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Abstract

Voltage-gated Kv channels play fundamental roles in many biological pro-
cesses, such as the generation of the action potential. The gating mechanism
of Kv channels is characterized experimentally by single-channel recordings
and ensemble properties of the channel currents. In this work, we propose a
bubble model coupled with a Poisson-Nernst-Planck (PNP) system to cap-
ture the key characteristics, particularly the delay in the opening of channels.
The coupled PNP system is solved numerically by a finite-difference method
and the solution is compared with an analytical approximation. We hy-
pothesize that the stochastic behaviour of the gating phenomenon is due to
randomness of the bubble and channel sizes. The predicted ensemble average
of the currents under various applied voltage across the channels is consis-
tent with experimental observations, and the Cole-Moore delay is captured
by varying the holding potential.
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1. Introduction

Voltage-gated ion channels play fundamental roles in many biological ac-
tivities, such as signal generation and propagation in the nervous system,
pacemaker activity in the heart, and coordination of contraction in skele-
tal muscle [1, 2, 3]. For example, the voltage-gated Na (Nav) and K (Kv)
channels are key players in the generation of action potential (AP) signals
in the nervous system [4], cardiac and skeletal muscle. This rapid and tran-
sient change of membrane potential propagates long distances (meters) in
the nervous system and muscle fibers as well. The opening and closing of ion
channels as the voltage changes across the membrane determine the depolar-
ization (positive change in potential) and repolarization (negative change of
membrane potential) that form the propagating AP [5, 6, 7, 8].

The opening of ion channels follows the change in voltage with a delay
and that delay is an important determinant of the conduction velocity. The
conduction velocity helps determine how fast the nervous system can func-
tion. One of the objectives of the present work is to model the delay in the
opening of single Kv channels as well as their ensemble properties. The delay
in the opening of Nav channels is particularly important in determining the
conduction velocity of the action potential. Therefore, understanding the
mechanism of delay is of great biological importance. It is not unreasonable
to expect that the delay is set by a process that is optimized as much as pos-
sible within the constraints of physics, protein structure, and evolutionary
history [9].

Hodgkin and Huxley (HH) provided an empirical model of the generation
of AP in 1952 [10]. The conductances they used are ensemble averages of
those from many channels. Understanding the molecular mechanisms that
produce these conductances and the AP is one of the main goals of biophysics
for the past seventy years. Recent advances in structural biology [11] and
single-channel recording [12] have catalyzed our understanding of the physical
mechanisms that produce these conductances. The ionic basis of selective
conduction is now understood reasonably well for sodium channels [13, 14,
15, 16].

The opening and closing of voltage-dependent channels involves many
steps [17, 18, 19]. Some of the steps in the voltage-dependent gating of Kv

are now known in molecular and physical detail [20, 21, 22, 23, 24, 25, 26, 27,
28, 4, 29, 30, 31, 32]. The first step is the response of the voltage sensor to the
voltage change, and significant progress has been made in understanding the
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physics of that response. It is plausible [10] that the permeability changes
depend on the presence of voltage sensors in the form of charged or dipole
particles, as suggested earlier in a different form [7, 33]. The second step
is the communication of the voltage sensor with the conduction pore of the
channel. This was revealed experimentally in the single-channel ON-OFF
currents (that occur at random intervals) measured by bilayer or patch-clamp
experiments from one channel protein at a time [34, 35]. The development of
patch-clamp experiments [36] was a breakthrough in the understanding of the
gating mechanisms and provided experimental verification at high resolution
of many studies and models.

In the patch-clamp experiments, the recordings of single Kv channels
showed a delay of currents in response to a step voltage change. The ionic
current was generated rapidly after the delay, and vanished when the channel
closed suddenly [29, 30, 4, 37]. The recordings also showed that the delays
varied in each ON-OFF experiment: the gating transitions are stochastic.
The ensemble average has a smoother transient time course for the currents
(or opening and closing of channels), which resembles the classical macro-
scopic currents (or voltage-dependent conductances) in the HH model.

The delay in opening was first studied in the inaugural issue of the Bio-
physical Journal [38] in the ensemble of channels. Cole and Moore were able
to control the resting potential (i.e., their holding potential) present before
the AP mechanism was turned on. The earlier work of Hodgkin and Huxley
had not addressed this issue in detail because the actual resting potential
of their squid nerve was substantially different from that used as a holding
potential [39]. Hodgkin and Huxley chose to use nerve fibers with more posi-
tive resting potentials so their voltage clamp system could control the voltage
throughout the nerve fiber, something not easy to do [40]. Cole and Moore
found the delay in the response of the nerve fiber to a change in voltage was
much larger when the initial potential (also called the holding potential) was
more negative.

Given the importance of this delay (we call the Cole-Moore delay), it is
striking that a molecular scale biophysical explanation has not been devel-
oped, as far as we know, until very recently [41]. Given the obvious evo-
lutionary disadvantage of additional delay, it seems likely that whatever is
responsible for the delay is an essential component of the ionic channels that
create the AP. We expect the cause of the Cole-Moore delay to be found in
many channel types where it has not been investigated in detail.

The amount of work on channel proteins that produce the AP has in-
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creased spectacularly in the last decades. The most important single advance
(from a biophysical point of view) is the ON-OFF properties of the single
channels, that in ensemble produce the Cole-Moore delay. Many researchers
have proposed that the ON-OFF property arises from the collapse of a bub-
ble. When the single-channel current is zero, a region of the voltage sensor
with low effective dielectric constant [26] acts as a hydrophobic gasket that
excludes water and ions from that region of the protein, forming a dewetted
region, which is known as a bubble. Direct evidence for the existence of bub-
bles is emerging as structural biologists exploit the magnificent capabilities
of modern techniques of x-ray crystallography and cryoelectron microscopy
[20, 42].

