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Abstract 
 

Biology is about structure. Structures within structures. Organs within animals, tissues within 

organs, cells within tissues, and molecules, often proteins within cells. The structures are so complex 

that they can only be described by numbers. No numbers are of more importance than those that 

describe proteins. The numbers that describe coordinates of its atoms, often determined by Patterson 

functions (which are inverse Fourier Transforms of intensities) of crystal diffraction. Without these 

numbers, structural biology would hardly exist. Without numbers, engineering would not exist. 

Numbers are surely needed by the engineers who produce the x-rays diffracting from atoms of protein 

crystals. Devices of engineering have function. They are built to implement equations. Engineering 

devices use structures to implement equations, when power is supplied at the right places, that 

produces appropriate flows. Flows are the essence of life. Equilibrium means death in most living 

systems. Flows in biological structures are hard to analyze because we do not know input output 

equations in advance. Sometimes we do not know their function. Flows, forces, and structures of life 

(like those of engineering) are related by field equations of conservation laws, partial differential 

equations, constrained by location and properties of structures. Constraints are boundary conditions 

located on the complicated domain of biological structure. Dealing with this complexity is simplified if 

one systematically analyzes structure using the most general field theory known, electricity described 

by the Maxwell equations, without significant known error. Currents are involved because flows of 

biology usually involve migration of charges, convection of water and solutes, diffusion of ions that 

form the plasma of life, and their interactions. Interactions can dominate function. Here I show how a 

few complex structures can be understood in engineering detail. This approach may be useful in 

dealing with biological and medical issues in many other cases. In one limited case—the clearance of 

a toxic waste (potassium ions) from the optic nerve—this approach seems to have succeeded. 
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1. Aim or Purpose: To explain by example how structural analysis of fluid flow in complex biological 

systems. 

1.1 Fluid Flow. A great deal of important biology involves fluid flow in large (cm) structures. The flows 
and biological function obviously depend on the structure, just as much as the work of an automobile 
engine depends on its structure. The flows of course depend on the atoms that flow and their 
properties. How could it not? But the forces that drive the flows and that allow biological control arise 
in proteins, as does so much of biological function. The central role of proteins is hardly surprising 
since the substrate of evolution, that creates biological systems, are genes, and genes make proteins! 
As a rule of thumb, it is much easier for evolution to mutate a protein, and select the mutation that 
produces more offspring, than to change a structure. And of course, as powerful as evolution is, it has 
a limited ability to change physical laws. 

Proteins control flow in biology much as valves control flow in engineering. Channels and 
transporters are the transistors of life.(1-5) The transistors that make up our computers and 
smartphones are valves that control the flow of electrons and holes (6-9). The transistors are only 
helpful when they are embedded in integrated circuits (10, 11) that use the valves as switches (CMOS 
switches nowadays, for the most part). And the integrated circuits are embedded in groups that 
perform the main functions of the computers and smartphones they are in.  

Life uses a hierarchy of systems much as engineers do (12). Channels (and transporters) are 
embedded in membranes. Membranes form organelles (e.g., mitochondria) and cells. Cells form 
tissues. And tissues form organs. Flows are important at all levels of the structural hierarchy that 
makes up biology. Function depends on the entire hierarchy of structures just as in a computer. 

1.2 Multiscale Flow. Understanding fluid flow in biological structures thus involves a large range of 
separate systems, that involve many different forces and constraints, on a range of scales from atoms 
(literally, the ions of biological solutions), to membranes, organelles, cells, tissues and organs. The 
complexity of these systems has been the joy of classical anatomists and zoologists for centuries, as 
they assemble the parts list of the system and describe how they are connected. It is not such a joy to 
the physical scientists who prefer analysis and equations to descriptions, and simplicity of unstructured 
fields of force, to devices driven by power supplies. 

The descriptive approach is as important in biology as it is in technology. No one could imagine 
understanding an automobile engine without a parts list, and drawings of its structure. A complete 
manual (usually oriented to what can go wrong, and so often called a repair manual) is almost a 
necessity nowadays. 

1.3 Complexity in Biology and Engineering. Biological systems are often not much more 
complicated than an automobile engine, but we do not have a manual, and often we have only an 
incomplete set of drawings. We all seek a repair manual so we can take care of our loved ones in 
disease and decline as well as health and growth. Creating a manual is one of the main goals of 
modern medical and biological science. 

The biological manual for organs and tissues that use fluid flow has to be built by scientists and 
clinicians from observations and experiments. We have to build the manual by reverse engineering. 
We look at outcomes and we try to infer mechanisms so we can predict other outcomes, and repair 
failures. These are the questions of inverse problems (13-17) and it will do a great deal of good if 
scientists confront that fact and the ambiguities and “ill posedness” (to use the jargon of the theory of 
inverse problems) inherent in reverse engineering and inverse problems. Mathematicians have shown 
in great detail that measurements of one type, even in a wide range of conditions, cannot determine 
underlying mechanisms in a robust way. No amount of measurement of the impedance of the black 
box can resolve that ambiguity. Think of the problem of measuring the values of resistors in a black 
box with a measured resistance of 10 ohms. That resistance could come from one resistor, or from 
two in parallel, or two in series, etc. etc. 

1.4 Resolving ambiguity. Inverse Problems. Biologists know by training and intuition that the way to 
resolve ambiguity is often to make a different kind of measurement. To measure the total number of 
resistors, or better to determine the structure inside the box, with methods totally different from those 
used to measure the impedance of the box. Combining structural and functional measurements is 
usually needed to understand how biological systems work. 

So, as we turn to our main issue of studying tissues and organs with fluid flow, we start with 
structure. We will do that in a few paragraphs, but we also must reiterate that we need to include the 
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physical properties of fluids and the biophysical properties of proteins, chiefly membrane proteins that 
are channels and transporters, before we can make much sense of the structures. 

1.5 Complex Fluids. Biologists are fortunate that in the last decades physical scientists have learned 
to deal with flow in systems of this sort. The theory of complex fluids (18-26) has been developed to 
deal in a precise quantitative way with systems of fluids in which energy is stored, dissipated and 
drives flows on many scales in many ways.  

It is only quite recently that workers have realized that any ionic fluid (like the intracellular and 
extracellular fluids of life) is a complex fluid (26-29). Traditionally those electrolytes have been treated 
as simple fluids (30-34), with some difficulties (35-40) as well known to leading experimental physical 
chemists (41). Indeed, it still is not widely realized that quasi crystalline biological systems (think 
skeletal and even cardiac muscle) are quite similar to liquid crystals (19, 42-46) that have been 
analyzed successfully with the theory of complex fluids for some decades now. 

This review makes the case that a systematic approach to biological systems of complex 
structure is possible if it starts with structure, includes the structure (i.e., location and density) of 
channels and transporters, and uses the theory of complex fluids to analyze the flows and forces. (47-
57) 
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2 Methods:   
 
 
2.1 Biophysics of Channels. The analysis depends on the still evolving representation and 
understanding of the biophysics of flow in channels and transporters. The hope is that details of that 
biophysics may not always dominate the biological function and that the details can be described at 
technological resolution, as the Hodgkin Huxley model and equations describe channels and the 
current flows they produce.  

It is reasonable to hope that physicists and mathematicians now entering the field will be able to 
use quantitative methods, inspired by the theory of complex fluids, to understand how these proteins 
work, at least well enough to understand their role in the transport of fluids. Structural and molecular 
biologists have made enormous progress in resolving the atomic details of channel and transporter 
function. 

Sadly, models at atomic resolution, that use assumptions of periodicity and zero flow so atomic 
details can be computed in systems that function on biological time scales, cannot provide that 
understanding. Why? Because the biological systems are not periodic and depend on large flows for 
their function.  

Computations that assume periodicity find it difficult to deal with irregular systems. Computations 
that deal with zero flows or nearly zero flows find it difficult to deal with systems that require large flows 
to function. It should be clearly understood that most of the devices of engineering depend on large 
flows. They need power supplies. Amplifiers without power supplies are no more worth studying than 
automobile engines with water in the gas tank. Most of biology requires flows. 

Mathematics does not allow one to compute a finite value for something assumed to be zero. 
Ever. Approximations are possible of course, but they must be testable, either by mathematically 
defined error analysis, or by the scientific procedure of ‘guess and check’. The approximation is the 
‘guess’, and experimental work is ‘the check’ in most cases. When theories are made that are 
inconsistent with mathematics or ignore the need to check approximations,, confusion and debate are 
almost certain to result. 

Methods that assume periodicity and zero flow are unlikely to allow the consensus needed for 
scientific progress or clinical application in systems that are not periodic or systems that depend on 
flow. Different research groups deal with the inconsistency (between periodic assumptions and 
irregular reality for example) in different ways and so get different results. Discussion of 
inconsistencies is more likely to produce emotional heat than intellectual light, given the reality that 
science is done by human beings with practical needs that are in the foreground of their thoughts, 
understandably enough. 

We begin with the structures and move from their relative certainty to the uncertainty of complex 
fluids later on. 

