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Abstract: This study introduces a mathematical model for electrolytic chemical reactions, employing
an energy variation approach grounded in classical thermodynamics. Our model combines electro-
statics and chemical reactions within well-defined energetic and dissipative functionals. Extending
the energy variation method to open systems consisting of charge, mass, and energy inputs, this
model explores energy transformation from one form to another. Electronic devices and biological
channels and transporters are open systems. By applying this generalized approach, we investigate
the conversion of an electrical current to a proton flow by cytochrome c oxidase, a vital mitochondrial
enzyme contributing to ATP production, the ‘energetic currency of life’. This model shows how the
enzyme’s structure directs currents and mass flows governed by energetic and dissipative functionals.
The interplay between electron and proton flows, guided by Kirchhoff’s current law within the
mitochondrial membrane and the mitochondria itself, determines the function of the systems, where
electron flows are converted into proton flows and gradients. This important biological system serves
as a practical example of the use of energy variation methods to deal with electrochemical reactions
in open systems. We combine chemical reactions and Kirchhoff’s law in a model that is much simpler
to implement than a full accounting of all the charges in a chemical system.

Keywords: mass action; electric static; cytochrome c oxidase; proton pump

1. Introduction

History seems to have separated much of chemistry [1,2] from the classical theory
of fields [3–5]. Chemical reactions are found throughout the ionic solutions of biology
and chemistry, but they are usually described in a language apparently disjoint from that
of classical field theory, even though the reactants and products of chemical reactions
are almost always charged and carry significant electrical currents. The reactants, cata-
lysts, and enzymes of chemistry and biology depend on charge interactions for many of
their functions.

Field theory has much to offer chemistry, particularly in the study of charged systems,
as admirably reviewed in [6], where the focus is mostly on closed systems. Maxwell’s
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equations are as universal and precise as any theory and apply to chemical reactions in the
plasmas of gases and ionic solutions and liquids in general. Indeed, Maxwell’s equations
can be written without any adjustable parameters, implying the universal conservation
of the total current [7,8]. A theory of the electromechanical response of the charge to the
electric field is needed, in that case, to make a complete description of the charged system,
i.e., an electromechanical theory of polarization phenomena [9]. But some properties of the
electromagnetic field (e.g., conservation of the total current) are true entirely independent of
the electromechanical response. The special systems that are almost completely described
by the conservation of the current (without specification of charges) include the electronic
circuits of our computers and many properties of the action potential of nerve and muscle
fibers. Both systems are almost entirely specified by Kirchhoff’s current law. The question
then arises of how we fit chemical reactions into the framework of Kirchhoff’s law and the
conservation of the total current, which is remarkably simpler to implement than a full
accounting of all the charges in a chemical system.

Here, we show one way to describe chemical reactions in ionic solutions with an
extension of classical field theory that does not violate either traditional chemistry or
electrodynamic field theory. In this work, we take advantage of the energy variation
method [10–12], which treats ionic solutions as complex fluids, with interactions, internal
stored energy, flow, and dissipation like other complex fluids [13–17]. We analyze the open
systems through which significant energy, mass, and flows enter and leave the system
because such systems are used throughout our technologies. Almost all engineering devices
are open. Almost all biological systems are open.

Our analysis begins by defining two functionals for the total energy and dissipation of
the system and introducing the kinematic equations based on physical conservation laws.
The specific forms of the flux and stress functions in the kinematic equations are obtained
by taking the time derivative of the total energy functional and comparing it with the
defined dissipation functional. More details of this method can be found in [11], although
most of the systems analyzed there are closed and do not exchange energy, mass, or flux
with their environment. We use energy variation methods to link the electric field and
reaction dynamics, as done by Wang et al. [6,18] for reactions that do not involve charges or
electrodynamics and are, for the most part, closed without exchange with the environment.

The generalization to charged open systems allows us to study systems of some
importance. Our approach deals with the open electronic devices that can be found in
most technologies, including computers. We study the active transporters of biological
membranes. These involve charge transport with the environment and do not function,
and in that sense do not exist, otherwise. They are open electrical systems.

In a sense, we extend the electrical treatment of the membrane proteins called ‘ion
channels’ to deal with transporters. The conservation of the current (in the form of Kirch-
hoff’s law) provides the crucial coupling between the properties of disjoint sodium and
potassium channel proteins that act independently in the atomic and molecular sense
because they are well screened. Channels are many Debye lengths apart, shielded from
each other by the ions, water dipoles (and quadrupoles), which also contribute to the ionic
atmosphere of proteins and lipid bilayers. The atomic-scale function of these proteins is
crucial to their biological function. Their coupling is just as important to their function as
their structure, but the coupling of these channel proteins is not chemical. The coupling
is provided by the cable equation [19], as biophysicists have called the telegrapher equa-
tion versions of Maxwell’s equations (and Kirchhoff’s law), used by Kelvin to design the
Atlantic cable [20] well before Maxwell wrote his equations. The voltage-clamp methods
used to study such systems exchange currents and energy with the environment and are,
in essence, open electrical systems.

Active transport is one of the most important processes in life. It maintains the
concentration gradients and membrane potentials that allow biological cells to function.
Indeed, without active transport, animal cells swell, burst, and die. Active transport powers
the generation of ATP in both animals (in mitochondria, through oxidative phosphorylation)
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and plants (in chloroplasts, through photosynthesis). ATP is the currency of chemical
energy in all plants and animals, storing in a small organic compound the energy from
photosynthesis or oxidation. When hydrolyzed to ADP, the chemical energy is available for
the myriad of dissipative processes essential to life. Nearly all of them use ATP as their
energy source. Life is complex with many facets. The energy source of life is not.

The coupling of flows in transporters in the inner membrane of mitochondria allows
one substance to move uphill (against its gradient of electrochemical potential) using the
energy derived from the downhill movement of another substance. Coupling is inher-
ently about the relationships between flows, yet most analyses and simulations of active
transporters do not explicitly include a variable for flow. Most do not use the electro-
dynamic equations for flow, such as the conservation of the total current (Kirchhoff’s
law) or a nonlinear version of Ohm’s law. Indeed, most analyses and simulations use
methods derived assuming zero flow and do not include changes in potential or free en-
ergy associated with the flow. Atomic-scale simulations deal with the myriad of charges
in macroscopic systems, like circuits, ionic channels, and transporters, with difficulty.
The problems with this approach become apparent if one tries to analyze the electron
flow through a resistor, semiconductor diode, or rectifier using traditional chemistry or
molecular dynamics approaches.

We analyze an active transporter by studying the currents through it, as a specific
example of our general field theory for ionic flows with chemical reactions. We combine
Kirchhoff’s law and chemical reaction energetics with the diffusion, migration, and con-
vection of ions and water to make an ’electro-osmotic’ model of a device. The name is
chosen to emphasize the important role of electricity in this system, implying the need to
deal with electrical flows using methods applied to electrical flows in other systems, like
electrical and electronic circuits. This approach seems sensible for systems like oxidative
phosphorylation and photosynthesis, where electron flows are involved. The analysis of
electron flows has been well established in physics and engineering for more than a century.
The analysis of ionic flows has been well established in membrane biophysics for over
seventy years. We combine them here with chemical reactions, aiming to construct a useful
electro-osmotic theory of cytochrome c oxidase as a device with biologically important
inputs and outputs.

We do not have to deal with the myriad of charges involved in the transport of
currents or the incalculable number of interactions of those charges that are apparent in
the atomic-scale simulations of molecular dynamics. The analysis of the current flow is all
we use in this conservative coupling approach, following the practice of circuit analysis.
We do not have to assume equilibrium or zero flow. We do not have to deal explicitly
with the charges involved in the transport. The analysis of the current flow is all we
use. In particular, we do not assume equilibrium or near-equilibrium flows, as done in
previous analyses. Note that near-equilibrium analysis (using the Green–Kubo formalism,
for example) is inappropriate for devices that function with large flows. These devices
are not near equilibrium. The electronic devices of our digital technology function far
from equilibrium and they are not analyzed by assuming nearly zero flow. Indeed, they
usually use power supplies to maintain spatially nonuniform potentials, often described
by inhomogeneous Dirichlet boundary conditions. Traditionally, electronic devices are
analyzed by studying small changes around a nonequilibrium operating point, which, we
hasten to add, is maintained by large—not small—flows from power supplies. But even
this linearization is not necessary nowadays because full-flow nonequilibrium problems
can be solved conveniently with readily available software.

We are certainly not the first to exploit the simplification provided by the analy-
sis of a current instead of a charge. Circuit designers have used this approach ’for-
ever’ [21,22]. Charges are hardly mentioned when circuits are designed, as a glance at
textbooks shows [23–29], perhaps most eloquently in symbolic circuit design [30]. Analyses
of currents—not charges—have characterized the study of ion channels since they were
discovered as conductances by Hodgkin and Huxley over seventy years ago [31–36]. Anal-
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yses of currents are not a prominent feature of the study of active transporters; however,
even in the work of Hodgkin and collaborators that started the physiological analysis
of active transport in cell membranes (in contrast to the study of active transport in bio-
chemical preparations [37]), at much the same time as Hodgkin led the work defining
channels [38–40].