Various modeling efforts have been devoted to understanding the gating
mechanisms of Kv channels [22]. In the early years, kinetic models (or called
Markov models) were used for channel gating, by assuming the voltage sen-
sor has multiple subunits which make transitions between different states
[43, 44, 45]. Formally, such kinetic models have some similarity to Hodgkin
and Huxley’s, as the four n-gates in the HH model can be interpreted as
four independent subunits that control the gating [4]. Such models have
been able to predict some important features of the gating mechanism of Kv

channels (e.g., Shaker channel) and to fit experimental data, but could not
reveal much about the physics of the gating process. With the availability
of more structural information about channels and advances in computing
power, quantitative models using molecular dynamics (MD) have been de-
veloped in recent decades [46, 47, 2]. MD simulations incorporating physical
laws and interactions of atoms provide insights into the movement of the volt-
age sensors, intermediate states, and closure of the pore (forming a dewetted
region). However, the MD approach is limited by the timescale of the simu-
lations, resolving events in the timescale of 10−15s, and the total simulation
length is orders of magnitude lower than the timespan (e.g., 10−3 s) of exper-
imentally or biologically relevant processes. This makes it difficult to directly
validate the MD results by using the macroscopic currents in experiments.
To overcome these limitations, alternative multiscale or macroscopic models
[48, 49, 31, 28] have been developed with reasonable approximations. Some
models are based on the formulation of Brownian dynamics, where the volt-
age sensor is treated as a Brownian particle [21]. Brownian models are able
to predict macroscopic gating currents, where the free parameters involved
have been estimated based on multiscale modeling approaches [26].

Here we take a different approach. Following the previous hypothesis
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of the hydrophobic region, we construct a specific macroscopic model of a
bubble within the framework of Poisson-Nernst-Planck (PNP) systems and
show how it produces the time course of single Kv channels and the ensem-
ble properties, including the Cole-Moore delay. The PNP system and its
variants have been found successful in modeling and simulation of many bi-
ological processes [50, 51, 28, 52, 53, 54, 55], such as current-voltage curves
through ion channels, the selectivity of ion channels, and ion transport pro-
cesses in the cell and tissue scales. In this work, a bubble is assumed to
be present in the pore (or filter) region of the Kv channel, due to the prop-
erties of the gating sensor and channel walls. In the bubble, ions are not
present and so cannot carry charge through it, whereas outside the bubble,
ion transport is governed by the PNP system. The model is constructed
so it can easily accommodate more specific structural information such as
the shape, permanent charge (e.g., the spatial distribution of acid and base
residue side chains), and dielectric properties of the voltage sensor and con-
duction pore of channels. We calculate the properties of a single channel
containing a bubble and an ensemble average based on a simple statistical
distribution of such channels to represent the macroscopic currents usually
recorded in studies of the opening and closing of channels. This average does
not depend on models [56, 57] of single-channel kinetics. It only assumes
that the opening of each channel (or voltage sensor) is independent of the
others (because channels are many Debye lengths apart, shielded by the ions,
water dipoles (and quadrupoles), and the ionic atmosphere of proteins and
lipid bilayer).

This manuscript is arranged as follows. Section 2 sets up the bubble
model within the framework of PNP systems, followed by a nondimension-
alization. In section 3, the results for a single channel are presented. The
bubble model is solved by a finite-difference method and also solved with
analytical approximations. The results for the profiles of quantities in the
model and the macroscopic currents through the channel are cross-validated
by both methods. Section 4 shows the results for ensemble properties of the
Kv channels and the Cole-Moore delay, with certain assumptions on the sta-
tistical distributions of the bubble locations and cross-sectional area of the
channel. Finally, some concluding remarks are provided in Section 5.
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2. A bubble model for a voltage-gated Potassium channel

2.1. The model setup

We consider a voltage-gated Potassium (Kv) channel in one spatial di-
mension, as shown in Figure 1. The total length of channel is set as 2L,
and the length of the middle (filter and pore) region is 2s. The positions
x = ±s are the locations of the two edges of the middle region. The bubble,
which carried negative charges with magnitude qb > 0, can occupy all or part
of it, and is centered at x = xb. We assume that the charge is uniformly
distributed inside the bubble. The left chamber is connected to a bath envi-
ronment similar to the exterior of a cell, while the right chamber is connected
to one similar to interior of a cell. We further assume that the right interface
of the bubble is fixed at x = s and the left interface x = sb = −s + 2xb is
mobile. We anticipate that when the voltage at the right end of the channel
is elevated, the bubble shrinks and moves to the right. When the left and
right interfaces coincide, the bubble vanishes.

Bubble	 qb

sb xb s−s−L L

εr = εr1 εr = εr1εr = εr0

K+	 Cl-	 K+	 Cl-	Na+	 Na+	pb

Figure 1: Sketch of the Kv channel with the bubble in the middle region.

We consider the case with three ions species K+, Na+ and Cl− (some-
times called the major bio-ions) outside of the bubble, and the ions can not
penetrate into the bubble. Outside of the bubble, the PNP system is used
to model ion transport

− ε0∂x(εr∂xφ) = e0(c1 + c2 − c3), −L < x < sb, s < x < L

∂ci
∂t

= −∂xJi = Di∂x

(
∂xci +

e0zi
kBT

ci∂xφ

)
, i = 1, 2, 3,

(1)
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where c1, c2 and c3 are the concentrations of K+, Na+ and Cl− with valences
z1 = 1, z2 = 1, z3 = −1, φ is the electric potential, εr is the dielectric con-
stant, Di (i = 1, 2, 3) are diffusion coefficients, and ε0, e0, kB, T are constants
given in Appendix A.

The boundary conditions are given by

φ(−L, t) = 0, φ(L, t) = V0 + V1H(t− t1),
ci(−L, t) = cLi , ci(L, t) = cRi , i = 1, 2, 3,

(2)

where V0 is the initial (holding) membrane potential when the bubble is in
equilibrium (or resting state), V1 is the voltage jump at t = t1, H(t) is a
Heaviside function, and cLi and cRi (i = 1, 2, 3) are given bath concentrations
at the left and right ends [30], which are electro-neutral. In the experiment,
the holding potential V0 is not the same as the Nernst potential of K+. The
leak current is allowed to flow through a different pathway while maintaining
V0.

