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Coupled chemical reactions: Effects of electric field, diffusion, and boundary control
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Chemical reactions involve the movement of charges, and this paper presents a mathematical model for
describing chemical reactions in electrolytes. The model is developed using an energy variational method that
aligns with classical thermodynamics principles. It encompasses both electrostatics and chemical reactions
within consistently defined energetic and dissipative functionals. Furthermore, the energy variation method is
extended to account for open systems that involve the input and output of charge and mass. Such open systems
have the capability to convert one form of input energy into another form of output energy. In particular, a
two-domain model is developed to study a reaction system with self-regulation and internal switching, which
plays a vital role in the electron transport chain of mitochondria responsible for ATP generation—a crucial
process for sustaining life. Simulations are conducted to explore the influence of electric potential on reaction
rates and switching dynamics within the two-domain system. It shows that the electric potential inhibits the
oxidation reaction while accelerating the reduction reaction.
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I. INTRODUCTION

Theories for chemical reactions based on the law of mass
actions often ignore electric effects [1,2], even though the
reactants, catalysts, and enzymes of chemistry and biology
depend on charge interactions for much of their function
[3–5]. Recently, mathematical models have been developed in
the electrochemical tradition [6–10], some using variational
principles [11,12]. Here, we extend this study by proposing
a general thermodynamics-consistent framework for electro-
chemical reactions both in the bulk and on the interface in
biological systems. Specifically, we investigate the electric
effects on the rate of chemical reactions using several reduced
(“toy”) models that show interesting dynamics and interac-
tions between diffusion, reaction, and electric fields of ionic
solutions.

Various consistent frameworks have been developed for
nonequilibrium systems based on the second law of thermo-
dynamics and Onsager’s linear response theory. Onsager’s
variational principle, which was first proposed in [13,14] and
later generalized by Edwards [15], Doi [16], and Qian [17],
is a popular approach to irreversible systems. It is based
on the maximum dissipation principle proposed by Lord
Rayleigh [18] motivated by the analysis of uncharged systems.

*hhuang@uic.edu.cn

The principle states that for a system described by variables
α1, . . . , αn that describe the displacement from thermody-
namic equilibrium with the (corresponding) rates α̇1, . . . , α̇n,
and with free energy F (α1, . . . , αn), the thermodynamic flux
α̇i follows the dynamic path that minimizes the Rayleigh
function. This function is the sum of the dissipation function
� and the rate of the change of the free energy Ḟ in an
isothermal system. Reference [19] provides a more detailed
review. In order to include the fluid kinetic energy [20] for
fluid equations, Wang et al. [21,22] proposed the generalized
Onsager principle (GOP) for both reversible and irreversible
processes.

Energetic variational approach (EnVarA) is another power-
ful tool proposed by Liu et al. [23–25]. The general framework
of EnVarA is a combination of statistical physics and nonlin-
ear thermodynamics. All the physics are integrated into the
definitions of total energy E and dissipation functional �. The
least action principle [26] yields the conservative force Fcon by
taking the variation of the action functional with respect to the
flow map in the Lagrange frame of reference. The maximum
principle [13,14] yields dissipative force Fdis by taking the
variation of the rate function. The final equation of momentum
is achieved by balancing these two forces balance Fcon = Fdis.
A more detailed review can be found in [12].

Based on the consideration of the second law of ther-
modynamics, in particular, the requirement that the rate of
energy dissipation needs to be nonpositive, Ren et al. [27–29]
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proposed a more straightforward method built on a concept
in [30]. First, the energy functional E is defined according to
different physical fields. Based on the laws of conservation,
the kinematic assumptions are listed with unknown terms
like fluxes and stresses. By taking the time derivative of the
total energy dE

dt , those unknowns could be described so each
term in dE

dt is negative. Following Ren’s method, Shen et al.
proposed an energy variation method [31,32] with predefined
energetic and dissipative functionals. The unknown terms in
the kinematics assumptions are obtained by matching dE

dt with
a predefined dissipative function �.

