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ABSTRACT

Complex fluids flow in complex ways in complex structures. Transport of water and various organic and inorganic molecules in the central
nervous system (CNS) are important in a wide range of biological and medical processes [C. Nicholson and S. Hrabětov�a, “Brain
extracellular space: The final frontier of neuroscience,” Biophys. J. 113(10), 2133 (2017)]. However, the exact driving mechanisms are often
not known. In this paper, we investigate flows induced by action potentials in an optic nerve as a prototype of the CNS. Different from
traditional fluid dynamics problems, flows in biological tissues such as the CNS are coupled with ion transport. It is driven by osmosis
created by the concentration gradient of ionic solutions, which in turn influence the transport of ions. Our mathematical model is based on
the known structural and biophysical properties of the experimental system used by the Harvard group [R. K. Orkand, J. G. Nicholls, and
S. W. Kuffler, “Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia,” J. Neurophysiol.
29(4), 788 (1966)]. Asymptotic analysis and numerical computation show the significant role of water in convective ion transport. The full
model (including water) and the electrodiffusion model (excluding water) are compared in detail to reveal an interesting interplay between
water and ion transport. In the full model, convection due to water flow dominates inside the glial domain. This water flow in the glia
contributes significantly to the spatial buffering of potassium in the extracellular space. Convection in the extracellular domain does not
contribute significantly to spatial buffering. Electrodiffusion is the dominant mechanism for flows confined to the extracellular domain.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0046323

I. INTRODUCTION

The theory of complex fluids deals with complex fluids in com-
plex structures.1–4 Here, we deal with the complex fluid of an ionic
solution5 in a complex structure typical of biological systems in partic-
ular, the central nervous system (CNS). These structures are known in
some detail—both structure and function—because of the work of
generations of neuroanatomists, histologists, and neurobiologists.6,7

The biophysical properties of membranes are also well known.8 So we
can formulate a biologically significant problem in the language of the-
ory of complex fluids and use the methods of computational fluid
mechanics to analyze the system, here the optic nerve of an amphib-
ian. The results are of interest biologically because of the importance

of the central nervous system: the optic nerve of amphibian is an
experimentally accessible part of the central nervous system.

The analysis used here may also serve as a bridge and archetype
of how the theory of complex fluids can deal with what at first may
seem formidable challenges of structured biological systems in other
biological systems, e.g., kidney, blood–brain barrier, and epithelial in
general.

This paper is organized as follows: In Sec. II, we present the bio-
logical background of the optic nerve and the tridomain mathematical
model in detail. The three domains, axon, glial and extracellular ones,
are coupled via transmembrane fluxes for three major ions, namely
sodium, potassium, and chloride, treated as reaction terms. Model
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calibration is discussed in Sec. III by matching extracellular potassium
concentration accumulation after the optic nerve is stimulated by a
train of electric current pulses. In Sec. IV, we present estimates using
order of magnitude analysis of transport of ionic and water fluxes cross
membranes. They provide useful insight into the mechanisms for
potassium clearance. Then in Sec. V, numerical simulations are carried
out. We investigate the role of water flow (convection) in ionic trans-
port during and after the stimulus of the optic nerve. Our analysis
shows that convection is very important within the glia. Water flow in
glia has an indirect but significant effect in clearing potassium from
the narrow extracellular space. This may be an important role for glia
wherever they are found in the central nervous system, and even in
structures of the peripheral nervous system. A discussion on the
parameters in the compartment models and field models are presented
in Sec. VI. In Sec. VII, we provide concluding remarks on the limita-
tion of our study and directions for future research.

II. BIOLOGICAL BACKGROUND ANDMODEL
A. Biological background

Recent experimental studies9 suggest that transport in the cen-
tral nervous system during sleep plays a critical role in maintaining
the health of brain tissue. Since the nervous system is densely packed
with neurons communicating with each other, question arises: how
is the state of steady internal conditions—known as “homeostasis” in
the biological literature—maintained. A few action potentials are
known to significantly alter ion concentration in the immediate
vicinity of peripheral and optic nerve cells10,11 and that change in
concentration acts on more than one axon, producing “crosstalk.”
The question is then how does the central nervous system deal with
changes in ion concentration produced by hundreds or thousands of
action potentials and maintain a healthy environment? How does the
central nervous system maintain concentrations in its narrow extra-
cellular space? What are the roles played by of glial cells and extracel-
lular space?

Complex flows in complex structures cannot be understood
unless the structure is understood. The central nervous system con-
tains nerve fibers and glia, separated by a narrow extracellular space.
We use three domains to describe the flow and diffusion of ions and
water in the optic nerve bundle of the central nervous system, hoping
to glimpse general properties by which the central nervous system
controls the concentration of ions in such narrow confines. The optic
nerve bundle contains paired cranial nerve bundled with cell bodies in
the retina. It reaches from the eye through the optic chiasma to the
cortex and transfers visual information from the retina to the vision
centers of the brain using digital (actually binary) electrical signals
(action potentials). The optic nerve is customarily separated into four
main regions:12,13 (1) intraocular nerve head, (2) intraorbital region,
(3) intracanalicular, and (4) intracranial.12,14 In this paper, we mainly
focus on the intraorbital region, which occupies more than half of the
optic nerve.

There are about one million optic nerve fibers in the optic nerve
bundle. The ganglion cells that are the cell bodies of the axons are scat-
tered on the retina and form into a bundle at the optic disk. The bun-
dle passes through the mesh-like lamina cribrosa region into the
intraorbital region. Like almost all nerve cells, optic nerve fibers are
functionally isolated, nearly insulated one from another, without con-
nexins between them, so neither ions nor electrolytes can flow directly

from the interior of one nerve cell to another. Current flow down one
axon cannot flow into the adjacent axon or glia.15,16 The “ephaptic
communication” of concern to pioneers in electrophysiology rare
occurs.

Glial cells wrap the nerve fiber bundles producing a narrow cleft
of extracellular space between nerve fiber and glia. Glial cells are con-
nected to each other through connexin proteins, called “gap junc-
tions,” and form an electrical syncytium (as do so many other cells, e.
g., epithelia, cardiac muscle, lens of the eye, liver, etc.) in which current
flow in one cell spreads into another with little extra resistance. In syn-
cytia like this, inorganic ions, and many organic molecules (typically
less than 2nm diameter) can diffuse from cell to cell with hardly any
restriction and thus with mobility and ionic conductance similar to
that in cytoplasm. Thus, glial cells are thought to play an important
role in accelerating Kþ clearance from the extracellular space.17,18

Sometimes, central retinal blood vessels (CRVs, arterioles in fact) are
found in the center of the optic nerve bundle in the intraorbital region.
Here we consider the case where the blood vessel is not present, as in
the optic nerve of the mud puppy, the amphibian salamander
Necturus used in the experiments of Orkand et al.10,16

The optic nerve bundles are surrounded by the meningeal sheath
which consists of dura mater, arachnoid mater, pia mater, and cere-
brospinal fluid (CSF) in the subarachnoid space (SAS)14,19 [also, see
Fig. 1(a)]. The pia mater and dura mater are thin deformable shells,
with mechanical properties important in glaucoma.19–22 Andrew
et al.23 and Killer et al.20,24 show that the dura mater contains lym-
phatic vessels that drain CSF out of SAS.22,25 Pia mater forms a macro-
scopic semipermeable membrane made of many cells, not just one
lipid bilayer.26 Many layered epithelia have been characterized as
“semipermeable membranes” in low-resolution studies of epithelia for
more than a century. Filipidis et al.27 have written a most helpful
review that identifies analogous leptomeningeal structures important
in the physiology of “like pleura,28–33 peritoneum,34–39 pericardium,27

fetal membranes,40,41 and leptomeninges,”42 We imagine that a gen-
eral tridomain model may help understand many of these tissues.

FIG. 1. Optic nerve structure: (a) longitudinal section of the optic nerve and (b)
cross section of the optic nerve.
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B. Mathematical model

The model is first proposed in Ref. 43. Here in order to make this
paper self-contained, we summarize the model. The model deals with
two types of flow: the circulation of water (hydrodynamics) and the
circulation of ions (electrodynamics) in the glial compartment Xgl,
axon compartmentXax and extracellular spaceXex.

The glial compartment and axon compartment are limited to
the optic nerve bundle, while extracellular space exists both in the
optic nerve bundle XOP

ex and in the subarachnoid space XSAS
ex (see

Fig. 2),

XOP ¼ Xax [ Xgl [ XOP
ex ; XSAS ¼ XSAS

ex :

The model is mainly based on the law of mass conservation,44 in
Xl; l ¼ ax; gl; ex

@

@t
ðgl flÞ þ r � ðglJlÞ þ S ¼ 0; (1)

where gl is the volume fraction of l compartment, fl is the concen-
tration of given substance, Jl is the flux inside compartment, and S
is the source term induced by the pumps and channels on the
membranes.

We first introduce the following notations used in the paper,
where i ¼ Naþ;Kþ;Cl� for ion species, l ¼ ex; gl; ax for extracellular
space, glial compartment, and axon compartment, and k ¼ gl; ax for
glial or axon membrane in the optic nerve. The summary of notations
is listed in the Nomenclature.

In each domain, we assume electroneutrality such that

ggl
X
i

zicigl þ zglgreglAgl ¼ 0; (2a)

gax
X
i

ziciax þ zaxgreaxAax ¼ 0; (2b)

X
i

ziciex ¼ 0; (2c)

where Al > 0 with l ¼ ax; gl is the density of proteins in axons or glial
cells with valence zl, l ¼ gl; ax. The gax and ggl are the volume fraction
of axon and glial compartments in the optic nerve and greax and gregl are
the resting state volume fractions.

1. Water circulation

The conservation of mass in each domain yields

@ggl
@t

þMglU
m
gl þr � ggluglð Þ ¼ 0; in XOP; (3a)

@gax
@t

þMaxU
m
ax þ

@

@z
gaxu

z
ax

� � ¼ 0; in XOP; (3b)

r � ggluglð Þ þ r � gexuexð Þ þ @

@z
gaxu

z
ax

� � ¼ 0; in XOP; (3c)

ggl þ gax þ gex ¼ 1; in X; (3d)

where the transmembrane water flux is proportional to the intracellu-
lar/extracellular hydrostatic pressure and osmotic pressure differences,
i.e., Starling’s law on the membrane,

Um
gl ¼ Lmgl pgl � pex � cglkBT Ogl � Oexð Þ� �

;

Um
ax ¼ Lmax pax � pex � caxkBT Oax � Oexð Þð Þ:

The glial cells are connected to each other by connexins and
form a syncytium, while the axons are separate, more or less parallel
cylindrical cells that do not form a syncytium (see Fig. 1). Then, we
assume that glial cells are isotropic and axons are anisotropic. Here, ul
and pl with l ¼ gl; ax; ex are the velocity and pressure in the glial cells
and axons and extracellular space, respectively. kBTOl is the osmotic
pressure45,46 defined by

Oex ¼
X
i

ciex; Ol ¼
X
i

cil þ Al

grej
gl

; l ¼ gl; ax;

where Al
grel
gl
> 0 ðl ¼ gl; axÞ is the density of the permanent negatively

charged protein in glial cell and axons that vary with the volume (frac-
tion) of the region.

The relation between the hydrostatic pressure pl and volume frac-
tion gl ðl ¼ ex; gl; axÞ is connected by the force balance on the mem-
brane kð¼ gl; axÞ,45,47

Kgl ggl � gregl
� � ¼ pgl � pex � pregl � preex

� �
; in XOP; (4a)

Kax gax � greax
� � ¼ pax � pex � preax � preex

� �
; in XOP; (4b)

where Kk ðk ¼ gl; axÞ is the stiffness constant related to Young’s mod-
ules and Poisson’s ratio. The prel ðl ¼ gl; ax; exÞ is the resting state
hydrostatic pressure.

Remark 1. If we introduce the characteristic velocities u�l in
l compartment, the characteristic transmembrane velocity U�

l , the
characteristic time t�, the characteristic lengths r� in radius direc-
tion and z� in longitude direction, Eqs. (3a)–(3c) could be written
as

@ggl
@~t

þ d1 ~U
m
gl þ d2 ~r � ggl~ugl

� � ¼ 0; (5a)

@gax
@~t

þ d3 ~U
m
ax þ d4

@ gax~u
z
ax

� �
@~z

¼ 0; (5b)

~r � gex~uexð Þ þ d5 ~r � ggl~ugl
� �þ d6d0

@ gax~u
z
ax

� �
@~z

¼ 0; (5c)

where

FIG. 2. Domain of axial symmetry model. The optic nerve XOP consist of axon
compartment Xax, glial compartment Xgl and extracellular space XOP

ex . The sub-
arachnoid space XSAS only has extracellular space.
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~r � gl~u lð Þ ¼ 1
~r

@ ~rgl~u
r
l

� �
@~r

þ d0
@ gl~u

z
l

� �
@~z

; l ¼ gl; ex;

and

d0 ¼ r�

z�
; d1 ¼ MglU

�
glt

�; d2 ¼
u�glt

�

r�
; d3 ¼ MaxU

�
axt

�;

d4 ¼ u�axt
�

z�
; d5 ¼

u�gl
u�ex

; d6 ¼ u�ax
u�ex

:

Further scaling can be applied for velocity components in the r and z
directions when the cross membrane flux is absent due to incompres-
sibility. However, no such scaling is considered due to significant cross
membrane flux.

