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Abstract 

 

Maxwell defined a ‘true’ or ‘total’ current in a way not widely used today. He said that “... true 
electric current ... is not the same thing as the current of conduction but that the time-variation of 
the electric displacement must be taken into account in estimating the total movement of 
electricity”. We show that the true or total current is a universal property of electrodynamics 
independent of the properties of matter, shown using mathematics without the approximation of a 
dielectric constant. The resulting Maxwell Current Law is a generalization of the Kirchhoff Law of 
Conduction Current used in circuit analysis, that also includes the displacement current. Engineers 
often introduce the displacement current through supplementary circuit elements, called ‘stray 
capacitances’.  

The Maxwell Current Law does not require currents to be confined to circuits. It can be 
applied to three dimensional systems like the electron transport system of mitochondria and the 
signaling system of nerve cells. The Maxwell Current Law clarifies the flow of electrons, protons, and 
ions in mitochondria that generate ATP, the molecule used to store chemical energy throughout life. 
The currents are globally coupled because mitochondria are short. The Maxwell Current Law 
approach reinterprets the classical chemiosmotic hypothesis of ATP production. The conduction 
current of protons in mitochondria is driven by the protonmotive force including its component 
electrical potential, just as in the classical chemiosmotic hypothesis. The conduction current is, 
however, just a part of the true current analyzed by Maxwell. Maxwell’s current does not 
accumulate, in contrast to the conduction current of protons which does accumulate. Details of the 
accumulation do not have to be considered in the analysis of true current. 

The treatment here allows the chemiosmotic hypothesis to take advantage of the knowledge 
of current flow in the physical and engineering sciences, particularly Kirchhoff and Maxwell Current 
Laws. That knowledge has been helpful in understanding action potentials in biology, and in 
technology in general. Knowing the current means knowing an important part of the mechanism of 
ATP synthesis. 
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Most scientists today are unaware of Maxwell’s definition [1] of the ‘true’ current needed 
to estimate “the total movement of electricity”: 

“One of the chief peculiarities of this treatise is the doctrine which it asserts, 
that the true electric current, that on which the electromagnetic phenomena 
depend, is not the same thing as the current of conduction, but that the time-
variation of the electric displacement, must be considered in estimating the 
total movement of electricity, so that we must write, [the sum] .... as an 
equation of true currents.”  
 
Note that ‘peculiarities’ is a Victorian word (in formal 19th Century English) 
equivalent to ‘characteristics’ or ‘features’ in modern scientific 
American/English. 
 

The text is from Vol. 2, Section 610, p. 232. The ‘equation of 
true currents’ is in, eq H, Vol.2, Sect 610, p. 233 of [1]. Maxwell 
uses the name ‘Total current’ throughout his analysis 327-341 
of Vol 1. This paper uses the names interchangeably, as defined 
in eq. (2). 

 

Maxwell’s definition is esthetically appealing because of its author, and its generality. It involves 
no adjustable parameters, beyond the electric and magnetic constants. It is numerically beautiful 
and helpful [2, 3]. It applies to systems that involve three dimensions, like stray capacitances of 
circuits, and mitochondria of biological cells. Maxwell’s current is used to design important parts 
of our daily lives. Maxwell’s current flows in the circuits that bring light and information (and 
power, voices, and images) to our homes and businesses. Circuit laws like eq. (2) and (5) are used 
to build these circuits. 

It is interesting to compare Maxwell’s idea of true current with the idea of current used in 
many papers and textbooks of electrodynamics. Many define current as the conduction current 
and do not discuss ‘true’ current explicitly, with little emphasis on displacement current. They 
certainly do not take the approach that the “that the time-variation of the electric displacement, 
must be considered in estimating the total movement of electricity”.  

Engineers, on the other hand, include the displacement current when they analyze real 
circuits. They define current as the conduction current, but they introduce supplementary circuit 
elements, called ‘stray’ or ‘parasitic’ capacitances into their idealized (branched) one-dimensional 
circuits to deal with the displacement currents of real systems that occur in three dimensions and 
involve coupling to nearby systems. Feynman has a particularly clear discussion of this practice in 
[4], Vol 2, Section 22-23.  

This paper looks for a way to use Maxwell’s idea of true current in a modern context useful 
in biology, as stray capacitances and displacement current have been useful in engineering. We 
show that the idea of true current casts a useful light on the role of sodium and potassium fluxes 
in the action potential of nerve and muscle cells [5-7].  
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We show that the idea of total or true current is needed if we want to estimate the ‘total 
movement of electricity’ in mitochondria. There the total movement of electricity involves sodium 
Na+  and potassium K+ ions, hydrogen ions, and, of course, electrons. We show in particular that 
the movement of protons is coupled to the movement of all charges by the current laws eq. (2) 
& (5). The word ‘proton’ in the relevant biological literature is shorthand for the positively charged 
form of water, which can take on many chemical forms [8-11], depending on the context. Proton 
movement is not controlled by just proton ‘concentration’. Current laws couple the protonmotive 
force to the electric field, and thus to the movement of all charges and membrane currents. This 
chemiosmotic flow of electrons and protons [12-20] is an essential biological system that 
generates ATP. [16-18, 20-24] ATP stores chemical energy throughout living systems. The 
hydrolysis of ATP provides most of the energy of life.  

Fundamental Equations of Electricity. The partial differential equations introduced by Maxwell, 
summarized in [25], have been used for more than a century to describe the properties of 
electricity and its dynamics, in the form given in Feynman [4]. We start with the Ampere-Maxwell 
partial differential equation that describes how the magnetic field B is created by changes in the 
electric field 𝐄 and the conduction current 𝐉.  

The charge and current are parsed in an unconventional manner here for reasons 
discussed below, immediately after variables are defined. The Ampere Maxwell equation is 
written here without the dielectric constant 𝜀𝑟, more formally called the ‘relative permittivity’. 
Dielectric currents are included in 𝐉. 

Ampere-Maxwell Equation 𝟏

𝝁𝟎
 𝐜𝐮𝐫𝐥 𝐁 = 𝐉𝒕𝒓𝒖𝒆 = 𝐉 + 𝜀0 𝜕𝐄 𝜕𝑡 ⁄  𝐉 is zero in a vacuum (1) 

𝐉𝒕𝒓𝒖𝒆 is Maxwell’s ‘true current’ (defined above in words) displayed prominently as eq. A, 
p. 465, 480 of [25]. 𝜀0 is the electrical constant. 𝜇0 is the magnetic constant. The parsing used 
here allows the fundamental eq. (1) to be independent of all other parameters. No properties of 
matter are included in this version of the Ampere-Maxwell equation. 