In recent years, the variational method has been instru-
mental in proposing various dynamic boundary conditions
that consider the possible short-range interactions of ma-
terials with solid walls. For instance, Qian et al. [17,33]
utilized the Onsager principle to establish the general Navier
boundary condition (GNBC), which captures the dynamics
of contact lines. Furthermore, building upon EnVarA, Liu
et al. [34] introduced a new category of dynamic boundary
conditions, further generalized in Ref. [35]. Most of the ex-
isting research has primarily focused on closed systems with
no exchanges through the boundary, subsequently incorporat-
ing flux conditions as part of the boundary dissipation [17].
However, it is important to note that a majority of biolog-
ical systems and all engineered devices are open systems
characterized by the flow of flux both into and out of the
considered domain. Addressing this, Brunet et al. [36] were
the pioneers in considering the mass flux effect using the
Onsager variational method in linear electrohydrodynamic re-
sponses. Building on this, Xu et al. [37] extended the concept
by establishing the generalized Lorentz reciprocal theorem
for complex fluids and nonisothermal systems. This paper
introduces a thermodynamically consistent framework tai-
lored for open systems. The proposed framework incorporates
both energetic and dissipative components at the bound-
ary and within the bulk, while also considering chemical
reactions.

The law of mass action [38] is a foundational principle
in chemistry that establishes a relationship between the con-
centrations of reactants and products in an ideal chemical
reaction and its equilibrium constant. In recent times, various
models have been developed to describe chemical reactions
based on the principles of thermodynamics [39–41]. Wang
et al. [11,12,42] extended this framework with the EnVarA
approach to encompass chemical reaction systems described
by rate constants. Our methods extend the pioneering work
of Wang et al. [11,12], who explored reactions not involving
charges or electrodynamics. This generalization enables us
to investigate the influence of electric potential on chemical
reaction rates often described by the Butler-Volmer equation
[43–45]. The generalization equips us with the necessary tools
for modeling biochemical reactions.

The rest of the paper is organized as follows. In Sec. II, we
derive the general field theory for open system with flux on the
boundary and then the method is use to derive equations for an
ionic system with reaction in bulk region, on the boundary and
on the interior interface. The simulation results for a bidomain
reaction system are presented in Sec. III. The discussions and
conclusions are shown in Sec. IV.

II. MATHEMATICAL MODELS

For a closed system, the first law of thermodynamics states
that the rate of change of the sum of the kinetic energy K
and the internal energy U is equal to the sum of the rates
of change of work W and heat Q, so d (K+U )

dt = dW
dt + dQ

dt .

In the context of standard statistical physics, the internal
energy U considers the interactions among particles. These
interactions can be categorized as either short range, such
as hardcore interactions, or long range, such as Coulomb
electrostatic interactions. The second law of thermodynamics,
in the isothermal case, is given by T dS

dt = dQ
dt + �, where T

is temperature, S is entropy, and � � 0 is entropy produc-
tion. As a reformulation of the linear response assumption,
this entropy production functional can be represented as the
sum of various rates such as the velocities and the strain
rates. By subtracting the second law from the first law, under
the isothermal assumption, assuming both laws are valid for
nonequilibrium open systems, we have

dE

dt
= dW

dt
− �, (1)

where E = K + F is the total energy and F := U − T S is
the Helmholtz free energy. In case no external forces or fields
are applied, i.e., dW

dt = 0, we can derive the dissipation law
dE
dt = −�.

Open systems have some fluxes that flow in or out through
the boundary and have distinctive energy dissipation laws that
differ from those of closed systems. They have the distinct
inputs and outputs that characterize devices in engineering.
In open systems, energy can change both because of the flux
across the boundary and also because of the change in dissipa-
tion. For open systems, we assume the following energy law

dE

dt
= PE ,∂� − �, (2)

where PE ,∂� is the energy exchange rate through energy due
to the variation of total particles energy. It is important to
note that both the total energy and dissipation functionals
incorporate contributions from both the bulk region and the
boundary.