Inside the bubble, we have

− ε0∂x(εr∂xφ) = − qb
Vb
, sb(t) < x < s, (3)

where Vb = (s− sb)A is the volume of the bubble and A is the cross sectional
area for the bubble region. The dielectric constant is defined as

εr =

{
εr0, [sb, s]

εr1, others.
(4)

In addition, we assume that there exists a dipole on the left interface of
the bubble x = sb, responsible for maintaining a voltage difference on the two
sides of the bubble. Since the membrane potential is not 0 at equilibrium,
the presence of the dipole with a suitable dipole strength pb guarantees that
the bubble is in equilibrium initially. We can rewrite the equation of φ in a
compact form in the entire domain

− ε0∂x(εr∂xφ) = e0(c1 + c2 − c3)−
qb
Vb

+ pb∂x(δ(x− sb)), − L < x < L,

(5)
with the interpretation that ci = 0 (i = 1, 2, 3) in the bubble and qb = 0
outside of the bubble.
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The total electric force on the bubble is∫
A

∫ s

sb

− qb
Vb

(−∂xφ) dxdA = qb
φ(s)− φ(sb)

s− sb
, (6)

then the motion of the bubble is modeled by

dxb
dt

=
qbDb

kBT

φ(s)− φ(sb)

s− sb
, (7)

where Db (� Di) is the diffusion coefficient of the bubble. Using the rela-
tionship sb = −s+ 2xb, we can rewrite equation (7) as

dsb
dt

=
2qbDb

kBT

φ(s)− φ(sb)

s− sb
. (8)

At the two interfaces x = sb and s, the electric potential and electric
displacement are continuous, and there is no ionic flux across the bubble
interfaces. Mathematically, we set

[φ] = 0, [εr∂xφ] = 0, Ji = 0, (i = 1, 2, 3), (9)

where square brackets mean the jump across the interface, e.g., [φ(s)] =
φ(s+)− φ(s−). If we include the effect of dipole (pb in equation (5)) on the
interface, we obtain a nonzero jump [φ] at x = sb. When the two interfaces
coincide (i.e., sb = s), the bubble collapses. And we assume that the dipole
disappears (i.e., it is treated as an intrinsic property of the bubble) and the
interface conditions are replaced by continuity conditions

[φ] = 0, [εr∂xφ] = 0, [ci] = 0, [Ji] = 0, (i = 1, 2, 3). (10)

In summary, we have a system of equations for ion transport coupled with
the motion of the bubble, given by (5), (1)2 and (8), together with bound-
ary and interface conditions (2,9,10). The total current is conserved in this
model, by including three different types of current, given in Appendix B.
This is a special case of the continuity of total current for Maxwell equations
[58, 59], and is also similar to the case of a PNP system for electric eels [50].

Remark 1. If the dipole does not vanish (i.e., it is treated as property of
the channel or channel wall) after the bubble collapses, we will have nonzero
jump [φ] related to the dipole, and [ci] = 0 (i = 1, 2, 3) are replaced by
continuity of electro-chemical potentials.
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2.2. Nondimensionalization

In this subsection, we nondimensionalize our model, which will be used
in the calculations in the subsequent sections. We adopt the following scales

x̃ =
x

L
, s̃ =

s

L
, x̃b =

xb
L
, Ṽb =

Vb
LA

,

φ̃ =
φ

kBT/e0
, Ṽ0 =

V0
kBT/e0

, Ṽ1 =
V1

kBT/e0
,

c̃i =
ci
c0
, c̃Li =

cLi
c0
, c̃Ri =

cRi
c0
, D̃i =

Di

D0

, (i = 1, 2, 3),

D̃b =
Db

D0

, p̃b =
pb

e0c0L2
, q̃b =

qb
e0
,

t̃ =
t

t0
, t0 =

L2

D0

, J̃ =
J

J0
, J0 =

D0c0
L

.

(11)

Some typical values in the above scales and the following boundary conditions
are based on [30] and given in Appendix A.

Substituting (11) into the system in the previous subsection, we obtain
a dimensionless system for variables with tilde (like φ̃). In order to simply
the notations, we drop the tilde and use the quantities (like φ) in the dimen-
sionless system. We have the following set of equations in nondimensional
form

− ε∂x(εr∂xφ) = c1 + c2 − c3 −
1

β

qb
(s− sb)

+ pb∂x(δ(x− sb)), −1 < x < 1

∂ci
∂t

= −∂xJi = Di∂x (∂xci + zici∂xφ) , i = 1, 2, 3, −1 < x < sb, s < x < 1,

(12)
with the interpretation that ci = 0 (i = 1, 2, 3) in the bubble x ∈ [sb, s] and
qb = 0 outside of the bubble. Here the two dimensionless parameters are
defined by

ε =
ε0kBT

e20c0L
2
, β = LAc0. (13)

The dielectric constant remains the same

εr =

{
εr0, [sb, s]

εr1, others
(14)
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The motion of the bubble is given by

dsb
dt

= 2Dbqb
φ(s)− φ(sb)

s− sb
. (15)

Boundary conditions are given by

φ(−1, t) = 0, φ(1, t) = V0 + V1 ∗H(t− t1),
ci(−1, t) = cLi , ci(1, t) = cRi , (i = 1, 2, 3).

(16)

Interface conditions are

[φ] = 0, [εr∂xφ] = 0, Ji = 0, (i = 1, 2, 3), at x = sb, s. (17)

After the bubble collapses (for the case that the dipole disappears), we have

[φ] = 0, [εr∂xφ] = 0, [ci] = 0, [Ji] = 0, (i = 1, 2, 3), at x = sb = s.
(18)

3. Results for a single channel

We first compute the initial state when the bubble is in equilibrium by
solving the system of equations with a numerical method, followed by the
results of the non-equilibrium state including the motion of the bubble and
time evolution of the concentrations and electric potential. After the bubble
collapses, the ionic fluxes reaches a steady state. In addition, we also present
the results obtained with an approximate solution (and numerical evidence)
for the intermediate quasi-static states and the final steady state.

3.1. Initial state and strength of dipole

We examine the case that the bubble initially occupies the entire middle
region and stays at equilibrium, i.e., sb = −s. When V0 = 0, the bubble is in
equilibrium due to symmetry. If V0 6= 0, one the other hand, equilibrium is
achieved for an appropriate dipole strength pb.

Near the interface x = sb, the effect of the other terms is small compared
the dipole, and equation (12) becomes

− ε∂x(εr∂xφ) = pb∂x(δ(x− sb)), (19)

and integrating once gives

− εεr∂xφ(x) = pbδ(x− sb) + C. (20)
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By integrating again and taking the limit of x→ sb, we obtain

[φ(sb)] = −pb
ε

(
1

2εr0
+

1

2εr1

)
. (21)

Therefore, for a given V0, we find the following relationship

− pb
ε

(
1

2εr0
+

1

2εr1

)
= V0, (22)

and then the bubble will be in equilibrium as in the symmetric case with
V0 = 0.