The conduction current of charge 𝜌 with mass is described by 𝐉, however brief, small, or 
transient its flux. The conduction current 𝐉 does not include the displacement current 
𝜀0 𝜕𝐄 𝜕𝑡 ⁄ found throughout space. The conduction current 𝐉 does include the polarization current 
and the dielectric current 𝜀0(𝜀𝑟 − 1) of an ideal capacitor. In a vacuum, the only current 𝐉𝒕𝒓𝒖𝒆 is 
the displacement current 𝜀0 𝜕𝐄 𝜕𝑡 ⁄ . That vacuum displacement current 𝜀0 𝜕𝐄 𝜕𝑡 ⁄  allows 
radiation like light to propagate in the space between the earth and the sun, which is nearly a 
vacuum.  

Note that Maxwell’s original statement of displacement current differs from that used 
here. Maxwell’s original treatment included two components of displacement current. One of 
Maxwell’s components was the displacement current of our eq. (1) 𝜀0 𝜕𝐄 𝜕𝑡 ⁄ that is universal and 
has no adjustable parameters. The other component Maxwell used (𝜀r − 1)𝜀0 𝜕𝐄 𝜕𝑡⁄  depends 
on properties of materials. The material displacement current uses adjustable parameters and 
models to describe how material charge changes when the electric field changes. Maxwell’s 
original treatment of displacement current can be reinstated from our equations in two steps. 
First, (1) by replacing 𝜀0 𝜕𝐄 𝜕𝑡 ⁄  in our equations with 𝜀r𝜀0 𝜕𝐄 𝜕𝑡⁄  and then (2) by changing the 



 

3 

definition of charge and conduction current correspondingly so displacement currents are not 
counted twice. 

Current is parsed this way here so the Ampere-Maxwell equation (1) can be written as a 
universal law without explicit reference to the properties of matter. Eq. (1) has no adjustable 
parameters, beyond the electrical and magnetic constants. Without this rewriting, the 
fundamental field equations become constitutive, not universal laws, with the properties of 
matter—in all its diversity, with all its difficulties of measurement—embedded in its very 
definition of variables. This problem is widely recognized [26] Vol. 2, S 13-4, and the traditional 
formulation is strongly criticized [27], p. 500-507. A parsing as done here to resolve the problem 
is not proposed by those authors, or in general use. 

The properties of charge and current in the approach used here do not appear in the 
Ampere-Maxwell equation itself eq. (1), and equations derived from it. Rather the properties of 
charge and current need to be described by a separate conjoined theory [28-30] that shows how 
charge and current vary with conditions, just as the compressibility of matter must be included 
as a separate conjoined theory in fluid mechanics. Treating matter, charge, and electric/magnetic 
fields this way does not add significant difficulties to analysis. The conjoined theory is analyzed 
with existing methods [28-30]. The difficulties involved arise from the complexities of the material 
displacement currents, including polarization currents [27], not from the mathematics. 

The classical form of the Ampere-Maxwell equation (1) involves the dielectric constant as 
an adjustable parameter. It is limiting for biological applications because those involve an 
enormous range of concentrations of ions and dielectric properties of liquids depend on 
concentration.[31-36] The approximation of a dielectric constant is a useful teaching tool and a 
necessary part of first investigations in ionic solutions and thus living systems.[32-35] But the 
approximation is not very accurate and is too restrictive to use in investigations of many systems 
of practical importance, in my view [36]. Biological systems like enzymes [37], binding proteins, 
and channels contain a large range of concentrations of ions, up to tens of molar, and dielectric 
properties vary importantly in that range.[31]  

The approximation of a single dielectric constant fails altogether when dealing with the 
remarkably diverse (and specific) dielectric properties of organic molecules revealed by their 
spectra, e.g., their infrared spectra. The spectroscopic properties of organics are so specific that 
they are used as fingerprints to separate and identify individual chemical species [38-40]. The 
relation of dielectric and spectroscopic measures is explained by Parsegian [41] p. 241-275. In 
essence, dielectric and spectroscopic measures are different ways of measuring the same 
polarization currents. The different methods were originally used in different bands of frequency, 
but that constraint comes from the measurement technology and does not reflect different 
properties of molecular polarization.  

The approximation of a single dielectric constant (a real number) was developed when 
measurements were confined to low frequencies, say < 100 Hz, as they were in Maxwell’s time. 
Modern data shows that polarization currents vary in a complex multi-dispersion way with 
frequency, type, and concentration of ions. All types of ions, not just the main charge carrier, 
change the dispersions.[31-36] Thus, a dispersion in a physiological salt solution will depend on 
many species, perhaps some in small concentrations and not on the main constituents (typically 
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Na+ ions outside cells, and K+ ions inside cells). The polarization current of an ideal dielectric, 
with a single dielectric constant—that is assumed in the classical Maxwell equations—cannot 
describe these properties.  

It is interesting history that Maxwell anticipated the complexity of dielectric polarization 
quite explicitly [1]: Vol. 1, p. 381. He was concerned that it might resemble electrochemical 
polarization, which modern experimentation confirms is the case.[32-35] 

The difficulties with the dielectric approximation are not confined to liquids. The 
approximation is barely adequate [42, 43] even for crystalline solids like the silicon of our modern 
semiconductors. Currents in modern circuits operate at frequencies > 108 Hz in which bits of 
information might last 10−9 seconds. It is not reasonable to expect an approximation derived for 
frequencies < 102 Hz to work well at > 108 Hz. A single dielectric constant is often not good 
enough to allow design of new devices on the 10−9 second time scale, although it may be an 
adequate description of existing devices under some circumstances [44-50] and it is certainly an 
important teaching tool, and a necessary component of first investigations using ‘toy’ models. 
Later investigations require measurement and description of the properties of dielectrics and 
polarization currents under all conditions of interest. 

Current Laws. The Ampere-Maxwell equation (1) can be converted into a current law valid under 
the same conditions that the Ampere-Maxwell equation is valid. Take the divergence of 𝐜𝐮𝐫𝐥 𝐁 
and use the general mathematical result that divergence of the curl of a vector field is zero. 

