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ON VARIATIONAL PRINCIPLES FOR POLARIZATION RESPONSES
IN ELECTROMECHANICAL SYSTEMS∗

BOB EISENBERG† , CHUN LIU‡ , AND YIWEI WANG§

Abstract. Electromechanical systems can be found in many physical and biological applications,
such as ion transport in membranes, batteries, and dielectric elastomers. Classical electrodynamics uses
a dielectric constant to describe the polarization response of an electromechanical system to charges
in an electric field. We generalize that description to include a wide variety of responses to charges in
the electric field by a unified, thermodynamically consistent, variational framework. This framework is
motivated and developed using the classical energetic variational approach (EnVarA). The coupling be-
tween the electrical part and the chemo-mechanical parts of the system is described either by Lagrange
multipliers or various energy relaxations. The classical polarization and its dielectrics and dielectric
constants appear as outputs of this analysis. The Maxwell equations then become universal conserva-
tion laws of charge and current, conjoined to an electromechanical description of the polarization of
materials.
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1. Introduction

Electromagnetism is often described by Maxwell field equations that form a general
and precise description of electrodynamics in the absence of matter, with only two pa-
rameters, both of which are true constants that are remarkably constant in a wide range
of conditions. In the presence of matter, like dielectrics, things are more complicated,
because the field changes things that are charged and the charge changes the field [36].
These interactions depend on the mechanical properties of the system, the distribution
of charge and mass, and the Maxwell equations themselves.

Classical electrodynamics included a particularly simple idealized model of elec-
tromechanical charge in insulating dielectrics and so, was a constitutive model depend-
ing on the properties of materials. In the ideal linear dielectrics, interactions are de-
scribed by a dielectric constant εr, a single real number, in the Maxwell equations. That
classical model is, however, unable to adequately describe the complicated interaction
between charge and field in most materials [1,2,5,11,12,18,22,25,37,38]. It should not
be a surprise that a model adequate to deal with measurements available in the 1850’s
(typically on a time scale of a tenth of a second) would need revision in the 2020’s when
time scales of 10−9s are commonplace in experiments and applications.

Other electromechanical systems (beyond insulating dielectrics) are even more com-
plicated because other forces—like diffusion and convection—come into play. One of the
most important electro-mechanical systems is the transport of charged particles in dilute
solutions, which is often described by a Poisson-Nernst-Planck (PNP) equation [9]. The
movement of charged particles is a mechanical process, involving diffusion and convec-
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tion, but the motion of the charges changes their positions, forms an electrical current,
and thus changes the electric field in the system, which in turn changes the motion of
the charged particles themselves.

In systems involving diffusion, the particles interact through the electric field and
use concentration gradients to create a PNP system [13,21]. The classical PNP equation
can be written as [21]

∂ci
∂t

=∇·(Di(∇ci+
qzi
kBT ci∇φ)), −∆φ=

1

ε
(

n∑
i=1

qzici+ρ0(x)), (1.1)

where ci(x,t) is the number density of the i-th species of ions, φ(x,t) is the electrostatic
potential, ρ0(x) represents the density of any immobile background charge, q is the
elementary charge, zi is the electric charge of one molecule of the i-th species, and ε is
the permittivity that measures electric polarizability of the solution. Here the effects
of magnetic fields are totally neglected, which is only true when there are no time-
dependent magnetic fields so E=−∇φ is curl-free. The interaction between ions1 and
field is imposed through the Poisson equation not the Maxwell equations.

There exits a large literature developing variational theories for electromechanical
and magnetomechanical coupling in a range of systems of this type (excluding diffusion
for the most part) [4,7,15–17,24,27,29,31–33,41–43]. Inspired by these, we build a ther-
modynamically consistent variational description of general electromechanical systems
and extend it to include diffusion. The framework is motivated and developed using the
classical energetic variational approach (EnVarA) that allows consistent incorporation
of other fields, e.g., chemical reactions [44] and even temperature [26]. The key point
is to isolate material properties in the Maxwell equations and use the classical theories
of continuum mechanics to describe those material properties, using the EnVarA for-
mulation. In this paper, dynamics and fluctuation are imposed in the mechanical part
only. The electrical part of electromechanical coupling is imposed through models of
the system of interest, or by a Lagrange multiplier in a way less dependent on a specific
model. The constitutive properties are separated from the Maxwell equations in this
approach, allowing the Maxwell equations to be universal and exact, and the constitu-
tive equations to describe (electro)material properties. As an illustration, we re-derive
the classical PNP system in the proposed framework.