Most models of active transport include conformational changes of the protein that
require a model to compute the spatial distribution of mass in the protein, as it changes
during active transport [41,42]. The conformational changes usually provide alternating
access to an occluded state that is not connected (or accessible) to either side of the protein.
The occluded state blocks the conduction path (and incidentally, often traps ions in the
‘middle’ of the transporter) and thus prevents backflux. Alternating access mechanisms
create flux across the transporter protein without allowing backflux, which would seriously
degrade the efficiency of the transporter. Transporters were first thought to use quite
different mechanisms from channels [43,44]. However, recent work [45] shows otherwise.

Alternating access is apparently created by correlated motions of gates that account for
activation and inactivation in classical voltage-activated sodium channels [41,46]. The phys-
ical basis of the gates is not discussed in the classical literature. Later in this paper, we
speculate that the switches that provide alternating access might be like the switches of
bipolar transistors.

In this work, we use an electro-osmotic approach to describe cytochrome c oxidase (or
Complex IV) as a device with inputs and outputs, an open system. Our ‘electro-osmotic’
model is a ‘master equation’ approach, building on the work of Hummer and Kim [47–49].

We choose cytochrome c oxidase because experimental work and simulations of the
highest quality have shown that “cytochrome c oxidase is a remarkable energy trans-
ducer (i.e., coupled transporter of electrons and protons) that seems to work almost
purely by Coulombic principles without the need for significant protein conformational
changes” [50].

Cytochrome c oxidase depends on an “occluded state” containing the reaction center(s)
to prevent backflow, similar to other active transporters, but it uses some type of ’water-gate’
mechanism, as proposed in [50,51]. The alternating access in cytochrome c oxidase occurs
without a conformation change (of the spatial distribution of mass) in marked contrast to
the usual alternating access models of transporters. Perhaps the gate in the oxidase is like
the switch in a semiconductor (diode) rectifier. The switches might be rectifiers produced
by spatial distributions of permanent charges, or of opposite signs, as rectification (and
switching) is produced in PN diodes and bipolar transistors. Diode rectifiers depend on
changes in the shape (i.e., conformation) of the electric field, not changes in the distribution
(i.e., conformation) of mass. This idea is outlined in Section 5 following [52–54].

The rest of this paper is organized as follows. In Section 2, we derive the general
three-dimensional field equations for an ionic system with reactions and use them to create
a general framework of an electro-osmotic model. In Section 3, we propose a specific,
simplified model for cytochrome c oxidase. In Section 4, we carry out computational
studies of our cytochrome c oxidase model and explore the effects of various conditions on
the transport of protons across the mitochondrial membrane. In Section 5, we conclude our
paper with a discussion of our cytochrome c oxidase model and future directions.

2. Derivation of Electro-Osmotic Model

We mainly focus on a mathematical model of elementary reactions

α1Cz1
1 + α2Cz2

2 + α3Cz3
3

k f


kr

α4Cz4
4 , (1)
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where k f and kr are two constants for forward and reverse directions, and [Ci] is the
concentration of the ith species. Here, αi is the stoichiometric coefficient, and zi is the
valence of the ith species, and together, they satisfy

3

∑
i=1

αizi = α4z4. (2)

In particular, we have in mind a case where an active transporter (‘pump’) uses the
energy supplied by a chemical reaction to pump molecules. Later, we focus on the reaction
for cytochrome c oxidase, i.e., Complex IV of the respiratory chain

2H+ +
1
2

O2 + 2e−
k f


kr

H2O. (3)

According to the conservation laws, we have the following conservation of chemical
elements (like sodium, potassium, and chloride). Note that this conservation is in addition
to the conservation of mass because nuclear reactions that change one element into another
are prohibited in our treatment, as in laboratories and most of life.

∂
∂t (α4[C1] + α1[C4]) = 0,
∂
∂t (α4[C2] + α2[C4]) = 0,
∂
∂t (α4[C3] + α3[C4]) = 0.

(4)

In order to derive a thermal dynamically consistent model, the energy variation method [11]
is used. Based on the laws of the conservation of elements and Maxwell’s equations, we
have the following kinematic system

∂[C1]
∂t = −∇ · j1 −∇ · jp − α1R,

∂[C2]
∂t = −∇ · j2 − α2R,

∂[C3]
∂t = −∇ · j3 − α3R,

∂[C4]
∂t = −∇ · j4 + α4R,
∇ · (D) = ∑4

i=1zi[Ci]F,
∇× E = 0,

(5)

where jl , l = 1, 2, 3, 4 are the passive fluxes, jp is the pump flux, and R is the reaction
rate function. All these variables are unknown and will be derived using the energy
variation method.

jex is the flux of electrons supplied from an external source. In mitochondrial mem-
branes, this flux includes special structures and pathways linking one enzyme and one
complex to another through the movement of lipid-soluble or water-soluble molecules like
quinones, which act as electron donors, or acceptors linking one respiratory complex with
another, for example.

D is Maxwell’s electrical displacement field, and D = ε0εrE with electric field E,
dielectric constant ε0, and relative dielectric constant εr. The equation ∇× E = 0 implies
that there exists a φ such that E = −∇φ. We consider a system with structure and boundary
conditions defined based on that structure.

The structures are given to us by structural biologists reporting the work of evolution.
The structures are complex, as complex as the structures of integrated circuits and modules
of circuits in our computers. But the structures are known, often in quantitative detail,
thanks to the work of generations of anatomists and histologists. Thus, they provide fewer
adjustable parameters than one might imagine if one were not familiar with the work of
structural and anatomical biologists.

The structures are decorated with molecules (proteins and lipids for the most part) that
use particular atomic arrangements to channel physical forces into physiological functions.
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The physiological properties of these proteins (channels and transporters) are known in
great detail and have few adjustable parameters because of the work of generations of
membrane biologists and electrophysiologists.

Channels can be studied one molecule at a time in their natural environment, and the
atomic detail structures are known in many cases thanks to the heroic work of structural
and molecular biologists. The work of generations of quantitative biophysicists means that
there are fewer adjustable parameters in our models than might seem to those unfamiliar
with this biological work.

We describe the flux for the ith species ji,ex, which serves as the input of the system.
In cytochrome c oxidase, the input is electrons carried on the heme groups of cytochrome
oxidase. {

ji · n = ji,ex, i = 1 · · · , 4, on ∂Ω,
D · n = 0, on ∂Ω.

(6)

We use the assumption that polarization can be described by a single positive constant
called the dielectric constant εr because in many cases, too little is known to do anything
better. When more is known experimentally, the dielectric description of polarization
needs to be replaced with an electromechanical description of polarization as a stress–strain
relation of lipid-soluble or water-soluble electron donors, with a slightly modified version
of Maxwell’s equations, as discussed in [55,56] from various perspectives.

Remark 1. By multiplying zie on both sides of the first three equations and −e on both sides of the
fourth equation, we have

∂

∂t
(∇ · D) =

4

∑
i=1

ziF
∂[Ci]

∂t
(7)

= −
4

∑
i=1
∇ · (ziFji)− ziF∇ · jp − (z1α1 + z2α2 + z3α3 − z4α4)FR (8)

= −
4

∑
i=1
∇ · (ziFji)− ziF∇ · jp, (9)

which is consistent with the electrostatic Maxwell’s equations. The treatment of transient problems
involving displacement currents is needed to deal with some important experimental work [57–62].

The total energetic functional is defined as the summation of the entropies of mix-
ing [63], internal energy, and electrostatic energy.

Etot = Eent + Eint + Eele

=
4

∑
i=1

∫
Ω

RT
{
[Ci]

(
ln
(
[Ci]

c0

)
− 1
)}

dx +
∫

Ω

4

∑
i=1

[Ci]Uidx +
∫

Ω

D · E
2

dx. (10)

Then, the chemical potentials can be calculated from the variation in total energy

µ̃l =
δEtot

δ[Ci]
= RT ln

[Ci]

c0
+ Ui + zlφe, l = 1, · · · , 4. (11)

It is assumed in the present work that the dissipation of the system energy is due to
passive diffusion, chemical reactions, and the pump. Accordingly, the total dissipation
functional ∆ is defined as follows

∆ =
∫

Ω


4

∑
j=1
|ji|

2 + RTR ln

 R

kr

(
[C4]
c0

)α4
+ 1


dx−

∫
Ω

fpdx, (12)

where fp = fp(R, µ, x) ≥ 0 is the term for the pump.
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Open systems in which some fluxes flow in or out, entering or leaving the system
altogether, have distinctive energy dissipation laws that differ from those of closed systems.
The natural mitochondrion is an unclamped system, in which the electrical potential
assumes whatever value satisfies the field equations. The sum of all currents across the
membrane of the natural mitochondrion is zero (including the capacitive displacement
current), as it is in small biological cells. Many experiments are conducted on voltage-
clamped systems. In these, the sum of the currents does not equal zero, just as the sum of
the currents in the classical Hodgkin–Huxley experiments was not zero. Of course, the ratio
of fluxes will be different in the clamped and unclamped cases, as we document at length
later in this paper.