 Maxwell Current Law 𝐝𝐢𝐯 𝐉𝒕𝒓𝒖𝒆 = 𝐝𝐢𝐯 𝐜𝐮𝐫𝐥 𝐁 = 𝟎  (2) 

Equation (2) needs a name of its own because of its generality and so it is called the Maxwell 
Current Law in this paper. Equation (2) says in mathematics what Maxwell said in words. True 
current does not accumulate. The fact that true current never accumulates allows understanding 
of important systems in biology. One example is the propagation of an action potential signal in 
nerve cells that traditionally use circuits and current laws eq. (2) & (5). Another example is the 
transport of electrons, protons, and ions in mitochondria, in which circuits and current laws are 
not so traditional. 

True Current and Incompressible Fluids. True current behaves like the flow of a perfectly 
incompressible fluid that Maxwell called the aether (sometimes called the absolute ether). It is 
customary to avoid discussions of the aether and to deal with the current flow of the aether 
𝜀0 𝜕𝐄 𝜕𝑡⁄ , not the aether itself. The Michelson-Morley experiment convinced physicists that the 
movement of the aether could not be detected mechanically [19], Vol 1, Section 15-3. The motion 
of the aether can be seen as light from the sun because of the displacement current it creates. 
The displacement current 𝜀0 𝜕𝐄 𝜕𝑡⁄  allows electrodynamic waves to propagate through the near 
vacuum of space.  

Maxwell’s True Current is a property of the fields of electrodynamics and has useful properties 
that are independent of the properties of matter because the true current is incompressible with 
𝐝𝐢𝐯 𝐉𝒕𝒓𝒖𝒆 = 𝟎.  Other kinds of current—like the conduction current 𝐉—are not incompressible. 
Those currents 𝐉 depend on the properties of charge density and matter (through the continuity  
eq. (4)) as well as the properties of electrodynamic fields.  
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Many properties of any incompressible fluid flow are determined simply by the fact that 
it is incompressible [51, 52]. That is probably why Maxwell called the total current a “true” current 
and emphasized that definition in [25] as his first equation, eq. A, p. 465, 480.  

It is not clear why Maxwell’s focus on displacement current has fallen into disuse—with 
the notable exception of Landauer [53]. True current is hardly mentioned in the modern 
literature, despite his statement of its central role in electrodynamics. Maxwell called true 
current, displacement current (and time dependence) “chief peculiarities” of his work.  

Maxwell’s “chief peculiarities” have proven to be ephemeral in the literature of physics, 
perhaps because they are aethereal in their essence, existing as they do in a vacuum that contains 
no charges. But the “chief peculiarities” allow the propagation of light in a vacuum. The peculiar 
importance of the phrase ‘displacement current’ evidently did not survive the paradigm shift to 
relativity that converted Maxwell’s aether to Einstein’s space-time ([54], p. 57;[55]) but the reality 
of the displacement current 𝜀0 𝜕𝐄 𝜕𝑡⁄  did survive in the key equations (1) & (2). Without these 
equations, the propagation of light could not be understood. The equations and the phenomena 
they describe have survived the paradigm shift. 

The physics of the Maxwell Current Law should not be hidden by the mathematics of the div and 
curl operators of vector calculus. The Maxwell Current Law (2) arises because the electric and 
magnetic fields created by electrodynamics move charges and atoms. Combined with the 
displacement current 𝜀0 𝜕𝐄 𝜕𝑡,⁄  the charge movements guarantee that the total current does not 
accumulate.  

The total current does not accumulate. Ever. Anywhere, with surprising consequences [56] 
particularly for single file transport in one-dimensional systems.[53] The conduction current—the 
movement of charges, e.g., charged atoms and electrons—and the displacement currents 
determined by the equations of electrodynamics create the Maxwell Current Law eq. (2). They 
are the physical reason for that law. 

Conduction Current Accumulates. The conduction current 𝐉 does accumulate even though 𝐉𝒕𝒓𝒖𝒆 
does not. 
 𝐝𝐢𝐯 𝐉 = −𝐝𝐢𝐯 (𝜀0 𝜕𝐄 𝜕𝑡⁄ ) (3) 

The divergence of 𝐉 is not zero except when 𝜀0 𝜕𝐄 𝜕𝑡⁄ = 0.  

Indeed, the continuity equation (4) shows that conduction current 𝐉 accumulates as 
charge density 𝜌 changes.  

 𝐝𝐢𝐯 𝐉 =   −  𝜕𝜌 𝜕𝑡⁄  (4) 

The continuity equation (4) can be derived from the Ampere Maxwell Equation (1), and a 
form of Gauss’ law [4]; eq. G of [25], p. 465 and 485). We reiterate for clarity that 𝐉 is the 
conduction current of charge with mass, however brief, small, or transient. 𝐉 includes the 
polarization current of an idealized dielectric (𝜀𝑟 − 1)𝜀0 𝜕𝐄 𝜕𝑡.⁄  𝐉 excludes only the displacement 
current 𝜀0 𝜕𝐄 𝜕𝑡⁄ . 

Conduction Current Accumulates as Charge Density. Circuits found in our computers could hardly 
be analyzed if charges had to be considered explicitly. The complexity of the circuit structures 
produces an even larger complexity in the charges, as they carry signals and vary with time. 
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Integrated circuits contain too many charges to analyze with the continuity equation (4). 
Rather, integrated circuits are analyzed by the Kirchhoff current law eq. (5), without explicit 
consideration of charges.[44-50] It is easier to deal with currents, when the number of currents 
that must be considered is much less than the number of charges. 

Conduction current is also harder to analyze than total current because conduction 
current depends on the accumulation of charges that diffuse and flow by convection. Those 
processes involve many parameters including the details of the structures in which diffusion and 
convection occur. Such complexity is particularly hard to deal with in biological systems like the 
mitochondrion where many types of conduction currents flow: electron, proton, and ionic, each 
driven by diffusion and migration, and sometimes convection.  