A. Bulk reaction

We consider a domain that has reactions in bulk and
connects to an infinite large reservoir with fixed chemical
potential on the boundary. We focus on elementary reactions
containing N species {X z1

1 , X z2
2 , · · · , X zN

N },
a1X z1

1 + a2X z2
2 + · · · + aN X zN

N

k f

�
kr

b1X z1
1 + b2X z2

2 + · · · + bN X zN
N , (3)

where k f and kr are the forward and backward reaction rates,
Ci is the concentration of Xi, respectively. Here ai and bi

are the stoichiometric coefficients, and zi is the valence of
ith species. If let γi = bi − ai. Charge conservation implies∑N

i=1 γizi = 0.
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Based on the law of conservation of mass [46] and
Maxwell equations, we have the following kinematic
assumptions:

∂Ci

∂t
= −∇ · ji + γi R,

∇ · (D) =
N∑

i=1

ziCiF, (4)

∇ × E = 0,

where ji, i = 1, · · · , N are the passive fluxes, zi is the valence
of ith particle, F is Faraday constant and R = R f − Rr is the
net reaction rate function with forward and reverse reactions
rate R f and Rr . D is Maxwell’s electrical displacement field
and D = ε0εrE with electric field E, dielectric constant ε0

and relative dielectric constant εr . The equation ∇ × E = 0
implies that there exists an electric potential φ such that E =
−∇φ.

The boundary conditions are

ji · n = ji,ex, i = 1 · · · , N, on ∂�,

D · n = 0, on ∂�. (5)

where ji,ex is the flux of ith ion supplied from an external
source and to be determined later with fixed reservoir chemi-
cal potential, n is the unit outward normal vector.

Remark II.1. By multiplying ziF on both sides of the first
equation, we have

∂

∂t
(∇ · D) =

N∑
i=1

ziF
∂Ci

∂t
= −

N∑
i=1

∇ · (ziF ji ) +
N∑

i=1

ziFγiR

= −
N∑

i=1

∇ · (ziF ji ), (6)

which is consistent with the electrostatic Maxwell equations.
Treatment of transient problems, involving displacement cur-
rents is needed to deal with some important experimental
work [47–52].

The total energetic functional is defined as the summation
of entropies of mixing, internal energy and electrical static
energy [11,53],

E = Eent + Eint + Eele

=
N∑

i=1

∫
�

RT

{
Ci

(
ln

(
Ci

c0

)
− 1

)}
dx +

∫
�

N∑
i=1

CiUidx

+
∫

�

D · E
2

dx, (7)

where R is universal gas constant, T is temperature, Ui is the
standard free energy density of ith particle (temperature of
298 K; concentration 1 M) [38].

Then the electrochemical potentials (used in the following
derivations) are defined by

μ̃i = μi + ziφF = RT ln
Ci

c0
+ Ui + ziφF, i = 1, · · · , N.

(8)
It is assumed in the present paper that the dissipation of

the system energy is due to passive diffusion and chemical

reaction. Additional dissipations (and energies for that matter)
can be included if needed in later applications,

� =
∫

�

⎧⎨
⎩

N∑
j=1

RT

DiCi
| ji|2 + RTR ln

(R f

Rr

)⎫⎬
⎭dx

+
N∑

i=1

∫
∂�

1

gi
| ji,ex|2dS, (9)

where R = R f − Rr and gi is the conductivity of ith species
on the boundary.

The boundary energy communication rate PE ,∂� is induced
by the mass communication flux with energy density μ̃i,ex,

PE ,∂� = −
N∑

i=1

∫
∂�

μ̃i,ex ji,exdS, (10)

where μ̃i,ex is the fixed chemical potential of ith species μ̃i in
the reservoir.

Taking the time derivative of the energy functional (7)
yields

dE

dt
=

∫
�

N∑
i=1

{∇μ̃i · ji}dx +
∫

�

R
N∑

i=1

γiμ̃idx

−
∫

∂�

N∑
i=1

(μ̃i − μ̃i,ex ) ji · ndS −
∫

∂�

μ̃i,ex ji · ndS.

= −� + PE ,∂�, (11)

where the detailed derivation can be found in the Appendix.
By comparing with the dissipation function, we have

ji = − Di

RT
Ci∇μ̃i, ı = 1, · · · , N in �

ji · n = gi(μ̃i − μ̃i,ex ) on ∂�

RT ln

(R f

Rr

)
= −

N∑
i=1

γiμ̃i

= RT ln

(

N

i=1

(Ci
c0

)ai


N
i=1

(Ci
c0

)bi
e

�U
RT

)
, on ∂�, (12)

where A = −∑N
i=1 γiμ̃i = ∑N

i=1(ai − bi )μ̃i is the local affin-
ity [54] and the last equation is part of the De Donder-Weyl
theory [7,55].