In the natural unclamped mitochondrion, we have the following generalized energy
dissipation law

dEtot

dt
= JE,∂Ω − ∆. (13)

where JE,∂Ω is the rate of boundary energy absorption or release that measures the energy
of flows that enter or leave the system through the boundary. Recall that the chemical
potential of a species is the energy that can be absorbed or released due to a change in the
number of particles of the given species, and Ji · n is the total number of the ith particles
passing through the boundary per area per unit time. We define JE,∂Ω as follows

JE,∂Ω =
∫

∂Ω

4

∑
i=1

µ̃i ji · ndS. (14)

In general, different types of boundary conditions can be written in the following
general format

ji · n = gi( f ([Ci])− f ([Ci]ex)), (15)

where gi is the conductance of the ith species on the boundary, [Ci]ex is the fixed reservoir’s
concentration of the ith species, and f is some specific function. Then, the rate of boundary
energy absorption or release is

JE,∂Ω =
∫

∂Ω

4

∑
i=1

giµ̃i( f ([Ci])− f ([Ci]ex)). (16)

In this open case, characteristic of electronic devices, ion channels, and transporters, en-
ergy can change because of both the flux across the boundary and the change in dissipation.

dE
dt
− JE,∂Ω = −∆. (17)

Remark 2. Boundary Conditions, Structure, Evolution, and Engineers
These boundary conditions serve as the link between general field equations and structures

that serve as devices. Structures are chosen and devices are designed (by evolution or engineers) so
these boundary conditions are satisfied. The boundary conditions are chosen so devices have almost
the same properties no matter where they are placed in a network. The structures and boundary
conditions of those structures are not automatic properties of nature. The structures are decorated
with (i.e., include) specific substructures (like power transistors) that exploit arrangements of atoms
(like doping charges) to create properties that are useful. The properties are summarized by boundary
conditions located on the structures provided by evolution and engineers. These boundary conditions
help make the idea of a component useful. They help ensure that a component in one part of a system
does the same as what it does in another part of the system; therefore, they can be described by a
‘transfer function’, independent of the component’s location in the system. The transfer function can
be analyzed by the currents that flow through it, with almost no attention to the charges that make
up that flow, as a glance at circuit textbooks shows [23–29], perhaps most eloquently, in symbolic
circuit design [30].
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It is clear that channels and transporters in biological systems behave as components and often
as devices. It seems likely that an analysis of the currents through these components will be as
helpful as it is in an analysis of circuits, not requiring an analysis of charges and their individual
behavior. Indeed, classical physiology and biophysics are frequently devoted to identifying such
components, on a wide variety of length scales from atoms to organisms, and studying how they
interact in the hierarchy of the structures of animals and plants [64–71].

Remark 3. 1. A closed system allows no flux across the boundaries. It has the following no-flux
boundary conditions {

ji · n = 0 i = 1, 2, 3, 4, on ∂Ω,
D · n = 0, on ∂Ω.

(18)

In a closed system, JE,∂Ω = 0, and the energy dissipation law is

dEtot

dt
= −∆.

In a closed system, the energy changes into dissipation. This is the only way energy can change
in a closed system.

2. An open system has flows across the boundaries. An open system might have constant
inflows/outflows

ji · n = Ji,ex.

In this case,

gi =
Ji,ex

f ([Ci])− f ([Ci]ex)
,

and

JE,∂Ω =
∫

∂Ω

4

∑
i

µ̃i Ji,exdS.

3. For the Dirichlet boundary condition [Ci] = [Ci]ex on ∂Ω, the flux ji · · · n is unknown and
part of the solution. In this case, JE,∂Ω is the unknown flux that is needed to ensure that
the Dirichlet condition [Ci] = [Ci]ex is obeyed on ∂Ω. In biophysical language, JE,∂Ω is the
‘current’ supplied by the voltage-clamp amplifier that is needed to keep the voltage constant,
as membrane conductance varies.
It is very important to understand this requirement. In reality, i.e., in experiments and their
models, supplying the unknown flux requires specialized instrumentation, for example, a patch
clamp amplifier in a voltage-clamp setup. Almost always, this flux is supplied at one location
in space. In this way, a classical voltage clamp can be established. One can clamp the voltage in
this way but one cannot clamp a field in this way. A voltage clamp is possible, but a constant
field is so much more difficult that it is practically impossible.
If one wishes to “clamp” a field, one must control the potential at many locations. Each location
requires a different flux and thus a different amplifier and different electrodes to supply that
flux. Without such a complicated apparatus, it is almost impossible to maintain a constant field
in space [72]. Indeed, it is nearly impossible to maintain any pre-specified field because it is
practically impossible to apply different fluxes at different locations. If one assumes a constant
field in a theory, without such an apparatus in an experiment, one is, in effect, introducing
a flux into the calculation and model that is not present in the experimental setup. One is
introducing an artifactual flux likely to produce artifactual conclusions that are not relevant
to the original experiment. [54,73]. To indulge in slight hyperbole, one can clamp the voltage,
but one cannot make a constant field.

By taking the time derivative of the total energy function (10), we have
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dEtot

dt
=

∫
Ω

4

∑
i=1

{
µi

∂[Ci]

∂t

}
dx +

∫
Ω

E · ∂D
∂t

dx

=
∫

Ω

4

∑
i=1

{
µi

∂[Ci]

∂t

}
dx−

∫
Ω
∇φ · ∂D

∂t
dx

=
∫

Ω

4

∑
i=1

{
µi

∂[Ci]

∂t

}
dx +

∫
Ω

φ∇ ·
(

∂D
∂t

)
dx

=
∫

Ω

4

∑
i=1

{
µi

∂[Ci]

∂t

}
dx +

∫
Ω

φF
4

∑
i=1

{
zi

∂[Ci]

∂t

}
dx

=
∫

Ω

4

∑
i=1

{
µ̃i

∂[Ci]

∂t

}
dx (19)

= −
∫

Ω

4

∑
i=1
{µ̃i∇ · ji}dx−

∫
Ω

µ̃1∇ · jpdx−
∫

Ω
R(

3

∑
i=1

αiµ̃i − α4µ̃4)dx

=
∫

Ω

4

∑
i=1
{∇µ̃i · ji}dx +

∫
Ω
∇µ̃1 · jpdx−

∫
Ω
R(

3

∑
i=1

αiµi − α4µ4)dx +
∫

∂Ω

4

∑
i=1

µi ji · ndS,

where µi = RT ln [Ci ]
c0

+ Ui and Equation (2) is used.
By comparing this with the dissipation function, we have

ji = −
Di
RT

[Ci]∇µ̃i, i = 1, 2, 3, (20a)

RT ln

 R

kr

(
[C4]
c0

)α4
+ 1

 =
3

∑
i=1

αiµi − α4µ4. (20b)

And the corresponding energy influx rate is

JE =
4

∑
i=1

∫
∂Ω

µ̃i ji,ex. (21)

For the pump flux, if we assume the flux is only along the z-direction, then,

jp = (0, 0,
fp

∂zµ1
). (22)

At equilibrium, we have{
ji = ∇[Ci]eq +

zi F
RT [Ci]eq∇φeq = 0,

∑3
i=1 αiµi([Ci]eq)− α4 µ4([C4]eq) = 0.

The last equation means that

0 = RT ln

Π3
i=1(

[Ci ]eq
c0

)αi

(
[C4]eq

c0
)α4

+ (
3

∑
i=1

αiUi − α4U4), (23)

According to the definition of the equilibrium constant keq [74],

keq =
Π3

i=1(
[Ci ]eq

c0
)αi

(
[C4]eq

c0
)α4

. (24)
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Substituting Equation (24) into Equation (23) yields

keq = e−
∆U
RT , (25)

with

∆U =
3

∑
i=1

αiUi − α4U4.

Then, combining Equations (20b) and (25) yields

ln

 R

kr

(
[C4]
c0

)α4
+ 1

 = ln

Πi=1

(
[Ci ]
c0

)αi(
[C4]
c0

)α4

, (26)

which implies that

R = k f

(
[C1]

c0

)α1
(
[C2]

c0

)α2
(
[C3]

c0

)α3

− kr

(
[C4]

c0

)α4

,

where k f =
kr
keq

[18].

Remark 4. Here, keq is dimensionless. kr and k f have units of s−1 [74].