2. Preliminary

2.1. Mechanics: energetic variational approach. Mechanical systems can
often be described by their energy and the rate of energy dissipation [19]. One of the
simplest mechanical systems is a spring-mass system

xt=v, mvt=−γxt−∇V (x), (2.1)

where v is the velocity and V (x) is the potential energy. For a linear spring, V (x)=
1
2k|x|

2. It is straightforward to show that the spring-mass system (2.1) satisfies an
energy-dissipation identity

d
dt (

m
2 |xt|2+V (x))=−γ|xt|2, (2.2)

where K= m
2 |xt|2 is the kinetic energy, U =V (x) is the internal energy and γ|xt|2 is the

rate of energy dissipation due to the friction. If the system also involves a stochastic

1Holes and electrons in semiconductors share many of the properties of ions in solutions.
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force, modeled by a Gaussian white noise, then the dynamics becomes

xt=v, mvt=−γv−∇V (x)+ξ(t), (2.3)

where ξ(t) is a stochastic force satisfying ⟨ξ,ξ′⟩=2kBTm
−1γδ(t− t′) due to the

fluctuation-dissipation theorem (FDT) [28]. The FDT ensures the system admits an
energy-dissipation law and reaches the correct equilibrium state [28]. Here we adopt a
Langevin representation, understanding fully well that this description is a constitutive
model that needs to be confirmed by experiment and simulations of atomic motion. Let
f(x,v,t) be the probability of finding the particle in location x with velocity v, the
Fokker-Planck equation of f(x,v,t) corresponding to the Langevin dynamics (2.3) is
given by

∂tf+∇x ·(vf)+∇v ·
(
(− γ

mv− 1
m∇V )f

)
= kBTγ

m2 ∆vf. (2.4)

Note that this is the full Langevin equation including the acceleration term. Direct
calculation reveals that the Fokker-Planck Equation (2.4) for the full Langevin equation
satisfies an energy-dissipation identity

d

dt

∫
m
2 f |v|

2+kBTf lnf+V fdvdx=

∫
−γf |v+kBTm

−1∇v lnf |2dvdx≤0. (2.5)

The (kBT )(f lnf) mixing term comes from the noise, which corresponds to the entropy
–TS in classical thermodynamics.

In an overdamped region (γ≫m), the inertial term in (2.3) can be ignored and
the dynamics can be reduced to an overdamped Langevin equation (after rescaling but
keeping the same notation) [14,20,39,40,45]

γxt=−∇V (x)+ξ(t), (2.6)

where ⟨ξ,ξ′⟩=2kBTγδ(t− t′). The corresponding Fokker-Planck equation of ρ(x,t) is

ρt=∇·( 1γ (kBT∇ρ+ρ∇V )), (2.7)

where ρ(x,t) is the probability distribution of finding the particle at location x. If we
define the average velocity as u= 1

γ∇(kBT (lnρ+1)+V ), then the energy-dissipation

law of the Fokker-Planck Equation (2.7) can be formulated as

d

dt

∫
(kBTρlnρ+V (x))dx=−

∫
γρ|u|2dx. (2.8)

Again, the mixing term kBTρlnρ term corresponds to −TS with S=−ρ lnρ being the
entropy [8].