2.2 Role of Structure. The role of structure in the multiscale hierarchical analysis I will describe is 
best seen in the analysis of electrical properties started by Falk and Fatt (58) passed on to their 
graduate student (59) as they looked at the internal membranes of skeletal muscle. Falk and Fatt 
decided to measured the linear properties of cells, by applying currents that crossed the membrane 
(with an intracellular microelectrode) instead of by applying currents that avoided the membrane and 
flowed around cells. In that way, they could use the highly developed methods of linear circuit theory 
or linear systems analysis (60-70) to work out how current and potential spread in the complex 
membrane systems of skeletal muscle. Instead of assuming that spread, as cardiac 
electrophysiologists did, Falk and Fatt measured it. That way skeletal muscle was spared the 
metastasis of artifactual conductances and ion channels (71, 72) that produced a tangle of confusion 
in cardiology until single channel recording and the identification of channels as proteins cut through 
the tangle and brought the clarity of direct measurement to the field (73, 74). 

The technical issues of measuring and analyzing linear circuits took some time to perfect but a 
variety of scientists (58, 59, 75-79) (reviewed by (80-99)) succeeded in making a powerful and general 
tool.  

2.1 Biophysical Invariants: membrane capacitance and internal resistance A crucial factor in the 
success of the circuit analysis of complex tissues was the fortunate fact that two properties of cells 
were simple. The interior of cells is a pure resistance. The membrane capacitance is essentially a 
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constant independent of ionic conditions. Both statements are documented later in this paper. Thus, 
methods could be designed to exploit the constancy of these values (76-79, 84) 

An essential step in analyzing the capacitance, and of course the circuit properties in general, 
was understanding what is intra and what is extracellular space. This seemingly trivial necessity 
needs to be stated explicitly when dealing with new systems that do not have a long history of 
biophysical analysis. Experiments are needed in those cases, not arguments. Localizing junction 
proteins is of course a help but nothing replaces direct measurements of accessible spaces with 
markers.  

A variety of marker systems are available as a literature search will show (starting for example 
with (100, 101), but the horseradish peroxidase system seems to have been lost in that variety despite 
its significant advantages of black-and-white contrast yielding nearly 100% efficiency (102, 103) in 
chemically treated, fixed, and sectioned material.  

2.2 Morphometric Measurement of Area Direct visualization of living material with modern 
microscopic techniques has the advantage of using native tissue without the artifacts of fixation. The 
advantage is profound when estimating volumes. But when determining electrical circuits, it is the 
area which is the main goal because the area is connected to the electrical parameter capacitance 
in a definite way, independent of ionic conditions. Measurements of area with light microscopy is 
dangerous because of the its limited resolution, no matter what the wonders of modern techniques. 
The electron microscope will include fine structures (bends and wiggles) not apparent with the highest 
resolution light microscopy. These complexities can be significant, indeed very significant, both 
quantitatively and qualitatively.  

It is important however that seeing not be believing. The visualization methods must be 
accompanied by objective validation before they can be trusted to give reliable results. 

Making measurements of area is not easy. It is quite difficult to make such measurements with 
the obvious curve tracing methods, because of distortion and disruption in the sectioning methods 
used in most histology and because of the huge irreproducible systematic errors people make when 
asked to trace structures. There is also large systematic error in actually performing the tracing, even 
when the membrane is visible as morphometric calibrations against known systems will show. And 
then there are the frequent regions where structures are not clearly defined. What do you do when the 
membrane cannot be defined?  

Another less known approach is the statistical sampling methods called ‘stereology’ (81, 104-
107). A series of articles from Brenda Russell Eisenberg and her group (83, 107-116) shows the 
power of these methods in a biological and functional context.  

Stereological methods exploit the fact that it is not necessary or even wise to extract all the 
structural information in a single micrograph or section. Many sections and micrographs must be 
measured if the tissue or organ is to be adequately sampled. The variance of estimation produced by 
using only part of the data from each micrograph is often not significant in this process. The sampling 
process turns out to be much less tedious than one might expect, particularly when aided by modern 
computer technology and many clinically interesting systems might well benefit from stereological 
analysis. A search for stereological software will be helpful. 

Once the extracellular and intracellular volumes, and membrane areas are determined, the next 
step is the construction of a model. An important part of constructing a model are the properties of the 
components of the model. The intracellular medium enters into essentially every biological model, and 
its representation was the source of controversy years ago.(117, 118) The issue is now settled. In 
electrical models: the intracellular medium is a resistance. 

The intracellular medium can safely be modeled as a resistance because current goes around 
obstacles, even very dense obstacles, see (119) that builds on the still useful 1873 analysis of Maxwell 
(120). Impedance measurements in which current flows around the structure are rarely useful.(121, 
122). The membrane resistance serves to isolate and define the inside of a cell. The membrane 
makes a cell an obstacle to electricity. The membrane is such a high resistance (123-129) that current 
flows in a parallel path even if that path is only a 10 nm width of salt solution. It is only when 
intracellular objects are within a Debye length or so (typically less than a nanometer in biological salt 
solutions) that current flow in the intracellular solution is significantly impeded, beyond the reduction of 
cross sectional area.  
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This simple fact was not apparent to early workers in electrophysiology, some of whom insisted 
on attributing selectivity and other special properties to the cell cytoplasm (117, 118) instead of the 
membrane where we now know they reside. We now know that biology uses proteins in membranes 
(as it uses proteins in so many other places) to provide selectivity and otherwise control many cellular 
processes. Few if any biological processes are controlled by the cytoplasm in general, although local 

concentrations of specific chemicals—organics and Ca2+—are often used for control. 

The modern view is that complex electrical properties are not present even in the extraordinarily 
packed interior of skeletal muscle fibers. 

2.1 Measurements of Impedance. Measurements were made of the impedance of skeletal muscle 
(130, 131) because they are the most extreme example of an organized dense cytoplasm. If there is 
any system in which cytoplasm might produce significant complexities in current flow, it is 
skeletal muscle.  

Specifically, measurements were made of the longitudinal impedance down a very long length of 
a single muscle fiber. There is hardly any cell more solidly packed with proteins and structures than 
skeletal muscle, as a glance at its ultrastructure will show. If current is significantly impeded in its 
longitudinal flow in any tissue, it should be in skeletal muscle. The diameter of typical frog skeletal 
muscle fibers might be 50 micrometers and their inherent longitudinal periodicity is that of a 
sarcomere, say 2 or 3 micrometers (depending on stretch). Thus measurements over a centimeter or 
so of fiber length give ample opportunity for interference in resistive current flow by the organelles and 
proteins within each sarcomere. 

The dissection of centimeters of single fibers in these experiments was a significant personal 
achievement of graduate student Joe Leung, aided by his appropriate use of an air delivered 
pharmacological agent to reduce his already minimal hand tremor.  

The results were striking. The current and voltage down the length of a muscle fiber were related 
by a resistor with almost no phase change even though the muscle fiber appears entirely filled with 
contractile proteins and membranes, when viewed in the electron microscope. The resistance 
representation was precise within 1% in the cases with the largest error, and was unmeasurable in the 
great majority of muscle fibers, whether skinned or intact.  

The next choice of circuit component that must be made is the representation of the membrane 
itself. For strictly electrical measurements, as used in linear impedance analysis, the membrane was 
represented as a capacitor, with some success in a range of papers studying lipid bilayers starting with 
the life’s work of Denis Haydon (132-140), then moving to nerve axon (141-145), skeletal muscle, 
cardiac muscle, and the lens of the eye (84-99). Various epithelia (146-153) were analyzed this way in 
a literature starting with (146) using the methods described by Clausen and Eisenberg (76-78).  

For analysis of more general properties, beyond linear circuit properties, a realistic representation 
of transport properties of membrane proteins is required, and a linear representation is inadequate. 
The actual nonlinear properties of channels and transporters must be known, of course, but that is not 
enough. The spatial distribution of membrane proteins is needed. And it should go without saying that 
the properties of the channels and pumps must be measured in solutions that are a reasonable 
approximation to their natural environment. It is not satisfactory, for example, to study a channel or 
transporter in millimolar concentrations of calcium ion on both sides of the transporter molecules, 
when in life they face intracellular calcium concentrations of some 10-8 M that change the properties of 
the channel or transporter if the calcium concentration is changed.
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3.0 Results:  

Decades of work has shown biologically what is obvious physically: the type, properties, and 
location of transporters (and their density) determine the flows and thus the function of many tissues 
and organs of great biological importance. Kidneys and transporting epithelia have been extensively 
studied and are a major success of physiology and biophysics (154-158).The distribution of channels 
is also known from work on myelinated and unmyelinated nerve, and skeletal and cardiac muscle, to 
be dominant determinants of their function.  

Unfortunately, many interesting tissues, of great clinical importance, have not been studied well 
enough experimentally to allow as specific prediction of flows as would be helpful (159-164). The types 
of transporters and channels and their locations must be measured in those tissues and organs and 
the input output properties of those proteins must be known before any theory can be expected to 
provide robust realistic results. For example, one must expect the location of transporters to be as 
important for the glymphatic hypothesis of flow in the brain (47, 50-53, 55, 56, 165-167) as the location 
of channels and transporters is in the kidney.(168-171) 

Much can be done when that information is available as we shall see in studies of transport in the 
lens of the eye, and we will use that example of success in this paper. 

3.1 The lens of the eye. The electrical properties of the lens of the eye were resolved by Rae and 
Eisenberg (172) who explained the substantial differences between measurements made with single 
microelectrodes and two microelectrodes. The single microelectrode measurements obscured the 
interesting membrane properties because of three dimensional effects (123) analyzed first by (173, 
174) and later by methods of singular perturbation theory (124-129, 175-177). The misleading three 
dimensional effects can be easily removed once theory shows where they come from. Then single 
electrode and two electrode measurements are in agreement. Otherwise, they differ by orders of 
magnitude producing confusion and recrimination between laboratories using different methods. 