Then, the whole system is as follows

∂[C1]
∂t = ∇ · (D1∇[C1] + D1

z1F
RT [C1]∇φ)− ∂z jp − α1R,

∂[C2]
∂t = ∇ · (D2∇[C2] + D2

z2F
RT [C2]∇φ)− α2R,

∂[C3]
∂t = ∇ · (D3∇[C3] + D3

z3F
RT [C3]∇φ)− α3R,

∂[C4]
∂t = ∇ · (D4∇[C4] + D4

z4F
RT [C4]∇φ) + α4R,

−∇ · (ε0εr∇φ) = ∑4
i=1 ziF[Ci],

(27)

with

R = k f

(
[C1]

c0

)α1
(
[C2]

c0

)α2
(
[C3]

c0

)α3

− kr

(
[C4]

c0

)α4

. (28)

and the boundary conditions{
ji · n = jex, i = 1 · · · 4, on ∂Ω,
D · n = 0, on ∂Ω.

(29)

Remark 5. If we assume that one of the reactants is an electron, for instance, C3, and is supplied
by a thin electrode along the z-direction, the density of electron [C3] = ρe = ρ(z, t)δ(x0, y0). Then,
the model is changed to

∂[C1]
∂t = ∇ · (D1∇[C1] + D1

z1e
RT [C1]∇φ)− ∂z(jp)− α1Rδ(x0, y0),

∂[C2]
∂t = ∇ · (D2∇[C2] + D2

z2e
RT [C2]∇φ)− α2Rδ(x0, y0),

∂[C4]
∂t = ∇ · (D4∇[C4] + D4

z4e
RT [C4]∇φ) + α4Rδ(x0, y0),

∂ρ(z,t)
∂t = −∂z je − α3Rδ(x0, y0),
−∇ · (ε0εr∇φ) = ∑i=1,2,4 zie[Ci]− Fρ(z, t)δ(x0, y0).

(30)
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Remark 6. When the reaction and ions are in an electrolyte, the fluid effect needs to be taken into
consideration. In this case, the energy function is changed to

Etot = Ekin + Eent + Eint + Eele

=
∫

Ω

ρ|u|2
2

dx +
4

∑
i=1

∫
Ω

RT
{
[Ci]

(
ln
(
[Ci]

c0

)
− 1
)}

dx +
∫

Ω

4

∑
i=1

[Ci]Uidx (31)

and the dissipation function is changed to

∆ =
∫

Ω
2η|Dη |2dx +

∫
Ω


4

∑
j=1
|ji|

2 + RTR ln

 R

kr

(
[C4]
c0

)α4
+ 1


dx−

∫
Ω

fpdx, (32)

where

Dη =
∇u + (∇u)T

2
and u is the velocity.

We can use the energy variation method to obtain the diffusion–reaction–convection model
as follows 

∂[C1]
∂t +∇ · ([C1]u) = ∇ · (D1∇[C1] + D1

z1F
RT [C1]∇φ)− ∂z jp − α1R,

∂[C2]
∂t +∇ · ([C2]u) = ∇ · (D2∇[C2] + D2

z2F
RT [C2]∇φ)− α2R,

∂[C3]
∂t +∇ · ([C3]u) = ∇ · (D3∇[C3] + D3

z3F
RT [C3]∇φ)− α3R,

∂[C4]
∂t +∇ · ([C4]u) = ∇ · (D4∇[C4] + D4

z4F
RT [C4]∇φ) + α4R,

−∇ · (ε0εr∇φ) = ∑4
i=1 ziF[Ci],

ρ( ∂u
∂t + (u∇) · u +∇p = ∇(η(∇u + (∇u)T))− (∑4

i=1 ziF[Ci])∇φ
∇ · u = 0.

(33)

Note that here, we are not considering transient problems in which the charge is stored
in polarization fields. These will be studied separately so we can deal with the important
experiments reported in [57–62]. Transient problems are obviously important if reactions are
studied on the atomic scales of distance and time (angstroms and femtoseconds) because the
polarization currents are large. Dealing with these currents requires the use of a universal
form of Maxwell’s equations combined with an appropriate model of the stress–strain
relation of a charge in a viscoelastic structure, commonly called polarization. Speaking
loosely, the transient problems can be dealt with in circuits using a generalization of
Kirchhoff’s law [7,75] to describe the actual transient currents that flow through an ideal
resistor [55].

It is important to realize that currents (and fluxes) cannot be computed using methods
that assume currents and fluxes are zero. Electrostatics cannot compute currents because
currents and fluxes involve time and electrostatics does not [76]. Electrostatics does not
include Ampere’s law, which is the universal coupler of a current to electric and magnetic
fields. In the context of cytochrome c oxidase, these issues come to the fore. Models
without electron or proton currents as variables do not describe the ‘transfer function’ of
the transporter being studied. Models cannot calculate Ohm’s law (for systems with large
and small currents and electrical potentials) if the models assume currents are zero.

In fact, using a formulation of electrodynamics that explicitly involves currents is
straightforward, as engineers have known for a very long time, going back to the work
of Heaviside [77,78], and is worked out in practical detail in [75]. Kirchhoff’s current
law allows for the analysis of systems of great importance, without dealing with charges
explicitly. This is why the analysis of electronic circuits does not need to use distributions
of charges but rather uses Kirchhoff’s current law or its generalization, the conservation
of the total current. Kirchhoff’s current law is an exact corollary of Maxwell’s equations
themselves if the current includes the displacement current [7,55,75].
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It might seem that another corollary of Maxwell’s equations, the continuity equation,
can be used instead of Kirchhoff’s law for the total current. And it is certainly true that the
continuity equation of electrodynamics contains the same information as the conservation
of the (total) current, all conjoined with Maxwell’s equations. But that information is not
useful when enormous numbers of charges are involved, as in cytochrome c oxidase or
other macroscopic-scale systems like the electronic circuits of our computers, ionic channels,
or transporters in general. Indeed, enzymes, in general, are often macroscopic systems when
one considers the environment that is absolutely required for them to function biologically.

The information implicit in the flux of charges is only usable when written as the total
current that is conserved perfectly whenever Maxwell’s equations are valid. This formula-
tion using the conservation of the total current does not require the explicit treatment of
charges. The continuity equation does require the explicit treatment of charges and their
significant interactions, whether involving the interactions between two charges, three
charges, or the interactions of an entire cluster expansion. The significant interactions of
charges are difficult to understand or even enumerate and more difficult to compute [79,80].
Kirchhoff’s current law is easy to understand and trivial to compute.

3. An Electro-Osmotic Model of Cytochrome c Oxidase

Here, we propose a specific model of cytochrome c oxidase (or Complex IV) as an
example so our approach to electrochemical open systems can be seen in action. The
schematic structure of cytochrome c is shown in Figure 1, where both channels from the
mitochondria matrix (inside), D and K, are taken into consideration. Here, E denotes the
end of the D channel. The end of the K channel is assumed to be the binuclear center (BNC),
denoted by B, where the chemical reaction (36) occurs. The protons accumulated in E are
transported to the BNC and the proton loading site (PLS), denoted by X. A pump is located
between E and PLS. The pump provides the energy that comes from concentration gradients,
namely the gradients of the chemical potential at the BNC. Then finally, the proton is pushed
out from the PLS to the inter-membrane space outside the mitochondrion.

It is clear that this model is incomplete at best, and in some sense, wrong at worst.
We depend on our experimental colleagues to help us correct and improve the model,
for example, by including mechanisms we have oversimplified. Significant details about
the chemical reactions are described in the literature, with more intermediates being
reported frequently. We do not include these intermediates because we do not know which
ones are important for the resolution of the understanding we seek here.

Let ⊂e = ρ0δ(x0, y0, z0, t). Integrating the diffusion-reaction equation

∂[C]i
∂t

= −∇ · ji − αiR, (34)

with the Complex IV compartment yields

η
∂C̄i
∂t

= Jin
i − Jout

i − αiR, (35)

where ηmat, ηims, and η are the volumes of the mitochondrial compartment, inter-membrane
space, and reaction compartment, respectively.

The chemical reaction in the cytochrome c oxidase (Complex IV) is

2H+ +
1
2

O2 + 2e−
k f


kr

H2O. (36)
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(a) (b)

Figure 1. Circuit diagrams of models (37) and (38). Circuit diagram when the rectifier is located
(a) between the N side and the E242 site, and (b) between the PLS and the P side.

For simplicity, we follow the Hodgkin–Huxley tradition and fix the proton concen-
trations in the mitochondrial matrix (inside) and the inter-membrane space outside the
mitochondria so they do not vary with time or flow. More general treatments in which
concentrations are changed with time by flow are possible, as performed in even more
complex structures. Such analyses have been conducted in a bi-domain model of the lens
of the eye and a tri-domain model of the optic nerve and glia [81–84].

Here, for simplicity, we assume that the concentration of oxygen at the B site is constant.
If the oxygen varies with time, an additional equation can be used to describe the dynamics
of oxygen. The properties of this term can be determined either directly through experi-
mentation or with the use of a higher-resolution model, as in [85]. We do not expect the
extra term to introduce significant mathematical, numerical, or computational difficulties.

Many variables are needed to keep track of all the potentials and concentrations in
the various regions of our model. The variables are required whenever practical systems
are described, whether the systems are devices of engineering or creations of evolution.
They cannot be avoided in a useful analysis of a functioning system because the parameters
describe the conditions needed to make the device or system perform its function.