If we assume the reaction rate function is

R = R f − Rr = k f ,0

N
i=1

(
Ci

c0

)ai

− kr,0

N
i=1

(
Ci

c0

)bi

where k f ,0 and kr,0 are forward and backward reaction rate
constants with unit M

s = Mol
Ls [56], then De Donder-Weyl the-

ory yields

kr,0

k f ,0
= keq = e

−�U
RT , (13)

where �U = ∑N
i=1(ai − bi )Ui and keq is the equilibrium con-

stant [56].
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The governing equations for the bulk reaction are given as

∂Ci

∂t
= ∇ · (Di∇Ci + Di

ziF

RT
Ci∇φ)

+ γi

(
k f ,0


N
i=1

(
Ci

c0

)ai

− kr,0

N
i=1

(
Ci

c0

)bi
)

,

− ∇ · (ε0εr∇φ) =
N∑

i=1

ziFCi, (14)

with boundary conditions

ji · n = gi(μ̃i − μ̃i,ex ), i = 1 · · · N, on ∂�,

D · n = 0, on ∂�.
(15)

The energy law of this system could be written as

dE

dt
= −

∫
�

⎧⎨
⎩

N∑
j=1

DiCi

RT
|∇μ̃i|2 + RTR ln

(R f

Rr

)⎫⎬
⎭dx

−
N∑

i=1

∫
∂�

gi|μ̃i − μ̃i,ex|2dS

−
N∑

i=1

∫
∂�

giμ̃i,ex(μ̃i − μ̃i,ex )dS

= −� + PE ,∂�. (16)

Here the boundary condition of concentration is Robin type
that allows flux across a boundary “resistance”.

(i) If the boundary conductivity is zero gi = 0, then we ob-
tain the nonflux boundary condition ji · n = 0 that describes
an insulating boundary and a closed system. The correspond-
ing energy law is

dE

dt
= −

∫
�

⎧⎨
⎩

N∑
j=1

DiCi

RT
|∇μ̃i|2 + RTR ln

(R f

Rr

)⎫⎬
⎭dx

= −�, (17)

with zero boundary energy communication rate PE ,∂� = 0.
(ii) If the conductance is infinitely large, the Dirichlet

boundary condition is achieved μ̃i = μ̃i,ex on the boundary.
This Dirichlet condition is called a “voltage clamp” in bio-
physics. Note the voltage clamp is an open system requiring
the injection of current and energy provided by an external
system usually called a voltage clamp amplifier.

(iii) If the conductance is a function of chemical potential,
as may be the case in some membrane proteins, including
channels and transporters, i.e., gi = ji,0

μ̃i−μ̃i,ex
, where ji,0 is

constant, then we obtain the Neumann boundary condition
ji · n = ji,0. In this case, the corresponding energy law is

dE

dt
= −

∫
�

⎧⎨
⎩

N∑
j=1

DiCi

RT
|∇μ̃i|2+RTR ln

(R f

Rr

)⎫⎬
⎭dx

−
N∑

i=1

∫
∂�

μ̃i ji,0dS. (18)

FIG. 1. Schematic of reaction on the metal electrode with exter-
nal electron input Jex = −Iex

F .

Our approach is able to handle a wide range of boundary
conditions. For example, it can include complex current, volt-
age, and concentration relations needed to describe some ion
channels and transporters.

B. Chemical reactions on the boundary

We now extend our treatment to include chemical reactions
on the boundary, for example, as might happen on the surface
of a metal electrode

a1X z1
1 + a2X z2

2 + · · · + aN X zN
N + �ze−1

k f

�
kr

b1X z1
1 + b2X z2

2 + · · · + bN X zN
N , (19)

where electrons are supplied through surface � with the elec-
trode potential φp and

∑N
i=1 γizi + �z = 0. For example, if

X1, X2, · · · Xk are oxidized species and Xk+1, · · · XN are re-
duced species, then ak+1 = ak+2 = · · · = aN = 0 and b1 =
b2 = · · · = bk = 0, i.e.,

a1X z1
1 + a2X z2

2 + · · · + akX zk
k + �ze−1

k f

�
kr

bk+1X zk+1

k+1 + bk+2X zk+2

k+2 + · · · + bN X zN
N . (20)

During the derivation, we only focus on situations where
the oxidized state exists only in solution near the surface of
the metal plate [7] as shown in Fig. 1.