The lens was described as a bidomain syncytium consisting of two domains, one intracellular and 
the other extracellular, connected by membranes very much in the spirit of the description of the 
transverse tubular system of skeletal muscle fibers, as reported (for example) in (58, 59, 75-79) and 
reviewed by (80, 81).  

The models of the lens exploited the important fact that membranes were capacitors, in parallel 
with resistors (in impedance measurements), while cytoplasm was a resistance. A rather complete 
analysis of the tissue was possible leading to many useful results (84-99). 

It is of great importance that the models were built from defined structures with 
components with definite known properties. Otherwise models degenerate into uncertainty, with 
approximations made in different laboratories in different ways, that are hard to reconcile. Such 
approximations lead to more heat than light in the interactions of scientists, who are after all human 
beings, particularly when they are forced to compete for resources.  

The essential feature of the lens (86, 172, 178-184) that separates it from almost all other tissues 
is its transparency. That transparency means the lens cannot contain blood vessels which would 
seriously degrade optical performance. The lens is a living tissue that is maintained in its function for 
some 60 or 70 years in most humans. It must clear metabolic wastes and supply nutrients throughout 
its large (centimeters) cytoplasm. Other cells in the body are only a few micrometers from blood 
vessels. Indeed, as students at University College (London) Physiology and Biophysics were taught in 
the 1960s: animals are made of cells decorating their circulatory system. That is how extensive a 
circulatory system is needed so that convection (i.e., blood flow) can replace ineffective diffusion. 

The lens uses convection to supply and support its cytoplasm, but its convection is driven 
by an osmotic pump, not by the mechanical pump of the heart. The electrical analysis of the lens 
is thus of limited interest and could only be a part of the understanding the lens itself when extended 
to include water flow by Richard (Rick) Mathias more than anyone else. 

Mathias and his collaborators have extended the structural analysis of electrical properties of the 
lens to the analysis of the vital function of convection. It has been his life’s work and is (in my view) a 
triumph of biophysics, theory and experiment.(95, 179, 180, 182, 183, 185-202). Indeed, Mathias 
resolved (to my satisfaction) several damaging controversies in epithelial physiology (154, 203-205) as 
he studied water flow in the lens and in a more general context (206-208). 
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3.2 Two Domain Model. Mathias built his analysis on the two domain approach of the electrical 
models but included convection and water flow using an engineering circuit approach (95, 185, 206, 
207, 209, 210) written in the same spirit of approximation as the cable equation of Kelvin (211, 212) 
that he used to design the Atlantic cable—“a thread across the ocean”(213) . The Atlantic cable 
provided the first high speed (electrical) communication between Europe and the United States, 
cutting communication delays from weeks to seconds or minutes. The cable equation was used in 
biology, where it played a crucial role in our understanding of nerve conduction (214-216) and it was 
not thought necessary to derive it, because it seemed so obvious physically (with a few exceptions, 
important when cables had large diameters, or recording was done on or near point sources of current 
(123-129, 173-177, 217-220). 

As satisfying as the engineering treatment of the lens was to me personally, it was not found 
convincing I fear by biologists and clinicians unfamiliar with cable theory or even elementary circuit 
methods. And to be fair, water flow is not current flow, and the possibility existed that the engineering 
model might prove less solid a foundation for water flow than for the flow of electricity. 

3.3 Fluid Flow Starling Equation Huaxiong Huang (the leader of the project) at the Fields Institute 
(Toronto) and Shixin Xu (his immensely capable postdoctoral fellow and then faculty colleague) were 
interested in analyzing convection and flow in biological systems with significant structure and asked if 
I might help their graduate student Yi Zhu (at York University Toronto) choose and formulate a 
problem. We chose the lens as our initial project because of the magnificent experimental work of the 
Mathias group, that went from molecules to pressure measurements, with electrical structure worked 
out along the way, not knowing of course whether we could do this problem at all, let alone how it 
would relate to the Mathias engineering approach.  

Our essential challenge was that we approached the problem as mathematicians unwilling to start 
with anything except the structure of the tissue, conservation laws, and simple known representations 
of the properties of channels and membranes. No one had solved such a complex system of partial 
differential equations, as far as we knew, in this context, although Weinstein had done something in 
this spirit in the specialized (and very important) context of the kidney (170, 221-225).  

We wished to avoid simplified models using ordinary differential equations for mathematical, 
scientific, and human reasons. Mathematically, the ordinary differential equations of (chiefly) models 
lumped in space could not be derived without dealing with the full field equations and conservation 
laws. Scientifically, it was entirely unclear to us how to make such lumped models (or other simplified 
models) that would be valid with one set of unchanging (more or less) parameters over the range of 
conditions of clinical and physiological interest. Different conditions and different questions might well 
need different approximate (or lumped) models. After all, the Taylor expansions of nonlinear 
differential equations are notoriously complex and different ranges of parameters yield very different 
approximations. (I have never forgotten the graph and apparently simple ordinary differential equation 
that Julian Cole used to start his course on asymptotics Fig. 2.3.2 of (175) and the surrounding 
discussion.) Humanly, we had lived through controversies comparing simplified models in which 
investigators could not find a common ground for comparison, and found it easier to find fault than to 
solve problems. 

We found to our surprise (and to my horror) that the fundament transport law called the Starling 
equation in the physiology literature for more than a century (since 1896 (226)) did not have a 
mathematically satisfying derivation despite the best efforts of many (227-233). 

The central issue, from our point of view, was the classical treatment of ionic solutions as simple 
liquids (nearly ideal gases, so well presented in (30-34). It seemed clear to us that ionic solutions had 
too many too complex forms of energy (and flow and dissipation) to fit comfortably in a tradition that 
was so thoroughly depended on the theory of ideal (i.e., perfect) gases at equilibrium (with zero 
flows of all components) from which it grew (234).  

Consider for example the simple issue of incompressibility. While it is certainly true that ionic 
solutions as a whole are nearly incompressible, as is pure water, this fact is highly misleading. The 
individual components of ionic solutions change number density enormously (i.e., concentration) as 
location and conditions change. Ionic solutions are mixtures of compressible fluids in which the 
‘entropic’ energy stored by variable concentrations are major determinants of the behavior of these 
systems. These systems are non-ideal: the finite size of ions (and many other effects) mean that 
the free energy of any one species depends on every other.  
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In other words, everything in these systems is coupled. Surprisingly, it is an historical fact that 
distinguished biochemists and biophysical chemists like John Edsall were unaware as late as the 
1970’s that activity coefficients were functions of the type and concentration of all ions. They taught 
students like the author about nonideal solutions, with activity coefficients less than one. The reality 
that these activity coefficients depend on everything and thus properties of components of solutions 
are coupled to concentrations of other components was not taught. Indeed, it is absent in the 
‘independence principle used indiscriminately by Hodgkin and Huxley for ions in solution, ions in 
selective channels, and ions in non selective channels. 

Even the compressibility of the total solution and water itself comes into play when nonideal 
solutions are considered. The small compressibility of water and ionic solutions turned out to be 
important later with Jinn Liang Liu and I tried to construct a theory of the free energy of ionic solutions 
in a series of some ten papers, reviewed in (38). If this compressibility were not included self-
consistently, we could not compute properties of the so called simple primitive model in which water 
was spheres along with the spheres of ions. Perhaps others have had the same problem, although we 
are not sure. The practical consequences are important. Experimental properties of ionic solutions 
cannot be computed and in that sense cannot be understood, in my opinion, unless a selfconsistent 
theory can be built. See p. 351 of (41) for an experimental perspective and judgement as strong as my 
own. 

3.4 Fields cannot be constant. Turning to more general issues, that require a more complex 
theory, we look at the central fact that is present in a wide range of theories and simulations over an 
enormous range of scales.  

Force fields like electrical potential can never be assumed to have a specific shape (like constant 
fields) independent of conditions (2, 12, 15, 235-246). As conditions change, even a little bit, the 
shape of the electrical potential (i.e., the electrical force field) changes a lot. One suspects similar 
considerations apply to the force fields used in molecular dynamics, for example. Can one really 
expect the force fields for sodium ions in bulk solution with low concentration (say 200 millimolar) and 
tiny electric fields to be the same as those for sodium ions in an ionic channel with molar (or higher) 
concentration and fields of 100 mV in say 2 nanometers?  

These changes in electric field are dramatically illustrated by semiconductors. The changes in 
field determine the properties of bipolar transistors in which the charge carriers are nearly ions, namely 
holes and electrons.  

The central property of bipolar transistors is rectification (7, 247-255). Rectification is produced by 
changes in the shape of the field. The field is never constant. The field must always be computed from 
the charges, even in Brownian motion theory (238, 256) as Mott (257) quickly learned as he tried to 
understand real rectifiers. Mott quickly abandoned the idea of constant fields (258, 259). The constant 
field Goldman Hodgkin Katz GHK theory of selectivity (popularized by (262)) leaned heavily on Mott’s 
prewar work, as Hodgkin and Cole (Goldman’s Ph.D. supervisor) made clear to me in many 
conversations around 1962. But Mott abandoned that theory just as it was introduced to biophysics 
(260, 261) where it metastasized into nearly universal (mis)use (262). This strong language is 
warranted because constant field GHK does not even include the main properties of a channel protein 
that surely control permeability. It does not include charge, diameter of ions, diameter of a pore, and 
so on. 