The concentrations and potentials at E242; the BNC; and the proton loading site (PLS)
are different inside and outside the mitochondria, as is the electron concentration. They are
described by the variables [H]E, [H]B, [H]X , φE, φB, φX , φN , φP, and ρe, respectively.

d[H]E
dt

=
Sv

F
(IN2E − IE2X − IE2B), (37a)

d[H]B
dt

=
Sv

F
(IE2B + IN2B)− 2R, (37b)

d[H]X
dt

=
Sv

F
(IE2X − IX2P), (37c)

dρe

dt
=
−Sv

F
Ie − 2R, (37d)

CE
d(φE − φN)

dt
= (IN2E − IE2X − IE2B), (37e)

CB
d(φB − φN)

dt
= IE2B + IN2B + Ie, (37f)

CX
d(φX − φP)

dt
= (IE2X − IX2P), (37g)

Cm
d(φN − φP)

dt
+ Ileak + IX2p + Ie = 0, (37h)
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with the currents

IN2B = gK(φN − φB −
RT
F

ln
[H]B
[H]N

) =
gK
F
(µN − µB), (38a)

IE2B = gB(φE − φB −
RT
F

ln
[H]B
[H]E

) =
gB
F
(µE − µB), (38b)

IE2X = Ipump + Ixleak, (38c)

Ileak = gm(φN − φP − Eother), (38d)

Ie = −FJe, (38e)

Ixleak = −gE(µX − µE), (38f)

Ipump =

{
gpumpmax(Rc, 0)(µX − µE), µX − µE < δth,

gpumpmax(Rc, 0)δth exp
(
− (µX−µE)

ε

)
, µX − µE ≥ δth,

(38g)

R = k f [H]2B[O2]
1/2ρ2

e − kr[H2O]. (38h)

We follow the review of Wikström [50] and implement switching functions without
invoking conformation changes in the distribution of mass. We treat cytochrome c oxidase
as a Coulomb system and use rectifiers to implement the switching functions that provide
alternating access to an occluded state.

Here, we discuss two cases. In one case, a rectifier between N and E blocks the proton
flows. In the other case, a rectifier between X and P blocks the backward proton flows.
Then, the currents IN2E and IX2P are modeled in the following two cases.

• Case 1: the rectifier is between N and E, as shown in Figure 1a

IN2E = max
(

gD

(
φN − φE −

RT
F

ln
[H]E
[H]D

)
,−SW0

)
= max

( gD
F
(µN − µE),−SW0

)
, (39a)

IX2P = gX(φX − φP −
RT
F

ln
[H]P
[H]X

) =
gX
F
(µX − µP), (39b)

• Case 2: the rectifier is between X and the outside, as shown in Figure 1b

IN2E = gD

(
φN − φE −

RT
F

ln
[H]E
[H]D

)
, (40a)

IX2P = max
(

gX(φX − φP −
RT
F

ln
[H]P
[H]X

),−SW0

)
= max

( gX
F
(µX − µP),−SW0

)
, (40b)

where SW0 is the threshold for the turn-off of the rectifier, and SW0 = 0 stands for the
perfect rectifier. We reiterate that PN junctions are used to rectify the movement of pseudo-
ions’ holes and electrons throughout our digital circuitry. Analogous distributions of
permanent charge provided by acid and base side chains of proteins produce a rectification
of the charge movement in ionic systems.

We use Kirchhoff’s law and the conductance formulation of Hodgkin and Huxley.
Complex properties are hidden through a nonlinear, time-dependent version of Ohm’s
law and modeled using conductance, as demonstrated by Hodgkin and Huxley [31–36].
Alternating access (with its implied occluded state) is described by a switching function for
the D channel using Equation (39a). This is a classical rectifier function, and when SW0 = 0,
it allows for the current only to flow from D to E; no backward flow is allowed.

Many properties of the model depend on the pump current between E242 and the PLS.
We assume that in an ordinary case, the pump strength depends on the reaction rate and the
chemical reaction difference between the two sites. However, in a less ordinary case, when
the difference is too large, the pump may not be able to overcome the barrier. A turn-off
threshold is assigned to the pump for this reason. We assume that when the difference
in chemical potential µx − µE is greater than the threshold, the pump current decreases
exponentially to zero as it turns off. More realistic and complex properties of the pump
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will undoubtedly be needed to explain some functions of cytochrome c oxidase. They can
easily be incorporated into our model, as these properties are measured and modeled.

What we propose here is in the tradition of Hodgkin’s treatment of ionic channels,
but we include the chemical reactions that are the essence of oxidative phosphorylation and
the life and function of mitochondria. We are more than aware that a detailed analysis of
alternating access, the occluded states, and the switching function is needed to understand
cytochrome c oxidase, which requires an analysis of the currents flowing along with the
atomic detail of the water-gate switch [50,51], in our view. The switches act on currents
and, of course, satisfy the conservation of the current. An analysis of charges cannot
easily guarantee the conservation of the current, and classical chemical analyses preclude
large currents because assuming equilibrium or near-equilibrium conditions is clearly
inappropriate for a system like Reaction Center IV, which is designed for the efficient
handling of large flows of electrons and protons. Here, we describe alternating access
with the classical equation of a rectifier to highlight the possibility that occluded states and
alternating access are the biochemical names for what engineers call rectification.

It is important to realize that rectification is an automatic unavoidable consequence of
the distribution of doping in semiconductors, for example, in the classical PN diode. This
rectification occurs with no change in the spatial distribution of mass (i.e., with no change
in what is usually called conformation), and so it is compatible with the view cited above
that cytochrome c oxidase functions without changes in the spatial distribution of mass,
i.e., without what is classically called a conformation change. In the rectification mechanism,
the switching (rectification) occurs because of a radical change in the distribution of the
electrical potential, which, in turn, allows current flow in one direction but not another.
The distribution of potential depends on the distribution of mobile electrons, which have
almost no mass. The conformation of the potential profile, and thus the electric field, creates
a barrier for current flow in one direction but not another because of the effects of doping
(permanent charge) and mobile charge combined in the Maxwell–Gauss law or the Poisson
equation. This system is rather complex, although completely understood and used in
billions of different places in our computers. The system involves the diffusive and electrical
movements of electrons (and holes) driven by the gradients of the chemical potential (e.g.,
concentration) and electrical potential. As the electrical potential changes sign, diffusive
and electrical flows change. As concentrations change, diffusive and electrical flows change
in other ways. All interact through the changing fields of both the electrical and chemical
potentials. Over ten pages (not just a few words or sentences) are needed to explain how
each kind of movement (diffusive, electrical, holes, and electrons) contributes to rectification
because each movement has distinct driving forces that can be varied independently in
experimental and technological situations, and of course, each movement is also driven
by the other driving forces to which it is coupled (see textbooks on semiconductor circuit
design, e.g., [86,87]). It is also important to consult research articles [88,89] to understand
the oversimplifications of the textbook discussions and validate them. More elaborate
patterns of doping, starting with PNPN designs (thyristors, Silicon-Controlled Rectifiers
(SCRs)) are used in power transistors. Analogous spatial distributions of permanent charge
(and acid and base side chains) might be used to implement switches in cytochrome
c oxidase.

We note that rectification arising from the distribution of the permanent charge in a
protein was proposed by Mauro a very long time ago [90,91] as a natural generalization
of Shockley’s work on hole and electron conduction in semiconductors. Such rectifiers of
ionic currents have even more complex properties than semiconductor rectifiers because
concentrations of current carriers in biological solutions can be changed independently of
the electrical potential, which is not often the case in analogous semiconductor systems.

This theoretical work can be implemented in practical devices. Ionic rectifiers were
built a long time ago using a biological protein as a template [53] and are now used routinely
in the ionic channels of nanotechnology [92], even in a hybrid chip that can enable a scalable
integrated ionic circuit platform for micro-total analytical systems [93].
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The switch of Reaction Complex IV is likely to involve both the distribution of the
permanent charge (mostly acid and base side chains) and the chemical interactions, as
described in the water-gate model [50,51], perhaps also involving the spatial distribution of
the dielectric properties [94]. It seems premature to attack this problem here, as important
as it is for the function of cytochrome c oxidase, and all alternating access transporters
for that matter. Here, we simply describe the rectification without further analysis of
how it arises from the distribution of the permanent charge and other properties in the
transporter structure.

Of course, other possibilities exist. Alternating access might arise, for example,
from bubbles in the conduction pathway, which we are studying in another work [95].
Two bubbles might act as coupled activation and inactivation gates, correlated to provide
alternating access to an occluded state, for example.

4. Results

In this section, we carry out several computational studies to explore the effects of
various conditions on proton transport efficiency. The initial values and default parameters
are listed in Tables 1 and 2.

Table 1. Initial parameter values used in our computations.

