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Conclusion

We analyze the properties of the stochastic trajectories of 
atoms in simulations of molecular dynamics (MD) using 
the methods of stochastic signal analysis, well established 
and used in the engineering literature. Hydrogen bonds in 
proteins form critical structural elements such as alpha 
helices. Using spectral analysis and linear time invariant 
systems represented as frequency functions (also known 
as transfer functions) we provide quantitative descriptions 
of hydrogen bonds along with other interactions such as 
salt bridges. We present the versatility and applicability of 
the method by analyzing all pairwise interactions along 
with possible mechanical models associated with our 
analysis.
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Figure 4a (left): The largest alpha helix of crambin (PDB: 1CRN).
Figure 4b (right): A hydrogen bond in crambin.
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Take a damped spring with a driving input white noise 
force.

𝐻 𝑓 = 𝑌(𝑓)/𝑋(𝑓)

We work in the frequency domain by taking the Fourier 
transform of our signals. Each frequency point is 
associated with a sine curve. Take a time series 𝑥 𝑡
and 𝑦 𝑡 and look at its Fourier transform 𝑋 𝑓 and 
𝑌 𝑓 , respectively. We define 𝐻(𝑓) to be a frequency 
function as [1]:

We will demonstrate an example later. The energy a 
signal has is defined as follows and is equivalent both in 
time and frequency.
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This motivates the definition of the auto and cross 
power functions:

Estimation of the powers is much more robust through 
methods like Welch’s and the periodogram than Fourier 
transform estimations. [2] 

𝐺𝑥𝑥 𝑓 = 𝑋 𝑓 𝑋∗ 𝑓 = 𝑋 𝑓 2

𝐺𝑥𝑦 𝑓 = 𝑋 𝑓 𝑌∗(𝑓)

𝐻 𝑓 = ෠𝐺𝑥𝑦(𝑓)/ ෠𝐺𝑥𝑥(𝑓)

We now arrive at the pinnacle of the technique with the 
coherence function 𝐶𝑥𝑦 𝑓 which states there exists a 

frequency function when coherence is equal to 1. [1] 
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Taking the Laplace transform of both sides gives us the 
formula of the frequency function. 
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Molecular dynamics (MD) simulates proteins by 
solving Newton’s equations at femtosecond time 
scales. Proteins consist of well-defined structures 
such as alpha helices and beta sheets held together 
by hydrogen bonding. This motivates us to analyze 
the hydrogen bond N-H…O as an input-output 
relation. We take the 3D trajectory of nitrogen and 
oxygen, calculate the displacement and define each 
as an input and output respectively.

Other Interactions

Figure 2: Simulating the damped spring system with a white noise 
force input (denoted in green) and the system’s response (blue).

Figure 3: Estimation of the frequency function’s magnitude via the power 
estimation technique outlined in the introduction. We are as confident in 
our estimation, at a particular frequency, as when the coherence function 
is close to 1.

Figure 5: We carry out a nearly identical analysis to the spring 
model where instead we take our input and output to be the 
nitrogen and oxygen of the hydrogen bond. We see coherence at 
low frequencies suggesting a low frequency model of the H-bond.

Figure 1:
Damped 
spring system

Estimation of the Alpha Helix

Introduction to Linear 
Systems

Figure 6a (top): Coherence between two atoms 24 Angstroms apart. 
Near zero coherence implies no frequency function exists.
Figure 6b (bottom): Coherence between well-studied salt bridge [3] 
interaction found in crambin. The result resembles Figure 5 resulting in a 
similarly constant magnitude and phase response.
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The displacement of nitrogen and oxygen is a linear 
system at low frequencies. This insight justifies the 
development of a mechanical model with effective 
spring constants. Similar results are obtained for 
averaging the turns of the alpha helix and performing 
the analysis between adjacent turns. Multiscale spring 
models can aid in the development of coarse grained
models and further understanding of conformation 
changes as possibly linear systems. An extension of the 
technique as both for data mining and detailed model 
development are a promising future for the applicability 
of coherence to MD as a field.