In general, as in previous examples, an isothermal mechanical system can be well
defined through an energy-dissipation law

d

dt
(K+F)=−△, (2.9)

along with the kinematics of the employed variables. Here K is the kinetic energy,
F =U−TS is the Helmholtz free energy, and △ is the rate of the energy dissipation,
which is the rate of entropy production in the system [19]. From the energy-dissipation
law (2.13), the corresponding evolution equation can be derived by the energetic varia-
tional approach (EnVarA). In more detail: EnVarA consists of two distinct variational
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processes: the Least Action Principle (LAP) and the Maximum Dissipation Principle
(MDP) [19]. The LAP states that the dynamics of a Hamiltonian system are determined

as a critical point of the action functional A(x)=
∫ T

0
(K−F)dt with respect to x(X,t)

(the trajectory for mechanical systems, where X are Lagrangian coordinates) [19], i.e.,

δA=
∫ T

0

∫
Ω(t)

(finertial−fconv) ·δx dxdt. The dissipative force in such a system can be

determined by minimizing the dissipation functional D= 1
2△ with respect to the “rate”

xt in the linear response regime [6], i.e., δD=
∫
Ω(t)

fdiss ·δxt dx. This principle is known

as Onsager’s MDP [34,35]. According to force balance, we have, in Eulerian coordinates,

δA

δx
=

δD
δxt

. (2.10)

This describes the dynamics of the system. It is worth mentioning that in principle,
mechanical systems are totally determined by the trajectory or the flow map x(X,t),
as indicated by the above variational procedure.

The PNP Equation (1.1) can be derived from the energy-dissipation law [9]

d

dt

∫ n∑
i=1

kBT ci(lnci−1)+
ε

2
|∇φ|2=−

∫
kBT

Di
ci|ui|2dx (2.11)

with the constraint −∇·(ε(∇φ))=(
∑n

i=1qzici+ρ0(x)), which is a differential form of
the Gauss’s law. We refer the interested readers to [9] for detailed derivation.

2.2. Electricity: Maxwell field equations in vacuum. The fundamental
equations in classical electromagnetism are Maxwell’s field equations,

∇·(ε0E)=0, ∇·B=0

∂B

∂t
=−(∇×E), ∇×B=µ0

(
ε0

∂E

∂t

)
,

(2.12)

in vacuum, where E and B are electric and magnetic fields, ε0 is the electrical constant,
also called the permittivity of free space and µ0 is the magnetic constant, also called
the permeability of free space. Direct calculations show the Maxwell Equations (2.12)
satisfy the energy-dissipation identity

d

dt

∫
Ω

(
ε0
2
|E|2+ 1

2µ0
|B|2)dx=−

∫
Ω

1

µ0
∇·(E×B)dx=−

∫
∂Ω

1

µ0
(E×B) ·ν dS,

(2.13)
where ν is the outward normal of Ω. Motivated by the above calculation, we can define
the electromagnetic field energy density eF (E,B) as

eF (E,B)=
ε0
2
|E|2+ 1

2µ0
|B|2. (2.14)

The vector 1
µ0
E×B is the Poynting vector that represents the directional energy flux

(the energy transfer per unit area per unit time) of an electromagnetic field.
Conventionally, one introduces the electric and magnetic displacement vectors D

and H, defined by D=ε0E, H= 1
µ0
B, which are known as Lorentz-Maxwell æther

relations. Note that

D=
∂eF
∂E

, H=
∂eF
∂B

, (2.15)
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which provides an energetic variational formulation for D and E connecting the energies
and these classic fields.

Remark 2.1. The field energy eF per unit volume can be formulated with different
primitive variables. For instance, in [16], the field energy eF is defined as

eF (B,D)=
|B|2

2µ0
+

|D|2

2ε0
(2.16)

by using B and D as independent variables. The electric and magnetic fields E and H
can be defined as

E=
∂eF
∂D

=
1

ε0
D, H=

∂eF
∂B

=
1

µ0
H. (2.17)

We refer the interested readers to [4] for detailed discussions of different variational
formulations.

Remark 2.2. The classical case describes an idealized dielectric D= ϵ0ϵrE in which
the dielectric constant ϵr is a single real number. Small magnetic fields are described
by a single real number the permeability µ giving H=B/µ in some types of matter
(diamagnetic and paramagnetic). When nothing is known about the actual behavior of
a dielectric or a dia- or paramagnetic material, it is customary and reasonable to use
the classical approximation, even today.