The water flows in glial, axon compartments, and extracellular
space are low Reynold number flows and the characteristic velocity is
around 1–10 nm=s due to the existence of connexin and high tortuos-
ity. Then the stationary Stokes equation is used

�r � ðlrulÞ þ rpl ¼ fl;

where fl is the body force density in different compartments, for exam-
ple, Lorentz force in the extracellular space.48 Next, since the tissues
have similar property as the porous media, The rigorous homogeniza-
tion theories49,50 or the control volume average methods51,52 yield
Darcy’s law is a good macro-scale approximation for the Stokes flow
in the porous media. For the sake of simplicity, we model flows in the
following as porous media flows by using Darcy’s law.46,47

a. Fluid velocity in the glial compartment. As we mentioned
before, the glial space is a connected space, where water can flow from
cell to cell through connexin proteins joining membranes of neighbor-
ing cells.

The velocity of fluid in glial syncytium ugl depends on the gra-
dients of hydrostatic pressure and osmotic pressure,

urgl ¼ � jglsgl
l

@pgl
@r

� cglkBT
@Ogl

@r

� �
; (6a)

uzgl ¼ � jglsgl
l

@pgl
@z

� cglkBT
@Ogl

@z

� �
: (6b)

The boundary conditions of fluid in the glial syncytium are as
follows:

ugl � r̂ ¼ 0; on C1;

rpgl � ẑ ¼ 0; on C2;

rpgl � ẑ ¼ 0; on C6;

ugl � r̂ ¼ 0; on C7:

8>>><
>>>:

(7)

b. Fluid velocity in the axon compartment. Since the axons are
only connected in the longitudinal direction and the fluid velocity in
the axon region is defined along the z-direction as

urax ¼ 0; (8a)

uzax ¼ � jax
l

@pax
@z

: (8b)

Dirichlet boundary conditions are used to the fluid velocity in
axons

rpax � ẑ ¼ 0; on C2 [ C6: (9)

c. Fluid velocity in the extracellular space. The extracellular space
is narrow, and the extracellular velocity is determined by the gradients
of hydro-static pressure and electric potential,

urex ¼ � jexsex
l

@pex
@r

� kesex
@/ex

@r
; (10a)

uzex ¼ � jexsex
l

@pex
@z

� kesex
@/ex

@z
; (10b)

where /ex is the electric potential in the extracellular space, sex is the
tortuosity of extracellular region44,53 and l is the viscosity of water, ke
is introduced to describe the effect of electro-osmotic flow,54–56 jex is
the permeability of extracellular space. Here the hydro permeability
jex, tortuosity sex and electric-osmotic parameter ke have two distin-
guished values in the regionXOP

ex and XSAS
ex ,

jex ¼
jOPex ; in XOP;

jSASex ; in XSAS;
sex ¼

sOPex ; in XOP;

sSASex ; in XSAS;

((

ke ¼
kOPe ; in XOP;

kSASe ; in XSAS:

(

Since C2 [ C3 are the far end of optic nerve away from eyeball and
next to the optic canal, we assume the hydro-static pressure of extra-
cellular is equal to the cerebrospinal fluid (CSF) pressure. On the other
hand, the intraocular pressure (IOP) is imposed at C6 where the extra-
cellular space is connected to the retina. At boundary C5, we assume a
non-permeable boundary. We are aware of the significance of the
pressures and flows at these boundaries for clinical phenomena includ-
ing glaucoma57–59 and will return to that subject in later publications.

The water flow across the semi-permeable membrane C4 is pro-
duced by the lymphatic drainage on the dura membrane, which
depends on the difference between extracellular pressure and orbital
pressure (OBP). We assume the velocity across the pia membrane C4,
is continuous and determined by the combination of hydrostatic and
osmotic pressures. To summarize, the boundary conditions of the
extracellular fluid are

uex � r̂¼ 0; on C1;

pex ¼ pCSF ; on C2[C3;

uSASex � r̂¼ Lmdr pSASex �pOBP
� �

; on C4;

uex � r̂¼ 0; on C5;

pex ¼ pICP; on C6;

uOPex � r̂¼uSASex � r̂
¼ Lmpia pOPex �pSASex � cpiakBT OOP

ex �OSAS
ex

� �� �
; on C7;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(11)

where pCSF is the cerebrospinal fluid pressure
57 and pICP is the pressure

in the eye and pOBP is the orbital pressure on the dura mater.
Remark 2. Substituting velocities (6), (8), and (10) into conserva-

tion law equation (3) yields Poisson equations of hydrostatic pressures
in different compartments. Equations (6), (8), and (10) mean that
velocities vary in both r- and z-direction, which depend on the gradient
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of the hydrostatic pressure, osmotic pressure, or electric field. The distri-
bution of velocity in radius direction during and after a train of stimuli
is shown in Appendix F, Fig. 17.

2. Ion transport

The conservation of chemical species implies the following sys-
tem of partial differential equations to describe the dynamics of ions in
each region, for i ¼ Naþ;Kþ;Cl�:

@ gglc
i
gl

� �
@t

þMglJ
m;i
gl þr � gglj

i
gl

� �
¼ 0; in XOP; (12)

@ gaxc
i
ax

� �
@t

þMaxJ
m;i
ax þ @

@z
gaxj

i
ax;z

� �
¼ 0; in XOP; (13)

@ gexc
i
ex

� �
@t

�MaxJ
m;i
ax �MglJ

m;i
gl þr � gexj

i
ex

� � ¼ 0; in XOP; (14)

where the last equation reduces to the following in theXSAS region:

@ci;SASex

@t
þr � ji;SASex ¼ 0: (15)

The transmembrane ion flux Jm;i
k ðk ¼ gl; axÞ consists of active ion

pump source Jip;k and passive ion channel source Jic;k, on the k
membrane,

Jm;i
k ¼ Jip;k þ Jic;k; k ¼ gl; ax; i ¼ Naþ;Kþ;Cl�:

On the glial cell membranes, Jic;gl is defined as

Jic;gl ¼
gigl
zie

/gl � /ex � Ei
gl

� �
; i ¼ Naþ;Kþ;Cl�; (16)

where the Nernst potential is used to describe the gradient of chemical

potential Ei
gl ¼ kBT

ezi log
ciex
ci
gl

� �
and the conductance gigl for ith ion specie

on the glial membrane is a fixed constant, independent of voltage and
time. On the axon’s membrane, Jic;ax is defined as

Jic;ax ¼
giax
zie

/ax � /ex � Ei
ax

� �
; i ¼ Naþ;Kþ;Cl�;

where

gNaax ¼ �gNam3hþ gNaleak; gKax ¼ �gKn4 þ gKleak; gClax ¼ gClleak:

The time-dependent dynamic of open probability, often loosely called
“gating” is governed by the Hodgkin–Huxley model60,61

dn
dt

¼ anð1� nÞ � bnn;

dm
dt

¼ amð1�mÞ � bmm;

dh
dt

¼ ahð1� hÞ � bhh;

(17)

where n is the open probability of Kþ channel,m is the open probabil-
ity of the Naþ activation gate, and h is the open probability of the Naþ

inactivation gate.
We assume that the only pump is the Na/K active transporter.

We are more than aware that other active transport systems can and

likely do move ions and thus water in this system. They will be
included as experimental information becomes available.

In the case of the Na/K pump Jip;k ðk ¼ ax; glÞ, the strength of
the pump Ik depends on the concentration in the intracellular and
extracellular space,60,62 i.e.,

JNap;k ¼
3Ik
e
; JKp;k ¼ � 2Ik

e
; JClp;k ¼ 0; k ¼ gl; ax; (18)

where

Ik ¼ Ik;1
cNak

cNak þ KNa1

 !3
cKex

cKex þ KK1

 !2

þ Ik;2
cNak

cNak þ KNa2

 !3
cKex

cKex þ KK2

 !2

; k ¼ ax; gl: (19)

Ik;1 and Ik;2 are related to the maximum current of a1- and a2- isoform
of Na=K pump on the glial membrane (k¼ gl) or axon membrane
(k¼ ax).

The definitions of ion flux in each domain are as follows, for
i ¼ Naþ;Kþ;Cl�:

jil ¼ cilul � Di
lsl rcil þ

zie
kBT

cilr/l

� �
; l ¼ gl; ex;

jiax;z ¼ ciaxu
z
ax � Di

ax
@ciax
@z

þ zie
kBT

ciax
@/ax

@z

� �
:

For the axon compartment and glial compartment boundary condi-
tion, we have

ciax ¼ ci;reax ; on C2 [ C6; (20)

and

jigl � r̂ ¼ 0; on C1;

cigl ¼ ci;regl ; on C2 [ C6;

jigl � r̂ ¼ 0; on C7;

8>><
>>: (21)

where the Dirichlet boundary conditions are used at locations C2 [ C6

for axons and glial cell, and a non-flux boundary condition is used for
glial cells ions flux on pia mater C7.

For the extracellular space boundary condition, similar boundary
conditions are imposed except on the pia mater C7. The flux across
the pia mater is assumed continuous and Ohm’s law is used.46

Additionally, a non-permeable boundary condition is used at location
C5 and a homogeneous Neumann boundary condition is applied at
the location of the dura mater C4,

jiex � r̂ ¼ 0; on C1;

ciex ¼ cicsf ; on C2 [ C3;

rciex � r̂ ¼ 0; on C4;

jiex � ẑ ¼ 0; on C5;

ciex ¼ cieye; on C6;

ji;OPex � r̂ ¼ ji;SASex � r̂ ¼ Gi
pia

zie
/OP
ex � /SAS

ex � Ei
pia

� �
; on C7:

8>>>>>>>>>>><
>>>>>>>>>>>:

(22)
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Remark 3. Suppose the ci;�l is the scale of i ion specie in the l space
and Dci;�l is the scale of r and thz-direction i ion specie concentration
variation in the l space. If we define

di7;l ¼
Dci;�l
ci;�l

; i ¼ Naþ;Kþ;Clþ; l ¼ ax; gl; ex:

The ion fluxes could be written as

~j
i
l ¼ Peild

i
7;l~c

i
l~u l � di7;l ~r~cil þ zi~cil ~r~/ l

� �
; l ¼ gl; ex;

~j
i
ax;z ¼ Peiaxd

i
7;l~c

i
l~u

z
ax � di7;l

@~cil
@~z

þ zi~cil
@~/ l

@~z

� �
;

with Peclet numbers

Peiax ¼
u�axz

�ci;�ax
Di
axDc

i;�
ax
; Peil ¼

u�l r
�ci;�l

Di
lslDc

i;�
l

; l ¼ gl; ex: (23)

If we let g�l ; l ¼ ax; gl be the characteristic membrane conductance,
kBT
e be the characteristic electric potential, the dimensionless form of
transmembrance flux is

~J
m;i
l ¼ ~J

i
c;l þ ~J

i
p;l;

where for i ¼ Naþ;Kþ;Cl�; l ¼ gl; ax;

~J
i
c;l ¼

~g il
zi

~/k � ~/ex � ~E
i
gl

� �
; ~J

i
p;l ¼

Jip;le
2

kBTg�l
:

The governing equations for ions become

@ ggl~c
i
gl

� �
@~t

þ di8~J
m;i
gl þ di9 ~r � ggl~j

i
gl

� �
¼ 0; (24)

@ gax~c
i
ax

� �
@~t

þ di10~J
m;i
ax þ di11

@

@~z
gax~j

i
ax;z

� �
¼ 0; (25)

@ gex~c
i
ex

� �
@~t

� di12d
i
10
~J
m;i
ax � di13d

i
8
~J
m;i
gl þ di14 ~r � gex~j

i
ex

� �
¼ 0; (26)

where

~r � gl~j
i
l

� �
¼ 1

~r

@ ~rgl~j
r;i
l

� �
@~r

þ ðd0Þ2
@ gl~j

z;i
l

� �
@~z

; l ¼ gl; ex;

di8 ¼
t�Mglg�glkBT

ci;�gl e2
; di9 ¼

Di
glsglt

�

ðr�Þ2 ;

di10 ¼
t�Maxg�axkBT

ci;�ax e2
; di11 ¼

Di
axt

�

ðz�Þ2 ;

di12 ¼
ci;�ax
ci;�ex

; di13 ¼
ci;�gl
ci;�ex

; di14 ¼
Di
exsext

�

ðr�Þ2 :

Remark 4. In the rest of this paper, the symbol Df is used to
denote the variation of the variable f from its resting state value.

Multiplying equations in (12)–(14) with zie, respectively, sum-
ming up, and using the charge neutrality condition, we have the fol-
lowing system for the electric fields in ax, gl, ex:

X
i

zieMglJ
m;i
gl þ

X
i

r � ziegg j
i
gl

� �
¼ 0; (27)

X
i

zieMaxJ
m;i
ax þ

X
i

@

@z
ziegaxj

i
ax;z

� �
¼ 0; (28)

X
i

zier � gglj
i
gl

� �
þ
X
i

@

@z
ziegaxj

i
ax;z

� �
þ
X
i

r � ziegexj
i
ex

� � ¼ 0;

(29)

In the subarachnoid spaceXSAS, the extracellular equations reduce toX
i

r � zie
X
i

ji;SASex

� �
¼ 0: (30)

The boundary conditions for electric fields /ax; /gl and /ex are given
below.