For the equilibrium profile, the fluxes are 0 and one can not distinguish the
effects of the two positive ions Na+ and K+. We can group the two positive
ion species and treat them as a single species. The boundary conditions for
c1+c2 and c3 will be the same, and hence we will have exact symmetry for this
equilibrium case. The equilibrium profiles can be determined analytically,
and we take V0 = 0 and pb = 0 in the derivation. Since the bubble is in
equilibrium, inside the bubble we have (note sb = −s)

φ(x) = B1x
2 + φ(0), B1 =

qb
4sεεr0β

. (23)

Taking the derivative and together with interface conditions at x = s, we
have

εr1φ
′(s+) = εr0φ

′(s−) = εr02B1s =
qb

2εβ
. (24)

Due to symmetry, we only consider the right chamber s < x < 1. It is easy
to verify that the PNP system (12) in equilibrium reduces to

εεr1φ
′′ = c3 − (c1 + c2) = eφ − e−φ, (25)

where cR3 = 1 has been used. Integrating once gives

1

2
εεr1[(φ

′(x))2 − (φ′(s+))2] = eφ + e−φ − (eφs + e−φs), (26)

where φs = φ(s). Then, by combining with (23), we get

(φ′(x))2 = G(φ) =

(
qb

2εβεr1

)2

+
2

εεr1

(
eφ + e−φ − (eφs + e−φs)

)
, (27)

11



which leads to the solution

x =

∫ φ

φs

1√
G(φ)

dφ+ s. (28)

The unknown constant φs in the solution can be determined by the condition

1 =

∫ 0

φs

1√
G(φ)

dφ+ s. (29)

Remark 2. Because of symmetry, we can estimate φs from the above deriva-
tion as

φs ≈ − ln

(
q2b

8εεr1β2

)
(30)

for qb in a certain range.
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0.2
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0.6

0.8

1.0
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Figure 2: Equilibrium electric potential φ and concentrations c1, c2, c3 when qb = 2.

For the numerical results obtained in this paper, we vary the potentials at
the two end of the domain while fixing the magnitude of permanent charge
as qb = 2. Most of the other parameter values used for the computation are
also fixed and given in Appendix A.

In Figure 2(a), the electric potential φ is plotted for the case of V0 = 0.
When V0 = −3.18 (i.e., -80 mV), we obtain pb ≈ 0.044 using (22) and the
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electric potential is plotted in Figure 2(b), where the jump at the interface
x = sb is due to the presence of the dipole. The concentrations c1, c2 and c3
(which can be computed from solution of φ) are shown in Figures 2(c-e). It
can be seen that c1 + c2 is symmetric (Figure 2(d)) as expected. The initial
membrane potential V0 is balanced by the jump of φ due to the presence
of the dipole. In the non-equilibrium case (before the bubble collapses), we
ignore both the initial membrane potential V0 and the dipole, so that the
value of φ is continuous at the interfaces. The solutions in Figure 2 will be
verified by numerical simulations in the subsequent subsections.

3.2. The dynamics of the bubble motion and channel currents

In this part, we present numerical solutions of the PNP system and bubble
motion. Inside the bubble, there exist no ions and their concentrations ci
(i = 1, 2, 3) are zero. For convenience, the PNP system is solved inside the
bubble by assigning small diffusion coefficients (D1 = D2 = 10−15).

The finite difference method is used to solve the system, with a uniform
mesh h = xk − xk−1. A temporal semi-implicit discrete scheme is used with
tn = n∆t and xk = x0 + kh, given by

− ε
εr,k−1/2
h2

φn+1
k−1 + ε

εr,k−1/2 + εr,k+1/2

h2
φn+1
k − ε

εr,k+1/2

h2
φn+1
k+1

− cn+1
1,k − c

n+1
2,k + cn+1

3,k = −qn+1
k ,

cn+1
i,k − cni,k

∆t
= −

Jn+1
i,k+1/2 − J

n+1
i,k−1/2

h
, i = 1, 2, 3,

Jn+1
i,k+1/2 = −Di,k+1/2

cn+1
i,k+1 − c

n+1
i,k

h
−Di,k+1/2zic

n
k+1/2

φn+1
k+1 − φ

n+1
k

h
,

(31)

where harmonic average is used for the diffusion coefficient

Di,k+1/2 =
2

1
Di,k

+ 1
Di,k+1

, i = 1, 2, 3. (32)

In this way, we ensure that the ionic fluxes are small near the interface
as approximations of Ji = 0 (i = 1, 2, 3). When the bubble collapses, the
diffusion coefficient is guaranteed to be the same as that outside of the bubble,
and the continuity conditions are recovered. The quantities εr,k+1/2 and qnk
in (31) are defined in Appendix B. The discrete scheme also preserves the
continuity of the total current, as in the original continuous model.
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Figure 3: Equilibrium electric potential φ, concentrations c1, c2, c1 + c2, c3, and ionic
fluxes Ji (i = 1, 2, 3) with h = 0.0025.

For qb = 2, we first compute the initial equilibrium when the bubble
occupies the entire middle region. The initial condition at t = 0 is set as

φ(x, 0) = 0, −1 < x < 1,

ci(x, 0) =


cLi − 1 < x < sb = −s,
0, sb < x < s,

cRi , s < x < 1,

(33)

where i = 1, 2, 3. We also set V0 = 0 and pb = 0 in the computation
so that φ is continuous. The computation is carried out until the system
reaches a steady state. For a given mesh size h = 0.0025, Figure 3 shows the
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Figure 4: Electric potential φ and ionic concentrations c1, c2, c3 at three different times
with V1 = 6.36.

numerical solution of electric potential φ, concentrations ci and ionic fluxes
Ji (i = 1, 2, 3), which are in good agreement with the analytical results in
the previous subsection.