Simple liquid theory, let alone the theory of ideal gases, cannot deal with the reality of ions in 
devices, channels, transporters, enzymes, and near nucleic acids.  

3.5 Ions are often crowded where they are important. The ions in ionic solutions are usually 
crowded where they are most important (263, 264) inside ion channels (265-267) or near electrodes 
(38-40, 268) (of batteries and electrochemical cells) or in active sites of enzymes (269) where number 
densities of more than 20 Molar are often found. (For comparison, solid NaCl is something like 40 
Molar.) At these number densities, the ionic solutions cannot be described in any useful way as ideal 
gases, simple liquids or fluids. A great deal of energy is involved in their nonideal properties. And 
interactions are profoundly important. The activity coefficient (or if you prefer the excess free energy) 
of each ion depends on the number densities of every other ion in a solution. Sadly this simple fact 
was not known to me as a student or for many years and I do not believe was understood by many 
biophysical chemists who taught me (270, 271) although I of course could be mistaken in this 
supposition. 
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The systems of biology usually depend on flow for their actual function. These systems are not 
close to equilibrium in the Green Kubo sense (272). Indeed, when used in devices, these systems 
always have power supplies needed for their function. The biological device of the nerve axon for 
example does not exist as a device if there are no power supplies (here gradients of concentration of 
ions). 

Power supplies require spatially nonuniform boundary conditions that drive substantial flow. An 
equilibrium treatment of such devices is silly and is likely to be fundamentally misleading as a study of 
amplifiers would be with zero volt power supplies, or the study of an automobile engine with water in 
the gas tank.  

Flow produces friction (273) as is obvious when one remembers that ionic solutions are 
condensed phases with little empty space. Ideal gases have no velocity or flow or friction for that 
matter. Real atoms and molecules are not at all ideal. They collide (i.e., change direction) at enormous 
rates (think 1015 times per second). Even four collisions of deterministic trajectories produces nearly 
random (Gaussian) noise. All motion in ionic solutions is dissipative and theories (262, 274) that do not 
include friction or other form of dissipation are as pointless as theories of reproduction of mammals 
that do not deal with two classes of structure (and function), male and female. These issues were 
discussed sometime ago (3, 275-284) and became clear to me as I learned of the thesis work of Kim 
Cooper (285) that was later extended in our work together (286-288). 

For all these reasons, the classical approach based on the theory of ideal gases and simple 
liquids, that described ion membranes without mention of the charge or structure of membranes or 
proteins ((260, 261) popularized by (262)) needed to be replaced by something that was not so 
obviously false. 

Fortunately, in the last decades, a theory of complex fluids has been developed that allows 
treatment of remarkably complex problems (289), in which energy is stored and dissipated as it flows 
far from equilibrium. The theory of complex fluids deals with many types of fields and flows 
consistently (i.e., the diffusion, migration, and bulk flow of the ions and water in electrolyte solutions), 
and is mathematically well defined, as a variational principle developed by Chun Liu, more than 
anyone else. The EnVarA approach (for Energy Variational Approach) was named (26) with the help 
of Fred Cohen and is described in the tutorial lectures (18) that yield well defined field theories—
usually partial differential equations—in structures defined by boundary conditions (19). The partial 
differential equations are fully coupled field theories including dissipation in which “everything interacts 
with everything else” as it obviously must in the concentrated salt solutions so important to life, and our 
electrochemical technology(20-25). Ionic solutions need to be dealt with by mathematics appropriate 
for these physical realities (29, 38, 239, 263, 264, 290-295) 

3.6 Plasmas of Life are Complex Fluids. The first task of our group (led by Huaxiong Huang, Shixin 
Xu and Zilong Song) was then to apply EnVarA to derive a transport equation like Starling had written, 
but one that included all interactions consistently. To do this required a reworking of the techniques of 
EnVarA. The usual methods had to be modified to accommodate membranes within the domain as 
found in the lens and most other syncytial tissues and not just in boundary conditions on the 
membranes defining the outer borders of the system. That took some time but the result was pleasing: 
we rederived the Starling equation, rather to our surprise.  

It should be clearly understood, however, that we were not able to deal with nonideal ionic 
components. The full treatment of flow for ions with substantial excess (electro)chemical potentials 
(i.e., with activity coefficients much less than one) remains for the future. The essential difficulty is 
dealing with the dependence of the excess electrochemical potential (i.e., activity coefficient) on every 
ionic species in real solutions. The classical assumption that activity coefficients of an ion (say Na+) 

depend only on the Na+ concentration must be replaced by the reality that the activity coefficient 

depends on all ion concentrations, e.g., the activity coefficient of Na+ depends on the concentration of 
K+. This cross dependence can have profound practical effects throughout chemical science as 

Wolfgang Nonner (266) discovered when we evaluated the activity coefficients of Ca2+ from tables of 
EGTA solutions used throughout chemistry and biochemistry (296-300), particularly the biochemistry 

of contractile proteins. The activity coefficient of Ca2+ was assumed to be the same in equimolar Na+ 
and K+ solutions. Our results showed it was not. And of course it could not be, given the different 
excess chemical potentials and activity coefficients of these ions. 

3.7 Structural model of the lens. Using variational treatment of bulk solutions, the next task was to 
construct a structural model of the lens. This was an easy task, following in the footsteps of the 
Mathias group (op. cit.) whose structural model we essentially copied using their representation of the 
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anatomy and histology of the lens, and the distribution of connexins that connect lens fibers. We used 
a much more primitive spatial distribution of channels and that needs to be improved in future work.  

The results have been recently published in a bidomain model of lens circulation (301) with even 
more details in the thesis of Yi Zhu (302).  

3.8 More Detail: derivation of the field equations. It is tempting to just write down the physically 
intuitive field equations for the bidomain model (129, 177)—correct, or rather not incorrect, as that 
approach might be—–using the general approach of the structural analysis of electrical properties 
((79, 84, 123-125, 303-305) conjoined to a representation of fluid flow. An abundance of caution, and 
mis-steps using this approach in our several careers, motivated a complete derivation from 
conservation laws themselves, and indeed a derivation of the underlying fluid flow laws like Starling’s 
equation (306). Such an approach also makes it more difficult to quibble about the best of multiple 
representations, since conservation laws are conservation laws, with representations as integral or 
differential equations that are not in dispute. The following derivation follows that of Yi et al closely, lest 
simplification lead to inadvertent ambiguities. 

The derivation follows the approach used for the analysis of electrical structure (85, 88, 176) 
joined with the laws of fluid flow (306) using the variational approach to the theory of complex fluids (26) 
of Liu and collaborators (18-25). The conservation law for each species of ions is  
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The 
ij  are passive fluxes [4,5] driven only gradients of electrical and chemical potential of the ions. 

ATP hydroysis is not involved.  
 Following classical derviations of conservation partial differential equations, and vector 

differential operators, we approximate surface integral on eS  and iS   
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Mass conservation law gives  
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Trans-membrane velocity mu is given by  
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Darcy’s law (307) is used to eliminate exu  and inu  in (6)  and (9) . 
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Thee potential 
ex  and 

in is determined from (88, 176)  
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We combine (6) , (8) , (9)  and (11) , to produce 

 



12 
 

 

( ) ( )

( ) ( )

= 0,

= 0,

= 0,

i i

ex in

i i i

ex v

i i i iex in
ex ex ex in in in

i i

i iex
ex ex ex v

i

J J

J j a

P e z C P e z C

P e z C



 
 

 






  + 

  − +

         
   +  +   +          

         

   
   +  + −   

   

 



Bidomain Model

ex in

ex

ex in

ex

M M

M M

M M

M M ( ) ( ) = 0,

( ) ( ) = 0,

( ) ( ) = 0.

p ex in p ex in

ex ex in in

in in v m in ex

L P P L RT O O

g g

g Y



 

  










  − + − 



   +  
    − − M

   (13) 

 where  

 = , { , }.i i i i i i il
l l l l l l l

i

J C P e z C C M l ex in


 


  
−  +  −    

  
  (14) 

The bidomain model is complex because the underlying tissue is complex. Biology imposes a structure. 
Physics and biology impose boundary conditions on the structure, by the properties of the channels and 
lipids of the structure. Biophysics imposes the specific values of these properties. The specific values 
matter. Just as engineering devices behave properly and perform their function only in a specific 
environment of power supply voltages and so on, biological devices only function under specific 
conditions. They, and engineering devices, ‘die’, i.e., cease to function in other conditions. We are 
interested in functioning bidomain models, so we present the parameters under which the model has 
been shown to function properly.  
 