In the axon compartment:

r/ax � ẑ ¼ 0; on C2;

r/ax � ẑ ¼ 0; on C6;

(
(31)

In the glial compartment:

r/gl � r̂ ¼ 0; on C1;

r/gl � ẑ ¼ 0; on C2;

r/gl � ẑ ¼ 0; on C6;

r/gl � r̂ ¼ 0; on C7;

8>>>><
>>>>:

(32)

and in the extracellular space:

r/ex � r̂ ¼ 0; on C1;

r/ex � ẑ ¼ 0; on C2 [ C3;

r/ex � r̂ ¼ 0; on C4;

r/ex � ẑ ¼ 0; on C5;

r/ex � ẑ ¼ 0; on C6;X
i

zieji;OPex � r̂ ¼
X
i

zieji;SASex � r̂

¼
X
i

Gi
pia /OP

ex � /SAS
ex � Ei

pia

� �
; on C7:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(33)

In the rest of this paper, the full electric-diffusion-convection
model is defined by Eqs. (3a)–(33). The electric-diffusion model is
defined by Eqs. (12)–(33). The electric diffusion model is a reduced
version of the full model in which water is neglected.

III. MODEL CALIBRATION AND VALIDATION

In this section, we use the physiological and anatomical data in
Orkand et al.10 to calibrate the value of parameters, like membrane con-
ductance, capacitance, and structural parameters. We then validate our
model by computing results with these parameters and comparing the
computation with the experiment, which are designed to measure the
change in potential across the glial membrane produced by a train of
action potentials.

In the Orkand experiment, optic nerve has been put in bathing
solutions with three different Kþ concentration (1.5, 3, 4.5mM) and
the resting potential across the glia membrane was measured. Then
the axon was stimulated simultaneously at both ends (see lines 5–6 of
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the Methods section of Orkand paper) to give a train of action poten-
tials. The action potentials increased Kþ in extracellular space (ECS).
The accumulated Kþ then made the glia membrane potential more
positive.

In the simulation, we applied a train of stimuli with frequency
17=s for 1 s to the axon membrane at z ¼ 2:25; 13:5; 0 < r < Ra

¼ 48lm. Each individual stimulus in the train lasted 3ms (as
Orkand’s paper indicated) and had strength 3mA=m2. The stimulus
was large enough to exceed threshold and generate action potentials.
We set the ECS Kþ to be 1:5; 3, or 4:5mM and record the largest
absolute value of the change in glial membrane potential in each case
as in Fig. 4. This number is loosely called “the depolarization” in most
laboratories. The blue symbols show experimental data, red ones are
the simulations results of electrodiffusion model and the green ones
are the full model. Figure 4 shows that both the full model and electro-
diffusion model could match the experimental resting potentials (solid
symbols) and depolarizations (open symbols) very well for the differ-
ent ECS Kþ concentrations.

Figure 3 shows the propagation of the axon action potential. The
membrane potential from axons at the center of the optic nerve bundle
is shown when different locations of the axon had been stimulated. In
both eye-end and two-end cases, the stimulus current was applied
from t ¼ 1ms to t ¼ 4ms. In Fig. 3(a), the stimulus was applied near
to the optic nerve near the eye-end ðz ¼ 2:25mmÞ. At t ¼ 1ms, the
discontinuity of stimulus current induces jumps of the axon mem-
brane potential in Fig. 3. At t ¼ 10ms, the action potential completely

has propagated and left the location near far-eye-end ð13:5mmÞ. The
axon in the optic nerve of the mud puppy is unmyelinated. This speed
of action potential propagation in the model lies in the range of the
action potential speeds typical of unmyelinated axons, i.e., between
0:5m=s and 2:0m=s.63 In Fig. 3(b), when the two ends of the axon
stimulated, the axon membrane potential has is more uniform spa-
tially at each time point in comparison to the single side stimulus case.
Orkand et al. used the dual stimulation to more closely approximate a
“space clamp.”

IV. EFFECTS OF WATER FLOW

In this section, when part of the nerve is stimulated, we estimate
the transmembrane fluxes and the resulting accumulation of ions in
the extracellular space and glial cells. Our main conclusion is that the
variation of osmotic pressure between extracellular space and glial cells
is the dominant mechanism that drives water flow, and water flows
are significant and many important flows occur in the glial region. It is
important to note that these flows can occur in the glia because it is a
syncytium of irregular but finite cells (i.e., not long cylinders) that
allows easy flow from cell to cell. The circulation pattern and strength
of water flow in optic nerve are also presented.

To simplify our discussions, we focus our analyses on an ideal-
ized setting where the stimulus is applied at an inner part of the axon
compartment. As shown in Fig. 5, the stimulus was applied at 0 < r
< rsti at a given location z ¼ z0. This stimulus is within the optic
nerve, so rsti < Ra ¼ r� shown in Fig. 5. We distinguish the stimulated
region and the nonstimulated region in the optic nerve XOP shown in
Fig. 5, since the electrical signal propagates in the z-direction in the
axon compartment. We do not put the stimulus everywhere in this
region, rather we only apply the stimulus at the location ðz0Þ within a
radial.

To understand the mechanism inducing the water circulation, we
first estimate the variations of ion concentrations from axon to the
extracellular space during a single action potential. Then we analyze
the different transmembrane current on the glial cells and identify the
dominant Kþ current. Finally, we study osmotic pressure change after
a train of action potentials on axon.

FIG. 4. The comparison between the experiment10 and simulation on the effect of
nerve impulses on the membrane potential of glial cells. The solid symbols are rest-
ing potentials and the open symbols are depolarization potentials with different ECS
Kþ concentrations.

FIG. 3. (a) Axon membrane potential profile when eye-end axon stimulated. The
built-in figure is the stimulus current profile. (b) Axon membrane potential profile
when two-end axon simulated.
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A. Single action potential estimation

We first estimate the amount of ion exchange between axon and
extracellular space during a single action potential. We assume that
during the single action potential, the volume fraction gl; l ¼ ax; gl; ex,
does not differ from their resting state. We find then that the variation
of Naþ and Kþ in the stimulated extracellular region is the same to
leading order, and that agrees with experimental observations.64–66

Although our estimation is based on the classic Hodgkin–Huxley
model, the methods are general and can be applied to systems with
other channels and transporters.

When an action potential occurs in the nerve, the equilibrium (or
steady state) balance between the ions and electric fields is lost and
resting state changes. We introduce notations to separate the resting
state variables (with superscript “re”) before the action potentials from
the variables during the action potentials (with superscript “dy”).

We introduce the current of ith ionic species through axon and
glial membrane as

Ii;jk ¼ zieJm;i;j
k ¼ zieJi;jp;k þ zieJi;jc;k; i ¼ Naþ;Kþ;Cl�;

j ¼ re; dy; k ¼ gl; ax;

where Jm;i;j
k consists of the active Na=K pump source ðJi;jp;kÞ and passive

ion channel source ðJi;jc;kÞ for ith ionic species on the axons (k¼ ax) or
glial cells membranes (k¼ gl) at resting state (j¼ re) before the action
potentials or during the action potentials (j¼ dy).

At the resting state, Na=K pump source Ji;rep;k and ion channels
source Ji;rec;k on the axon membrane (k¼ ax) and glial membrane
(k¼ gl) satisfy

JNa;rep;k ¼ 3Irek
e

; JK;rep;k ¼ � 2Irek
e

; JCl;rep;k ¼ 0;

Ji;rec;k ¼ gi;rek

zie
Vre
k � Ei;re

k

� �
; i ¼ Naþ;Kþ;Cl�; k ¼ gl; ax

where the membrane potential Vre
k at the resting state is

Vre
k ¼ /re

k � /re
ex; k ¼ gl; ax:

The ion channel conductance on the glial membrane is a fixed
constant,

gi;regl ¼ gigl; i ¼ Naþ;Kþ;Cl�:

and the ion channel conductance on the axon membrane is defined as
in the classical Hodgkin–Huxley model

gNa;reax ¼ �gNa mreð Þ3hre þ gNaleak; gK;reax ¼ �gK nreð Þ4 þ gKleak;

gCl;reax ¼ gClleak;

The kinetic variables mre, hre, and nre are measures of the resting state
open probability for the voltage-gated Naþ and Kþ channel on the
axon membrane. In addition, in the resting state, the ion fluxes
through the active Na/K pump Ji;rep;k and ion channel Ji;rec;k in the glial
membrane (k¼ gl) or axon membrane (k¼ ax) are balanced in
magnitude

O jJi;rep;k j
� �

¼ O jJi;rec;k j
� �

; i ¼ Naþ;Kþ;Cl�; k ¼ gl; ax:

During action potentials, the ion fluxes through active Na=K pump
are

JNa;dyp;k ¼ 3 Irek þ DIk
� �

e
; JK;dyp;k ¼ � 2 Irek þ DIk

� �
e

; k ¼ gl; ax;

where DIk is the variation of current through Na/K pump in the mem-
brane due to the ion concentration changes. The ion fluxes through
ion channels can be written as

Ji;dyc;k ¼ gi;dyk

zie
Vre
k � Ei;re

k

� �
þ gi;dyk

zie
DVk � DEi

k

� �
; k ¼ gl; ax;

where DXk ¼ Xdy
k � Xre

k is the deviation of X away from the resting
state value with X ¼ V ; E; I on the membrane k. For the conductance
on membranes, we have

gNa;dyax ¼ �gNa mdyð Þ3hdy þ gNaleak; gK;dyax ¼ �gK ndyð Þ4 þ gKleak;

gCl;dyax ¼ gCl;reax ; gi;dygl ¼ gi;regl ; i ¼ Naþ;Kþ;Cl�;

where mdy, hdy, and ndy are governed by system (17). During a single
action potential, we claim that the variation of ion’s Nernst potential is
much smaller than changes in the axon membrane potential (see
Appendix A),

DEi
ax ¼ o DV�

ax

� �
; i ¼ Naþ;Kþ;Cl�;

At the same time, we estimate that

Ji;dyp;ax ¼ o
gi;dyax

zie
Vre
ax � Ei;re

ax

� � !
; i ¼ Naþ;Kþ:

This is because the voltage-gated Naþ and Kþ channels are open dur-
ing the action potential and satisfy

gi;reax ¼ o gi;dyax

� �
; i ¼ Naþ;Kþ:

In addition, the increments of Na=K pump strength are limited since
the ion fluxes through the Na=K pump are controlled by its maximum
currents Iax;1 and Iax;2 in Eq. (18).

In sum, during action potentials, we can approximate the axon
transmembrane current for each ionic species as

FIG. 5. Stimulated region and nonstimulated region in the optic nerve ðXOPÞ. The
stimulus is applied in the axon compartment where 0 < r < rsti at a given location
z ¼ z0.
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Ii;dyax � gi;dyax Vre
ax � Ei;re

ax

� �þ gi;dyax DVax; i ¼ Naþ;Kþ;Cl�: (34)

In the next paragraphs, by using Eq. (34), we estimate the accumula-
tive Naþ and Kþ fluxes through the axon membrane during a single
action potential. This estimation helps us estimate the concentration
changes in the stimulated extracellular region.

The governing equation of the open probability for Naþ channel
m-gates in the Hodgkin–Huxley model is

dmdy

dt
¼ am 1�mdyð Þ � bmm

dy; (35)

where

am ¼ 1
10

25� DVax

exp
25� DVax

10

� �
� 1

; bm ¼ 4 exp �DVax

18

� �
; (36)

and DVax ¼ Vdy
ax � Vre

ax . The solution for Eq. (35) is

mdyðtÞ ¼ m0 exp
ðt
0
amðsÞ þ bmds

 !

þ
ðt
0
amðsÞ exp �

ðt
s
amðuÞ þ bmðuÞdu

 !
ds; (37)

with initial valuem0.
During a single action potential period ½0;T�

ax�, we define two
distinguished time intervals based on the rapidly responding m-gates
open probability mdy as shown in Fig. 6. The first period ½0; tm1� is
when the Naþ channel becomes fully open, and the action membrane
potential moves positive from its resting value to its most positive
value. The second period ½tm1;T�

ax ¼ tm1 þ tm2� occurs when the Naþ

channel closes and the action potential recovers from the peak value to
the hyperpolarization value.

In the first time interval ½0; tm1�, we estimate that DVax increases
monotonically from 0 to ENa;re

ax � Vre
ax , where we approximate the peak

value of action potential by the Nernst potential of Naþ in the resting
state such that

DVaxðtÞ ¼ ENa;re
ax � Vre

ax

tm1
t; t 2 0; tm1½ �: (38)

where ENa;re
ax � Vre

ax � 1:4� 102 mV. In Eq. (38), the tm1 is an
unknown variable. The initial value of Eq. (37) is chosen when
DVax ¼ 0mV as

m0 ¼ mre ¼ meqð0Þ;
wheremeq is the equilibrium state of Eq. (35) depending on DVax ,

meqðDVaxÞ ¼ amðDVaxÞ
amðDVaxÞ þ bmðDVaxÞ : (39)

By using Eqs. (36)–(38), we can obtain one equation for tm1 as
shown in Eq. (B1) (see Appendix B). Without loss of generality, we
assume the voltage-gated Naþ channel is almost fully open when
t ¼ tm1 and mdyðtm1Þ ¼ 0:95. The estimation from Eq. (B1) gives
tm1 � 0:67ms.

In the second time interval, we use the homogeneous property of
Eq. (35) and move the time interval ½tm1;T�

ax ¼ tm1 þ tm2� to ½0; tm2�
to simplify the notation. We assume that DVax decreases monotoni-
cally from ENa;re

ax � Vre
ax to E

K;re
ax � Vre

ax at second time period such that

DVaxðtÞ ¼ ENa;re
ax � Vre

ax �
ENa;re
ax � EK;re

ax

tm2
t; t 2 0; tm2½ �; (40)

where ENa;re
ax � EK;re

ax � 1:5� 102 mV. We assume that the initial
valuem0 of Eq. (37) at the second time period is

m0 ¼ mdyðtm1Þ:
The Naþ channel is in a nearly closed state when the DVax approach-
ing EK;re

ax � Vre
ax and we estimate mdyðtm2Þ ¼ 0:1. In a similar way, by

using Eqs. (36), (37), and (40), we could have another equation for tm2

as shown in Eq. (B2) (see Appendix B). Based on Eq. (B2), we get
tm2 � 3ms.