Most scientists—including me for most of my life—have thought that knowledge of the 
locations and properties (and accumulation) of charges is needed to deal quantitatively with 
circuits or electromagnetic phenomena including circuits. Feynman says as much, for example, in 
[4], Vol 2, Section 13-4. However, engineers have built and used circuits without explicitly studying 
charges for a long time, for some 160 years since the introduction of the telegraph, using just the 
Kirchhoff current law eq. (5).They have shown how to design successful circuits—that bring light, 
information, (and power, voices, and images) to our homes and businesses—without detailed 
knowledge of the distribution of charges. [44-50, 57-67] 

The properties of currents are important in our daily life because they determine the 
properties of circuits. Circuit laws like eq. (2) and (5) are needed to define circuits precisely. 

Circuits are Important. We now look at the successful use of circuits to see how circuits can 
contribute to knowledge in general, and to understanding mitochondria in particular. 

Circuits are the crucial component responsible for the use of electricity in technology and 
industry. Circuits are also used to understand signals in the nervous system of animals, the 
initiation of contraction in our muscles, and the coordination of contraction that allows the heart 
to function as a pump.[5-7, 68] 

Circuits remade our world in the 1880’s when they brought light and power to homes and 
businesses. Before circuits delivered electricity to homes and offices, homes were unpowered as 
they had always been, and poorly lit by flickering gas lamps.  

Circuits remade our world in the 1840’s, when they speeded long distance communication 
(e.g., across the Atlantic Ocean [69]) by factors of millions. Circuits remade our world in the 1870’s 
when telephones allowed people to speak together without being together face to face. Before 
circuits delivered electricity to homes and offices, information was transmitted much as it had 
been by the Romans thousands of years ago.  

The importance of circuits has hardly diminished in the last 170 years.  

The community of engineers has always recognized the importance of circuits and current 
laws, but the importance of circuits is not generally addressed outside the community of 
engineers. Most textbooks of electrodynamics hardly mention the role of circuits in the delivery 
of electrical power. Most textbooks of electrodynamics just barely mention the role of circuits in 
the delivery of information. Nevertheless, current laws like eq. (2) & (5) are important in social 
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and economic history, as well as in science itself, because they allow design of the circuits that 
provide power and information to our civilization.  

The community of biologists has not always recognized the importance of circuits because 
circuits appear only implicitly even where they are biologically important [5-7, 68], in nerve and 
muscle cells, for example. 

Current is not confined to circuits. It is important for biology (in particular, and science in general) 
that the Maxwell Current Law eq. (2) does not require current to be confined to circuits. The 
Maxwell Current Law is true whenever classical electrodynamics are true. Maxwell’s derivation 
([1], Vol.1, Sect.328, p. 377) does not include circuits. Maxwell solves electric field problems 
without circuits—in explicit detail including boundary properties and conditions—showing how 
the time dependent solutions of those boundary value problems depend on the displacement 
current 𝜀𝑟𝜀0 𝜕𝐄 𝜕𝑡⁄ . If the displacement current is not included, the solutions to the problems are 
incorrect. Maxwell’s discussion is clear and detailed and does not require further elaboration, in 
my opinion. despite its age.  

Kirchhoff Current Law is used throughout engineering and physics to define the properties of 
circuits. Kirchhoff Current Law eq. (5) is a special case of the Maxwell Current Law eq.(2). 
Conduction current 𝐉 includes the current of an idealized dielectric, as explained earlier. 

  Kirchhoff Current Law for Fields 𝐝𝐢𝐯 𝐉 =   𝟎  𝐉  is conduction current  (5) 

This form of Kirchhoff’s law is unfamiliar because it does not depend on 𝐉  being inside a circuit. 

Kirchhoff’s law in texts of circuit design and analysis [44-50, 57-67] is often said more 
clearly in words than in equations: ‘all the currents that flow into a node—positive quantities—
flow out as negative quantities”. Or ‘the sum of all currents at a node is zero’, ‘Currents’ in the 
texts of circuit design and analysis means conduction currents with direction and does not include 
a displacement term that depends on 𝜕𝐄 𝜕𝑡.⁄  For each node 𝑖, one sums the conduction currents 
from the 𝑘 branches attached to that 𝑖𝑡ℎ node. 

Classical Kirchhoff Current Law 
for Circuits 

∑ J𝑖(𝑘) = 0 J𝑖 conduction current (6) 

The circuit representation (6) of the classical Kirchhoff Current Law eq. (5) is in wide use. 
It is, however, inconsistent with the Maxwell Current Law eq. (2), and thus the Ampere-Maxwell 
eq. (1). Eq. (2) and (5) contain displacement current 𝜀0 𝜕𝐄 𝜕𝑡⁄ . Eq. (5) and (6) do not contain a 
displacement current or a time derivative at all, The classical Kirchhoff Current Law (5) is also 
inconsistent with Maxwell’s statement “that the time-variation of the electric displacement, must 
be considered”. [1] Vol. 2, Section 610, p. 232. Eq. (6) can be modified to contain the displacement 
current, as we shall see, eq.(9), thereby becoming consistent with eq. (2). 

When treatments are inconsistent, their alternative ways of handling the equations 
produce alternative results, making it impossible to tell which result is correct, using theory alone. 
Experiments are needed to choose the correct result. Once the correct result is known, the theory 
can be changed appropriately.  
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Paradigm Change. We now consider ways to reconcile the Maxwell and Kirchoff Current laws, 
eq. (2) and (5). One way to reconcile is by approximation, as a low frequency law, with its 
limitations. Another way is to split off components from the field equation eq. (5) as ‘stray 
capacitances’ and add them as separate fictitious components to eq. (6). These components are 
generally small additions to the larger real (not fictitious) components of stray capacitance 
produced by coupling to nearby structures. See ‘Layout’ term in eq. (9).  

The other way is to redefine current in eq. (5), but that redefinition itself upsets long 
standing paradigms. 

Reconciliation by Approximation. The Kirchhoff Current Law eq. (6) is viewed as an 
approximation to the Maxwell Current Law (2) in most textbooks. When conduction current is 
much larger than displacement current 𝐉 ≫ 𝜀0 𝜕𝐄 𝜕𝑡⁄ , true current is mostly conduction current. 
In that case, at low frequencies, the usual Kirchhoff Current Law (6) may be good enough, helpful 
even when dealing with microwave circuits [70-73], if used with caution and care. 