For a particle of charge qk and velocity vk, the Lorentz force on the particle is

f = qk(E+vk×B). (2.18)

Then the movement of the particle can be described by

mẍk= qk(E+vk×B), (2.19)

where vk= ẋk is the velocity of the particle. Notice that (vk×B) ·vk=0, it is straight-
forward to show that (2.19) satisfies the energy identity

d
dt (

1
2mv2

k)= qkE ·vk. (2.20)

The Maxwell field equation in this case can be formulated as

∇·(ε0E)=ρ, ∇·B=0

∂B

∂t
=−(∇×E), ∇×B=µ0

(
ε0

∂E

∂t
+ j

)
,

(2.21)

where the charge density ρ and the (particle) current density j [10,25] is defined by ρ=
qkδ(x−xk) and j= qkvkδ(x−xk)=ρvk, with δ being the Dirac delta function. Here,
we assume that placing a charged particle in a vacuum does not change the permittivity.

The Equation (2.21) satisfies the following energy identity

d

dt

∫
Ω

ε0
2
|E|2+ 1

2µ0
|B|2dx=

∫
Ω

−E ·j dx−
∫
∂Ω

1

µ0
(E×B) ·νdS. (2.22)

Combining (2.20) with (2.22), we obtain the energy-dissipation law of the total elec-
tromechanical system

d

dt

∫
m

2
|vk|2δ(x−xk)+

ε0
2
|E|2+ 1

2µ0
|B|2=0. (2.23)
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We can define c= δ(x−xk) as the number density of the charged particles. Then
formally, the energy-dissipation law can be written as (using u(xk)=vk)

d

dt

∫
(
m

2
c|u|2+ ε0

2
|E|2+ 1

2µ0
|B|2)dx=0. (2.24)

Remark 2.3. Similarly, if a charged particle is placed in a medium and satisfies
the ordinary differential equation (the force balance between mechanical and Lorentz
forces)

mẍk+γẋk+∇V (xk)= qk(E+ ẋk×B), (2.25)

then the energy-dissipation law is formally given by

d

dt

∫ (
mc(x)

2
|u|2+c(x)V (x)+W (E,B)

)
dx=−

∫
γc(x)|u|2dx, (2.26)

where c(x)= δ(x−xk), u(xk)=vk, V (x) is the potential energy, and W (E,B) is the
electromagnetic field energy. The formulation also works for the case with N -particles
although one must be careful in evaluating interactions.

3. Variational treatment of general electro-mechanical systems
The EnVarA framework allows a general treatment of the response of a dielectric

to a change of the electric field. It includes classical polarization of an ideal dielectric
and electromechanical systems that involve diffusion and translation, and other energy
sources not present in the classical Maxwell equations. Throughout this section, we
assume that∇×E=0. The approach starts with a general electromechanical free energy

F(E,ζ)=

∫
W (E,ζ)dx, (3.1)

where W (E,ζ) is the electromechanical free energy per unit volume, E is the electric
field, and ζ represents other mechanical variables, such as densities of ions, the defor-
mation tensor, and order parameters in liquid crystals. We can generalize the definition
of electric displacement field D in vacuum (2.15) and define D as [4, 25,27,42]

D=
∂W (E,ζ)

∂E
. (3.2)

Consequently, the electric polarization field P is defined by [17], P=D−ε0E, so both
D and P are derived from the electromechanical free energy W (E,ζ). The different
W (E,ζ) correspond to different constitutive relations between D and E. For a ‘linear’

dielectric, we have W (E,ζ)=ω(ζ)+ ε(ζ)
2 |E|2. Then D=ε(ζ)E and ε(ζ)=ε0εr(ζ) is the

conventional permittivity and εr(ζ) is the dielectric constant. The form of free energy
W (E,ζ) can be obtained from experiments by solving some inverse problems or from
a more-detailed model [30, 46]. In general, the relation between D and E can be fully
nonlinear and nonlocal.