The conservation law yields the following kinematic as-
sumptions:

∂Ci

∂t
= −∇ · ji, in �

−∇ · (ε0εr∇φ) =
N∑

i=1

ziFCi, in �
(21)

with boundary conditions
ji · n = −γiR, i = 1 · · · N, on �,

F
∂Ce

∂t
= Cp

∂ (φ − φp)

∂t
= jexF − �zFR, on �

ji · n = 0, φ = 0, on ∂�/�,

(22)

where Ce is the density of electrons on the surface of the plate,
φp is the electric potential on the plate, and Cp is the capaci-
tance, Iex is the current supplied by an external amplifier, and
the corresponding inlet electron flux is jex = − Iex

F . Here we
use the fact that FCe = Cp(φ − φp).
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Then the total energy is defined as the sum of mix energy and internal energy of ions, electric static energy in the bulk region,
and the energy on the interface induced by electrons and capacitor effect

E = Eent + Eint + Eele + E�

=
N∑

i=1

∫
�

{
RTCi

(
ln

(
Ci

c0

)
− 1

)
+ CiUi

}
dx +

∫
�

D · E
2

dx

︸ ︷︷ ︸
bulk

+
∫

�

{
RTCe

(
ln

(
Ce

ce,0

)
− 1

)
+ CeUe

}
dx + 1

2

∫
�

Cp(φ − φp)2dS︸ ︷︷ ︸
boundary

, (23)

where Ui and Ue is the internal energy of ith ion and electron, respectively. Here ce,0 is the characteristic density.
Then the corresponding electrochemical potentials of ions and electrons are

μ̃i = μi + ziFφ = Ui + RT ln
Ci

c0
+ ziFφ, (24)

μ̃e = μe − Fφp = Ue + RT ln
Ce

ce,0
− Fφp. (25)

The dissipation function is defined as

� =
∫

�

N∑
j=1

DiCi

RT
|∇μ̃i|2dx +

∫
�

RTR ln

(R f

Rr

)
dS +

∫
�

g

F 2
(μ̃e − μ̃ex )2dS, (26)

where we used the boundary reaction rate function R = R f − Rr , μ̃ex is the external electron chemical potential of the reservoir
that connects to the boundary.

We analyze a setup (see Fig. 1) with a given current of electrons Iex applied to the plate �. This is a flux (really current)
boundary condition, of the Neumann type in mathematical language. The other boundaries of the system are controlled in a
different way. They are insulators that help isolate the system so it communicates with the outside world in a limited well-defined
way. On these insulating boundaries, no ions enter or leave the system on those other boundaries, i.e., Ji · n = 0, and the electric
potential is fixed as φref . The current flow of electrons is only on the left and the boundary energy power functional is defined as

PE ,∂� =
∫

�

μ̃e jexdx. (27)

Remark II.2. Integrating the first equation and using the boundary condition on ith ion yields the law of mass conservation

d

dt

∫
�

Cidt =
∫

�

γiRdS. (28)

To apply the dissipation theorem, we need the derivative of energy with respect to time,

dE

dt
=

∫
�

N∑
i=1

{∇μ̃i · ji}dx −
∫

�

(
−

N∑
i

μ̃iγi + μ̃e�z

)
RdS −

∫
�

φ
∂

∂t
(D · n − FCe)dS +

∫
�

(μ̃e − μ̃ex ) jexdS

+
∫

�

μ̃exJexdS −
∫

∂�/�

φ
∂D · n

∂t
dS −

∫
∂�/�

N∑
i

μ̃i ji · ndS

= −� + PE ,∂�, (29)

where the detailed derivation is presented in the Appendix.
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To implement the dissipation principle, we now compare
Eq. (29) with the dissipation function defined in Eq. (26). We
are dealing with an open system so we include the dissipation
(and energy) associated with the boundaries as well as the
interior of the system,

ji = − Di

RT
Ci∇μ̃i, ı = 1, · · · , N, in �

D · n = FCe on �

jex = g

F 2
(μ̃ex − μ̃e), on �

RT ln

(R f

Rr

)
= −

N∑
i

γiμ̃i + μ̃e�z, on �

ji · n = 0, φ = 0, on ∂�/�.