Care is important, however, even when the displacement term is small, because the initial 
condition associated with the time derivative 𝜕𝐄 𝜕𝑡⁄  is lost in the approximation that 𝜕𝐄 𝜕𝑡 = 0⁄ . 
Losing initial conditions causes difficulties in almost any system, as studied at length in singular 
perturbation theory [74].  

Losing the initial condition in electrical systems can lead to paradoxes that make the role 
of charge hard to understand. If 𝐉 ≫ 𝜀0 𝜕𝐄 𝜕𝑡⁄ , all the conduction current that flows into a resistor 
flows out, so one must wonder how the charge that drives the conduction current accumulates 
in the first place. The charge arises, of course, in an initial condition that is not included in a 
treatment like eq. (5) where 𝜕𝐄 𝜕𝑡 = 0⁄ . 

The initial charge can be included as extra information added to supplement Kirchhoff’s 
law, see eq.(7).  

Reconciliation with Stray Capacitance. Another way to reconcile the Maxwell and Kirchhoff 
current laws eq. (2) & (6) is to change the system the laws describe. Idealized circuits of textbooks 
[48] are revised by adding virtual components, ‘stray capacitances’ that do not exist as isolated 
elements in the actual circuit [44-50, 57-67, 75]. These extra components allow circuits to 
describe coupling to nearby structures in the circuit layout, as well as the smaller but unavoidable 
displacement current 𝜀0 𝜕𝐄 𝜕𝑡 ⁄ , see eq.(9). . The extra components allow circuits do deal with 
reality quite well at high frequencies, reaching to microwave frequencies in favorable cases.[70-
73] They appear as extra terms (see eq. (9)) in addition to those included in the usual textbook 
formulation of the Kirchhoff Current Law eq. (6).  

Successful circuit designs place ‘stray capacitances’ between all nodes in a circuit, and 
between the nodes and a far distant zero potential ground. The far distant ground is the typical far 
field boundary condition in circuit theory. Their existence is required to reconcile the Maxwell and 
Kirchhoff Current laws (2) & (6). Their existence is also required to deal with coupling between 
nearby structures, see ‘Layout’ term in eq. (9). Without both types of stray capacitances, idealized 
circuits [48] do not behave the way real circuits behave when they are actually wired up in a 
practical layout [49] and measured, as is shown explicitly below in eq. (9).  



 

9 

Stray capacitances are not included in idealized circuits because they depend on the layout 
of the circuit—the way it is wired up—not shown in idealized circuit diagrams. The conversion of 
idealized circuits into functional designs is a discipline of its own, of great importance in modern 
design of integrated circuits because stray capacitances and other non-ideal effects increase in 
importance as the density of devices increases, and the size of devices approach atomic 
dimensions.[44, 45, 47, 49, 75, 76] The values of stray capacitances are determined empirically in 
that design process.[75, 77] 

The addition of both kinds of stray capacitances to circuits explains why circuits designed 
with Kirchhoff’s Law (6) can describe bits that are 10−9 sec duration, even though the law eq. (5) 
is usually derived for low frequencies and long times. 

Reconciliation by Redefinition. The Kirchhoff Current Law eq. (6) and the Maxwell Current Law 
(2) can be reconciled without approximation by defining a true current, as Maxwell advocates in 
the quotation that begins this paper.  

The exact reconciliation by redefintion simply changes the definition of current (in the 
traditional Kirchhoff’s law) from conduction current to true current. That redefined current is 
Maxwell’s true current eq. (1), of the Ampere-Maxwell differential equation for the magnetic 
field. The true current includes the displacement current that Maxwell viewed as essential 
because it is needed so light can propagate as an electrodynamic wave in a vacuum.  

Another exact reconciliation is possible by adding virtual components of ‘stray 
capacitances’ to the original circuit, along with the layout stray capacitances needed to describe 
coupling to nearby systems, without changing the definition of current as we demonstrate below 
eq. (9) following [78]. For circuits, the results are equivalent. For mitochondria, nerve, and cardiac 
cells, and other three-dimensional structures, the results are not equivalent because it is not 
always clear how to approximate the three-dimensional layout of (for example) biological systems 
with a circuit model. Indeed, the circuit representation of such complex structures is not unique.  

Using Maxwell’s definition of current makes the current laws general. The Maxwell 
Current Law (2) does not require discussion of circuits, as Maxwell himself demonstrated. [1], 
Vol.1, Sect.328, p. 377The true current can be used to describe (1) electron flows in circuits, (2) 
current flows in mitochondria, including (3) proton flows and (4) trans-membrane electron flows 
and (5) horizontal electron flows, and (6) ionic flows in nerve whether in (7) membranes or (8) 
cytoplasm, carried by whatever ions are present.[78, 79]  

Maxwell’s definition of current is easy to use and does not involve approximation. It 
requires slight change in the treatment of existing idealized circuits or analyses of field problems 
in applied mathematics that use the dielectric constant approximation, as they usually do.  

Analysis of circuits usually uses Laplace transforms because most circuits of technological 
interest are linear systems. Nonlinear technological devices are usually analyzed by linearization 
around the operating points where they function. Maxwell’s definition of current in eq. (1)&(2) is 
easily formulated using Laplace transforms.  

The Laplace transform 𝐉̂𝒕𝒓𝒖𝒆(𝒔) of the true current 𝐉𝒕𝒓𝒖𝒆(𝑡) of eq. (1) is 
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Laplace transform of true current  𝐉̂𝒕𝒓𝒖𝒆(𝒔) = 𝑱̂(𝒔) + 𝜀0𝒔𝑬̂(𝒔) − 𝜀0𝑬(𝑡 = 0)     (7) 

Here the symbol 𝒔 is the Laplace transform frequency variable, Laplace transforms are indicated 

by a ‘hat’ as in the Laplace transform of the electric field 𝑬̂(𝒔). If we set initial conditions 𝐄(𝑡) to 
zero 𝐄(t = 0), as is customary in circuit analysis and synthesis, every modified current in a circuit 

contains an extra term like ℂ𝒔𝑬̂(𝒔), where the universal effective capacitance ℂ = 𝜀0 is simply the 

electrical constant, obviously independent of the properties of matter. ℂ𝒔𝑬̂(𝒔) is Maxwell’s 
displacement current, the term essential for the understanding how electromagnetism in a 
vacuum supports a propagating wave like light. 