Variables Notations Values (with Units)

E242 site H+ concentration [H]E 0.01196 µM

BNC site H+ concentration [H]B 0.01682 µM

PLS H+ concentration [H]X 0.01441 µM

BNC site electric density ρe 0.01166 µM

E242 site electric potential φE −5 mV

BNC site electric potential φB −14.1562 mV

PLS electric potential φX 200 mV

N side electric potential φN 0 mV

P side electric potential φP 160 mV

Table 2. Main parameter values used in our computations.

Variables Notations Values (with Units)

E242 site effective capacitance CD 1× 10−1 f Ams/mV/(µm)2

BNC site effective capacitance CB 1× 10−1 f Ams/mV/(µm)2

PLS effective capacitance CX 1× 10−1 f Ams/mV/(µm)2

Membrane capacitance CX 7.5× 10−2 f Ams/mV/(µm)2

D-channel conductance for H+ gD 3.75× 10−3 pS/(µm)2

K-channel conductance for H+ gK 1× 10−3 pS/(µm)2

E2B channel conductance for H+ gB 5× 10−2 pS/(µm)2

E2X channel conductance for H+ gE 1× 10−3 pS/(µm)2

E2X pump rate for H+ gP 369 pSms/(µm)2µM

X2P channel conductance for H+ gX 9.8× 10−4 pS/(µm)2

Membrane conductance for leak gm 1× 10−5 pS/(µm)2
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Table 2. Cont.

Variable Notation Values (with Units)

Mito. matrix H+ concentration [H]mat 0.01 µM

Mito. inner-membrane space H+

concentration [H]ims 0.063 µM

Nernst potential due to other ions EOther −160 mV

Reaction site [O2] concentration [O2] 0.0028 µM

Reaction site [H2O] concentration [H2O] 0 µM

Electron current Ie −5.24 fA

Forward reaction-rate coefficient k f 1333

Backward reaction-rate coefficient kr 0.005

Surface volume ratio Sv 1000

Potential threshold δth 210 mv

Decay rate ε 1 (ms)−1

4.1. Effect of Electron Current: Input to Output Relations

Figure 2 depicts the effect of the electron current, Ie, on the efficiency of Complex IV.
The case 1 (inside to the E rectifier) results are represented by blue circles and the case 2 (X
to the outside rectifier) results are represented by red squares.

The ratios between the currents and the supplied electron current are measures of the
transfer function or ’gain’ of cytochrome c oxidase. According to a previous study [50],
the ratios are IX2P

Ie
= −1, IE2X

Ie
= −1, and IE2P

IN2E+IN2B
= −0.5 at the normal state. These ratios

mean that nominally, each input electron will bring two protons from the N side. One of
the protons is used for the chemical reaction and the other one is pumped to the P side,
becoming an output.

Figure 2d–h confirm that when the electron supply is sufficient (|Ie| ≥ 5.24 fA), these
ratios can be maintained. However, if the input electron current decreases (in magnitude),
the reaction rate decreases linearly (see Figure 2a) sinceR = −Sv

2F Ie at equilibrium according
to Equation (37d). The pump strength depends on the reaction rate (Equation (38g)), so the
pump current, IPump, decreases hand in hand with the reaction rate.

Beyond a certain threshold, the total current between E242 and the PLS, IE2X , becomes
negative, provided that the rectifier is located between the inside and the E site (blue lines
with circles). The protons leak back from the PLS to E242. This ‘leak back’ can be seen
in Figure 2d, where the positive ratio means that IE2X is negative (because Ie is negative,
according to our sign conventions). In this case, protons flow back from the outside to
the PLS. The accumulated protons in E242 increase the chemical potential, µE, above µN
and µE, which leads to more currents flowing from E242 to reaction site B (see Figure 2f)
and backflow from the reaction site to the N side (see Figure 2h). The rectifier blocks
direct backflow from E242 to the N side. The current, IN2E, becomes zero (see Figure 2g).
The proton flow pattern in this case is shown in Figure 3b.

The location of the rectifier is important, as the behavior differs when the rectifier
is moved. When the rectifier is positioned between the PLS and the outside (red lines
with squares), the backward flow from the outside to the PLS is blocked and becomes
zero. Then, the current, IE2X , also becomes zero at equilibrium according to Equation (37c),
which means that µE = µX , as shown in Figure 2b. Protons are still transported from the
inside to E242 and then to the BNC, with IN2E

Ie
= −0.68 through the D channel directly to

the BNC and IN2B
Ie

= −0.32 through the K channel. Figure 3c shows the proton flow pattern
in this case.

We suspect that the rectifier between the PLS and the outside is closer to a real
biological setup because it blocks backward flow. For this reason, we mainly present the
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results with the rectifier between the PLS and the outside. Our approach can, of course,
handle almost any location or properties of the rectifier/switch once they are specified
through experiments or higher-resolution models.
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Figure 2. Pump efficiency at equilibrium states with different electron currents and different thresh-
olds. (a) Reaction rate; (b) chemical potential difference between the PLS and E242: µX − µE; (c) the
pump current: IPump; (d) ratio between the current, IE2X , and the input electron current: IE2X/Ie;
(e) ratio between the output current, IX2P, and the input electron current: IX2P/Ie; (f) ratio between
the current, IE2B, and the input electron current: IE2B/Ie; (g) ratio between the D-channel current,
IN2E, and the input electron current: IN2E/Ie; (h) ratio between the K-channel current, IN2B, and
the input electron current: IN2B/Ie. Red lines: switch between X and the outside; blue dashed lines:
switch between the inside and E.
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(a) (b)

(c)

Figure 3. Schematic for the proton flow pattern. Equation numbers that define the arrows are shown,
e.g., Equation (38b) for IX2P. (a) Normal state; (b) backward flow state with a perfect switch between
N and E242; (c) flow state with a perfect switch between the PLS and the outside.

4.2. Effect of Proton Concentration

In this section, we study the effect of the proton concentrations in the inter-membrane
space (outside) by increasing the default value from 0.06 µM to 0.15 µM. Figures 4 and 5
show the equilibrium states of the concentrations and the pump efficiency at different
proton concentrations with different leak conductances gm.

First, Figure 4a illustrates that the reaction rate with different [H]P remains constant
since R = −Sv

2F Ie at equilibrium. When the leak conductance is zero, the Complex IV
efficiency does not change, i.e., IX2P

Ie
= 1, as shown in the flow pattern in Figure 3a. When

the shunt conductance gm is higher than zero, the pump resistance increases with the
outside proton concentration. This produces a decrease in the Complex IV efficiency down
to zero, beyond the threshold. Then, the proton pattern is the same as in Figure 3c, where
all the protons pumped from the inside through the D and K channels are consumed by the
reaction at the BNC.

The concentrations of electrons and protons at the E and B sites are small perturba-
tions in all cases. The concentration in the PLS is almost constant with different [H]P when
the leak conductance is high. However, it increases tremendously when the leak conduc-
tance is low. A high leak conductance simulates the voltage-clamp conditions, which do
not describe the normal functional state of the mitochondrion. A low leak conductance
presumably corresponds to the natural state in which the sum of all currents across the
mitochondrion is ‘clamped’ to zero according to Kirchhoff’s current law because there is
nowhere else for the current to flow.
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Figure 4. Pump efficiency at equilibrium states with different proton concentrations and different
leak conductances. (a) Reaction rate; (b) ratio between the D-channel current IN2E and input electron
current: IN2E/Ie; (c) ratio between the K-channel current IN2B and input electron current: IN2B/Ie;
(d) ratio between the current IE2X and input electron current: IE2X/Ie; (e) ratio between the current
IE2B and input electron current: IE2B/Ie; (f) ratio between the output current IX2P and input electron
current: IX2P/Ie. Black dashed lines: gm = 0; red lines with circles: gm = 10−5; red lines with
squares: gm = 10−3.
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Figure 5. Concentrations at equilibrium states with different proton concentrations and leak con-
ductances. (a) Electron concentration ρe; (b) E242 site H+ concentration [H]E; (c) BNC site H+

concentration [H]B; (d) PLS H+ concentration [H]X . Black dashed lines: gm = 0; red lines with circles:
gm = 10−5; red lines with squares: gm = 10−3.

4.3. Kirchhoff Clamp

Most of this paper describes cytochrome c oxidase embedded in a mitochondrion,
approximating a preparation without other members of the respiratory chain but with
otherwise normal properties. The mitochondrion is a small cell in which the interior
potential is unlikely to vary substantially on a macroscopic scale; at the micron scale, the
cell is much smaller than the length constant of cable theory. In such a system, Kirchhoff’s
current law ensures that the sum of all currents across the mitochondrial membrane is
zero. The currents are necessarily coupled by electrodynamics, regardless of whether they
are coupled by chemistry. If one current increases, the sum of the others must decrease.
A graph plotting one current against another will yield a definite ratio, a coupling ratio if
you will, when other variables are held constant.