(30)

The third equation in (30) yields

R = R f (1 − e
−Ae
RT ) (31)

with the affinity

Ae = −
N∑

i=1

γiμ̃i + �zμ̃e

= RT ln

⎛
⎝(

Ce

ce,0

)�z 
N
i=1

(Ci
c0

)ai


N
i=1

(Ci
c0

)bi keq

e
�zF
RT (φ−φp)

⎞
⎠ (32)

where �U = ∑N
i=1(ai − bi )Ui + �zUe and keq = e− �U

RT is
used. If we assume

R f = k f ,0

(
Ce

ce,0

)�z


N
i=1

(
Ci

c0

)ai

e− �ZF
RT β(φp−φ), (33)

then the reaction rate function could be defined as follows:

R = R f (1 − e−
∑N

i=1 (ai−bi )μ̃i+�zμ̃e
RT )

= k f ,0e− �ZF
RT β(φp−φ)

(
Ce

ce,0

)�z


N
i=1

(
Ci

c0

)ai

− kr,0e
�ZF
RT (1−β )(φp−φ)
N

i=1

(
Ci

c0

)bi

= k f ,0e− �ZF
RT β(�φ)

(
Ce

ce,0

)�z


N
i=1

(
Ci

c0

)ai

− kr,0e
�ZF
RT (1−β )(�φ)
N

i=1

(
Ci

c0

)bi

(34)

where we denote �φ = φp − φ and β is the so called the transfer coefficient commonly found in the Frumkin-Butler-Volmer
equation [6,9,55,57,58].

It is important to realize that any analysis of boundary behavior requires detail appropriate for the mechanisms of flow across
the boundary. In biological cases, these are often not yet known. In the physical case, details are significantly different in each
of the many (quite diverse) systems that are described by the Butler-Volmer equation of electrode reactions [6,9,55,57,58]. The
behavior of the systems is likely to be as diverse as the chemical reactions at the boundaries are themselves.

In summary, we have the following system:
∂Ci

∂t
= −∇ · ji, in �

−∇ · (ε0εr∇φ) =
N∑

i=1

ziFCi, in �
(35)

with boundary conditions
ji · n = −γiR, i = 1 · · · N, on �,

Cp
d (φ − φp)

dt
= −Iex − �zFR = g

F
(μ̃ex − μ̃e) − �zFR, on �

R = k f ,0e− �ZF
RT β(�φ)

(
Ce

ce,0

)�z


N
i=1

(
Ci

c0

)ai

− kr,0e
�ZF
RT (1−β )(�φ)
N

i=1

(Ci

c0

)bi

, on �

D · n = Cp(φ − φp), on �

ji · n = 0, φ = 0, on ∂�/�

(36)

where the similar boundary conditions are used in [8,57,59].

The reaction rate function could be written as

R = k f

(
Ce

ce,0

)�z


N
i=1

(
Ci

c0

)ai

− kr

N
i=1

(
Ci

c0

)bi

, (37)

where we denote

k f = k f ,0e− �ZF
RT β(�φ), (38)

kr = kr,0e
�ZF
RT (1−β )(�φ), (39)

to include the effects of electric potential on the reaction rates.

If we choose g = I0F
μ̃e−μ̃ex

, then the input current is constant

I0 and the condition is changed to be Cp
d (φ−φp)

dt = −I0 −
�zFR, which is the set of boundary condition found widely
in the literature [9,10,60,61]. This is based on Kirchhoff’s
laws that the input current is either stored in the capacitor or
consumed by the reaction.

Remark II.3. Since Cs
e = Cp

F (φs − φs
p) is the charge den-

sity, it should be nonnegative during evolution, which means
φs > φs

p � 0 for ∀t � 0.
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FIG. 2. Schematic of bireaction system. On the right side of
the plate, the reduction reaction consumes the electrons that are
produced by the oxidation reaction on the left side of the plate.

