear extra 

potassium from the narrow extracellular space while the axon is firing action potentials. After the 

action potentials stop, the potassium remaining in the extracellular space is cleared by the glial 

compartment. 

Our model shows that the longitudinal electrical syncytium of the glial cells is critical for clearing 

potassium (from the extracellular space) when the neuron fires. The inward glial transmembrane 

potassium flux in the stimulated region is almost the same as the outward potassium flux out to the 

extracellular space in the non-stimulated region, in response to the change in potassium concentration 

between the extracellular space in the stimulated and unstimulated regions. This is because the electric 

potential spreads through the connected cells in the glial compartment. The glial electric potential in 

the unstimulated region becomes more positive in response to the depolarization of the glial electric 

potential in the stimulus region. The ‘syncytial properties’ of the glial compartment are a feature that 

separates our field model with its partial differential equations from the compartment models in the 



 literature that use ordinary differential equations. Compartment models lack the combination of space 

and time dependence needed to describe the temporal and spatial spread of potential. The combined 

temporal and spatial spread of potential is a crucial property of neurons. Here we show that the 

combined temporal and spatial spread of potential is a crucial property of the glia, and the narrow 

extracellular space between glia and neurons. In a sense, we extend the electrical cable theory used to 

describe the spatial spread of the electrical potential of neurons to a theory of spatial distribution of 

flow in neuron, glia, and the narrow extracellular space between them. 

We discuss the effect of enhanced potassium conductance in the glial membrane and nerve 

membranes of the pia mater. On the one hand, incorporating NKCC channels into the glial membrane 

increases potassium clearance. Potassium clearance time is much shorter than that predicted by the 

baseline model (without NKCC channels in the glial membrane). On the other hand, an additional 

non-selective pathway in another location—in the pia mater—does not have significant effect on 

potassium clearance. This is not surprising since the total membrane area of the glial membrane in the 

optic nerve is much greater than the effective surface membrane of nerves in the pia mater. 

Finally, our analysis of the model for the optic nerve is just a first small step towards the 

understanding of the mechanisms of the glial compartment buffering effect during the potassium 

clearance and microcirculation patterns of water and ions. The axons considered here is without 

myelin sheath. Myelin can be included by combining the model of myelinated nerve proposed in (58) 

as a first next step. Our distributed model and its partial differential equations can be generalized to 

describe ionic and water transport in tissues with more complicated and heterogeneous structures and 

with glymphatic pathways connected to the circulatory system. We expect that the spatially 

nonuniform distribution of ion and water channels and transporters will be used in many structures in 

the central nervous system to control flow. Obviously, at higher resolution much more detailed 

experimental observations and structure measurements ( like pump distributions and membrane 

permeabilities) will be needed. 
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