Parameter Values 
   

Parameter
s 

Value Reference Paramet
er 

Value Reference 

𝑀𝑣 6 × 101𝑚     [3] 𝑒 1.6 × 10−19 𝐶   

    Rex 4.85 × 106 𝑜ℎ𝑚 ⋅ 𝑚     [3] 𝑘𝐵 1.38 × 10−23 𝐽 ⋅ 𝐾−1  

    Rin 6.25 × 104 𝑜ℎ𝑚 ⋅ 𝑚     [3] 𝑅 8.314 𝐽 ⋅ 𝑚𝑜𝑙−1 ⋅ 𝐾  

     𝜇 7 × 10−4 𝑃𝑎 ⋅ 𝑠     [9]     T 310 𝐾  

𝝉𝒆𝒙 0.16     [8] 𝑀𝑁𝑎 0.3249 𝑚2 ⋅ 𝑠−1 ⋅ 𝑣𝑜𝑙𝑡−1 ⋅ 𝐶−1    [6] 

𝝉𝒊𝒏 1     [8]    𝑀𝐾 0.4769 𝑚2 ⋅ 𝑠−1 ⋅ 𝑣𝑜𝑙𝑡−1 ⋅ 𝐶−1    [6] 

𝝈𝒆𝒙 1/(4.85 × 106 × 0.16 × 𝑆𝑒𝑥/𝑆𝑇)     [1] 𝑀𝐶𝑙 0.4956  𝑚2 ⋅ 𝑠−1 ⋅ 𝑣𝑜𝑙𝑡−1 ⋅ 𝐶−1    [6] 

𝝈𝒊𝒏 1/(6.25 × 4 × 1 × 𝑆𝑖𝑛/𝑆𝑇)     [1] 𝑔𝑁𝑎 2.2 × 10−3 𝑆 ⋅ 𝑚−2    [8] 

𝜎              1     [9] 𝑔𝐶𝑙 2.2 × 10−3 𝑆 ⋅ 𝑚−2    [8] 

𝐿𝑝 1.34 × 10−13 𝑚3 ⋅ 𝑁−1 ⋅ 𝑠−1     [7] 𝜅𝑖𝑛 5.159 × 10−13 𝑚2    [9] 

      𝐶𝑚 7.9 × 10−3 𝐹 ⋅ 𝑚−2      [1] 𝜅𝑒𝑥 1.33 × 10−16 𝑚2       [9] 

𝐺𝑚  4.38 × 10−3 𝑜ℎ𝑚−1 ⋅ 𝑚−2      [1]    

 

3.9 More Detail: The full model could be computed with little difficulty using a combination of home 
grown programs and library programs in MATLAB. Parameters could be robustly determined by the 
extensive experimentation available. Fits to experimental data required no further adjustment of 
parameters and were very good, almost embarrassingly so as far as at least one of the authors was 
concerned (however, good structural models are often found to fit good data well, e.g. (59, 76, 78, 
88)).  

The perturbation properties of the full model could be studied. That is to say, classical Taylor 
expansions (with occasional consideration of singular situations as done by (59, 123) a long time ago) 
allow construction of a simplified model. The errors in the simplified model were determined by direct 
comparison with the full computed solution, over a range of parameters and conditions although all 
pertinent parameters and conditions could not be tested of course. Thus, this computing of errors 
remains an unbounded iterative process. We are always confronted with new conditions, new 
experiments, new testing of the reduced models. I point out this process because the reduced 
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perturbation models give important physical and biological insight that is easily lost amongst the 
complete calculation of the model, which correctly determine everything (within the accuracy of the 
model specification itself, of course). But everything is such a large set that nothing may be 
understood as a result (of our human limitations).  

The perturbation model allowed derivation of the Mathias engineering model. Our simplified 
model (determined I repeat by actual perturbation and Taylor expansion not by guessing, however 
inspired) was a slight but significant generalization of the Mathias engineering model.  

We could study the effects of the effective resistance of connexins, showing an interesting 
qualitative bifurcation in quantitative properties predicted (and measured). The intracellular pressure 
changed dramatically as the effective connexin conductance was changed but many variables were 
essentially unchanged. In our model, all variables are related to the potential of the extracellular space 
within the lens, except the hydrostatic pressure. The potential of the extracellular phase within the lens 
hardly changes with effective resistance of the connexins, and so only the hydrostatic pressure 
changes significantly as the effective resistance of the connexins is changed.  

The perturbation structure of the problem shows the mathematical reason the potential of the 
extracellular phase within the lens does not vary with connexin density. Physically and physiologically 
it seems obvious that changes in the intracellular domain would have only second order effects on the 
potential of the extracellular phase within the lens because they are separated by a high resistance 
membrane that buffers extracellular from the intracellular region (see similar effects in other systems, 
see qualitative general discussion in (123) and quantitative special cases computed in (125-128). 

The insensitivity of measurements to changes in connexin effective resistance has been a cause 
of concern in the lens experimental literature as I read it (183, 198). It seems likely that much of the 
experimental literature of the lens (sampled by the references (184, 200, 201, 308-314)) will benefit 
from an understanding of the role of the potential of the extracellular phase within the lens and its 
insensitivity to many parameters. 

4.0 Optic nerve of the amphibian salamander We turn now to the generalization of the bidomain 
model of flow in the lens to the tridomain model of the optic nerve of the salamander Necturus. 

The approach to tissue complexity described and advocated here depends on careful connection 
of structural and experimental work, emphasizing known biophysical properties of membranes, 
channels, and transporters. It grew out of the tradition of Cambridge (England) Physiology, driven by 
Alan Hodgkin more than anyone else, of choosing preparations given us by evolution in which 
complexity is not overwhelming, and physiological function is evident.  

The history is evident in the study of the nerve impulse that carriers information throughout the 
nervous system. The squid axon (315-317) was chosen as a model preparation (318-321) after 
Hodgkin, as a student, showed that the nerve impulse was conducted by electric current (322, 323) as 
opposed to the chemical hypothesis of the then leader of English Biophysics, the Nobel Laureate AV 
Hill (324). The squid axon was large enough to allow control of potential using the voltage clamp 
method of KS Cole (318-321, 325) but results were difficult to interpret because of the fear that 
concentrations of ions would change (in a process quaintly called ‘concentration polarization’ then and 
still today (326-328)). Hodgkin, Huxley and Katz seemed to have always left out the word 
‘concentration’ thus creating singular confusion between their ‘concentration polarization’ (which was a 
concentration change driven by current flow) and the dielectric (and vacuum) polarization  of Maxwell, 
Heaviside and followers (i.e., all physicists) for whom polarization did not include the translation of ions 
(rather for them polarization was the rapid small reversible change in distribution of charge in solids, 
molecules, and atoms and the mysterious displacement current found everywhere including a 
vacuum). Wang (329) has recently shown how the energetic variational approach EnVarA (26) of Liu 
and collaborators (18-25) can be used to reunite both meanings of polarization, in a way that would 
have brought a smile to Hodgkin’s face, more likely than not. 

Once a dual electrode system was placed inside the squid axon, making what is usually called a 
four electrode recording system, the artifactual concentration polarization around the current electrode 
was of no importance, but Hodgkin, Huxley and Katz were surprised to find a slow (say 4 msec) 
change in current (in their voltage clamped axon) that might represent the change of concentration of 
ions near the squid membrane. It did not for the most part, but Hodgkin and Huxley were careful to 
leave open the possibility later demonstrated by Frankenhaeuser and Hodgkin (330) that some of the 
slower changes were the result of accumulation of potassium in the narrow space outside of the nerve 
membrane, a result made even more plausible by the theory of Taylor and Bezanilla (331). The 
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arguments for potassium accumulation were however somewhat indirect, and required a greater 
knowledge of channel biophysics than was widespread in the 1950’s, so it was desirable to find a way 
to measure the potassium concentration in the narrow extracellular space outside the nerve directly, or 
to find an optical way to measure the membrane potential that depended on potassium flow in a 
different way (332).   

Following the tradition of choosing the right preparation, Kuffler investigated the accumulation of 
potassium (333, 334) in the optic nerve of an amphibian salamander the mudpuppy Necturus found in 
the wetlands of Eastern North Carolina. Kuffler had studied the optic nerve (335-337) because it, as a 
part of the central nervous system, was made of three domains, nerve cell, extracellular space, and 
glia. Kuffler had shown that the glia were an electrical syncytium, so all three domains were regions of 
salt solutions of relatively small longitudinal and three dimensional effective resistivity. The glia had a 
membrane potential (i.e., measured at very low frequencies) that responded to potassium. So Kuffler 
could use the membrane potential recorded inside the glia to measure the potassium concentration 
immediately outside the nerve membrane.  

I present here the precise specification of the electrical part of the tridomain model (338) lest an 
important detail be inadvertently omitted. Presenting the precise specification of the flow part of the 
tridomain would be too much for this paper. It is also not necessary: the material is presented in 
complete detail in the overlapping publications (167, 302, 338, 339). The many pages devoted to 
Validation and Calibration are of particular importance although not presented here because of space 
limitations. 

 
2.2.2  Ion Transport. We define the regions: 

1)  Ω𝑂𝑃 consist of axon compartment 

2) ,Ω𝑎𝑥  axonal interior 

3) Ω𝑔𝑙 glial compartment 

4) Ω𝑒𝑥
𝑂𝑃  extracellular space.  

In addition there are regions. For example, the subarachnoid space Ω𝑆𝐴𝑆 that has only  
extracellular space.  
 