Circuits analyzed with the Maxwell Current Law (2) will thus contain many effective 

capacitances ℂ𝒔𝑬̂(𝒔) that include the universal displacement current 𝜀0 𝜕𝐄 𝜕𝑡⁄ , one for each 
circuit element and wire. Combined, the effective capacitances will form an inescapable part of 
the stray capacitances discussed previously. 

Saying the same thing in equations, we rewrite eq. (2) for the 𝑖𝑡ℎ node—with 𝑘 branches 
attached—in a circuit using the Laplace transform variables of eq. (7) with zero initial conditions 
everywhere, as is customary in circuit analysis. 

 ∑ 𝑱̂𝑡𝑟𝑢𝑒;𝑖(𝑘)(𝒔) = ∑ (𝑱̂𝑖(𝑘)(𝒔) + 𝜀0𝒔𝑬̂𝑖(𝑘)(𝒔))  = 0  (8) 

This equation (8) can be rewritten so we recognize the stray capacitance currents 𝜀0𝒔𝑬̂𝑖(𝑘)(𝒔)  

added to the branch currents 𝑱̂𝑖(𝑘)(𝒔) of the classical Kirchhoff Law eq. (6). 

 

 

∑ 𝑱̂𝑡𝑟𝑢𝑒;𝑖(𝑘)(𝒔)    =             ∑ 𝑱̂𝑖(𝑘)(𝒔)         +      ∑(𝜀0 + 𝑳𝒂𝒚𝒐𝒖𝒕) ∙ 𝒔𝑬̂𝑖(𝑘)(𝒔)     =    0 (9) 

The last few equations show how Kirchhoff’s law eq. (6) can create an exact description [78] of 
what flows through a resistor [79].  

Eq. (9) includes the ‘Layout’ capacitance term (𝑳𝒂𝒚𝒐𝒖𝒕) ∙ 𝒔𝑬̂𝑖(𝑘)(𝒔) that arises from 

geometric coupling to nearby structures. These stray capacitances are often much larger than the 

unavoidable term 𝜀0 ∙ 𝒔𝑬̂𝑖(𝑘)(𝒔). 

Current in Biological Systems. Kirchhoff’s Current Law as usually formulated eq.(6) cannot be 
used with confidence in biological systems like mitochondria because they are not circuits. Their 
circuit representation has not been established and is unlikely to be unique. The Kirchhoff circuit 
formulation can be used successfully in nerve fibers because they have been shown 
experimentally to behave like circuits [5], and the circuit representation has actually been derived 

from one of the field equations of electrodynamics, the Poisson equation.[74] pp 218-238; [80] 

The Maxwell redefinition of current is necessary when describing biological systems that 
have not been shown to be circuits, for example, mitochondria. The total current across all the 
membranes of a short system like a mitochondrion must sum to zero. The total current includes 
the membrane capacity current—a displacement current 𝜀𝑚𝜀0 𝜕𝐄 𝜕𝑡⁄ —and the conduction 

    Stray Capacitances  Kirchhoff Law  Maxwell Law 
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currents carried by ions, electrons, and protons. A short organelle like a mitochondrion has a 
single internal potential in the matrix within the mitochondrion, almost independent of spatial 
location [80], and the membrane currents, arising in the lipid membrane, and the channels, and 
protein complexes in the mitochondrial membrane, has nowhere else to go. There is no long axon 

to conduct the current away, as in a nerve fiber [74] pp 218-238. The Maxwell and Kirchhoff 
Current Laws (2) & (6) combine with the shape and size of the mitochondria to force the total 
current of all types across all membranes to sum to zero. 

Physical Basis of the Maxwell Current Law. The total currents across the mitochondrial 
membrane, and the total currents linking proteins complexes, are the true currents of Maxwell 
and follow the Maxwell Current Law (2), entirely independent of the nature of the charges that 
carry the currents, whether electrons or protons or ions.  

The physical basis of the Maxwell Current Law (2) lies in the electrical and magnetic fields 
produced by the Ampere-Maxwell equation (1) and the other Maxwell partial differential 
equations.  

The divergence of the magnetic field is zero because no magnetic monopoles exist 
(comparable to the electrical monopoles the electron or proton). The Ampere-Maxwell equation 
(1) is the only source of the magnetic field, when the boundary conditions of the equation are 
included. 

The Ampere-Maxwell equation (1) guarantees that the electric and magnetic fields take 
on values that prevent the accumulation of true current. The total current across the 
mitochondrial membrane does not accumulate. The total current flowing from one protein 
complex to another, linking them into a functional unit, does not accumulate, even if the 
conduction components of that linking currents do accumulate. That is the physical counterpart 
to the mathematical derivation of the Maxwell Current Law given previously.  

Maxwell Coupling. The fluxes of ions and electrons across membranes are coupled by their 
summation in systems like short organelles, like mitochondria. The fluxes of ions and electrons 
across membranes cannot be independent in such systems. They are coupled because they have 
a definite sum, zero, under all conditions. If one membrane conduction current increases, the 
other must decrease, or be balanced by a membrane capacity current 𝜀𝑚𝜀0 𝜕𝐄 𝜕𝑡⁄ , to keep the 
sum zero, as required by eq. (2).  

The Maxwell coupling produced by summation is enforced whether the currents are 
carried by ions, or electrons, or displacement, no matter how the currents vary with time or the 
driving forces that create them [28-30]. The Maxwell Current Law (2) applies to currents driven 
by chemical reactions, protonmotive forces, electrochemical potentials, convection, heat flow, 
and so on. It is a corollary of the Maxwell equations of electrodynamics, including eq.(1). The 
coupling is produced by the equations of electrodynamics that produce the changes in electrical 
and magnetic forces necessary to generate the coupling. 