In sum, based on estimated tm1 and tm2 in above, we obtain the
approximations for the DVax and the h during a single action potential
period ðt 2 ½0;T�

ax ¼ tm1 þ tm2�Þ as

DVax ¼
ENa;re
ax � Vre

ax

tm1
t; t 2 0; tm1½ �;

ENa;re
ax � Vre

ax �
ENa;re
ax � EK;re

ax

tm2
ðt � tm1Þ; t 2 tm1;T�

ax½ �:

8>>><
>>>:

and

hdyðtÞ ¼ h0 exp �
ðt
0
ahðsÞ þ bhðsÞds

 !

þ
ðt
0
ahðsÞ exp �

ðt
s
ahðuÞ þ bhðuÞdu

 !
ds;

where

FIG. 6. Two distinguished time intervals used in the estimation during a single
action potential. The blue line is the axon membrane potential variation
DVaxð¼ Vdy

ax � Vre
axÞ during a single action potential. The dark dash line is the linear

approximation of the DVax . tm1 and tm2 are the time parameters in Eqs. (B1) and (B2).
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ah ¼ 7
100

exp �DVax

20

� �
; bh ¼

1

exp
30� DVax

10

� �
þ 1

;

with the initial value h0

h0 ¼ hreð0Þ ¼ ahð0Þ
ahð0Þ þ bhð0Þ

:

By using Eq. (34), we estimate the cumulative Naþ flux equations
through the axon membrane during a single action potential ½0;T�

ax�
byðT�

ax

0
Jm;Na;dy
ax dt

�
ðT�

ax

0

�gNahdyðmdyÞ3
zNae

Vre
ax � ENa;re

ax

� �þ �gNahdyðmdyÞ3
zNae

DVaxdt

� �2� 10�9 mol=m2: (41)

In the next step, we estimate the cumulative Cl� flux through the
axon membrane during a single action potential ½0;T�

ax� byðT�
ax

0
Jm;Cl;dy
ax dt �

ðT�
ax

0

gClaxDVax

zCle
dt � �3:7� 10�10 mol=m2: (42)

In Eq. (42), we use

ICl;dyax ¼ gClax Vre
ax � ECl;re

ax

� �
þ gClax DVax � DECl

ax

� �
� gClaxDVax;

since both Vre
ax � ECl;re

ax and DECl
ax ¼ oðDVaxÞ. In the next, we provide

the estimation of the cumulative Kþ flux through axon membrane
during a single action potential. The governing equation of /ax yieldsX

i

zie
@

@z
gaxj

i
ax

� � ¼ �Max INa;dyax þ IK;dyax þ ICl;dyax

� �
: (43)

At every location of the stimulated region, the duration of a single
action potential is T�

ax . We introduce T�
all for the electrical signal

propagation time, during which the signal propagates from one
end of the axon (near the optic nerve head) to the other end (far-
eye-side of the optic nerve) as shown in Fig. 3. By integrating the
right-hand side of Eq. (43) over space ½0; L� and time ½0;T�

all�, we
have

�Max

ðT�
all

0

ðL
0
INa;dyax þ IK;dyax þ ICl;dyax dzdt

� �MaxL
ðT�

ax

0
INa;dyax þ IK;dyax þ ICl;dyax dt: (44)

where we use the propagation property of the action potential along
the z-direction, and only the axon firing period is taken into consider-
ation. By integrating the left-hand side of Eq. (43), we have

ðT�
all

0

ðL
0

X
i

zie
@

@z
gaxj

i
ax

� �
dzdt ¼ O T�

allegaxj
bd
ax

� �
: (45)

We assume that the characteristic timescale of T�
all equals Oð10�3Þ.

The scale of ion flux jbdax at left and right boundaries ðz ¼ 0; LÞ is dom-
inated by the diffusion term

jbdax ¼ O D�
ax
Dc�ax
z�

� �
;

since the boundary conditions are @/ax
@z jz¼0;L ¼ 0 and uaxð0Þ ¼ uaxðLÞ

¼ 0. The Dc�ax is the characteristic difference between ion concentra-
tion at boundary value and the ion concentration inside the axon after
a single action potential. Based on the Naþ flux estimation in Eq. (41),
we estimate Dc�ax ¼ Oð10�1Þ. From Eqs. (41) and (42), we get the fol-
lowing order of cumulative fluxes through axon membrane during a
single action potential time interval:

O T�
allgaxj

bd�
ax

� �
� O MaxL

����
ðT�

ax

0
Jm;Cl;dy
ax dt

����
 !

� O MaxL

����
ðT�

ax

0
Jm;Na;dy
ax dt

����
 !

: (46)

In other words, based on Eqs. (44)–(46), it yields

O

����
ðT�

ax

0
Jm;K;dy
ax dt

����
 !

¼ O

����
ðT�

ax

0
Jm;Na;dy
ax dt

����
 !

: (47)

Based on Eq. (41), the cumulative axon transmembrane Kþ flux dur-
ing a single action potential should beðT�

ax

0
Jm;K;dy
ax dt � 2� 10�9 mol=m2: (48)

where ½0;T�
ax� is the time interval enclosing a single action potential.

Remark 5. Equation (47) shows that for a single action potential,
the leading order of the cumulative Kþ flux out of the axon to the
extracellular space equals the leading order of the cumulative Naþ flux
into the axon from the extracellular space. This estimation is consis-
tent with observations in the literature.64–66

Next, we estimate the concentration variation in the stimulated
extracellular region due to a single action potential. The timescale t� of
a single action potential is in milliseconds and during action potential
the scale of g�ax is �gNa. In Appendix A, the scale of axon membrane
potential DV�

ax is

kBT
DV�

axe
¼ oð1Þ:

Therefore, in Eq. (26) by taking di10 ¼ t�Max�gNaDV�
ax

ci;�ax e
, we have

di13d
i
8

di12d
i
10

;
di14

di12d
i
10

( )
	 oð1Þ:

Hence, the cumulative ion fluxes through axon transmembrane
are the main source changes the ion concentration in the stimulated
extracellular region,

gexDc
i
ex ¼ Max

ðT�
ax

0
Jm;i;dy
ax dt; i ¼ Naþ;Kþ; (49)

where Dciex is the ith ion’s concentration variation from its resting state
and gex is unchanged by Eqs. (5a) and (5b) under timescale
t� ¼ 10�3 s. Based on Eqs. (47) and (49), the absolute variation of
Naþ and Kþ concentrations in the stimulated extracellular region due
to action potentials, can be written as
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Dcsti ¼ O
Max

gex

����
ðT�

ax

0
Jm;i;dy
ax dt

����
 !

; i ¼ Naþ;Kþ: (50)

In the following discussion, we use Dcsti describes the concentration
changes in the stimulated extracellular space after a single action
potential,

Dcsti ¼ 0:12mM: (51)

B. Estimation of glial transmembrane potassium flux

In this section, we estimate the glial transmembrane current
when the Kþ and the Naþ concentration vary by Dcsti in the stimu-
lated extracellular region. We also find that the electric field /gl
responds immediately to the glial Kþ Nernst potential changes. In the
stimulated region, the variation of extracellular electric potential D/ex
is small in comparison to the variation of glial electric potential D/gl .

The dominant current through the glial membrane in the stimu-
lated region is through the passive Kþ channel, rather than the Naþ

channel or the Na=K pump. At the same time, in the nonstimulated
extracellular region, almost the same amount of Kþ moves from the
glial compartment to extracellular space. In other words, both the glial
cells and extracellular space in the nonstimulated region participate in
the spatial buffering process to help potassium clearance.67,68

In the stimulated region, the Nernst potential for Kþ across the
glial membrane changes because of the additional potassium DcKex in
the extracellular space,

DEK
gl ¼

kBT
zKe

log 1þ DcKex
cK;reex

 !
� log 1þ DcKgl

cK;regl

 !0
@

1
A; (52)

where DcKl ; l ¼ gl; ex are the variations of concentrations in the l com-
partment. The variation of Kþ concentration in the glial compartment
DcKgl is a result of the Dc

K
ex produced by the glial transmembrane Kþ

flux. Recall that the volume fraction ðgglÞ of the glial compartment is
much larger than the extracellular space ðgexÞ. At the same time, based
on Eq. (50) and Kþ concentration at resting state, we get

DcKex ¼ o cK;reex

� �
;

DcKgl
cK;regl

¼ o
DcKex
cK;reex

 !
:

Therefore, DEK
gl in Eq. (52) can be approximated by its Taylor

expansion,

DEK
gl �

kBT
zKe

DcKex
cK;reex

: (53)

The variation of Kþ Nernst potential in the stimulated region produ-
ces the changes of glial membrane potential DVgl and glial compart-
ment electric potential D/gl . We move on now to estimate the
variations of electric potentials in the stimulated extracellular and glial
regions.

From the governing equation for /ex ,X
i

zier � gexj
i
ex

� � ¼X
i

zieMgl J ip;gl þ Jic;gl
� �

þ
X
i

zieMax Jip;ax þ Jic;ax
� �

; (54)

where

jiex ¼ ciexuex � Di
exsex rciex þ

zie
kBT

ciexr/ex

� �
:

We claim that after the axon stops firing, the major current is through
glial membrane Kþ channels (see Appendix C). Therefore, the right-
hand side of Eq. (54) can be approximated as

X
i

zieMgl J ip;gl þ J ic;gl
� �

þ
X
i

zieMax Jip;ax þ Jic;ax
� �

� Mglg
K
gl DVgl � DEK

gl

� �
: (55)

Next, we integrate Eq. (54) over the stimulated region
VS ¼ fðr; z; hÞjr 2 ½0; rsti�; z 2 ½0; L�; h 2 ½0; 2p�g, through which
the action potential propagates as shown in Fig. 5. By Eq. (55), we
have the approximation of the total current

ð
VS

Mglg
K
gl DVgl � DEK

gl

� �
dv � pr2stiLMglg

K
gl DVgl � DEK

gl

� �
: (56)

In the left-hand side of Eq. (54), by the charge neutrality assumption
in Eq. (2), we naturally have

X
i

zieciexuex ¼ 0:

Based on Eqs. (42), (47), and (50), we know that after a single action
potential the leading order of ion concentration variations in the stim-
ulated extracellular region are as follows:

DcNaex ¼ �Dcsti; DcKex ¼ Dcsti; DcClex ¼ o Dcstið Þ: (57)

Using Eqs. (57) and (33), the diffusion term in the left-hand side of
Eq. (54) can be approximated as

�
ð
VS

X
i

zier � gexD
i
exsexrciex

� �
dv � 2prstiLegexD

diff
ex sex

Dcsti
r�

;

(58)

where Ddiff
ex ¼ DK

ex � DNa
ex . In Eq. (58), we claim that the currents

through the left (z¼ 0) and right (z¼ L) boundaries of the stimulated
region VS are much smaller than those through the radial transition
region ST. This is because (1) the ion concentration variations are in
the radial direction (between stimulated region and nonstimulated
region) and (2) the length scales in the z and r direction are different.
Therefore, the radial transition region ST ¼ fðr; z; hÞjr ¼ rsti;
z 2 ½0; L�; h 2 ½0; 2p�g has a much larger area than the left and right
boundaries of VS.

Similarly, the integration of the electric drift term in the left-hand
side of Eq. (54) yields the approximation,

�
ð
VS

X
i

zier � gexD
i
exsex

zie
kBT

ciexr/ex

� �
dv

� 2prstiLgexrex
D/ex

r�
; (59)

where rex ¼ sexe2

kBT

P
i ðziÞ2Di

exc
i
ex. From Eqs. (56), (58) and (59), we get
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2
rsti

gexsexeD
diff
ex

Mgl

Dcsti
r�

þ gexrex
Mgl

D/ex

r�

 !
� gKgl DVgl � DEK

gl

� �
: (60)

At the same time, from the governing equation of /glX
i

zier � gglj
i
gl

� �
¼ �

X
i

zieMgl J ip;gl þ Jic;gl
� �

; (61)

where

jigl ¼ ciglugl � Di
glsgl rcigl þ

zie
kBT

ciglr/gl

� �
;

we obtain the following estimation in a similar way:

� 2
rsti

gglrgl
Mgl

D/gl

r�
� gKgl DVgl � DEK

gl

� �
; (62)

where rgl ¼ sgl e2

kBT

P
i ðziÞ2Di

glc
i
gl . We neglect the diffusion and convec-

tion terms in Eq. (61) because these terms require much longer time
to respond to the extracellular concentration change. Based on Eq.
(60) and Eq. (62), we have

D/ex ¼ � gglrgl
gexrex

D/gl �
sexeDdiff

ex

rex
Dcsti: (63)

In Appendix D, by matching the orders in both sides of Eq. (62), we
claim that D/ex ¼ oðD/glÞ in the stimulated region and therefore,

DVgl ¼ D/gl � D/ex ¼ OðD/glÞ: (64)

In the next step, we approximate the Kþ current through the leaking
Kþ channel on the glial membrane. Based on Eqs. (62) and (64), we
get

gKgl D/gl � DEK
gl

� �
� gKgl DVgl � DEK

gl

� �
� � 2gglrgl

rstiMgl

D/gl

r�
: (65)

Hence, by Eq. (65), we obtain the relation between DEK
gl andD/gl as

DEK
gl � 1þ heð ÞD/gl; (66)

where

he ¼
2gglrgl

rstiMglr�gKgl
:

Based on Eq. (65), it gives us the following approximation:

gKgl DVgl � DEK
gl

� �
� � gKgl he

1þ he
DEK

gl : (67)

Furthermore, from Eqs. (63), (66), and (53), we get the approximation

D/ex � � gglrglkBT

gexrex 1þ heð ÞzKe
DcKex
cK;reex

: (68)

The variations of electric field D/gl in both stimulated and nonstimu-
lated regions are produced without delay by DEK

gl in the stimulated
region, as described in the governing equation of /gl in Eq. (27). The
Kþ leaking current is the major current through the glial membrane
in the nonstimulated region as it is in the stimulated region because

the current through the ion channel is voltage /gl dependent and Kþ

conductance is one dominant ion conductance in the glial membrane

gigl ¼ o gKgl
� �

; i ¼ Naþ;Cl�:

In the next steps, we introduce the superscript notation “S” for the
stimulated region variables and superscript “NS” for nonstimulated
region ones. For the glial transmembrane currents, we have the follow-
ing approximation:X

i

zieMgl JS;ip;gl þ JS;ic;gl

� �
� Mglg

K
gl DVS

gl � DES;K
gl

� �
;

X
i

zieMgl JNS;ip;gl þ JNS;ic;gl

� �
� Mglg

K
gl DVNS

gl � DENS;K
gl

� �
:

By integration of the /gl Eq. (27) over the stimulated region VS and
the nonstimulated region VNS, respectively, it yieldsð

VS

X
i

zier � gSglj
S;i
gl

� �
dv �

ð
VS

Mglg
K
gl DVS

gl � DES;K
gl

� �
;

ð
VNS

X
i

zier � gNSgl j
NS;i
gl

� �
dv �

ð
VNS

Mglg
K
gl DVNS

gl � DENS;K
gl

� �
:

8>>>><
>>>>:

(69)

Most of the current between region VS and region VNS goes through
the radial transition region ST. By Eq. (69) and boundary conditions
for /gl we obtainð

VS

Mglg
K
gl DVS

gl � DES;K
gl

� �
dv � �

ð
VNS

Mglg
K
gl DVNS

gl � DENS;K
gl

� �
dv:

(70)

Based on Eq. (70), the average Kþ flux through the glial membrane in
the nonstimulated region leaks out to extracellular space with an
approximate strength

gKgl
zKe

DVNS
gl � DENS;K

gl

� �
¼ � r2sti

r�2 � r2sti

gKgl
zKe

DVS
gl � DES;K

gl

� �
: (71)

In summary, Eqs. (70) and (71) show how the glial compartment in
the nonstimulated region serves as spatial buffers and helps clear
potassium from the extracellular space outside the stimulated axons.69

Remark 6. The glial compartment serves as an important and
quick potassium transport device to remove accumulated potassium
during the axon firing as shown in Fig. 7.

In the stimulated region, the change in the potassium Nernst
potential change makes the glial membrane potential more positive
and moves potassium through ion channels into the glial compart-
ment. In the nonstimulated region, since glia is an electrical syncytium,
the glial membrane potential simultaneously increases as it does in the
stimulated region. However, the glia potassium Nernst potential in the
nonstimulated region is not very different from that in the resting
state. These potentials produce an outward potassium flux from the
glial compartment in the nonstimulated region.

Interacting regions of this sort depend on spatial variables and
the properties of the glia as a syncytium. It is difficult to capture these
effects in models that do not include space as an independent variable.
Even if such compartment models capture these effects correctly in
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one set of conditions (because parameters are chosen to make the
description correct), they are unlikely to describe the effects of changes
in conditions consistently, including membrane potential.

C The water flow: Circulation and estimation

In this section, we discuss water circulation between the stimu-
lated and the nonstimulated regions. As extra Kþ is gradually cleared,
it produces an osmotic pressure difference between the intra- and
inter- domain, i.e., between the inside the glial compartment and the
extracellular space. This osmotic pressure variation drives transmem-
brane water flow and water circulation in the optic nerve.

Now we consider a train of stimulus stimulated with the fre-
quency fm in the axon region ðr < rsti; z ¼ z0Þ during time ½0;Tsti�.
The estimation depends on the Kþ and Naþ concentration variations
in the extracellular space and charge neutrality condition. The clear-
ance of extra amount of Kþ ðDcKexÞ in the stimulated extracellular
space mostly goes through glial membrane and extracellular pathway
(see Appendix E),

d gexDc
K
ex

� �
dt

¼ � km;K
gl þ kKex

� �
DcKex; (72)

where

km;K
gl ¼ MglgKgl hekBT

zK 1þ heð Þe2cK;reex
; kKex ¼

2gexD
K
exsex

rstir�
:

The km;K
gl presents the effect of glial transmembrane Kþ flux and the

kKex describes the spatial effect of the extracellular Kþ transport
between the stimulated region and nonstimulated region. This spatial
communication is not negligible since kKex is comparable magnitude to
the km;K

gl . The initial value of Eq. (72) starts with the first stimulus on
axon as

DcKexð0Þ ¼ Dcsti;

and at the beginning of each period T, there is an additional Dcsti amount
of Kþ accumulated in the extracellular space due to the axon firing

DcKexðiTÞ ¼ DcKexðiTÞ þ Dcsti; i ¼ 1…n� 1;

where n ¼ Tsti
fm

� �
is the total number of periods. In the above, we view

the extracellular Kþ concentration changes due to axon firing as a
source term Dcsti.

Remark 7. The concentration in the stimulated extracellular
region changes rapidly because of the transmembrane action poten-
tials, as well as the extracellular electric potential /ex. The effect of fluid
circulation is the cumulative result of the above DOex. The fluid flows
from the nonstimulated region to the stimulated region are dominated
by the trans-glia-membrane flow. So, the convection in the extracellu-
lar reduces (i.e., flattens) the variation of osmotic pressure.

Remark 8. These effects make our spatially inhomogeneous
model quite different from existing ODE models,64,70 since those ODE
models either take the extracellular ion concentration as constant or
they do not consider the ion exchange between the extracellular space
and other compartments at all. In a recent work, Marte et al.71 intro-
duce a compartment model similar to Eq. (72) by considering ion flux
between neuron, glia, and extracellular regions in both the dendrite
and soma region. It is always possible to take a field theory and
approximate its x dependence into compartments. However, it is quite
difficult to know how to describe the parameter dependence, and com-
partment inter-dependence in such models consistently, and it is prob-
ably impossible to describe the parameter dependence and
compartment inter-dependence uniquely. These issues are also consid-
ered in the Discussion Section.

Field theories show the interdependence as outputs of the analysis.
Because field models are consistent, and their solutions are unique,
parameter dependence and compartmental interdependence are unique.

In compartment models, different assumptions are possible and
difficult to compare. Analysis with different sets of assumed compart-
ments is likely then to give different results in the hands of different

FIG. 7. (a) Schematic graph of the potas-
sium flux when inner part axon stimulated.
In the stimulated region, the potassium
takes the way of extracellular pathway
and through the glial compartment via glial
membrane. In the non-stimulated region,
the potassium leaks out to the extracellu-
lar space through the glial membrane. (b)
Schematic graph of the water circulation
when inner part axon stimulated. In the
stimulated region, the glial transmembrane
water flow goes from extracellular space
into glial compartment as the effect of
osmosis difference. In the extracellular
space, water goes from nonstimulated
region to stimulated region in radial direc-
tion. In the glia compartment goes in the
opposite direction. This compartment
drawing is given only to aid qualitative
understanding.
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investigators, creating uproductive controversies, and slowing progress.
Field models have many fewer assumptions and are more productive.
However, they involve considerably more mathematical analysis45,46

and numerical difficulties. Field models still contain many known
parameters (e.g., most structural parameters, capacitance of membranes,
conductivity of extra and intraellular solutions) and a number of not
well-known parameters, like the properties and distributions of mem-
brane channels (and their ensemble properties) and active transport sys-
tems. Direct experimentation is the best way to determine these
parameters and modern optical methods in particular, allow many such
measurements on scales much smaller than a cell diameter. However,
curve fitting to available data is often all that is possible, as in some cases
in this paper, with its unavoidable ambiguities.

The time course of Naþ variation ðDcNaex Þ in the stimulated extra-
cellular space is (see Appendix E)

d gexDc
Na
ex

� �
dt

¼ �kNa;1ex DcNaex þ kNa;2ex DcKex; (73)

with the initial condition

DcNaex ð0Þ ¼ �Dcsti:

There is Dcsti amount of Naþ flux into axon compartment from the
extracellular space at the beginning of each period

DcNaex ðiTÞ ¼ DcNaex ðiTÞ � Dcsti; i ¼ 1…n� 1:

In Eq. (73), the kNa;1ex describes the effect of extracellular diffusion and
kNa;2ex presents the extracellular electric drift between stimulated and
nonstimulated regions. In Eq. (73), we have

kNa;1ex ¼ 2gexD
Na
ex sex

rstir�
; kNa;2ex ¼ 2gglrglD

Na
ex sexc

Na;re
ex

rstirex 1þ heð Þr�cK;reex
:

In Appendix E, we present the solution of the coupled linear system of
(72) and (73). By the charge neutrality condition Eq. (2), the variation
of extracellular osmotic concentration is

DOex ¼ 2 DcKex þ DcNaex
� �

; (74)

where DcKex and Dc
Na
ex are written in Eqs. (E14) and (E15).

Notice that sodium and potassium behave differently in the
extracellular space. In the extracellular space, the electric drift Kþ flux
has a much smaller magnitude in comparison to diffusive Kþ flux,
since the scale ratio RK

ex between the electric drift term and diffusion
term for Kþ is (see Appendix E)

RK
ex ¼

gglrgl
gexrexð1þ heÞ ¼ oð1Þ: (75)

However, for Naþ in the extracellular space, the magnitude of electric
drift flux are comparable to diffusive flux since (see Appendix E)

RNa
ex ¼ gglrgl

gexrex 1þ heð Þ
cNaex
cKex

¼ Oð1Þ: (76)

In the next discussion, we estimate the scales of the glial trans-
membrane velocity, glial radial velocity, and extracellular radial veloc-
ity. The variation in osmotic pressure in the stimulated region is the
driving force for the water flow and circulation. Our estimation is

based on the equations governing fluid flow and the spatial variation
of osmotic pressure.

From the conservation of mass in glial compartment, we have

@ggl
@t

þMglU
m
gl þr � ggluglð Þ ¼ 0: (77)

Based on Eq. (74), at t ¼ Tsti, we know there is cumulative osmosis
variation DOexðTstiÞ in the stimulated extracellular region. Since the
glial compartment volume fraction (ggl) is larger than the extracellular
volume fraction (gex), we have

jDOgl j < jDOexj:
Therefore, we view the DOex is the driving force for hydrostatic pres-
sure variation. At the resting state, Eq. (77) yields

MglL
m
gl pregl � preex � cglkBT Ore

gl � Ore
ex

� �� �þr � greglu
re
gl

� � ¼ 0;

and by Eq. (77), we get

@Dggl
@t

þMglL
m
gl Dpgl � Dpex � cglkBT DOgl � DOex

� �� �
þr � D ggluglð Þ

� �
¼ 0: (78)

Based on Eq. (5a), the scale of the second term in Eq. (78) is much
larger than the third term, since

d2
d1

¼ jglsgl
lðr�Þ2MglLmgl

¼ o 1ð Þ:

where we choose

U�
gl ¼ kBTO

�; u�gl ¼
jglsglkBTO�

lr�
:

Therefore, Eq. (78) in the stimulated glial region can be approximated as

@ Dpgl � Dpex
� �

Kgl@t
þMglL

m
gl Dpgl � Dpex
� �þMglL

m
gl cglkBTDOex ¼ 0;

(79)

with the initial condition

Dgglð0Þ ¼
Dpglð0Þ � Dpexð0Þ

Kgl
¼ 0:

In Eq. (79), we have used the relationship between hydraulic pressures
pl; l ¼ gl; ex and glial compartment volume fraction ggl in Eq. (4a)

KglDggl ¼ Dpgl � Dpex: (80)

By using a linear approximation of extracellular osmotic concentration
variation DOex

DOexðtÞ ¼ DOexðTstiÞ
Tsti

t; t 2 0;Tsti½ �;
the solution of Dðpgl � pexÞ in Eq. (79) can be written as

DpglðtÞ � DpexðtÞ ¼ Bt
A
exp ðAtÞ � B

A2
ðexp ðAtÞ � 1Þ

� �
exp ð�AtÞ

(81)
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where

A ¼ MglL
m
gl Kgl; B ¼ �KglMglL

m
gl cglkBT

DOex Tstið Þ
Tsti

:

Hence, we estimate the average glial transmembrane water velocity in
the stimulated region as

Um
gl ðtÞ ¼ Lmgl DpglðtÞ � DpexðtÞ þ cglkBTDOexðtÞ

� �
; (82)

and the scale of glial transmembrane velocity in the stimulated region
as

U�
gl ¼ jUm

gl ðTstiÞj: (83)

In Eq. (82), the hydrostatic pressure variations Dpl; l ¼ gl; ex passively
react to the osmotic pressure variation kBT � DOex in the stimulated
region. Therefore, the direction of this glial transmembrane water flow
is determined by osmotic pressure variation kBT � DOex .