The conservation of chemical species implies the following system of partial differential 
equations to describe the dynamics of ions in each of the three regions, for 𝑖 = Na+, K+, Cl− 
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𝑖 ) = 0, inΩ𝑂𝑃 , (16) 

 
∂(𝜂𝑒𝑥𝑐𝑒𝑥

𝑖 )

∂𝑡
−ℳ𝑎𝑥𝐽𝑎𝑥

𝑚,𝑖 −ℳ𝑔𝑙𝐽𝑔𝑙
𝑚,𝑖 + ∇ ⋅ (𝜂𝑒𝑥𝐣𝑒𝑥

𝑖 ) = 0, inΩ𝑂𝑃 , 

  (17) 
 where the last equation reduces to the following in the subarachnoid  Ω𝑆𝐴𝑆 region,  

 
∂𝑐𝑒𝑥
𝑖,𝑆𝐴𝑆

∂𝑡
+ ∇ ⋅ 𝐣𝑒𝑥

𝑖,𝑆𝐴𝑆 = 0. (18) 

The transmembrane ion flux 𝐽𝑘
𝑚,𝑖   (𝑘 = 𝑔𝑙, 𝑎𝑥) consists of active ion pump source 

 𝐽𝑝,𝑘
𝑖  and passive ion channel source 𝐽𝑐,𝑘

𝑖 , on the 𝑘 membrane,  

 𝐽𝑘
𝑚,𝑖 = 𝐽𝑝,𝑘

𝑖 + 𝐽𝑐,𝑘
𝑖 ,    𝑘 = 𝑔𝑙, 𝑎𝑥,    𝑖 = Na+, K+, Cl−. 

 On the glial cell membranes, 𝐽𝑐,𝑔𝑙
𝑖  is defined as  

 𝐽𝑐,𝑔𝑙
𝑖 =

𝑔𝑔𝑙
𝑖

𝑧𝑖𝑒
(𝜙𝑔𝑙 − 𝜙𝑒𝑥 − 𝐸𝑔𝑙

𝑖 ),    𝑖 = Na+, K+, Cl−, (19) 

where the Nernst potential is used to describe the gradient of chemical potential 𝐸𝑔𝑙
𝑖 =

𝑘𝐵𝑇

𝑒𝑧𝑖
log (

𝑐𝑒𝑥
𝑖

𝑐𝑔𝑙
𝑖 )   for 

ith ion species in the glial membrane and the conductance 𝑔𝑔𝑙
𝑖  is a fixed constant independent  of  voltage 

and time. On the axon’s membrane 𝐽𝑐,𝑎𝑥
𝑖 is defined as     

 𝐽𝑐,𝑎𝑥
𝑖 =

𝑔𝑎𝑥
𝑖

𝑧𝑖𝑒
(𝜙𝑎𝑥 − 𝜙𝑒𝑥 − 𝐸𝑎𝑥

𝑖 ),    𝑖 = Na+, K+, Cl−, 

 where  
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 𝑔𝑎𝑥
𝑁𝑎 = 𝑔̅𝑁𝑎𝑚3ℎ + 𝑔𝑙𝑒𝑎𝑘

𝑁𝑎 ,    𝑔𝑎𝑥
𝐾 = 𝑔̅𝐾𝑛4 + 𝑔𝑙𝑒𝑎𝑘

𝐾 ,    𝑔𝑎𝑥
𝐶𝑙 = 𝑔𝑙𝑒𝑎𝑘

𝐶𝑙 . 

The time dependent dynamic of open probability, often loosely called ‘gating’ is governed by the 
Hodgkin-Huxley model (319, 321, 325, 340, 341) 

 

𝑑𝑛

𝑑𝑡
= 𝛼𝑛(1 − 𝑛) − 𝛽𝑛𝑛,

𝑑𝑚

𝑑𝑡
= 𝛼𝑚(1 − 𝑚) − 𝛽𝑚𝑚,

𝑑ℎ

𝑑𝑡
= 𝛼ℎ(1 − ℎ) − 𝛽ℎℎ,

 (20) 

Here, 𝑛  is the open probability of the K+ channel. 𝑚 is the open probability of the Na+ activation gate, 

and ℎ is the open probability of the Na+ inactivation gate.  

We assume that the only pump is the Na/K active transporter. We are more than aware that other active 
transport systems can and likely do move ions and thus water in this system. They will be included as 
experimental information becomes available. 

In the case of the Na/K pump 𝐽𝑝,𝑘
𝑖  (𝑘 = 𝑎𝑥, 𝑔𝑙), the strength of the pump 𝐼𝑘 depends on the concentration 

in the intracellular and extracellular space (342), i.e.  

 𝐽𝑝,𝑘
𝑁𝑎 =

3𝐼𝑘

𝑒
,    𝐽𝑝,𝑘

𝐾 = −
2𝐼𝑘

𝑒
,    𝐽𝑝,𝑘

𝐶𝑙 = 0,    𝑘 = 𝑔𝑙, 𝑎𝑥, (21) 

 where  

 

𝐼𝑘 = 𝐼𝑘,1 (
𝑐𝑘
𝑁𝑎

𝑐𝑘
𝑁𝑎+𝐾𝑁𝑎1

)
3

(
𝑐𝑒𝑥
𝐾

𝑐𝑒𝑥
𝐾 +𝐾𝐾1

)
2

+𝐼𝑘,2 (
𝑐𝑘
𝑁𝑎

𝑐𝑘
𝑁𝑎+𝐾𝑁𝑎2

)
3

(
𝑐𝑒𝑥
𝐾

𝑐𝑒𝑥
𝐾 +𝐾𝐾2

)
2

,    𝑘 = 𝑎𝑥, 𝑔𝑙.

 (22) 

𝐼𝑘,1 and 𝐼𝑘,2 are related to the maximum current of 𝛼1 −  and 𝛼2 −  isoform of Na/

K pump on the glial membrane (𝑘 = 𝑔𝑙) or axon membrane (𝑘 = 𝑎𝑥). 

The definitions of ion flux in each domain are as follows, for 𝑖 = Na+, K+, Cl−,  

 
𝐣𝑙
𝑖 = 𝑐𝑙

𝑖𝐮𝑙 − 𝐷𝑙
𝑖𝜏𝑙 (∇𝑐𝑙

𝑖 +
𝑧𝑖𝑒

𝑘𝐵𝑇
𝑐𝑙
𝑖∇𝜙𝑙) ,    𝑙 = 𝑔𝑙, 𝑒𝑥,

𝑗𝑎𝑥,𝑧
𝑖 = 𝑐𝑎𝑥

𝑖 𝑢𝑎𝑥
𝑧 − 𝐷𝑎𝑥

𝑖 (
∂𝑐𝑎𝑥
𝑖

∂𝑧
+

𝑧𝑖𝑒

𝑘𝐵𝑇
𝑐𝑎𝑥
𝑖 ∂𝜙𝑎𝑥

∂𝑧
) .

 

 For the axon compartment and glial compartment boundary condition, we have  

 𝑐𝑎𝑥
𝑖 = 𝑐𝑎𝑥

𝑖,𝑟𝑒,    on  Γ2 ∪ Γ6, (23) 

 and  

 {

𝐣𝑔𝑙
𝑖 ⋅ 𝐫̂ = 0, on Γ1,

𝑐𝑔𝑙
𝑖 = 𝑐𝑔𝑙

𝑖,𝑟𝑒, on Γ2 ∪ Γ6,

𝐣𝑔𝑙
𝑖 ⋅ 𝐫̂ = 0, on Γ7,

 (24) 

where the Dirichlet boundary conditions are used at locations Γ2 ∪ Γ6 . 

for axons and glial cell, and a non-flux boundary condition is used for glial cells, ions, flux, and pia matter. 
For the extracellular space boundary condition, similar boundary conditions are imposed except on the 
pia matter  Γ7.  The flux across the pia matter is assumed continuous and Ohm’s law is used (338). 

Additionally,a non-permeable boundary condition is used at location Γ5, and a homogeneous Neumann 
boundary condition is applied at the location of the dura matter Γ4. 

 

{
 
 
 

 
 
 
𝐣𝑒𝑥
𝑖 ⋅ 𝐫̂ = 0, onΓ1,

𝑐𝑒𝑥
𝑖 = 𝑐𝑐𝑠𝑓

𝑖 , onΓ2 ∪ Γ3,

∇𝑐𝑒𝑥
𝑖 ⋅ 𝐫̂ = 0, onΓ4,

𝐣𝑒𝑥
𝑖 ⋅ 𝐳̂ = 0, onΓ5,

𝑐𝑒𝑥
𝑖 = 𝑐𝑒𝑦𝑒

𝑖 , onΓ6,

𝐣𝑒𝑥
𝑖,𝑂𝑃 ⋅ 𝐫̂ = 𝐣𝑒𝑥

𝑖,𝑆𝐴𝑆 ⋅ 𝐫̂ =
𝐺𝑝𝑖𝑎
𝑖

𝑧𝑖𝑒
(𝜙𝑒𝑥

𝑂𝑃 − 𝜙𝑒𝑥
𝑆𝐴𝑆 − 𝐸𝑝𝑖𝑎

𝑖 ), onΓ7.