Total currents cannot accumulate in any conditions in which electricity follows the laws 
of electrodynamics as we know them in the physical world. Those laws do not depend on the 
physical systems that generate the currents and so those laws also apply to biological systems, 
including the electron transport chain of mitochondria.  
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Local Coupling. The membrane and linking currents in mitochondria are coupled globally as we 
have discussed. The conduction currents are also coupled locally by chemical reactions within the 
protein complexes in and near the membrane. They are coupled by local chemical reactions 
linking proton and electron flows, sometimes to ATP production. The complexes of the electron 
transport chain function together as one system. These local chemical reactions also involve intra-
molecular, atomic scale electrical potentials as they appear in the Schrӧdinger equations that 
govern them, but that potential is beyond the resolution of the analysis in this paper. It is possible 
that biologically significant couplings involving the potential in the Schrӧdinger equation will 
emerge in a higher resolution treatment. A glimpse of such effects is seen in the multiple guises 
of ‘protons’, as positively charged water of various types.[8-11]  

Actual calculations of coupled currents have been done, without particular difficulties, for 
one of the complexes (Respiratory Complex 4, the cytochrome c oxidase system) using standard 
numerical methods of partial differential equations applied to ‘multiphysics’ systems, where 
migration and diffusion occur in specialized structures.[30] This work is a practical application of 
the general ideas of this paper and shows that a respiratory complex can be analyzed by analysis 
of currents and chemical reactions without explicit discussion of charges or use of the continuity 
equation (4).  

Chemiosmotic Hypothesis, Revisited. Maxwell’s Current Law (2) provides another interpretation 
of the Chemiosmotic Hypothesis of Peter Mitchell [12-18].  

Using Maxwell’s Current Law (2), the chemiosmotic electrical process can now be viewed 
as the total current across the electron transport complexes and lipid membrane. Perplexing 
issues of complexity in electron and proton flow [12-15] do not have to be explained by words 
alone. They can be estimated by the Maxwell Current Law (2), with the methods used to analyze 
cytochrome c oxidase, Respiratory Complex 4.[30] The total current produced by Complex 4 
generates ATP in the synthase enzyme of Complex 5. It is the total current that generates the ATP, 
not just the proton flux. An explicit treatment of the coupling of Complex 4 and 5 is a goal as we 
extend the work of ref.[30]. Extension does not seem to require new mathematical or numerical 
methods.  

Viewed this way, the chemiosmotic hypothesis [12-20] fits into the general treatment of 
electricity in the physical sciences [26]. 

In the chemiosmotic hypothesis, conduction currents did not fit so naturally. Flows of 
electrons and protons (and currents) were not identified as the currents of physics, as defined in 
the Maxwell equations of electrodynamics, e.g. eq. (1). Currents were hard to specify [12-20] 
because they vary so much in composition, and in space. A current law was not used to explicitly 
describe their flow because a precise definition of current was not given, nor was the word 
current identified with the currents of classical electrodynamics.  

In my view, a current law is needed that applies to the complexity of three-dimensional 
mitochondria where current carriers switch from electrons, to ions, to protons (or hydronium ions 
[14]). Analysis based on charges and the continuity equation (4) is not practical because all the 
charges in a mitochondrion are involved and that is a very large number, more or less impossible 
to compute directly when interactions are included, that are required by Coulomb’s law. 
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In the chemiosmotic hypothesis, the flows of protons are multifaceted, particularly hard 
to discern and difficult to deal with because protons might protonate weak acids and bases 
throughout the mitochondria. The protons would then vary in concentration, changing the 
conduction current of Kirchhoff’s current law. Treatments of total current sidestep the issue of 
protonation because they deal with entire true current at once without worrying about its 
components. The flows of electrons are also multifaceted, hard to deal with as they move 
through so many systems. The multifaceted flows of electrons are also a characteristic of current 
flow in the integrated circuits of our technology, where the properties of electron flow in wires, 
resistors, transistors, and capacitors are quite different. Current laws successfully bypass such 
complexities in integrated circuits and are likely to help bypass complexities in mitochondria as 
well. 

Chemiosmotic Hypothesis, Revised. In this revised version of the chemiosmotic theory, the rules 
are simple. Current is now the current of the Maxwell equations, e.g. eq. (1). Total current does 
not accumulate. The Maxwell Current Law (2) is quantitative, indeed exact. It replaces the rather 
vague discussion of how complexes in mitochondria interact (found in the chemisosmotic 
hypothesis [12-20]) with the precision of physics and electrodynamics.[4]  

To the extent that total current describes the flow of energy in the mitochondria, details 
of the charge movements in conduction currents are unimportant, just as details of the charge 
movements in the conduction currents are unimportant in the circuits of our computers or in the 
propagation of the actional potential of nerve and muscle, as described below. The total current 
provides the input to the enzymes, transporters, and channels of the complexes of the electron 
transport chain. The proteins of the complexes can provide the selectivity to choose the form of 
charge needed as a substrate for the chemical reaction or transport properties of the protein. The 
current itself need not be carried by a particular charged species in this case. 

In this revised approach, the Maxwell Current Law (2) shows precisely how the total 
current couples the output of Respiratory Complex 4 to the synthesis of ATP in Respiratory 
Complex 5 although a full model requires an extension of our previous work [30]. The input to 
the ATPase of Complex 5 is a true current. It cannot accumulate because it is true current as 
Maxwell defined it. Driven by the protonmotive forces, including the electrical potential of the 
Maxwell equations, the true current carries protons that help generate ATP while obeying the 
laws of electrodynamics as it does so, eq. (1)–(5). Those laws guarantee that the electrical 
potential of the protonmotive forces is coupled to the movement of all charges and displacement 
currents. Most of the details of the charge movements do not matter. It is the true total current 
that provides the energy that generates the ATP, not just the protonmotive force. 

Ionic Signals in Biology. The idea of total current is useful in another biological system, the 
signaling system of nerve and muscle. The total current of the Maxwell Current Law (2) helps 
define the circuit models familiar in the treatment of the nerve action potential [5, 6], and the 
action potential of cardiac and skeletal muscle [7]. The circuits have been derived from the 
Green’s functions of a structural description of complex tissues [80-82] thereby linking the 
biological treatment of electricity and the physical treatment of electrodynamics. Singular 
perturbation techniques [74], p. 218-238, are helpful in applying the Maxwell Current Law (2) to 
biological systems of some complexity [80, 82, 83]. The general approach is reviewed in [82]. 
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The approximations inherent in the circuit representation of nerve and muscle have been 
extensively examined by many methods. The first approximation involves the cell interior. 
Experiments [84-87] show that the interior of cells can be approximated as resistors. Only the 
resistance is important. The specific ionic contents of the interior do not matter very much [78, 
79, 86, 88, 89].  