Next, we present the results on the bubble motion and dynamic behaviour
of the PNP system. We start from the equilibrium state at t = 0 and
increase the electric potential from zero to φ(1, t) = V1 = 6.36 (i.e., 160
mV) for 0 < t < t∗ (we already set V0 = 0 and pb = 0), where t∗ is the
unknown time when the bubble collapses. Figure 4 shows φ, ci (i = 1, 2, 3) at
three different times. The minimum value for φ inside the bubble gradually
increases in Figure 4(a), and the interface sb moves to the right as indicated
by Figure 4. Figure 5 shows the ionic fluxes at three different times, which
are small. After the bubble collapses and the dipole disappears, we reset
φ(1, t) = V0 + V1 = 3.18. Figure 6 shows the three ionic fluxes at x = ±1. It
can be seen that they remain small until the bubble collapses (i.e., sb = s)
at t∗ = 3.13 × 106, which is 17.6 ms in dimensional unit. The ionic fluxes
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Figure 5: The fluxes Ji (i = 1, 2, 3) at three different times with V1 = 6.36.
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Figure 6: The dynamics of ionic fluxes Ji (i = 1, 2, 3) with V1 = 6.36.

and φ, ci (i = 1, 2, 3) reach a steady state soon after the bubble collapses, as
shown in Figure 7. At steady state, the dimensionless ionic flux J1 and the
dimensional current I are found to be

J1 ≈ −2.834, I = |J1|e0AJ0 ≈ 10 pA. (34)

Remark 3. The value of the steady state current I obtained above is close
to that given in Figure 2(a) of [30]. When the voltage jump V1 is reset to zero
after system reaches a steady state, the ionic fluxes reduce to zero immedi-
ately, indicating the closure of the ion channel. In this sense, our proposed
model provides a plausible gating mechanism once the bubble is generated.
However, the mechanism of the bubble generation is not considered here and
will be the subject of a future study.

3.3. Quasi-static equilibrium

Since the motion of the bubble is extremely slow compared with the dif-
fusive timescale of the ions, ionic fluxes are essentially zero (Figure 5) before
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Figure 7: The steady state with V1 = 6.36.

the bubble collapses. Therefore, we can use quasi-static solution with zero
ionic fluxes as an approximation of the intermediate states. A hybrid method
can be used to determine the solution of intermediate states by first obtain-
ing an analytical solution (in terms of integrals), where integration constants
involved can be determined easily using a numerical method afterwards.

Given boundary condition V1 and interface position sb, solving the quasi-
static equilibrium is similar to that for solving the initial state. We set V0 = 0
and pb = 0 so that the continuity condition of φ can be used at interface sb.
Inside the bubble, we have

φ(x) = B1(x− s)2 + φ̃s(x− s) + φs, B1 =
qb

2(s− sb)εεr0β
, (35)

where φs, φ̃s are to be determined. The solutions of φ outside of the bubble
can be written as

x =

∫ φ

φs

1√
G1(φ;φs, φ̃s)

dφ+ s, s < x < 1,

x = −
∫ φ

φsb

1√
G2(φ;φs, φ̃s)

dφ+ sb, −1 < x < sb,

(36)
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where φsb = φ(sb) can be expressed by φs and φ̃s. The derivation for
G1(φ), G2(φ) are given in Appendix C. For given parameter values includ-
ing V1 and sb, the two unknowns φs and φ̃s can be determined by the two
boundary conditions φ(1) = V1 and φ(−1) = 0, i.e.,

1 =

∫ V1

φs

1√
G1(φ;φs, φ̃s)

dφ+ s, −1 = −
∫ 0

φsb

1√
G2(φ;φs, φ̃s)

dφ+ sb, (37)

and φ(x), ci(x) (i = 1, 2, 3) can be obtained afterwards. As an example, for
qb = 2, V1 = 6.36 and sb = 0, solutions of φ and ci (i = 1, 2, 3) can be
computed using the procedure outlined above and plotted in Figure 8.

For fixed V1, we can treat φ(s), φ(sb) as functions of the parameter sb,
which can be determined by

dsb
dt

= 2Dbqb
φ(s)− φ(sb)

s− sb
= 2Dbqbf(sb). (38)

Integrating in time, we obtain t∗, the time delay after the voltage jump and
before the bubble collapses,

t∗ =

∫ s

−s

1

2Dbqbf(x)
dx. (39)

Figure 9(a) shows the dependence of quantities φ(s) and φ(sb) on sb and
Figure 9(b) shows the function f(sb). From (39), we find that t∗ ≈ 3.26 ×
106, which is 18.3 ms in dimensional unit, which is slightly longer than that
obtained using the finite difference method (17.6 ms) previously.

3.4. The steady state after the collapse of the bubble

After the bubble collapses, interface conditions Ji = 0 (i = 1, 2, 3) are
replaced by continuity conditions [Ji] = 0 and qb becomes a point charge
(a delta function). Due to the presence of qb, the concentration of c3 is
approximately zero near x = s, and we assume J3/D3 ≈ 0. The system at
the steady state can be approximated by

−εεr1φ′′(x) = c1 + c2 − c3 −
qb
β
δ(x− s),

−J1 = c′1 + c1φ
′,

− J2
D2

= c′2 + c2φ
′,

0 = c′3 − c3φ′,

(40)
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Figure 8: The quasi-static solution of φ, c1, c2, c3 and c1 + c2 for sb = 0 and V1 = 6.36.

where D1 = 1 has been used. If we combine the effects of c1, c2 and define
Jp = J1 + J2

D2
, then the system can be reduced to a single equation of φ (see

the derivation in Appendix C)

− εεr1φ′′(x) =
1

2
εεr1

[
(φ′(x))2 − (φ′(1))2

]
− Jp(x− 1)− 2(eφ−V − 1),

for s < x < 1,

− εεr1φ′′(x) =
1

2
εεr1

[
(φ′(x))2 − (φ′(−1))2

]
− Jp(x+ 1)− 2(eφ − 1),

for − 1 < x < s,

(41)

where V = V0 +V1 and cL3 = cR3 = 1 have been used. The point charge (delta
function) at x = s gives the jump condition

[φ′] =
qb

βεεr1
. (42)

Given φ′(1), φ′(−1), and Jp, the solutions can be easily determined nu-
merically, in the two regions s < x < 1 and −1 < x < s. The three
constants φ′(1), φ′(−1), Jp can be determined by condition (42), [φ] = 0 and
[c1+c2] = 0 at x = s (in practice the numerical procedure is more stable if the
ratio (c1(s+)+c2(s+))/(c1(s−)+c2(s−)) = 1 is used instead of [c1+c2] = 0).
Once φ(x) is obtained, c1 and flux J1 can be computed by equation (40)2 and

19



ϕ(s)

ϕ(sb)

-0.2 -0.1 0.1 0.2
sb

-5

-4

-3

-2

-1

1

ϕ(s),ϕ(sb)

-0.2 -0.1 0.1 0.2
sb

100

200

300

400

500

f(sb)

Figure 9: The dependence of φ(s) and φ(sb) on sb and the function f(sb) for V1 = 6.36.

the continuity condition [c1] = 0 at x = s. Similarly, c2 and flux J2 can be
computed by equation (40)3 and the continuity condition [c2] = 0 at x = s.