 (26) 
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We define  

 𝛿7,𝑙
𝑖 =

Δ𝑐𝑙
𝑖,∗

𝑐𝑙
𝑖,∗ ,    𝑖 = Na

+, K+, Cl+,    𝑙 = 𝑎𝑥, 𝑔𝑙, 𝑒𝑥. 

so the ion fluxes can be written as  

 𝐣̃𝑙
𝑖 = 𝑃𝑒𝑙

𝑖𝛿7,𝑙
𝑖 𝑐̃𝑙

𝑖𝐮̃𝑙 − (𝛿7,𝑙
𝑖 ∇̃𝑐̃𝑙

𝑖 + 𝑧𝑖𝑐̃𝑙
𝑖∇̃𝜙̃𝑙),      𝑙 = 𝑔𝑙, 𝑒𝑥, 

 𝑗𝑎̃𝑥,𝑧
𝑖 = 𝑃𝑒𝑎𝑥

𝑖 𝛿7,𝑙
𝑖 𝑐̃𝑙

𝑖𝑢̃𝑎𝑥
𝑧 − (𝛿7,𝑙

𝑖 ∂𝑐𝑙̃
𝑖

∂𝑧
+ 𝑧𝑖 𝑐̃𝑙

𝑖 ∂𝜙̃𝑙

∂𝑧
), 

 with Peclet numbers  

 𝑃𝑒𝑎𝑥
𝑖 =

𝑢𝑎𝑥
∗ 𝑧∗𝑐𝑎𝑥

𝑖,∗

𝐷𝑎𝑥
𝑖 Δ𝑐𝑎𝑥

𝑖,∗ ,    𝑃𝑒𝑙
𝑖 =

𝑢𝑙
∗𝑟∗𝑐𝑙

𝑖,∗

𝐷𝑙
𝑖𝜏𝑙Δ𝑐𝑙

𝑖,∗ , 𝑙 = 𝑔𝑙, 𝑒𝑥. (27) 

If we let 𝑔𝑙
∗, 𝑙 = 𝑎𝑥, 𝑔𝑙 be the characteristic membrane conductance,

𝑘𝐵𝑇

𝑒
 be the characteristic electric 

potential, the dimensionless form of transmembrance flux is  

 𝐽𝑙
𝑚,𝑖 = 𝐽𝑐,𝑙

𝑖 + 𝐽𝑝,𝑙
𝑖 , 

where for 𝑖 = Na+, K+, Cl−, 𝑙 = 𝑔𝑙, 𝑎𝑥,  

 𝐽𝑐,𝑙
𝑖 =

𝑔̃𝑙
𝑖

𝑧𝑖
(𝜙̃𝑘 − 𝜙̃𝑒𝑥 − 𝐸̃𝑔𝑙

𝑖 ),      𝐽𝑝,𝑙
𝑖 =

𝐽𝑝,𝑙
𝑖 𝑒2

𝑘𝐵𝑇𝑔𝑙
∗ . 

The governing equations for ions become  

 
∂(𝜂𝑔𝑙𝑐𝑔̃𝑙

𝑖 )

∂𝑡
+ 𝛿8

𝑖 𝐽𝑔𝑙
𝑚,𝑖 + 𝛿9

𝑖 ∇̃ ⋅ (𝜂𝑔𝑙 𝐣̃𝑔𝑙
𝑖 ) = 0, (28) 

 
∂(𝜂𝑎𝑥𝑐𝑎̃𝑥

𝑖 )

∂𝑡̃
+ 𝛿10

𝑖 𝐽𝑎𝑥
𝑚,𝑖 + 𝛿11

𝑖 ∂

∂𝑧
(𝜂𝑎𝑥𝑗𝑎̃𝑥,𝑧

𝑖 ) = 0, (29) 

 
∂(𝜂𝑒𝑥𝑐𝑒̃𝑥

𝑖 )

∂𝑡
− 𝛿12

𝑖 𝛿10
𝑖 𝐽𝑎𝑥

𝑚,𝑖 − 𝛿13
𝑖 𝛿8

𝑖 𝐽𝑔𝑙
𝑚,𝑖 + 𝛿14

𝑖 ∇̃ ⋅ (𝜂𝑒𝑥 𝐣̃𝑒𝑥
𝑖 ) = 0,             (30) 

where  

 ∇̃ ⋅ (𝜂𝑙 𝐣̃𝑙
𝑖) =

1

𝑟̃

∂(𝑟̃𝜂𝑙𝑗̃𝑙
𝑟,𝑖)

∂𝑟̃
+ (𝛿0)

2
∂(𝜂𝑙𝑗̃𝑙

𝑧,𝑖)

∂𝑧
,    𝑙 = 𝑔𝑙, 𝑒𝑥, 

 𝛿8
𝑖 =

𝑡∗ℳ𝑔𝑙𝑔𝑔𝑙
∗ 𝑘𝐵𝑇

𝑐𝑔𝑙
𝑖,∗𝑒2

,    𝛿9
𝑖 =

𝐷𝑔𝑙
𝑖 𝜏𝑔𝑙𝑡

∗

(𝑟∗)2
, 

 𝛿10
𝑖 =

𝑡∗ℳ𝑎𝑥𝑔𝑎𝑥
∗ 𝑘𝐵𝑇

𝑐𝑎𝑥
𝑖,∗ 𝑒2

,    𝛿11
𝑖 =

𝐷𝑎𝑥
𝑖 𝑡∗

(𝑧∗)2
, 

 𝛿12
𝑖 =

𝑐𝑎𝑥
𝑖,∗

𝑐𝑒𝑥
𝑖,∗ ,    𝛿13

𝑖 =
𝑐𝑔𝑙
𝑖,∗

𝑐𝑒𝑥
𝑖,∗ ,    𝛿14

𝑖 =
𝐷𝑒𝑥
𝑖 𝜏𝑒𝑥𝑡

∗

(𝑟∗)2
. 

 

The symbol Δf is used to denote the variation of the variablef from its resting state. Multiplying the 

equations (23-25) with 𝑧𝑖𝑒 respectively, summing up, and using the charge neutrality condition, we 

have the following system for the electric fields in 𝑎𝑥, 𝑔𝑙, 𝑒𝑥, 

 ∑𝑖 𝑧
𝑖𝑒ℳ𝑔𝑙𝐽𝑔𝑙

𝑚,𝑖 + ∑𝑖 ∇ ⋅ (𝑧
𝑖𝑒𝜂𝑔𝐣𝑔𝑙

𝑖 ) = 0, (31) 

 ∑𝑖 𝑧
𝑖𝑒ℳ𝑎𝑥𝐽𝑎𝑥

𝑚,𝑖 + ∑𝑖
∂

∂𝑧
(𝑧𝑖𝑒𝜂𝑎𝑥𝑗𝑎𝑥,𝑧

𝑖 ) = 0, (32) 

 ∑𝑖 𝑧
𝑖𝑒∇ ⋅ (𝜂𝑔𝑙𝐣𝑔𝑙

𝑖 ) + ∑𝑖
∂

∂𝑧
(𝑧𝑖𝑒𝜂𝑎𝑥𝑗𝑎𝑥,𝑧

𝑖 ) + ∑𝑖 ∇ ⋅ (𝑧
𝑖𝑒𝜂𝑒𝑥𝐣𝑒𝑥

𝑖 ) = 0, 

  (33) 

In the subarachnoid space Ω𝑆𝐴𝑆, the extracellular equations reduce to  

 ∑𝑖 ∇ ⋅ (𝑧
𝑖𝑒 ∑𝑖 𝐣𝑒𝑥

𝑖,𝑆𝐴𝑆) = 0. (34) 

The boundary conditions for electric fields 𝜙𝑎𝑥 , 𝜙𝑔𝑙  and 𝜙𝑒𝑥 are given below. 
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In the axon compartment:  

 {
∇𝜙𝑎𝑥 ⋅ 𝐳̂ = 0, onΓ2,

∇𝜙𝑎𝑥 ⋅ 𝐳̂ = 0, onΓ6,
 (35) 

In the glial compartment:  

 

{
 
 

 
 

∇𝜙𝑔𝑙 ⋅ 𝐫̂ = 0, onΓ1,

∇𝜙𝑔𝑙 ⋅ 𝐳̂ = 0, onΓ2,

∇𝜙𝑔𝑙 ⋅ 𝐳̂ = 0, onΓ6,

∇𝜙𝑔𝑙 ⋅ 𝐫̂ = 0, onΓ7,

 (36) 

and in the extracellular space:  

 

{
 
 
 

 
 
 

∇𝜙𝑒𝑥 ⋅ 𝐫̂ = 0, on Γ1,

∇𝜙𝑒𝑥 ⋅ 𝐳̂ = 0, on Γ2 ∪ Γ3,

∇𝜙𝑒𝑥 ⋅ 𝐫̂ = 0, on Γ4,

∇𝜙𝑒𝑥 ⋅ 𝐳̂ = 0, on Γ5,

∇𝜙𝑒𝑥 ⋅ 𝐳̂ = 0, on Γ6,

∑𝑖 𝑧
𝑖𝑒𝐣𝑒𝑥

𝑖,𝑂𝑃 ⋅ 𝐫̂ = ∑𝑖 𝑧
𝑖𝑒𝐣𝑒𝑥

𝑖,𝑆𝐴𝑆 ⋅ 𝐫̂

= ∑𝑖 𝐺𝑝𝑖𝑎
𝑖 (𝜙𝑒𝑥

𝑂𝑃 − 𝜙𝑒𝑥
𝑆𝐴𝑆 − 𝐸𝑝𝑖𝑎

𝑖 ), on Γ7.