The various currents are coupled through the electric potential. The electrical po-
tential contributes to the forces that drive these currents. Chemical reactions may also
contribute. But even without chemical reactions, coupling can occur through the electric
field. While this may seem strange in the context of classical transport biophysics, it is well
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established and understood in channel biophysics, which presumably follows the same
laws of physics. The coupling of sodium and potassium conductances that allow the action
potential to propagate is an example of coupling through the electric field without the
chemical interaction of the underlying protein molecules, as we have discussed previously
in this paper.

Coupling occurs because the electric field adopts the values that conserve the current,
which is easy to prove using Maxwell’s equations [96,97]. In fact, the conservation of the
current is a form of Kirchhoff’s law, so currents are clamped to one another (i.e., coupled)
in a “Kirchhoff clamp” if we want to coin a phrase for what is really just the unclamped,
natural situation.

If the electrical potential is controlled and is not free to adopt the values that conserve
the current, a different situation occurs altogether. This situation is called a voltage clamp
in electrophysiology and was invented by Cole and used by Hodgkin and Huxley to
understand the mechanism of the action potential. The voltage clamp loosens the Kirchhoff
clamp because it has an amplifier (that is outside the biological system) to supply the
current and energy. Indeed, the Kirchhoff clamp of the natural mitochondrion is entirely
removed by the currents supplied by the voltage-clamp amplifier.

In the voltage clamp, one current is not coupled to another current through the voltage.
They cannot be because the voltage does not vary with the current. The result is that the
coupling and flux ratios reflect the chemical coupling and not the voltage coupling in the
voltage-clamp setup. The result is that nearly every experimental result is different in a
voltage clamp and the natural unclamped situation.

The voltage clamp was invented to gain experimental control of currents so they can
be studied, as made abundantly clear by Cole, followed by Hodgkin and Huxley, but the
voltage clamp is not natural. It removes a natural form of flux coupling. Flux coupling
through the electric field is absent. Flux coupling through the electric field is natural, just
as natural in the mitochondrion as in the nerve, and just as natural in the generation of ATP
as in the generation of the nerve signal.

It is difficult to voltage-clamp mitochondria, and preparations reconstituted into
bilayers (that can be voltage-clamped) have other difficulties that experimentalists often
wish to avoid. Other methods are used to simulate a voltage clamp, quite well, as it
turns out.

In work on mitochondria, a voltage clamp is usually produced indirectly by artificially
increasing the leak conductance. An effective carrier of potassium currents like valinomycin
is often added to solutions. When valinomycin is present in large enough concentrations,
it partitions into the mitochondrial membrane and the leak conductance dominates. The
potential across the mitochondrial membrane is set through the equilibrium potential of
the leak conductance. If valinomycin is used to increase the leak conductance, the potential
is, in fact, close to the potassium equilibrium potential independent of the current because
valinomycin is remarkably selective for potassium ions. Valinomycin clamps the potential
to the potassium equilibrium potential.

Figures 6–8 illustrate the effect of the Nernst potential Eother on concentrations, electric
potentials, and currents under different leak conductances. Eother is an approximation of the
potassium equilibrium potential. The red lines with circles, squares, and triangles denote
the leak conductances gm = 10−6, 10−5, and 10−3, respectively. The black dashed lines
are the results of setting zero leakage, i.e., gm = 0, and the blue dashed lines denote the
voltage-clamp results, where the electric potential at the inside, φN , is set to zero and the
electric potential at the outside φP = −Eother according to System (37).

First, we consider the natural case, where the shunt conductance gm = 0. Cytochrome
c oxidase is not affected. The efficiency of Complex IV is not changed by the Nernst
potential because Ileak is always zero in this case. When gm > 0, as the Nernst potential
becomes more negative, the resistance for proton pumping increases, which leads to a
decrease in the proton pump efficiency. Of course, when the leak conductance is high
enough, the system is nearly voltage-clamped to the equilibrium potential for the leak. The
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Kirchhoff clamp (red lines with triangles) is unlocked and removed through the high leak
conductance. The results are the same as those of the voltage clamp (blue dashed lines).
Figures 6d, 7c,d and 8 show the differences in various quantities between voltage-clamped
and unclamped natural situations.

In addition to what’s mentioned above, different parameters play different roles in
proton pumping. The effects of oxygen and switch on the pump efficiency are presented in
Appendices A.1 and A.2.
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Figure 6. Concentrations at equilibrium states with different Eother and gm. (a) Electron concentration
ρe; (b) E242 site H+ concentration [H]E; (c) BNC site H+ concentration [H]B; (d) PLS site H+ concen-
tration [H]X . Black dashed lines: gm = 0; red lines with circles: gm = 10−6; red lines with squares:
gm = 10−5; red lines with triangles: gm = 10−3; blue dashed lines: voltage clamp.
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Figure 7. Electric potential at equilibrium states with different Eother and gm. (a) Electric potential
at E242 site: φE; (b) electric potential at BNC site: φB; (c) electric potential at PLS: φX ; (d) electric
potential at P side: φP. Black dashed lines: gm = 0; Red lines with circles: gm = 10−6; Red lines with
squares: gm = 10−5; red lines with triangles: gm = 10−3; blue dashed lines: voltage clamp.
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Figure 8. Evolution of current at equilibrium states with different Eother and gm. (a) Ratio between the
D-channel current, IN2E, and input electron current: IN2E/Ie; (b) ratio between the K-channel current,
IN2B, and input electron current: IN2B/Ie; (c) ratio between the current IE2B and input electron current:
IE2B/Ie; (d) ratio between the current IE2X and input electron current: IE2X/Ie; (e) ratio between the
output current IX2P and input electron current: IX2P/Ie. Black dashed lines: gm = 0; Red lines with
circles: gm = 10−6; Red lines with squares: gm = 10−5; red lines with triangles: gm = 10−3; blue
dashed lines: voltage clamp.
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5. Discussion and Conclusions

Our study integrates Kirchhoff’s law for total currents into a comprehensive frame-
work encompassing chemical reactions, ions, and water flows. We utilize the energy
variation method rooted in complex fluid theory to deal with open systems, like the de-
vices in our electronic technology, ion channels, and transporters. Our approach employs
the electro-osmotic framework to analyze the coarse-grained dynamics of cytochrome c
oxidase in the tradition of ‘master equations’, but we focus on the analysis of currents and
not charges. This approach builds upon established and rigorously analyzed methods of
the theory of complex fluids, extended to electrochemical open systems. These methods
offer a distinctive perspective by assessing the master equations using Kirchhoff’s law for
currents. Our findings demonstrate that under standard conditions, each input electron
brings two protons from the mitochondrial matrix. One proton is utilized for the reaction,
driving the rectification between the protein loading site (PLS) and its environment closer
to biological settings.

Our work bypasses detailed specifications of individual charges, instead focusing
on the flows of currents as specified by Kirchhoff’s law. Employing Maxwell’s version of
Ampere’s law, we extend the circuit analysis to encompass oxidative phosphorylation and
photosynthesis systems, highlighting the evolutionary incorporation of electron and ion
current flows, and present a complex fluid theory-driven approach.

Our work is preliminary because it over-approximates several important biophysical
mechanisms, including the water-gate switch and the oxygen reduction mechanism.

We are well aware of the need for higher resolution in later work using specific
atomic-scale models that can compute the electric field, flows, and rate constants of the
underlying structures, as well as atomic-scale models of the chemical reactions. Time scales
of displacement (capacitive) currents have been effectively resolved in experiments despite
their complexity and should be included in later versions of our model. These currents
are important in understanding the switches and mechanisms through which cytochrome
c oxidase couples electron flow, oxidative chemical reactions, and proton flow to make
oxidative phosphorylation possible in mitochondria.

Our ‘electro-osmotic’ model is a ‘master equation’ approach that builds on the work
of Hummer and Kim [47–49] but shows how to exploit the conservation of the current
in the form of Kirchhoff’s current law, without dealing with individual charges or using
thermodynamic ideas best applied to systems without flows.

The current-based approach is used throughout electrical and electronic engineering
to design semiconductor devices, as textbooks document (op.cit.), perhaps most eloquently,
in the modern automated circuit design literature built on Kirchhoff’s law [30]. Currents
are sufficient for such automated design. Charges are not needed except in the occasional
switched-capacitor networks (p. 64 of [30]).

We extend the classical use of Kirchhoff’s law, which forms the foundation of circuit
design, to include chemical reactions. We must include chemical reactions to drive currents
of electrons, protons, and other ions because that is how cytochrome c oxidase functions.
The essential function of cytochrome c oxidase is to convert a flow of electrons to a flow
of protons from inside the mitochondrion to outside it. The electrons that are input to
the cytochrome c oxidase are presented to the enzyme attached to the heme group of
cytochrome c itself.

The existing literature analyzes these systems without explicitly dealing with currents,
making the task either impossible (by using a theory that assumes a zero value for the
fluxes being studied) or very difficult (by involving a staggering number of charges).
Using currents instead of charges avoids these difficulties and has the added advantage of
automatically satisfying Maxwell’s equations if the total current is used in Kirchhoff’s law.