The second approximation in the circuit representation represents the membrane as a 
capacitance. Experiments show that membranes have well defined capacitances.[90-95] The 
capacitances arise in lipids that provide pathways for displacement currents 𝜀𝑚𝜀0 𝜕𝐄 𝜕𝑡 ⁄  where 
𝜀𝑚 is the effective dielectric constant of the lipid membrane.  

The third approximation in the circuit shows that the ion channels and transporters do 
not change the membrane capacitance under most conditions. They add current to the lipid 
membrane current [96] without changing it very much [97-99] except when gating currents [97] 
are created by specialized structures within membrane proteins that sense voltage.[100, 101] 

It is historically interesting that the analysis of the action potential depends on the 
Maxwell Current Law (2) in the form of the cable equation used in 1850 [102, 103] to describe 
the telegraph under the ocean [69], the trans-Atlantic cable. Hodgkin and Huxley used the cable 
equation [5, 6] and Cole’s voltage clamp [7] to show that action potentials arose from conduction 
currents through channels (then called conductances) in the membrane of nerve fibers. The 
conduction currents cross the membrane inside distinct proteins, called ion channels, which are 
selective and carry either Na+ or K+ currents flow. The currents are then converted into 
longitudinal currents in the cytoplasm that spread the action potential down a nerve axon. The 
axonal currents are carried by whatever ions happen to be in the axoplasm. The chemical identity 
of the ions that carry the longitudinal current is not important for conduction.[86, 88, 89] 

Early leaders in biophysics [104] thought these conduction currents would be propagated 
by coupled chemical reactions, but we now know that the channels that conduct those currents 
are not chemically coupled. They are electrically coupled.[105, 106] They are too far apart to 
interact even through their ionic atmospheres.[107]  

In fact, only electricity couples the conduction currents of the action potential. The 
conduction currents are coupled by the global electrical potential [68] of the cable equation. The 
electrical coupling creates the propagating action potentials from the otherwise independent 
conduction currents ([7]; Fig. 10 and eq. 11 of [108]). The potential change accompanying inward 
sodium Na+ currents at one location is spread by total longitudinal current—described by the 
cable equation—to other locations, where the potential change opens sodium channel proteins 
and produce inward Na+ currents of their own, that in turn propagate further. The type of ions 
that carry the total longitudinal current are not important.[86, 88, 89] 

The energy for the action potential comes from gradients of concentration maintained by 
other systems of membrane proteins called pumps or transporters that use the hydrolysis of ATP 
as their ultimate source of energy. The gradients of concentration of Na+ power the flows of ions 
modulated by the channel proteins that are the conduction currents that propagate the action 
potential, as described above. The ATP hydrolyzed by pumps and transporters is created by the 
electron transport systems of mitochondria and chloroplasts. Analyzing electron transport, along 
with ion and proton transport, using Maxwell’s Current Law (2) is likely to help understand these 
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systems as it has helped understand the propagation of the action potential, and so much of our 
electrical technology. 

Conclusion. Maxwell defined current differently from most scientists today. He said that total 
current must include the displacement current to be the true current that creates the electric and 
magnetic field. Without the displacement current, there could be no current in a vacuum, and 
the current in the vacuum was truly needed to create light. Maxwell said that the true current 
must be considered to understand the total movement of electricity because that included the 
propagation of light in a vacuum. 

Modern vector calculus provides a neat restatement of his definition and shows what 
Maxwell knew: true current does not accumulate. The resulting Maxwell Current Law (2) is a 
generalization of the Kirchhoff Current Law (5). The usual Kirchhoff Current Law, however, ignores 
Maxwell’s statement “that the time-variation of the electric displacement, must be considered”.  

It comes as a surprise then that Kirchhoff’s Current Law (5) is used successfully, in modern 
circuits operating at frequencies that are not low. Modern circuits, designed with Kirchhoff’s Law 
(5) operate successfully with bits of information that last 10−9 seconds [44-50, 57-67], reaching 
to microwave frequencies in favorable cases [70-73]. The surprise is removed by both types of 
‘stray capacitances’ introduced by engineers as supplements to idealized circuits as discussed 
near eq.(9). 

Generalization of Kirchhoff’s law (5) creates the Maxwell Current Law (2) that is not 
confined to circuits. It is not confined to low speeds. It is true in three dimensions, in complex 
biological systems with many energy sources, including chemical reactions.  

The Maxwell Current Law (2) can be immediately applied to biological systems like nerve 
fibers, muscle cells, mitochondria, and chloroplasts. In ion channels, the only coupling is by the 
Maxwell Current Law (2) because the channels are distinct, disjoint proteins far apart. In channels, 
the electric field is created by the flow of all currents. The currents are globally coupled by their 
joint origin as solutions of the Maxwell set of partial differential equations. That is the only way 
currents are coupled during a propagating action potential in nerve and muscle, whether the 
currents are carried by ions through selective membrane channels, or through cytoplasm by 
whatever ions happen to be present.[78, 79]  

In mitochondria currents are coupled. The coupling is the basis of active transport in 
biology in general [109, 110] and the coupling of electron and proton flow with ATP synthesis [12-
24]. The coupling is usually considered to be a property of the chemical reactions involved. In 
mitochondria, those chemical reactions exist locally in the protein complex of the mitochondrial 
membrane. Here we point out that currents in mitochondria are also coupled globally, as they are 
in propagating action potentials. The currents are coupled globally by electrodynamics because 
the Ampere Maxwell equation (1) is true everywhere, at all times, in biological and physical 
systems. Both local and global coupling occur in mitochondria.  

The Maxwell Current Law (2) can help scientists understand how local and global coupling 
combine to determine proton conduction current. Proton currents generate ATP. The proton 
currents are driven by the protonmotive force of the chemiosmotic theory that includes the 
electric field of Maxwell’s electrodynamics. The electric field can be calculated by the Maxwell’s 
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Current Law eq. (2) that implements electrodynamics in the form of the Ampere-Maxwell 
equation (1). Current laws eq. (2) & (5) couple the protonmotive force to the electric field, and 
thus to the movement of all charges and membrane currents. 

The treatment here allows the chemiosmotic hypothesis to take advantage of the 
knowledge of current flow in the physical and engineering sciences, particularly its Kirchhoff and 
Maxwell Current Laws. That knowledge has been helpful in understanding action potentials in 
biology, and in technology in general. Knowing the current means knowing an important part of 
the mechanism of ATP synthesis. 
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