 (37) 

This concludes the formal presentation of this component of the tridomain model. The rest is found in 
the original overlapping papers (167, 302, 338, 339) and the entire model, and its components, are 
validated and calibrated at length in those publications. To repeat: the validation and calibration are at 
least as important as the derivation. 

4.1 Implications. Potassium ions are aToxic Waste. I turn now to the implications of this analysis.  

It should be clearly understood that accumulated potassium is a toxic waste, a hazard to both the 
signaling function of neurons and their survival as cells. Signaling is blocked by high potassium 
(because of inactivation of sodium channels more than anything else). Cell volume changes when 
potassium is elevated and with enough external potassium, cells will burst and die. 

Potassium accumulation is important in many biological and clinical applications. Potassium 
accumulation and flow in the extracellular space have been shown to have important roles in aging, 
Alzheimers disease, anesthesia, dementia, diabetes, epilepsy, migraine, sleep, stroke and traumatic 
brain injury [alphabetical order], as well as an important role in the biology of the central nervous 
system (47, 49, 50, 52, 53, 55, 56, 100, 101, 343-362). Indeed, Filipidis et al (363) have identified 
many such systems in biology containing three intercalated sets of tissues, including pleura, 
peritoneum, pericardium, fetal membranes and leptomeninges citing the significant references [261-
290(364-393). Each of these tissues likely to include intercalated syncytia and thus require 
multidomain models of the type we have studied. Hopefully, a structural analysis, using conservation 
laws and stereological estimates of structure, along with the biophysics of the type and distribution of 
channels and transporters will help understand each of these tissues in health and disease. 

While I was aware of the classical physiological literature on potassium accumulation (as the 
many words of this review illustrate), I was insensitive, and mostly unaware of the important literature 
on other related systems. I apologize for my inadvertent neglect of appropriate references.  

The reader will benefit from reading different approaches from ours in the work of several 
laboratories, including those of Mori (55, 354, 394-404), Ellingsrud (405-410), Sacco (411) and the 
many groups interested in glymphatics, sampled in (47-57). While few if any of these papers deal with 
potassium accumulation in tridomain systems, no doubt their methods could be usefully applied to 
those issues. Sadly, I am so distracted by other work—on the Maxwell equations, models of 
polarization as a stress strain relation of charge density, the voltage sensor of sodium and potassium 
nerve channels, and most recently (and speculatively) the stochastic analysis of the mechanics of 
hydrogen bonds—that I have been unable to focus on those other methods. 

Huaxiong Huang led our efforts (with his graduate student Yi Zhu and postdoctoral fellow Shixin 
Xu) to create a tridomain model able to deal with the Orkand data on potassium accumulation in optic 
nerve (333, 334) as he had led the team analyzing the lens. See Acknowledgement. 

4.2 Clearance of Potassium ions from the extracellular space. Turning to the results of our 
analysis and simulations (338, 339, 412), I discuss the clearance of potassium from the extracellular 
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space. Only in the idealized world of the classical squid axon experiments is a single action potential 
enough to study. In the real world, trains of action potentials are frequent. Potassium accumulated 
after these many action potentials acts as a toxic waste. As it accumulates potassium will depolarize 
the nerve membrane (i.e., make the resting potential more positive) and that in turn will inactivate 
sodium channels and so block the action potential. Extracellular potassium poisons nerve signals this 
way. Extracellular potassium can also kill the nerve fiber itself (as well as its signal). When potassium 
accumulates sufficiently it will diffuse into the nerve fiber, along with water, and that diffusion can 
overwhelm the pumping mechanisms that maintain homeostasis of cell volume. In plain English, the 
potassium swells the nerve until it bursts, killing the nerve. 

The mechanism of potassium clearance thus is of particular biological interest since it is needed 
to maintain nerve life, and thus animal life, as well as the nerve signal.  

To determine that mechanism, we built a model (338, 339, 412) of all three of the domains of the 
optic nerve including the coupled migration (in the electric field), diffusion (in the concentration field), 
and convection (in the diffusion field of water) of sodium, potassium and chloride ions, and water itself. 
We could not predict ahead of time which of the flows in which of the domains would be used by 
evolution for potassium clearance. And we hasten to say that we do not know which of the flows (and 
the channels and transporters that control the flow) will be most important for other functions of 
tridomain systems in the brain, and elsewhere.  

We could not build a simplified transport model, or a lumped model in which compartments had a 
single concentration of ions and water independent of location, before we analyzed the entire system. 
And we were convinced from study of similar systems, that if we did guess a compartment model, it 
would not be the same as that of other investigators, with just as good intuition and probably greater 
knowledge than ours.  

Confronted with different models of the same results, it seemed unlikely that progress would be 
rapid. The unavoidable competition of different research groups for resources (and recognition) and 
the absence of an agreed upon universal model has slowed research in other epithelia for decades 
(413-415), and it seemed it would do so here as well. So we constructed what seemed to us to be a 
complete model of twenty one partial differential equations and three ordinary differential 
equations. We used this model to describe the structures actually used by the optic nerve to clear 
potassium from the extracellular space during a train of action potentials.  

This much structural detail is not arbitrary. It is needed because that is how evolution has built its 
system of potassium clearance. There is some arbitrariness, particularly in the choice of channels 
open at long times and the choice and distribution of transporters, but our results were robust enough 
to allow some conclusions. Experimental data will resolve these issues and be easy to incorporate into 
our model and its implementations. It is important to note that other functions may depend critically on 
the distribution and properties of channels and pumps and so the experimental measurement of those 
properties and distributions will be critical, in my opinion, in the application of these methods to crucial 
biological and clinical problems, from waste clearance in sleep to glaucoma. 

When the differential equations were solved (including the full computation of the Hodgkin Huxley 
nerve model on the time scale of the action potential) clearance was found to greatly enhance the 
syncytial nature of the glial domain. The syncytium allowed the glia to function as a pipe to clear 
waste, with the flow in the pipe driven by the diffusion of water, more than anything else. The diffusion 
of water was in turn the result of the difference in sodium and potassium movements across the glial 
membrane.  

We had not foreseen this mechanism, and hasten to add that we cannot conclude that the same 
mechanism occurs in other related systems, as clear as the mechanism of waste clearance was in this 
optic nerve. For example, if the glia are connected to blood vessels through aquaporins, it is possible 
(although unlikely in my opinion) that qualitative properties will change significantly. 

A calculation of this sort must be extensively checked to see how sensitive its results are to its 
complexity. We were surprised to find how sensitive flows were to the spatial distribution of 
transporters and channels. When these were varied stochastically (in space) we found substantial 
effects. 

Thus, we are led to the unavoidable reality. While we can understand quite well the mechanisms 
of waste clearance in the optic nerve of Necturus, we cannot be sure the same mechanisms dominate 
in the brain in general. 
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We can however be reasonably certain that the model we have used can be modified to 
accommodate flow into blood vessels. We can be sure it can be modified to include other 
transporters and channels, in other distributions, because we have actually shown that by building 
such models. We can be reasonably certain that a full structural model is feasible and almost certainly 
needed to understand the structural and molecular basis of flow in cells and tissues in general, 
including the brain, including in sleep. 

 
4.3 Conclusions and future perspectives: It is tempting to reach sweeping conclusions from the 
powerful tridomain theory and the successful analysis of the optic nerve of a salamander. But it is after 
all only a salamander that we have studied, and its optic nerve does not contain blood vessels and so 
is not a wise preparation in which to study flow into blood vessels, as occurs in the mammalian brain. 
 

What does seem clear is that the approach and model we have constructed can be generally 
applied, because it is based on observed biological structure, measured biophysical properties of 
those structures and of the protein transporters and channels embedded in those structures, using 
conservation laws likely to be as true in biology as in the rest of the world.  
 

Our approach is as faithful as it can be to the details of that structure because we know from 
long experience that details matter in physiological systems as they do in engineering systems. What 
seem small inconsequential details often wind up as controls for the entire system. After all the action 
potential is a big system involving meters of nerve fibers, but it is controlled by a few protein channels 
in the cells that initiate the action potential. Thus, I do not speculate. I advocate real work. 
 
It seems clear that the path to understanding (and clinical control) of fluid flow in brain function 
requires 
 

1) Construction of a structural model based on conservation laws and the structure(s) of clinical 
and biological interest. For example, studying the glymphatic hypothesis (the literature is 
sampled in in (47-57)) is likely to require construction of a four domain model involving blood 
vessels (of variable size and shape and properties) along with glia, extracellular space and 
axon. We see no sign that there will be serious theoretical, mathematical, or numerical 
obstacles to building such a model, although the work involved should not be 
underestimated, nor the skill level needed to construct its equations, and compute them, with 
appropriate perturbation expansions for understanding, as Shixin Xu and Yi Zhu and Zilong 
Song have done, with the help and leadership of Huaxiong Huang. 
 

2) The identification of the types and locations (and densities) of the various pumps and 
channels used by the genome to control function. Experiments to acquire this data can be 
done but they are as tedious as they are necessary. Frankly, it is not clear they will be done 
until the community of biologists and clinicians are convinced that they are needed. One of 
the main roles of a complete structural model is to convince biologists to make the 
measurements needed to understand function.  

3) The calculation of the biological function. Is the waste actually cleared? Can the spatial 
distribution of transporters (for example the sodium potassium pump) or its up regulation in 
sleep actually explain waste clearance in the brain, thus supporting the glymphatic 
hypothesis in a more or less quantitative way. 
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