Figure 10 shows the semi-analytical approximation φ and ci (i = 1, 2, 3)
at steady state for V1 = 6.36, which agrees with those in Figure 7 except
for c3. For V1 = 6.36, ionic flux J1 is found to be J1 ≈ −2.855 (also ≈
10 pA in units), which is close to −2.834 in (34) obtained by the finite
difference method. The advantage of the method in this subsection is that
the computation is extremely fast compared with the full finite difference
method. It is much more efficient to use the semi-analytical approximation
to compute the steady states (particularly the currents) with various different
voltage jump V1.

Figure 11 shows the results with V1 = 1.59 (i.e., 40 mV in physical units),
and the flux is J1 ≈ −0.264 (i.e., 0.933 pA in units). In above computations,
J2 is very small since a small D2 is used, therefore the dimensionless total
current is almost the same as J1. Figure 12 shows the dependence of dimen-
sionless flux −J1 and the dimensional current on the voltage V = V0 + V1 at
steady state.

Remark 4. In the present simple model, the permanent charge is evenly
distributed in the bubble only and the size effect of different ions are not con-
sidered. We do not expect our model to capture the current-voltage relation
for large V1, including the saturation phenomenon observed experimentally
in the literature. To make our model more realistic, we need to know the
distribution of permanent charge (i.e., acid base side chains) along the sys-
tem. When that information is available, it can be incorporated into our
model by adding permanent charge to the channel wall in the region −s to
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Figure 10: Comparison of φ and ci (i = 1, 2, 3) at steady state with V1 = 6.36 between
semi-analytical approximation (solid lines) and the finite-difference solution (dashed lines).

+s (see Fig. 1) as in a practical implementation [60]. The studies [54, 55]
by Weishi Liu and his group have illustrated the effects of permanent charge
on current-voltage relation. With ionic size effect and the permanent charge,
saturation phenomenon of current-voltage curves can be modelled as shown
in [51].

Remark 5. For the case that the dipole does not disappear after bubble
collapses, Figure 13 shows the results for steady state flux, which are quite
similar to those in Figure 12 for the above case when dipole disappears after
bubble collapses.

4. Ensemble properties

In this section, we extend our model by including stochastic effect in two
aspects. We assume that the initial position of the bubble and the cross
sectional area of the channel are both random and compute the ensemble
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Figure 11: Steady state φ and ci (i = 1, 2, 3) for V1 = 1.59.

averages of the macroscopic currents through the channel and estimate the
Cole-Moore delay based on certain statistical distributions.

First, we assume that the initial interface position sb is random, which
could be due to the tiny fluctuations of strength of dipoles in different chan-
nels or due to the mechanism of bubble formation (which is not considered
in the present work). For illustration, we consider that sb follows a normal
distribution

sb ∼ N(µ, σ2), µ = 0, σ = 0.05, (43)

where the choice of σ ensures that sb ∈ [−s, s] with s = 0.2 for almost all
the generated data. We can use the previous function f(sb) to compute the
ensemble properties of the channel, since there is negligible effect on the
curves of f(sb) with different starting value of sb. With each different initial
position sb, the dynamics of the fluxes (particularly the time delay t∗ for
opening of the channel) will be different. By taking the average of these
fluxes, we get the ensemble curve for the dynamics of the current through
the channel (i.e., fluxes of K+). Figure 14 (b,c) show the ensemble curves
for the current I and the ratio I/V1 with 50 channels and with 4 different
voltage jumps, which are given in Figure 14(a). Figure 14 (b) shows similar
trend and scale with experiments in Figure 2(a,c) in [30].

22



-1 1 2 3
V

0.5

1.0

1.5

2.0

2.5

-J1

-40 -20 20 40 60 80
V,mV

2

4

6

8

10

I,pA

Figure 12: The dependence of the dimensionless flux J1 and the dimensional current I on
the voltage V = V0 + V1 at steady state.

-1 1 2 3
V

0.5

1.0

1.5

2.0

2.5

-J1

-40 -20 20 40 60 80
V,mV

2

4

6

8

10

I,pA

Figure 13: The dependence of the dimensional flux J1 and the dimensional current I on
the voltage V = V0 + V1 at steady state for the case that the dipole does not disappear
after the bubble collapses.

The case is more complicated when cross sectional area A is random. We
set A = A0A1, where A1 ∼ N(1, σ2

A) with σA = 0.03 and A0 = (0.7nm)2 (the
same as the value in Appendix A). The area A will affect the dimensionless
parameter β, and hence influences the effective permanent charge qb/β.

We start by examining the effect of A1 on t∗. Figure 15 shows f(sb)
with 3 different values of A1, indicating that the effect of A1 on f(sb) and
hence on t∗ is very small. Therefore, the previous curve f(sb) can be used to
compute t∗ as an approximation. We study the effect of A1 on the flux J1 or
the current I at steady state. Figure 16(a) shows the dependence of −J1 on
A1, indicating that the magnitude of J1 will slightly decrease with increase
of A1. Since the final dimensional current also depends on the scaling factor
which contains A1, Figure 16(b) shows the dependence of the current I on the
parameter A1, indicating that the current increases with A1. Figure 16(b)
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Figure 14: The ensemble curves for the current I and the ratio I/V1 averaged by 50
random sb and with 4 different V1.

also shows the approximate current A1I(1) where I(1) is taken from previous
computation with A1 = 1, which is close to the exact curve. Therefore, the
main effect of A1 on the current is due to the scaling factor. We conclude
that A1I(1) can be used as an approximation for the current in the following
figures.

We fix A1 for each channel during the evolution of the bubble, while
allowing it (together with sb) to vary randomly among 50 channels. The
ensemble curves for the current with 50 channels are very similar to those in
Figure 14. We also consider the case that A1 fluctuates randomly when the
bubble evolves. We take A1(ti) ∼ N(1, σ2

A) with σA = 0.03 for each discrete
time t = ti and for each channel. Figure 17 shows the ensemble curve for the
current with 50 channels, where sb ∼ N(0, σ2) and A1(ti) ∼ N(1, σ2

A), with
σ = 0.05, σA = 0.03, and 400 discrete ti are used for the time interval of 30
ms. Figure 17 shows similar trend and fluctuations with those in experiments,
see Figure 2(a,c) in [30] and Figure 3.17 in [4].