As an illustration, let us first consider dielectric fluids. We can take ρ and E as the
state variables, and assume the free energy is given by [41]

F(ρ,E)=FM (ρ)+Felec(ρ,E), (3.3)
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where FM (ρ)=
∫
ω(ρ)dx is the purely mechanical component of the free energy, i.e., the

free energy of the system in the absence of the electric field E. Felec(ρ,E) is the elec-

tromechanical energy, which is assumed to be Felec(ρ,E)= ε(ρ)
2 |E|2 for linear dielectrics.

Then, the variational procedure (3.2) leads to D=ε(ρ)E and P=D−ε0E. For the pure
dielectric case without any free charges, we have

∇·D=0, ∇×E=0, (3.4)

which indicates that there exists an electrostatic potential φ such that E=−∇φ and φ
satisfies the Poisson equation −∇·(ε(ρ)∇φ)=0.

The electrostatic potential φ can be viewed as a Lagrange multiplier for the con-
straint ∇·D=0, along with the quasi-equilibrium condition, i.e., E minimize the free
energy (3.3) without delay [25]. Indeed, we can introduce a Lagrange multiplier φ for
the constraint ∇·D=0, which leads to

F(ρ,E;φ)=FM (ρ)+
ε(ρ)

2
|E|2−φ(∇·(ε(ρ)E)). (3.5)

By assuming that the electric field reaches equilibrium without delay, we have

0=
δF(ρ,E;φ)

δE
=ε(ρ)E+ε(ρ)∇φ, (3.6)

which leads to E=−∇φ, and ∇×E=0. In the delay case, one can impose a dynamics
ηEt=−(ε(ρ)E+ε(ρ)∇φ), then E may not be curl-free and one has to consider the full
Maxwell equations. We will explore this case in future work.

Next, we discuss the dynamics of the system, which is described by a suitable
dissipation functional on the mechanical part. A simple choice of the dissipation is
△=2D=

∫
η(ρ)|u|2dx, where η(ρ) is the friction coefficient. By a standard variational

procedure [19], we have −η(ρ)u=ρ∇(ω′(ρ)+ 1
2ε

′(ρ)|E|2), which is equivalent to the
results in [25] [page 68, Equation (15.12)].

For systems involving free charges, the electric displacement field D satisfies a dif-
ferential version of Gauss’s law ∇·D=ρf (x), where ρf (x) is the total (electric) free
charge density at x. From the mechanical part of the system, one can calculate the
(mechanical) charge density ρ̂f (ζ). However, in general, ρ̂f (ζ) may not be exactly the
same as ρf in the Gauss’s law. For instance, polarization arises from the separation of
the centers of positive and negative charges, which produces a difference between the
mechanical charge density ρ̂f (ζ) and the electric charge density ρf (x). In the energetic
variational formulation, ρf (x) and ρ̂f (ζ) can be linked by either a Lagrange multi-
plier or various energy relaxations. Energy relaxations are a general way of describing
electromechanical coupling.

In the following, we illustrate both approaches by modeling the transportation of
charged particles in dilute solutions. We assume the free energy is given by

F(c,E)=

∫ n∑
i=1

KBTci(lnci−1)+Welec(c,E)dx, (3.7)

and D= ∂Welec

∂E . From the mechanical part of the system, one can calculate the (me-
chanical) charge density as

ρ̂f (c)=
∑n

i=1qzici+ρ0(x), (3.8)

ρ0(x) is the density of any immobile background charge, zi is the electric variance of
i-th species, and q is the elementary charge. Both approaches can lead to PNP-type
systems with suitable dissipations.
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3.1. PNP equation with a Lagrange multiplier. In the first approach, we
can introduce a Lagrange multiplier to link ρ̂f (c) and ρf (x) [3, 23,25,29], i.e.,

F(ρ,E;φ)=

∫
Ω

n∑
i=1

KBTci(lnci−1)+Welec(c,E)−φ(∇·( ∂Welec
∂E

)−
n∑

i=1

qzici−ρ0(x))dx,

(3.9)

where φ is the Lagrange multiplier. To derive the classical PNP Equation (1.1), we take
Welec(E) as Welec=