In the next step, we estimate the glial radial velocity scale ur�gl and
extracellular radial velocity scale ur�ex . By the incompressibility condi-
tion, we have

r � ggluglð Þ þ r � gexuexð Þ þ @ gaxu
z
axð Þ

@z
¼ 0: (84)

In Eq. (84), the dominant terms are the gradients in radial direc-
tion, because the length scale difference between r� and z� and the
osmotic pressure variation are both in the radial direction. Therefore,
Eq. (84) can be approximated by

@ gglu
r
gl

� �
@r

þ @ gexu
r
exð Þ

@r
¼ 0; (85)

The velocity boundary conditions at r¼ 0,

urgl ¼ urex ¼ 0;

and Eq. (85) yield

gglu
r
gl þ gexu

r
ex ¼ 0: (86)

With the help of Eq. (86), we can rewrite urgl in form of

urgl ¼ ð1� vÞurgl � v
gex
ggl

urex; (87)

where the v is defined as

v ¼ jglsgl
gex
ggl

jexsex þ jglsgl
:

By substituting Eqs. (6) and (10) into Eq. (87), we estimate the radial
velocity scale in the glial compartment as

ur�gl ¼
����ð1� vÞ jglsgl

l

Dpgl � Dpex
r�

� ð1� vÞ jglsgl
l

cglkBT
DOgl

r�

�v
gex
ggl

kesex
D/ex

r�

����
t¼Tsti

(88)

In Eq. (88), the DOgl is due to the changes of the volume fraction of
the glial compartment Dggl (see Remark 9) can be estimated as

DOgl �
gregl

gregl þ Dggl
Ore
gl � Ore

gl ¼ � Dggl
gregl þ Dggl

Ore
gl ;

where Dggl can be written by using the Dpl as in Eq. (80)

Dggl ¼
Dpgl � Dpex

Kgl
:

Furthermore, by Eq. (86), the scale of radial direction extracellular
region velocity scale ðu�exÞ given by

u�ex ¼
ggl
gex

u�gl: (89)

Figure 7(b) shows that the water flow exhibits circulation patterns
between the extracellular space and glial compartment. The water flow
in the glial compartment is from the stimulated region to the nonsti-
mulated region in the radial direction. In extracellular space, the water
flow in the radial direction is from the nonstimulated region to stimu-
lated region.

Remark 9. We assume the average total number of molecules
(not concentration) in the stimulated glial region does not change
since the major glial transmembrane ion flux in the stimulated region
is Kþ flux and this Kþ flux from the stimulated extracellular space
moves through the glial transition St to the nonstimulated extracellular
space as Eq. (70).

D. The relative importance of ion flux components

In this section, we discuss the relative importance of ion flux
components, due to diffusion, convection, and electric drift in the glial
and extracellular regions, respectively. Our discussion focuses on the
radial direction since these are the dominant fluxes.

In the extracellular space, we characterize the relative importance
of electric drift and diffusion (of potassium and sodium) in the extra-
cellular space by the ratios RK

ex and R
Na
ex analyzed in Eqs. (75) and (76)

RK
ex ¼

���� gglrgl
gexrex 1þ heð Þ

����; RNa
ex ¼

���� gglrgl
gexrex 1þ heð Þ

cNaex
cKex

����:
For radial direction flux, the ratio between convection and diffusion in
the extracellular space is estimated by the Peclet number shown in
Eq. (23)

Peiex ¼
���� ciexu

�
exr

�

Di
exsexDc

i
ex

����; i ¼ Naþ;Kþ; (90)

where we approximate radial diffusion flux scale in the extracellular
space as ����D�

exsex
Dciex
r�

����; i ¼ Naþ;Kþ:

In a similar way, we estimate the Peclet numbers shown in Eq. (23) in
the glial compartment as

Peigl ¼
���� ciglu

�
glr

�

D�
glsglDc

i
gl

����; i ¼ Naþ;Kþ: (91)

Note that the Peclet numbers for Naþ and Kþ are significantly differ-
ent due to their different concentrations as shown in Eqs. (90) and
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(91). In the glial compartment, the ratio between electric drift and dif-
fusion is

RK
gl ¼

���� 1
1þ he

cKglDc
K
ex

cKexDc
K
gl

����; RNa
gl ¼

���� 1
1þ he

cNagl Dc
K
ex

cKexDc
Na
gl

����: (92)

where we have used Eqs. (53) and (66). In Eq. (92), we estimate the
Kþ concentration change ðDcKgl Þ in the stimulated glial compartment
as

DcKgl � ncsti � DcKex
� � km;K

gl

km;K
gl þ kKex

gex
ggl

; (93)

where km;K
gl and kKex are defined in Eq. (72), and n is the number of

stimuli.
We estimate the DcNagl in the stimulated glial compartment as

DcNagl � � 3DIgl

gKgl DVgl � DEK
gl

� �DcKgl ; (94)

where DIgl are approximated by Taylor expansion as

DIgl � 2
KK1I

re;1
gl

cK;reex cK;reex þ KK1

� �þ KK2I
re;2
gl

cK;reex cK;reex þ KK2

� �
 !

DcKex:

In Sec. V, we carry out a numeric simulation as mentioned previously.
Furthermore, we compare the results between the electrodiffusion
model with the convection–electrodiffusion (full) model.

V. NUMERICAL SIMULATION

In this section, numerical simulations are used to confirm our
asymptotic estimations. The comparison between electrodiffusion
model and the full convection–electrodiffusion model is conducted to
understand how the nervous (neuron–glia) system interacts with the
extracellular space to create microcirculation.

A train of stimuli is applied to stimulate the axon membrane
near the left boundary ð ðz0; rÞjz0 ¼ 1:875mmand r < rsti ¼ 1

2 r
�	

¼ 24 lmgÞ. Each single stimulus has current strength Isti ¼ 3
�10�3 A=m2 with duration 3ms. The frequency of the stimuli is
50Hz ðT ¼ 0:02 sÞ and the duration is Tsti ¼ 0:2 s. The obtained
full model is solved by using finite-volume method with mesh size
h¼ 1/20 and temporal size t¼ 1/10 in dimensionless. The code is writ-
ten in the Matlab environment.

A. Estimation of velocity scales

We first estimate how large are the fluid velocities in extracellular
space and glial compartment generated by a train of stimuli. From
Eqs. (E15) and (E14), the estimated concentration variations in the
stimulated extracellular region at t ¼ Tsti are

DcNaex � �1:06mM; DcKex � 0:89mM; DOex � �0:34mM:

The estimated glial transmembrane velocity by Eq. (88) is

U�
gl � 9:78� 10�2 nm=s:

From Eqs. (88) and (89), the estimated scale of radial water velocities
inside glial compartment and extracellular space are

u�ex � 1:56� 101; u�gl � 3:90 nm=s:

In Figs. 8(a)–8(c), we plot the computed average variation of con-
centrations in the stimulated extracellular region. These computed
concentration changes are consistent with the estimates presented pre-
viously. The change of concentration reaches its peak at the end of the
train of stimulus ðt ¼ TstiÞ and quickly returns to its previous equilib-
rium value.

In Fig. 8(f), we plot the computed average transmembrane water
flow through the glial membrane in the stimulated region. We see Fig.
7(b) that water flows into the glial compartment from the extracellular
space in the stimulated region. This transmembrane water flow

FIG. 8. Numerical results. (a)–(c) Average concentration variations in the stimulated extracellular region; (d) and (e) average radial velocity in the intradomain; (f) average glial
transmembrane velocity in the stimulated region (with normal direction points to ECS).
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generates the water circulation between the stimulated region and
nonstimulated region in the radial direction. As in Fig. 7(b), in the
extracellular compartment, the water flow goes from the nonstimu-
lated region to the stimulated region and in the glial compartment,
water flows in the opposite (radial) direction. In Figs. 8(d) and 8(e), we
plot the computed average water velocity in the radial direction in the
glial compartment and in the extracellular space. The computations
are consistent with our estimation above.

In Fig. 9(a), we show the transmembrane water flow through
the glial membrane in the nonstimulated region as in Fig. 7(b).
This water flow to the extracellular space produces widening of the
extracellular space volume in the nonstimulated region, as shown
in Fig. 9(b). At the same time, the extracellular space volume
shrinks (in the stimulated region) as shown in Fig. 9(c). The
shrinkage is produced by the inward water flow through the glial
membrane in the stimulated region, as in Fig. 9(f). In Figs. 10 and
11, the variations of volume fractions of the extracellular space and
glial compartment in the whole domain are plotted at time
t ¼ 0:1 s (during the stimulus), t ¼ 0:5 s (maximum variations)
and t ¼ 2 s (back to resting state). Our simulation is consistent
with the experiments in Refs. 72 and 73, where the extracellular
space becomes smaller in the middle cortical layers (where the
stimulus is applied) but widens in the most superficial and deep
cortical layers (where no stimulus is applied).

Remark 10. In Figs. 10 and 11, it is an illusion that there are
jumps in the contours of volume fractions for extracellular space and
glial compartment. By checking a line-plot at a fixed radius
r ¼ 1:5lm, Fig. 16 in Appendix F illustrates that there are not jumps
rather than local extreme values at the z0 ¼ 1:875mm where the stim-
uli are applied. These stimuli result in the local potassium accumula-
tion that decreases the osmosis variation in the extracellular space near
z0 (see Appendix F, Fig. 18). Therefore, less shrunken of the extracellu-
lar volume fraction near z0 as Figs. 10 and 11 shown.

B. Importance of convection

In this section, we explore the importance of fluid convection
during potassium clearance in each region. We first examine the esti-
mated Peclet numbers for Naþ and Kþ in the extracellular and glial
compartments. By Eq. (90), the Peclet numbers (for the radial ion
flux) in the extracellular space are

PeKex ¼
���� cKexu

�
exr

�

DK
exsexDc

K
ex

���� � 1:0� 10�2;

PeNaex ¼
���� cNaex u

�
exr

�

DNa
ex sexDc

Na
ex

���� � 3:5� 10�1:

By Eqs. (75) and (76), the ratios between electric drift and diffusion (of
the radial ion flux) in the extracellular space are

FIG. 9. (a) Average glial transmembrane velocity in the nonstimulated region (the normal direction points from glial compartment to extracellular space). (b) and (c) Average
variation of the extracellular volume fraction in nonstimulated region and stimulated regions.

FIG. 10. (a)–(c) Extracellular space volume fraction ðgexÞ variation at time
t ¼ 0:1s; 0:5s; 2s. The blue is the enlarged region of extracellular space and red
is the shrunken region of the extracellular space which is qualitatively consistent
with the results in Refs. 72 and 73. The stimulus current has been applied at
z0 ¼ 1:875mm as shown in Fig. 5, which induces ion concentration and osmosis
variation differ. The volume fraction changes depend on the hydrostatic pressure
difference which involves the osmotic pressure (see Fig. 18 in Appendix F ).
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RK
ex ¼

���� gglrgl
gexrex 1þ heð Þ

���� � 6:2� 10�2;

RNa
ex ¼

���� gglrgl
gexrex 1þ heð Þ

cNaex
cKex

���� � 2:3:

In the glial compartment, based on Eqs. (91), (93), and (94), we
get the Peclet numbers (for the radial ion flux) as

PeKgl ¼
���� cKglu

�
glr

�

DK
glsglDc

K
gl

���� � 2:9� 101;

PeNagl ¼
���� cNagl u

�
glr

�

DNa
gl sglDc

Na
gl

���� � 1:7� 101:

By Eq. (92), the ratios between electric drift and diffusion (of the
radial ion flux) in the glial compartment are

RK
gl ¼

���� 1
1þ he

cKglDc
K
ex

cKexDc
K
gl

���� � 4:3� 102;

RNa
gl ¼

���� 1
1þ he

cNagl Dc
K
ex

cKexDc
Na
gl

���� � 1:7� 102:

In Fig. 12, we plot the computed potassium and sodium fluxes (in
the radial direction) in the extracellular space and glial compartments.

In the extracellular space, the importance of different fluxes is
complicated because they depend on the ion species concentration as
shown in Eq. (90). For potassium, the diffusion flux is dominant as
shown in Fig. 12(a), upper panel. Except for sodium [Fig. 12(a), lower
panel], the three fluxes, diffusion, convection, and electric drift, are
comparable with the electric drift flux being somewhat larger. These
simulation results agree with our estimations above. In the extracellu-
lar space, the potassium’s Peclet number PeKex and the ratio RK

ex are in
Oð10�2Þ, while the sodium’s Peclet number PeNaex is order of Oð10�1Þ
and the ratio RNa

ex is in O(1).
In the glial compartments [Fig. 12(b)], the situation is different

from the extracellular space. The electric drift is dominant, and con-
vection flux comes as second in importance for both sodium and
potassium. The water flow has a more important effect on potassium

FIG. 11. (a)–(c): Glial compartment volume fraction ðgglÞ variation at time
t ¼ 0:1s; 0:5s; 2s.

FIG. 12. (a) Average radial direction fluxes components in the extracellular space. (b) Average radial direction fluxes components in the glial compartment (radial direction as
normal direction).
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in the glial compartment than in the extracellular space. The maxi-
mum of the convection flux occurs after the stimuli, since it takes that
long for osmotic pressure to accumulate. Also, it lasts longer time
when the effect of electric drift has diminished.

In Figs. 13(a) and 13(b), the potassium and sodium flux through
the glial membrane are presented and the results are consistent with
our estimates. The major current through the glial membrane is
through the potassium channel in both stimulated region and nonsti-
mulated region. Figure 13(c) compares the stimulated and nonstimu-
lated region by showing the total potassium flux through potassium
channels (integrated over all the glial membrane). The total potassium
flux has different direction in the stimulated region and nonstimulated
region, as shown in our estimation in Eq. (70). The strength is the
same, but the direction is different.