This approach is incomplete because it does not deal with all the charges in the circuit
formed by cytochrome c oxidase, but these details are not needed in the design of electronic
circuits. This simple fact can be verified by examining textbooks on circuit design (as
already cited).
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In a circuit analysis of this type, some questions about charges need not be asked; for
example, the atomic mechanism of current flow (particularly electron flow) can be ignored.
The function of the circuit is independent of the details of the components of the currents
in wires, for example, with only a few exceptions [75]. Thus, we de-emphasize the atomic
details of the various pathways that provide electron flow to the main reaction centers.
For us, these pathways are wires. The atomic and chemical details of the electron flow in
these wires are known in breathtaking detail and we are sorry that we do not seem to need
to use these magnificent results, but, at this resolution, we do not.

A key biological result is that some of the coupling important for understanding the
electro-osmotic properties of a mitochondrion depend on the macroscopic conservation of
the current, i.e., Kirchhoff’s law applied to the entire mitochondrion. The application of
Kirchhoff’s law to mitochondrial transport, and active transport in general, is not common
in the literature. But Kirchhoff’s law has been used in another branch of biophysics for over
eighty years. Kirchhoff’s law is the keystone of the analysis of ion channels. Kirchhoff’s law
is the keystone that secures Hodgkin’s formulation of membrane biophysics, including the
action potential that arches over membrane biophysics. The Hodgkin formulation provides
an understanding of function, beyond less relevant molecular details, by balancing the
various components of current, sodium, and potassium, summing them to zero in the
appropriate (finite) geometries, like those of mitochondria, the way the keystone of an arch
sums mechanical forces.

The conservation of the current provides the coupling in other biophysical applica-
tions, e.g., the generation and propagation of the action potential, linking the atomic-scale
properties of ion channels of one type to the properties (e.g., opening) of another type. In a
classical action potential, the opening of sodium channels is coupled to the opening of other
sodium channels and the closing of potassium channels through the electric field, not by
anything else. There is no steric or chemical interaction between the channels. The coupling
is essential to the function of the nerve cell, but this coupling is described by a version
of Maxwell’s equations (called the cable or telegrapher’s equation), not by equations of
chemical kinetics. The ion channels of the action potential act independently in the chemical
sense because they are so far apart, without an opportunity for short-range or chemical
interactions. The ion channels are not independent, in the physiological or physical sense,
however. Rather, they are coupled through the electric field. The electrical field is that
which satisfies Maxwell’s equations, or their equivalent, Kirchhoff’s current law.

The historical dissociation between chemical theory and devices has obscured the
significance of boundary conditions and flows. In contrast, our approach uses the principles
underlying electronic circuit analysis, acknowledging the need for consistent, spatially
nonuniform boundary conditions and flows in chemical systems like ion transporters and
mitochondria. The application of our findings extends beyond theoretical realms, with
potential applications in shaping chemical systems into functional devices, mirroring the
essential properties of engineering devices.

Devices are important. Our electronic technologies are built using devices that function
more or less the same way regardless of where they are located (within reasonable limits,
it goes without saying, as nothing in engineering or technology is true in general, and
everything exists and functions only within reasonable limits). It would obviously be useful
if chemical systems could be easily and routinely shaped into devices.

Devices depend on spatially complex boundary conditions that include flows and
so are open systems that usually require power supplies to function. A device has inputs
and outputs with different locations and boundary equations. If the inputs and outputs
are at the same location and have the same properties, there is no device! Most devices
have power supplies as well as inputs and outputs. These supply flows of energy allow the
device to have well-defined input–output relations that are robust and quite independent
of what is connected to the input or output of the device. A transfer function relates the
input to the output through a constant coefficient causal ordinary differential equation
over time.
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Devices maintain these properties almost entirely by using electricity and energy from
power supplies. They are fundamentally nonequilibrium open systems with spatially
nonuniform Dirichlet boundary conditions for the electrical potential.

Our exploration of the core Maxwell’s equations underscores the uniqueness of these
field equations, offering a robust framework, even when the spatial and temporal location
of charge is unknown. Polarization phenomena are understood as the response of elec-
tromechanical systems to changes in the electric field. Polarizable materials need to be
analyzed as complex fluids, often with energy variation methods.

In summary, our work advances a multidisciplinary approach rooted in complex fluid
theory and engineering principles, redefining the boundaries between chemical theory
and engineering devices. Our methodological exploration marks a step toward a more
comprehensive understanding of complex systems, bridging the gap between theoretical
frameworks and technological applications in the domain of chemical systems.
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Appendix A. Simulation Results for Case 1

Appendix A.1. Effect of Oxygen

The effect of oxygen concentration in the reaction site is studied next. Figure A1 shows
the dynamics (i.e., time dependence) of the concentration of ions in different compartments
at different oxygen concentrations. The dashed lines are computed using the default param-
eters shown in Tables 1 and 2. Panel (a) shows that decreasing the oxygen concentration
initially decreases the reaction rate. The decrease in the reaction rate results in the accumu-
lation of electrons (see panel (b)), as they are supplied from the input source of the constant
electron current. The proton concentration in the reaction site also increases. The reaction
rate decreases as the accumulated electrons attract more protons from the E242 site (see
Figure A2c). Since the pump strength depends on the reaction rate, the pump current IPump
also decreases (as shown in Figure A2a). The decrease in the pump current induces the
increase at E242 and the decrease at the PLS (see Figure A2d,e). Then, the accumulated
protons and electrons modify the reaction rate R in Equation (38h). The reaction rate
increases until R = − Sv Ie

2F , which is, in fact, the same equilibrium determined using the
default parameters.

At the same time, due to the accumulation of protons at E242, the chemical potential,
µE, is higher than that of the N side, µN . The result is an activation of the rectifier, making
the current IN2E zero (see Figure A2b). This action depends on the rectifier. There is no
rectifier between the reaction site and the N side so the behavior is quite different. When
the protons are accumulated in B, the current IN2B is negative. Similarly, fewer protons are
pumped to the PLS. The chemical potential at that site, µX , is lower than that of the P side,
µP. A negative current can also be observed in Figure A2f.
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Figure A1. Concentrations with different oxygen concentrations. (a) Reaction rate; (b) electron
concentration ρe; (c) BNC site H+ concentration [H]B; (d) E242 site H+ concentration [H]E; (e) PLS
H+ concentration[H]X . The dashed lines represent the results using the default parameters.
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Figure A2. Currents with different oxygen concentrations. (a) Pump Ipump; (b) IN2E; (c) IN2B; (d) IE2B;
(e) IE2X ; (f) IX2P; (g) Ileak. The dashed lines represent the results using the default parameters.
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We confirm and extend the above observations by changing the oxygen concentration
from 10−6µM to 10−2µM. As shown in Figures A3 and A4, the decrease in the oxygen
concentration (at the equilibrium) changes only the concentrations of electrons and protons
at the BNC site at the equilibrium state. The reaction rate at equilibrium remains constant
due to the constant supplement of the electron flux Ie and Equation (37d). In this case,
the proton transportation follows the normal pattern, as shown in Figure 3a.
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Figure A3. Concentrations at equilibrium states with different oxygen concentrations. (a) Electron
concentration ρe; (b) [H]E; (c) [H]B; (d) [H]X .
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Figure A4. Pump efficiency at equilibrium states with different oxygen concentrations [H]N and
different thresholds. (a) Reaction rate; (b) µX − µE; (c) IPump; (d) IE2X/Ie.

Appendix A.2. Effect of the Switch

In this section, the effect of the switch on the Complex IV function is studied when the
oxygen level in the reaction site is very low at 2.8× 10−5 µM, which is 1% of the default
value. Specifically, here, we assume that the switch is perfect (SW0 = 0) and defective
(SW0 = 1× 10−1, 10−2, 10−3 fA).

In Figure A5, panel (a) is consistent with the results of the last section: the pump
current decreases when the oxygen concentration is low. The pump current recovers when
electrons and protons accumulate. When the switch allows larger counterflows, the pump
current starts to increase later but recovers faster to the default value. The switch on the
current IN2E is shown in panel (b). With a small SW0 = 0, 1× 10−2, 10−3, the current is
truncated if the counterflow’s current magnitude is larger than SW0. When the switch
allows a larger counterflow, most of the accumulated protons at E242 flow back from E242
to the N side, and fewer flow from E242 to reaction site B (Figure A5c,d). And due to the
decrease in the chemical potential at E242, more protons leak back from the PLS to E242
(Figure A5e), which induces more protons to flow from the P side to the PLS (Figure A5f).
The corresponding dynamics of the protons and electrons are shown in Figure A6.
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Figure A5. Currents with an oxygen concentration of 2.8× 10−5 µM and a switch threshold. (a) Pump
Ipump; (b) IN2E; (c) IN2B; (d) IE2B; (e) IE2X ; (f) IX2P; (g) Ileak. The dashed lines represent the results
using the default parameters.
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Figure A6. Concentrations with different SW0. (a) Electron concentration ρe; (b) [H]B; (c) [H]E;
(d) [H]X . The dashed lines represent the results using the default parameters.
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