ε
2 |E|2, with ε being a constant, and D=εE. In the situation when

the electric part can reach equilibrium without delay, we will have δF
δE =0, which leads

to E=−∇φ. The Lagrange multiplier φ is the usual electrostatic potential φ.
Next, we look at the dynamics of the system, which are on the mechanical part

only. As we did in Equation (2.11), we can impose the dissipation as △=2D=∫ ∑n
i=1

kBT
Di

ci|ui|2dx, where ui is the average velocity of i-th species. By a stan-

dard energetic variational approach, we obtain kBT
Di

ciu=−ci∇µi, where µi=
δF
δci

=
kBT lnci+φciq. The final PNP equation can be written as

∂tci=∇·(Di(∇ci+
qzi
kBT

ci∇φ)), −∇·(ε∇φ)=

n∑
i=1

qzici+ρ0(x). (3.10)

3.2. PNP equation with an energy relaxation. As mentioned earlier, ρf (x)
may not be exactly the same as the mechanical charge ρ̂f (c). Instead of using a Lagrange
multiplier, which forces ρf (x) to be the same to ρ̂f (c), we can use the following form
of the free energy

F(c,E)=

∫
Ω

kBT

n∑
i=1

ci(lnci−1)+Welec(E)+ M
2 (∇·(∂Welec

∂E )−
n∑

i=1

ziciq−ρ0(x))
2dx,

(3.11)
where the last term is the energy cost for the difference between mechanical charge
density ρ̂f (c) and the electric charge density ρf (x) and M is a phenomenological pa-
rameter.

Again, we take Welec(E) as Welec(E)= ε
2 |E|2 to illustrate the idea. Similar to the

previous calculations, in the case when the electrical part can immediately go to equi-
librium, we have

δF(c,E)

δE
=εE−ε∇(M (∇·(εE)−

n∑
i=1

ziciq−ρ0(x)))=0, (3.12)

which leads to E=∇(M(∇·(εE)−
∑n

i=1ziciq−ρ(x))). According to (3.2), we take

φ=−(M (∇·(εE)−
∑n

i=1ziciq−ρ0(x))), (3.13)

which corresponds to usual definition of electrostatic potential formulations. From
(3.13), we can then obtain an equation for φ, given by

−∇·(ε∇φ)−
n∑

i=1

ziciq−ρ0(x)=
−φ−C

M (3.14)

for any constant C that can be taken as 0. Formally, we can recover the Poisson equation
−∇·(ε∇φ)=

∑n
i=1ziciq+ρ(x) for the limit M→∞.

For the mechanical part, the chemical potential of each species can be computed
as µi=kBT lnci−M(∇·(εE)−

∑n
i=1 ciziq−ρ0(x))ziq=lnci+φziq, which is exactly the

same as that in the classical PNP case. The final PNP system is given by
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∂tci=∇·(Di(∇ci+
qzi
kBT

ci∇φ)), −∇·(ε∇φ)=

n∑
i=1

ziciq+ρ(x)+
−φ

M
, (3.15)

with the dissipation in (2.11).
It is worth mentioning that the energy relaxation is not unique. Here we choose

the simplest form for an illustration. In general, energy relaxation will depend on
the structure of the system, including the measurement apparatus, and the boundary
properties of the structure.

Remark 3.1. We focus on ∇×E=0 in this section. For general systems with
∇×E ̸=0, one can introduce another Lagrange multiplier or a penalization for the
constraint ∂tB=−(∇×E). We will study this in future work.

4. Conclusion
In this paper, we develop a new electric-field based variational formulation of the

polarization response of dieletrics to changes in the electric field. We view the polar-
ization response as a general electromechanical system and include diffusion processes.
This framework is motivated and developed using the classical EnVarA. The dynamics
and fluctuation are imposed in the mechanical part only. As an illustration, we re-derive
the classical PNP system by two approaches and show consistency with previous formu-
lations. The variational formulation can be applied to more general electromechanical
systems and opens a new door for developing structure-preserving numerical methods.
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