Figure 14 compares the potassium flux in the electrodiffusion
(ED) model and convection–electrodiffusion (full) model. In the full
model, the water circulation between the stimulated and nonstimu-
lated region in both extracellular and glial compartments have an
important role in the circulation of potassium. The water circulation

has an important role in buffering potassium in the optic nerve bun-
dle. The water circulation increases the potassium flow through the
glial compartment.

Figure 14(b) show how water flow increases the potassium flux
through the glia in the transition region between the stimulated and
nonstimulated region. The potassium flux moves back to the stimu-
lated extracellular region from nonstimulated extracellular region
through the extracellular pathway, as shown in Fig. 14(a). The time
rate of change of the cumulative Kþ flux through the extracellular
transition region decreases after stimulus.

Multiple trains of action potentials strengthen the effect of water
flow on the transport through the glial compartment. In Fig. 15, three
trains of action potentials occur with 0:2 s resting period between
each. Figure 15(b) shows that water flow increases 25% of the amount
of cumulative potassium flux through the transition region in the glial
compartment, beyond the potassium flow in the electrodiffusion
model. Consequently, the amount of cumulative potassium flux
through the transition region in the extracellular space is around 15%
less than in the electrodiffusion model [see Fig. 15(a)].

FIG. 13. (a) Potassium and sodium flux variation through Na/K pump and ion channels on the glial membrane in the stimulated region. (b) Potassium and sodium flux variation
through Na/K pump and ion channels on the glial membrane in the nonstimulated region. c: the total potassium flux through potassium channel on the glial membrane.

FIG. 14. (a) Cumulative Kþ flux on extracellular transition region. (b) Cumulative Kþ flux on glail transition region (radial direction as normal direction).
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VI. DISCUSSION

Biological systems, like engineering systems, are complex, involv-
ing many components connected in specific structures, using a range
of forces to perform specific functions, often that can be defined by
quantitative measurements and relations. These systems are defined in
textbooks of physiology and some in more mathematical detail
elsewhere.

Many parameters are involved that need to be known if function
is to be understood and predicted. What is not so well known is how
these parameters are determined. In one extreme, the circuits of elec-
tronic devices all parameters—every one—are known by independent
measurements. Curve fitting is not involved at all. Indeed, it is hard to
imagine how a computer of some 1013 devices that interact with each
other some 109 times a second could function if parameters were not
definite and known to the designer of the circuit. Thus, complexity in
itself does not prevent definite understanding.

A crucial help in dealing with electronic circuits is the universal
and exact nature of the Maxwell equations that govern electronic cur-
rent flow in these structures. The same equations are true for biological
systems for ions, but the mechanical response of the system to the
charges and their movement when electric fields change (loosely called
“polarization”) is not so well known. Measurements of the physical
and electrical structure of tissues are, however, sometimes possible giv-
ing some of the certainty to fortunate biological systems that the
Maxwell–Kirchhoff equations bring to electronic systems. It is natural
to try to simplify the electrical and then the electrodiffusional and
osmotic properties of biological tissues with compartment models, in
which spatial variables and differential equations in space and time are
replaced by compartments and ordinary differential equations in time.
These compartments can be derived in some cases by well-defined
perturbation procedures (some of which we use here) but the accuracy
of the perturbation scheme and reduced models is difficult to deter-
mine, to put it mildly, given the large number of parameters that affect
that accuracy, particularly as conditions change. The compartments
introduce a level of uncertainty that is hard to resolve and is likely to
impede agreement among investigators and thus the progress of
knowledge. In some fortunate cases, biological systems are known
well. Then field equations can be written and solved that are general

and quite independent of the choice of compartments, as we have tried
to do here. The system of long cylindrical nerve fibers, ionic channels,
and membranes—particularly their capacitance—that conducts the
signals (action potentials) of the nervous system is known quite well.
Independent measurements of every component are available.
Parameters can be measured of almost all components in several inde-
pendent ways that give indistinguishable results. Thus action potential
propagation can be computed with little ambiguity.

Some syncytial tissues are known almost this well. The lens of the
eye has been studied by impedance spectroscopy and morphometry so
the structure and structural parameters are well known. Flows have
been directly measured and also pressure, sometimes with spatial
dependence, in Mathias group more than anywhere else In the case of
the lens, the biological system is nearly as well determined as the elec-
tronic system. The optic nerve is not so well known. Here we have
good structural information but limited knowledge of parameters.
Membrane capacitance and extracellular and intracellular resistivities
are known. Conductance of voltage-activated channels and connexins
is known but the spatial distribution of connexins and channels is not
known, and even the identity of the channels is not known. Thus cali-
bration of our optic nerve model is incomplete, as we have tried to
explain in detail in the text, and so validation is limited as well. What
is needed for calibration in the optic nerve more than anything else is
experimental measurements of the type and spatial distribution of
pumps and channels. What is needed for validation is experimental
measurements of the spatial distribution of potentials, concentrations,
and pressures. The theory can easily be extended to compute those
quantities not already included. Indeed, this process of calibration and
validation is what is needed, in our view, to understand the role of
water flow, ion migration, and diffusion in other systems in the central
nervous system. Understanding the glymphatic flows in the central
nervous system requires a field theory in the spirit of that presented
here. It requires calibration with the spatial distribution of pumps and
channels. It requires validation by measurement of the spatial distribu-
tion of concentration, electrical potential, and pressure. A validated
and calibrated theory can then predict and understand the glymphatic
flows so important in biological processes like sleep and pathological
situations like migraine and epilepsy.

FIG. 15. Multiple trains of action potentials. (a) Cumulative Kþ flux on extracellular transition region. (b) Cumulative Kþ flux on glail transition region (radial direction as normal
direction).
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VII. CONCLUSION

This work provides a comprehensive set of estimates and compu-
tations, showing the water circulation in the optic nerve. The water
flow is generated by the osmotic difference between the glial compart-
ment and extracellular space. Through the estimation, we show that in
the stimulated region, the extracellular osmotic changes are not
induced by ion fluxes from the axon compartment when the axon is
firing. Indeed, based on the analysis, we found that the leading order
of potassium flux out and sodium flux into the axon is the same during
the action potential, which is consistent with the literature.64,65 The
osmotic difference is generated due to the sodium and potassium con-
ductance difference in the glial membrane. In other words, more
potassium leaks into the glial compartment, and less sodium leaks out.
As a result of this glial transmembrane water flow in the stimulated
region, it forms a water circulation in the radial direction between the
stimulated region and the nonstimulated region.

Our estimation of the velocity scales in the glial compartment
and extracellular space shows that this water flow has a considerable
effect on potassium flux in the glial compartment. By comparing the
full model (including water) with the electrodiffusion model (exclud-
ing water), we validate that water circulation through the glial pathway
helps clear potassium from the extracellular space and enhances the
glial buffering effect. With additional numerical simulations, we show
that the repetitive activity of the nerve fibers further increases the
importance of water flow and the water flow contribution to glia buff-
ering, which is likely to dramatically dominate pathological situations
of repetitive activity.

Besides, through our analysis, we show that the electrical syn-
cytium property of the glial cells is critical for clearing potassium
(from the extracellular space) when the neuron fires. Based on the
governing equation of glial electric potential, we explain why the
inward glial transmembrane potassium flux in the stimulated
region is almost the same as the outward potassium flux out to the
extracellular space in the nonstimulated region when axon firing.
This is because the electric potential spreads through the connected
cells in the glial compartment. The glial electric potential in the
nonstimulated region becomes more positive in response to the
depolarization of the glial electric potential in the stimulated
region. This electric property for the glial compartment always
exists as long as there exist two distinguish stimulated region and
nonstimulated region. The glial wraps the axon like a faster potas-
sium transporter, which quickly removes the extra potassium (in
the extracellular space) from the stimulated region to the nonsti-
mulated region.

Finally, we would like to point out that the coupling of ionic
and water flows is not unique to the optic nerve. It is ubiquitous in
many parts of the mammalian body and other biological tissues.
Our analysis of the model for the optic nerve is just a first small
step toward the understanding of the mechanisms of various trans-
port processes and the consequences of a disrupted process under
pathological conditions.
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NOMENCLATURE

Al Negative charged protein density in l region
cil Ion i concentration in the l region
gik Conductance of k membrane for ion i

gileak Leak conductance of axon membrane for ion i
�g i Maximum conductance of axon membrane for ion i
J ic;k Passive transmembrane source of k membrane
Jip;k Active ATP based ion i pump on k membrane
Kk Stiffness constant of k membrane
jl Water permeability of l region
Lmk Membrane hydrostatic permeability of k membrane
Mk Membrane area k in per unit control volume
Ol Osmotic concentration in l region
pl Hydrostatic pressure in l region
ul Fluid velocity inside of the l region
zi Valence of the ion i
gl Volume fraction of l region
l Fluid viscosity
sl Tortuosity of l region
/l Electric potential in l region

APPENDIX A: COMPARISON BETWEEN
MEMBRANE POTENTIAL AND NERNST POTENTIAL
ON AXON MEMBRANE

The classical Hodgkin–Huxley analysis of a single action poten-
tial74 assumes that changes in concentration of ions are much less
important than current flow in determining the shape of the action
potential. In other words, the change in the Nernst (i.e., equilibrium)
potential is much less than the change in the membrane potential. In
this section, we show that the variation of the Nernst potential for
Naþ; Kþ and Cl� on the axon membrane is much smaller than the
axon membrane potential changes during action potentials,

DEi
ax ¼ o DV�

ax

� �
; i ¼ Naþ;Kþ;Cl�:

During action potentials, the scale of the DVax can be approximated
by the Naþ and Kþ Nernst potential difference at the resting state,

DV�
ax ¼ O ENa;re

ax � EK;re
ax

� �
: (A1)

We take the Cl� Nernst potential for example. By the charge neu-
trality condition in Eq. (2), we have

DcClax � � gex
gax

DcClex: (A2)

Therefore, the variation of Cl� Nernst potential on axon membrane
yields
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DECl
ax ¼ V� log

cCl;reex þ DcClex
cCl;reax þ DcClax

 !
� log

cCl;reex

cCl;reax

 !0
@

1
A

� V� log 1þ DcClex
cCl;reex

 !
� log 1� gexDc

Cl
ex

gaxc
Cl;re
ax

 !0
@

1
A; (A3)

where

V� ¼ kBT
e

;
1

cCl;reex

¼ O 10�2ð Þ; gex
gaxc

Cl;re
ax

¼ O 10�2ð Þ:

In addition, the characteristic time for a single action potential T�
ax

is in millisecond level ðOð10�3ÞÞ, so the scale of DcClex in the stimu-
lated region is

DcCl;�ex ¼ DcNa;�ex þ DcK;�ex < O
T�
axMax�gNaDV�

ax

egex

 !
¼ Oð1Þ; (A4)

where we use charge neutrality condition and maximum conduc-
tance of the voltage-gated Naþ channel. Therefore, Eq. (A3) yields

DECl
ax � V� 1

cCl;reex

þ gex
gaxc

Cl;re
ax

 !
DcClex; (A5)

Based on Eqs. (A1), (A5), and (A4), and the fact that V�
DV�

ax
¼ oð1Þ,

we have DECl
ax ¼ oðDV�

axÞ. In a similar way, we can get

DEi
ax ¼ o DV�

ax

� �
; i ¼ Naþ;Kþ: (A6)

APPENDIX B: ESTIMATIONS OF tm1 AND tm2

In this section, we provide estimations on tm1 and tm2. For the
first time interval parameter tm1, by substituting Eqs. (36) and (38)
into Eq. (37), we obtain

mdyðtm1Þ ¼ m0 exp

�
18tm1

35
exp

�70
9

� �
� 1

� �

þ tm1

14
Li2 exp ðxÞð Þ þ x ln 1� exp ðxÞð Þ � 1

2
x2


 �����
�11:5

2:5

�

� tm1

14

ð�11:5

2:5

s
exp ðsÞ � 1

exp

 
18tm1

35
exp � 70

9

� ��

� exp � 25� 10s
18

� ��
þ tm1

14



Li2ðexp ðxÞÞ

þx ln ð1� exp ðxÞÞ � 1
2
x2
�����

�11:5

s

!
ds; (B1)

Based on Eq. (B1), we present the estimations of tm1 by choos-
ing different open probabilities value for mdyðtm1Þ in Table I.

Table I shows that the estimation of tm1 through Eq. (B1) has con-
sistent results. In the similar way, for the second time interval
parameter tm2, by substituting Eq. (36), Eq. (40) into Eq. (37), we
obtain

mdyðtm2Þ ¼m0 exp
36tm2

75
exp

�70
9

� �
� exp

5
9

� � ! 

þ tm2

15
Li2ðexp ðxÞÞ þ x ln ð1� exp ðxÞÞ � 1

2
x2


 �����
�11:5

3:5

!

þ tm2

15

ð3:5
�11:5

s
exp ðsÞ � 1

exp
36tm2

75
exp

�ð35� 10sÞ
18

� ���

�exp
5
9

� ��
þ tm2

15



Li2ðexp ðxÞÞ þ x ln ð1� exp ðxÞÞ

�1
2
x2
�����

s

3:5

�
ds: (B2)

In the second time interval, we choose mdyðtm1Þ ¼ 0:95 as the
initial value m0 in Eq. (B2). Table II shows the consistent estimation
of the tm2 when different value for mdyðtm2Þ has been chosen.

In sum, based on the results in Tables I and II, we confirm that
by using Eqs. (B1) and (B2) to estimate the time parameter tm1 and
tm2 for DVax have robust results.