Remark II.4. If there is no chemical reaction on the surface
�, the model degenerates to PNP with dynamic boundary
condition

∂Ci

∂t
= −∇ · ji, in �

−∇ · (ε0εr∇φ) =
N∑

i=1

ziFCi, in �
(40)

with boundary conditions

ji · n = 0, i = 1 · · · N, on ∂�,

Cp
d (φ − φp)

dt
= −Iex, on �,

D · n = Cp(φ − φp), on �,

φ = 0, on ∂�/�. (41)

C. A bireaction system

We will now apply these general principles to a spe-
cific system of significant interest in biological applications,
such as the electron transport chain (ETC) on the mitochon-
drial membrane [62–65]. The electron transport chain (ETC)
is a series of biochemical reactions occurring in the inner
mitochondrial membrane of eukaryotic cells or the plasma
membrane of prokaryotic cells. It plays a pivotal role in
cellular respiration, which is the process by which cells con-
vert nutrients (such as glucose) into energy (in the form
of ATP). During the ETC, electrons transfer from electron

donors (e.g., NADH and FADH2) to electron acceptors (e.g.,
oxygen) through a series of redox reactions. This electron
transfer is accompanied by the pumping of protons (H+)
across the inner mitochondrial or plasma membrane, creating
an electrochemical gradient used to generate ATP. Oxidation
occurs through a sequence of chemical reactions catalyzed by
membrane proteins that connect electron flow on one side of a
membrane to a chemical reaction on the other. In essence, the
reaction on one side of the plate generates electrons, which are
subsequently consumed by the reaction on the other side. This
scheme is visually represented in Fig. 2, where the output of
the left domain reaction is |�zl |e−1 electrons and the input of
the right domain is |�zr |e−1 electrons.

To model this system, we set the domain � as a union
of two subdomains denoted as �s, where s = l, r, sepa-
rated by the plate �. The plate functions analogously to a
cell membrane, allowing the conduction of electrons along
with a displacement current through the effective membrane
capacitance Cp. The thickness of the plate is negligible
when compared to the size of the domain. Within these two
compartments �s, where s = l, r, there exist a total of N
species, represented as {X z1

1 , X z2
2 , · · · , X zN

N }, with associated
reactions as

as
1X z1

1 + as
2X z2

2 + · · · + as
N X zN

N + �zse−1

ks
f ,0

�
ks

r,0

bs
1X z1

1 + bs
2X z2

2 + · · · + bs
N X zN

N , (42)

where ks
f ,0 and ks

r,0 are the intrinsic forward and backward
reaction rates. In the left region �l , where �zl < 0, this signi-
fies the forward reaction as oxidation, a process that generates
electrons. In the right compartment �r , where �zr > 0, this
indicates that the forward reaction is a reduction process,
consuming electrons.

In the electrolyte region �s, we have the following kine-
matic assumption:

∂Cs
i

∂t
= −∇ · js

i ,

−∇ · (ε0εr∇φs) =
N∑

i=1

ziFCs
i (43)

with the boundary conditions

js
i · ns = −γiRs, on �,

Cp

d (φl − φl
p)

dt
= −�zlFRl + Iex,Cp

φr − φr
p

dt
= −�zrRrF − Iex, on �,

js
i · n = 0, on ∂� \ �,

(44)

where the second equation is based on Kirchhoff’s laws and Iex represents the current passing through the plate due to electron
transportation.

The total energy is defined as the sum of energy within the two subdomains and on the interface

E = El + Er + E�

=
N∑

i=1

∫
�l

{
RTCl

i

(
ln

(
Cl

i

c0

)
− 1

)
+ Cl

i Ui

}
dx +

∫
�l

Dl · E l

2
dx
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+
N∑

i=1

∫
�r

{
RTCr

i

(
ln

(
Cr

i

c0

)
− 1

)
+ Cr

i Ui

}
dx +

∫
�r

Dr · Er

2
dx

+
∫

�

{
RTCl

e

(
ln

(
Cl

e

ce,0

)
− 1

)
+ Cl

eU
l
e

}
dx + 1

2

∫
�

Cp
(
φl − φl

p

)2
dS

+
∫

�

{
RTCr

e

(
ln

(
Cr

e

ce,0

)
− 1

)
+ Cr

eU r
e

}
dx + 1

2

∫
�

Cp
(
φr − φr

p

)2
dS. (45)