To model the Cole-Moore delay [38], we can treat the mean value µ and
standard variation σ in (43) as a function of the holding potential V0. For
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illustration, we take

sb ∼ N(µ, σ2),

µ(V0) = s tanh(k(V0 − V ∗0 )), V ∗0 = −80mV, k = 0.002/mV,

σ(V0) = σ0 = 0.05

(44)

where V0 is the initial holding potential, and V ∗0 is a reference value. Figure
18(a) shows the ensemble curves for the current with 100 channels and V1 =
160 mV, for 7 different holding potential V0 which are [-52, -72, -93, -113,
-133, -162, -212]mV, corresponding to curves from left to right. The ensemble
curves show similar features as experimental curves in Figure 18(b), which is
reproduced from Figure 5(a) in [38]. Figure 19 shows the ensemble curves for
the current with 100 channels and 600 channels and with V1 = 160 mV, for
2 different holding potential V0 = −52,−212 mV. It can be observed from
the figures that the delay is longer when holding potential V0 is smaller.
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Figure 17: The ensemble curves for the current with 50 channels, where sb ∼ N(0, σ2) and
A1(ti) ∼ N(1, σ2

A), with σ = 0.05, σA = 0.03.

Remark 6. We note that the Cole-Moore effect may also arise in the hy-
drophobic gasket of the voltage sensor region of the channel and show itself
as a delay in gating current [41]. The bubble in the voltage sensor itself
would not collapse, and the gating current would be given by our equations
(B.4-B.6). We speculate that some of the gating current could flow in the
adjacent conduction pore, and open it, perhaps by collapsing a bubble in the
conduction pore.
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Figure 18: (a) The ensemble curves for the current with 100 channels and V1 = 160 mV,
for 7 different holding potentials V0, (b) the ensemble curve reproduced based on the
experiments in Figure 5(a) of [38].

5. Conclusion

In this paper, we present a macroscopic bubble model for the gating of
Kv Channels. The time delay in the opening of a single channel is deter-
mined by the motion of the bubble before it collapses. The bubble motion
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Figure 19: The ensemble curves for the current for V1 = 160 mV and 2 different holding
potential V0, (a) with 100 channels, and (b) with 600 channels.

is coupled with a Poisson-Nernst-Planck system, which is solved by a full
numerical computation as well as a quasi-static approximation method. We
also present a stochastic model for the bubble and channel sizes and the
ensemble properties of the Kv channel are consistent with experimental ob-
servations. Furthermore, the Cole-Moore delay is explored by assuming the
dependence of bubble properties on the holding potential.

Although the present simple model captures some key features in the
ensemble properties, some parts are oversimplified and there is room for im-
provement. The permanent charges in the channel are lumped together in
the model, and the distinction and effects of charges on bubble and on the
channel wall could be examined in the future. The selectivity of channel is
not considered in detail here, which depends on the ion sizes (which makes
the PNP system very complicated). This is circumvented by assuming small
diffusion constants of other ions except K+ in the present work. The gen-
eralization to high-dimensional case is also interesting and nontrivial, since
the bubble interface will have a curved shape and specific forces (e.g., some
force due to the maxwell stress) can act on the interface.
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Appendix A. Parameter values

We adopt the following values for the physical parameters [29, 30]

kB = 1.38× 10−23J/K, e0 = 1.602× 10−19C, ε0 = 8.854× 10−12C/(V ·m),

T = 292.15K, kBT/e0 ≈ 25.17mV, εr0 = 2, εr1 = 40,

L = 0.75nm, s = 0.15nm, A = (0.7nm)2, c0 = 560 mM ≈ 3.37× 1026/m3,

cL1 = 10mM, cL2 = 550mM, cL3 = 560mM,

cR1 = 400mM, cR2 = 160mM, cR3 = 560mM,

D0 = D1 = 10−10m2/s, D2 = D3 = 10−12m2/s, , Db = 10−19m2/s,

AJ0 = AD0c0/L ≈ 2.2× 107/s, e0AJ0 ≈ 3.53 pA,

t0 =
L2

D0

= 5.625× 10−9s, V0 = −80mV, V1 = 160mV.

(A.1)
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The dimensionless quantities are

ε =
ε0kBT

e20c0L
2
≈ 7.3× 10−3, β = LAc0 ≈ 0.12,

cL1 ≈ 0.018, cL2 ≈ 0.982, cL3 = 1,

cR1 ≈ 0.71, cR2 ≈ 0.29, cR3 = 1,

D1 = 1, D2 = D3 = 0.01, Db = 10−9,

V0 = −3.18, V1 = 6.36.

(A.2)

Appendix B. Continuity of the total current

Appendix B.1. The continuous system

The total current consists of three different types of current in different
regions

(i) the current from the change of electric field (for the whole interval/channel)

(ii) the current from the ionic fluxes (outside of the bubble)

(iii) the current from the motion of the bubble charge (in the bubble)

We will illustrate the continuity of the total current by the dimensional sys-
tem in Section 2.1. For the region outside of the bubble (−L < x < sb, s <
x < L), we define the total current (per unit cross-sectional area) as Ipnptotal

Ipnptotal(x, t) = ε0εr∂tE +
3∑
i=1

e0ziJi = −ε0εr∂txφ+ e0(J1 + J2 − J3). (B.1)

Taking the time derivative of (1)1 and using (1)2, we get

∂xI
pnp
total = 0, (B.2)

which implies the continuity of current outside of the bubble.
In the bubble, the define the total current (per unit cross-sectional area)

as
Ibubbletotal (x, t) = ε0εr∂tE + ∂tQb = −ε0εr∂txφ+ ∂tQb, (B.3)

where Qb is the total bubble charge (per unit area) stored in the interval
[sb, x] (it is the magnitude of total negative charge)

Qb =

∫ x

sb

qb
Vb
dx =

qb(x− sb)
A(s− sb)

. (B.4)

34



If Qb increases, that means some positive current of the bubble charge goes
across the interface at x. Another interpretation is based on the velocity of
the cross sectional surface at x

v(x) =
(s− x)

(s− sb)
dsb
dt
, (B.5)

and one can easily verify that

∂tQb = Jb = − qb
Vb
v(x). (B.6)

Taking the time derivative of (3), we get the continuity of the total current
in the bubble

∂xI
bubble
total = 0. (B.7)

Appendix B.2. The discrete numerical scheme

The quantities qn+1
k and εr,k+1/2 are defined as

qn+1
k =

∫ xk+1/2

xk−1/2

1

β

qb
(s− sb)

dx, (B.8)

and

εr,k+1/2 =
h

h1
40

+ h2
2

, h1 = sb − xk, h2 = xk+1 − sb, if sb ∈ [xk, xk+1].