APPENDIX C: ESTIMATION OF TRANSMEMBRANE
CURRENTS

After the axon stop firing, we assume that voltage-gated Naþ

and Kþ channel’s conductance on axon membrane have returned
to their resting state in the stimulated region,

gi;dyax � gi;reax ; i ¼ Naþ;Kþ:

At this stage, we have ion channel conductance on the glial and
axon membrane as

fgNa;reax ; gK;reax ; gClax; g
Cl
gl ; g

Na
gl g 	 o gKgl

� �
: (C1)

Similar to Eq. (53), we claim in the stimulated region,

DEi
k ¼ o DEK

gl

� �
; i ¼ Naþ;Cl�; k ¼ gl; ax; (C2)

since Eq. (57) and

cK;reex ¼ o ci;reex

� �
; i ¼ Naþ;Cl�:

In addition, for the increase current through Na=K pump in Eq.
(54), we have

zNaeDJNap;k þ zKeDJKp;k ¼ DIk; k ¼ gl; ax:

TABLE I. Estimation of tm1.

mdyðtm1Þ 0.93 0.95 0.97

tm1 0:57ms 0:67ms 0:92ms

TABLE II. Estimation of tm2.

mdyðtm2Þ 0.15 0.1 0.05

tm2 2:44ms 3:00ms 4:01ms
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By the Taylor expansion, we approximate the increase current through
the Na=K pump due to the extracellular Kþ concentration changes as

DIk � 2
KK1I

re;1
k

cK;reex ðcK;reex þ KK1Þ
þ KK2I

re;2
k

cK;reex ðcK;reex þ KK2Þ

 !
DcKex; (C3)

where Ire;1k and Ire;2k are the resting state current through a1� and
a2� isoform of the Na/K pump on glial membrane (k¼ gl) or axon
membrane (k¼ ax).

By comparison between Eqs. (53) and (C3), we have

DIk ¼ o gKglDE
K
gl

� �
; k ¼ gl; ax: (C4)

In all, based on the estimations in Eqs. (C1), (C2), and (C4), we
claim the dominated term in the right-hand side of Eq. (54) isX

i

zieMgl J ip;gl þ Jic;gl
� �

þ
X
i

zieMax Jip;ax þ Jic;ax
� �

� Mglg
K
gl DVgl � DEK

gl

� �
;

where we use the fact that at the resting state, the transmembrane
currents in both axon membrane and glial membrane are negligible
in comparison to the source term gKglDE

K
gl .

APPENDIX D: COMPARISON BETWEEN D/gl
AND D/ex

In this section, we show that the scale of the glial electric
potential variation D/gl is much larger than the scale of the extra-
cellular electric variation D/ex in the stimulated region. Based on
Eq. (63), we know

O
gglrgl
gexrex

� �
¼ 10�2; O

sexeDdiff
ex

rex
Dcsti

 !
¼ 10�6: (D1)

If the D/ex 6¼ oðD/glÞ, then based on Eqs. (63) and (D1), we should
have

O D/gl
� �

< 10�5:

Therefore, the right-hand side of Eq. (62) becomes���� g
K
gl

e
DVgl � DEK

gl

� ����� �
���� g

K
gl

e
DEK

gl

���� ¼ O 10�8ð Þ: (D2)

where we use the estimation of DEK
gl ð¼ Oð10�3ÞÞ in Eqs. (53) and

(50), and

O DVgl
� � ¼ O D/gl � D/ex

� �
< 10�5:

At the same time, the left-hand side of Eq. (62) gives���� 2rsti
gglrgl
Mgl

D/gl

r�

���� < O 10�11ð Þ: (D3)

In Eq. (62), based on Eqs. (D3) and (D2), the order of the right-
hand side does not match with the order of the left-hand side.
Therefore, we conclude that

D/ex ¼ oðD/glÞ:

APPENDIX E: ESTIMATION OF EXTRACELLULAR
Na1 AND K1 TRANSPORT

For the Kþ clearance in the stimulated extracellular region in
Eq. (72), based on Eqs. (53) and (67), the effect of average glial
transmembrane Kþ flux in the stimulated region is

km;K
gl ¼ MglgKgl hekBT

zK 1þ heð Þe2cK;reex
: (E1)

For Kþ flux through the extracellular pathway, we only consider
the effects from diffusion and electric drift terms in the radial
Kþ flux. The fluid flows in the extracellular space from the non-
stimulated region to the stimulated region. So, the convection
flux in the extracellular is a consequence of the osmosis and
flattens the variation of osmotic pressure in the stimulated
region.

The scale of the radial diffusive Kþ flux in the extracellular
space can be approximated as

O �DK
exsex

dcKex
dr

� �
¼ DK

exsex
r�

DcKex: (E2)

The scale of the radial electric drift Kþ flux in the extracellular space
is

O �DK
exsexe
kBT

cKex
d/ex

dr

� �
¼ DK

exsexe
kBT

cKex
D/ex

r�

� � gglrglD
K
exsex

gexrex 1þ heð Þr� Dc
K
ex; (E3)

where D/ex used the estimation from Eq. (68).
Based on Eqs. (E2) and (E3), we note that the electric drift

Kþ flux is in the opposite radial direction to the diffusive Kþ

flux in the extracellular space. At the same time, the electric
drift Kþ flux has a much smaller magnitude than the diffusive
Kþ flux because the ratio RK

ex between the electric drift and dif-
fusion terms is

RK
ex ¼

gglrgl
gexrexð1þ heÞ ¼ oð1Þ: (E4)

Therefore, in Eq. (72), the average effect of the Kþ transport
through extracellular pathway can be approximated as

kKex ¼
2gexD

K
exsex

rstir�
; (E5)

where we used the ratio between volume VS and the effective radial
surface.

In Eq. (73), we first look for the effect of Naþ fluxes through
the extracellular pathway. Similar to Eq. (E2), the scale of the radial
diffusive Naþ flux in the extracellular space is

O �DNa
ex sex

dcNaex
dr

� �
¼ DNa

ex sex
r�

DcNaex : (E6)

The scale of the radial electric drift flux for Naþ in in the extracellu-
lar space is
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O �DNa
ex sexe
kBT

cNaex
d/ex

dr

� �
¼ DNa

ex sexe
kBT

cNaex
D/ex

r�

� � gglrglD
Na
ex sex

gexrex 1þ heð Þr�
cNaex
cKex

DcKex (E7)

For Naþ in the extracellular space, the radial electric drift Naþ flux
is in the same direction as the radial diffusive Kþ flux since DcNaex is
negative in the stimulated region.

The scale of the radial diffusive Naþ flux is at the same level as
the radial electric drift Naþ flux in the extracellular space. From
Eqs. (E6) and (E7), the ratio RNa

ex is

RNa
ex ¼ gglrgl

gexrex 1þ heð Þ
cNaex
cKex

¼ Oð1Þ; (E8)

since DcNaex and DcKex is at the same leading order. The Naþ flux
through glial transmembrane is much smaller than the Kþ flux
such that

km;Na
gl ¼ o km;K

gl

� �
: (E9)

This is because of the conductance on the glial membrane
gNagl ¼ oðgKgl Þ. The effect of Naþ flux through glial transmembrane can
be neglected in Eq. (73), since Eq. (E9), and the diffusive fluxes in Eqs.
(E6) and (E2) are in the same magnitude. In sum, for Eq. (73), we get

kNa;1ex ¼ 2gexD
Na
ex sex

rstir�
; kNa;2ex ¼ 2gglrglD

Na
ex sexc

Na;re
ex

rstirex 1þ heð Þr�cK;reex
:

where we used the ratio between volume VS and the effective radial
surface.

In the end of this section, we consider the solution for the cou-
pled dynamical system of (72) and (73)

d
dt

DcKex
DcNaex

 !
¼ A

DcKex
DcNaex

 !
; (E10)

where

A ¼ A11 0

A21 A22

" #
¼ � km;K

gl þ kKex
� �

=greex 0

kNa;2ex =greex �kNa;1ex =greex

2
4

3
5: (E11)

In the system (E10), we assume that gex keeps at its resting state
ðgreexÞ and the initial condition is

DcK;0ex

DcNa;0ex

 !
¼ Dcsti

�Dcsti

 !
: (E12)

The solution for system (E10) in the time interval t 2 ½0;T� is
DcKexðtÞ ¼ Dcsti exp A11tð Þ;
DcNaex ðtÞ ¼

A21Dcsti
A11 � A22

exp A11tð Þ � exp A22tð Þð Þ � Dcsti exp A22tð Þ;

8>><
>>:

(E13)

where T is the time interval between each single action potential in

the axon compartment. There are n ¼ Tsti
fm

� �
stimuli in the time

interval ½0;Tsti ¼ nT�, we have

DcKexðiTÞ ¼ DcKexðiTÞ þ Dcsti; DcNaex ðiTÞ ¼ DcNaex ðiTÞ � Dcsti:

i ¼ 1…n� 1;

In the above, we view the extracellular Kþ and Naþ concentration
immediately changes due to axon firing. By using Eq. (E13), we have

DcKexðnTÞ ¼ Dcsti
exp A11Tð Þ � exp ðnþ 1ÞA11Tð Þ

1� exp A11Tð Þ ; (E14)

and

DcNaex ðnTÞ ¼
Xn
i¼1

A21DcKexðði� 1ÞTÞ
4

exp A11Tð Þ � exp A22Tð Þð Þ

� exp ðn� iÞA22Tð Þ � Dcsti
Xn
i¼1

exp iA22Tð Þ; (E15)

where

DcKexðjTÞ ¼ Dcsti
1� exp ðjþ 1ÞA11Tð Þ

1� exp A11Tð Þ ; j ¼ 0; 1;…n� 1:

APPENDIX F: SPATIAL DISTRIBUTION OF VELOCITY
AND OSMOTIC PRESSURE

Figure 16 shows longitudinal direction changes of volume frac-
tions of extracellular space and glial compartment at r¼ 1.5 lm.

FIG. 16. Longitudinal direction changes of gex and ggl at r ¼ 1:5lm at
t ¼ 0:1s; 0:5s; 2s.

FIG. 17. Spatial distribution of velocity in radius direction during and after a train of
stimuli.
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FIG. 18. Spatial distribution of osmotic
pressure changes from resting state dur-
ing and after a train of stimuli.

TABLE III. Parameters in optic nerve model.

Parameters Value Parameters Value

Ra 4:8� 10�5 m (Refs. 16 and 75) l 7� 10�4 Pa s (Ref. 76)
Rb 6� 10�5m (Ref. 77) cNacsf ;eye 111mM (Ref. 16)

L 1:5� 10�2 m (Ref. 16) cKcsf ;eye 3mM (Ref. 16)

e 1:69� 10�19 A s cNa;regl 7:57mMa

kB 1:38� 10�23 J=K cK;regl 100:84mMa (Ref. 16)

T 296:15K (Ref. 16) cNa;reax 10:17mMa

greax 5� 10�1 (Ref. 16) cK;reax 100:04mMa

gregl 4� 10�1 (Ref. 16) Are
ax;gl 105mMa

greex 1� 10�1 (Ref. 16) sOPex 0.16 (Refs. 51 and 76)
Max 5:9� 106 m�1 (Ref. 78) sSASex 1a

Mgl 1:25� 107 m�1 (Ref. 78) sgl 0.5a

zNa;K 1 pCSF 1:3� 103 Pa (Ref. 57)
zCl –1 pICP 4� 103 Pa (Ref. 57)
zax;gl –1a pOBP 0 Pa (Ref. 57)
cax;gl 1 (Refs. 51 and 76) DNa

ex;ax 1:39� 10�9 m2=s (Ref. 76)

cpia 1 (Refs. 51 and 76) DK
ex;ax 2:04� 10�9 m2=s (Ref. 76)

KNa1;Na2 2:339 3mM (Ref. 46) DCl
ex;ax 2:12� 10�9 m2=s (Ref. 76)

KK1 1:615 4mM (Ref. 46) DNa
gl 1:39� 10�11 m2=s (Ref. 76)

KK2 0:165 7mM (Ref. 46) DK
gl 2:04� 10�11 m2=s (Ref. 76)

Igl;1 4:78� 10�4 A=m2,b (Ref. 46) DCl
gl 2:12� 10�11 m2=s (Ref. 76)

Igl;2 6:5� 10�5 A=m2,b (Ref. 46) kOPex 1:372 9� 10�8 m2= � s (Ref. 51)
Iax;1 9:56� 10�4 A=m2,b (Ref. 46) kSASex 0m2=V � sa
Iax;2 1:3� 10�4 A=m2,b (Ref. 46) Kax 1:67� 106 Pa (Refs. 22 and 79)
gNagl 2:2� 10�3 S=m2 (Ref. 76) Kgl 8:33� 105 Pa (Refs. 22 and 79)

gKgl 2:1 S=m2 (Ref. 76) Lmdr 8:89� 10�13 m=Pa s (Refs. 46 and 51)

gClgl 2:2� 10�3 S=m2 (Ref. 76) Lmpia 8:89� 10�13 m=Pa s (Refs. 46 and 51)

gNaleak 4:8� 10�3 S=m2,b (Ref. 80) Lmgl 1:34� 10�13 m=Pa s (Refs. 46 and 51)

gKleak 2:2� 10�2 S=m2,b (Ref. 80) Lmax 7:954� 10�14 m=Pa s (Ref. 81)
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Figure 17 shows the spatial distribution of velocity in radius direc-
tion during and after a train of stimuli. Figure 18 shows the spatial
distribution of osmotic pressure changes from resting state during
and after a train of stimuli. Table III shows all values of parameters
used in the simulations.
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