(B.9)
Next we show the continuity of the total current in the discrete scheme. The
equation of φ can be written as

Jn+1
φ,k+1/2 − J

n+1
φ,k−1/2 = hcn+1

1,k + hcn+1
2,k − hc

n+1
3,k − hq

n+1
k ,

Jn+1
φ,k+1/2 = −εεr,k+1/2

φn+1
k+1 − φ

n+1
k

h
.

(B.10)

Summing over k = 1, .., N gives

Jn+1
φ,N+1/2 − J

n+1
φ,1/2 = h

N∑
k=1

cn+1
1,k +

N∑
k=1

hcn+1
2,k −

N∑
k=1

hcn+1
3,k −

N∑
k=1

hqn+1
k .

(B.11)
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Repeat it for Jn with the time step tn , take the difference, divide it by ∆t,
and then we get

Jn+1
φ,N+1/2 − Jnφ,N+1/2

∆t
−
Jn+1
φ,1/2 − Jnφ,1/2

∆t

=h
N∑
k=1

cn+1
1,k − cn1,k

∆t
+ h

N∑
k=1

cn+1
2,k − cn2,k

∆t
− h

N∑
k=1

cn+1
3,k − cn3,k

∆t

− h

∆t

(
N∑
k=1

qn+1
k −

N∑
k=1

qnk

)
=−

(
Jn+1
1,N+1/2 − J

n+1
1,1/2

)
−
(
Jn+1
2,N+1/2 − J

n+1
2,1/2

)
+
(
Jn+1
3,N+1/2 − J

n+1
3,1/2

)
− h

∆t

(
Qn+1
b −Qn

b

)
.

(B.12)

Rearranging the terms leads to

Jn+1
φ,N+1/2 − Jnφ,N+1/2

∆t
+
(
Jn+1
1,N+1/2 + Jn+1

2,N+1/2 − J
n+1
3,N+1/2

)
+

h

∆t

(
Qn+1
b −Qn

b

)
=
Jn+1
φ,1/2 − Jnφ,1/2

∆t
+ Jn+1

1,1/2 + Jn+1
2,1/2 − J

n+1
3,1/2,

(B.13)
where the three terms on the left hand side are the discrete version of the
three types of currents defined in (i), (ii), (iii) in the previous subsection.
If the sum is over the entire interval (i.e., N + 1/2 is the right end), the
term Qn+1

b −Qn
b disappears since the total bubble charge Qn

b is conserved by
definition, and the total current is conserved at the two ends.

Appendix C. Derivation for quasi-static state and steady state

Appendix C.1. The quasi-static state

For the quasi-static state, we ignore the dipole and V0 (equivalently the
φ is shifted up by a constant V0 and continuity condition of φ will be used
at interface). We first consider the right part s < x < 1. We get

c1 = cR1 e
−(φ−V1), c2 = cR2 e

−(φ−V1), c3 = eφ−V1 ,

εεr1φ
′′ = eφ−V1 − e−(φ−V1),

(C.1)
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where cR3 = cR1 + cR2 = 1 have been used. Integrating once gives

1

2
εεr1[(φ

′(x))2 − (φ′(s+))2] = eφ−V1 + e−(φ−V1) −B2, (C.2)

where

B2 = eφs−V1 + e−(φs−V1), φ′(s+) =
εr0
εr1
φ′(s−) =

εr0
εr1
φ̃s. (C.3)

Then, we obtain

(φ′(x))2 = G1(φ;φs, φ̃s) =

(
εr0
εr1
φ̃s

)2

+
2

εεr1
[eφ−V1 + e−(φ−V1) −B2] (C.4)

and

x =

∫ φ

φs

1√
G1(φ;φs, φ̃s)

dφ+ s. (C.5)

For the left part −1 < x < sb, we get

εεr1φ
′′ = eφ − e−φ,

1

2
εεr1[(φ

′(x))2 − (φ′(sb−))2] = eφ + e−φ −B3,
(C.6)

with

B3 = eφsb + e−φsb , φsb = B1(sb − s)2 + φ̃s(sb − s) + φs

φ′(sb−) =
εr0
εr1
φ′(sb+) =

εr0
εr1

[φ̃s + 2B1(sb − s)],
(C.7)

where B1 is given in (35). Then, we get

(φ′(x))2 = G2(φ;φs, φ̃s) = (φ′(sb−))2 +
2

εεr1
[eφ + e−φ −B3] (C.8)

and

x = −
∫ φ

φsb

1√
G2(φ;φs, φ̃s)

dφ+ sb. (C.9)
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Appendix C.2. The steady state

Now we consider the steady state. Define

p = c1 + c2, Jp = J1 +
J2
D2

, (C.10)

then the two equations for c1 and c2 lead to

− Jp = p′(x) + pφ′(x). (C.11)

Let V = V0 + V1. For the right part x > s, we get

c3 = cR3 e
φ−V = eφ−V . (C.12)

Multiplying φ′ in the equation of φ (i.e., equation (40)1, and the delta function
is put into the jump conditions) gives

− εεr1φ′′(x)φ′(x) = pφ′ − c3φ′ = −Jp − p′ − c′3, (C.13)

and integrating gives

p =
1

2
εεr1

[
(φ′(x))2 − (φ′(1))2

]
− Jp(x− 1)− c3 + 2, (C.14)

where the boundary conditions at x = 1 have been used. Substituting into
(40)1, we get

−εεr1φ′′(x) =
1

2
εεr1

[
(φ′(x))2 − (φ′(1))2

]
− Jp(x− 1)− 2(eφ−V − 1), (C.15)

for x > s. Similarly for the left part x < s, we have

c3 = cL3 e
φ, c1 =

1

2
εεr1

[
(φ′(x))2 − (φ′(−1))2

]
− Jp(x+ 1)− c3 + 2,

− εεr1φ′′(x) =
1

2
εεr1

[
(φ′(x))2 − (φ′(−1))2

]
− Jp(x+ 1)− 2(eφ − 1).

(C.16)
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