Similarly, the dissipative function is defined as

� = �l + �r + ��

=
∫

�l

N∑
j=1

DiCl
i

RT

∣∣∇μ̃l
i

∣∣2
dx +

∫
�

RTRl ln

(
Rl

f

Rl
r

)
dx

+
∫

�r

N∑
j=1

DiCr
i

RT
|∇μ̃r

i |2dx +
∫

�

RTRr ln

(Rr
f

Rr
r

)
dx +

∫
�

g
(
Cl

e

)
F 2

(
μ̃l

e − μ̃r
e

)2
dS. (46)

For the boundary input energy power, it is assumed to be

PE ,∂� = −
∫

∂�

φref
∂D · n

∂t
dx. (47)

Taking the time derivative of the total energy yields

dE

dt
− PE ,∂� =

∫
�l

N∑
i=1

∇μ̃l
i · jl

i dx −
∫

�

(
−

N∑
i=1

μ̃l
iγiRl + μ̃l

e�zl

)
Rl dS −

∫
�

φl
∂

∂t

(
Dl · nl − FCl

e

)
dS

+
∫

�r

N∑
i=1

∇μ̃r
i · jr

i dx −
∫

�

(
−

N∑
i=1

μ̃r
i γi + �zrμ̃r

e

)
RrdS

−
∫

�

φr
∂

∂t

(
Dr · nr − FCr

e

)
dS +

∫
�

(
μ̃r

e − μ̃l
e

)
Je −

∫
∂�

(φ − φref )
∂D · n

∂t
dS

= −�. (48)

Matching terms yield

js
i = −Ds

iC
s
i

RT
∇μ̃s

i , in �s

Rl = kl
f ,0e− �ZF

RT β(�φl )
N
i=1

(
Cl

i

c0

)ai

− kl
r,0e

�zl F
RT (1−β )(�φl )
N

i=1

(
Cl

e

ce,0

)−�zl (
Cl

i

c0

)bi

on �l

Rr = kr
f ,0e− �ZF

RT β(�φr )

(
Cr

e

ce,0

)�zr


N
i=1

(
Cr

i

c0

)ai

− kr
r,0e

�zr F
RT (1−β )(�φr )
N

i=1

(
Cr

i

c0

)bi

on �r

Ds · ns = Cs
eF = Cp

(
φs − φs

p

)
, on �

Je = − g

F 2

(
μ̃r

e − μ̃l
e

)
, on �

φ = φref , on ∂�/�.

In summary, the bidomain reaction system is

∂Cs
i

∂t
= ∇ ·

(Ds
iC

s
i

RT
∇μ̃s

i

)
, in �s

−∇ · (ε0εr∇φs) =
N∑

i=1

ziFCs
i , in �s

(49)
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for the boundary conditions

js
i · ns = −γiRs, on �,

Rl = kl
f ,0e− �ZF

RT β(�φl )
N
i=1

(
Cl

i

c0

)ai

− kl
r,0e

�zl F
RT (1−β )(�φl )
N

i=1

(
Cl

e

ce,0

)−�zl (
Cl

i

c0

)bi

on �l ,

Rr = kr
f ,0e− �ZF

RT β(�φr )

(
Cr

e

ce,0

)�zr


N
i=1

(
Cr

i

c0

)ai

− kr
r,0e

�zr F
RT (1−β )(�φr )
N

i=1

(
Cr

i

c0

)bi

on �r,

Cp

d
(
φl − φl

p

)
dt

= −�zlFRl + g

F

(
μ̃r

e − μ̃l
e

)
,Cp

d (φr − φr
p)

dt
= −�zrFRr − g

F

(
μ̃r

e − μ̃l
e

)
, on �,

Ds · ns = Cp
(
φs − φs

p

)
, on �,

js
i · n = 0, φ = φref on ∂� \ �. (50)

One of the crucial properties of cell membranes is their
voltage-gated mechanisms [66]. These mechanisms encom-
pass a category of membrane proteins, known as ion channels,
which are highly responsive to variations in the electric poten-
tial difference across a cell’s membrane. These ion channels
play a pivotal role in various physiological processes within
neurons, muscles, and other excitable cells. Their significance
lies in their ability to initiate and propagate electrical signals,
including action potentials, which are fundamental for nerve
cell communication [67] and muscle contraction [68]. Various
models, such as the Hodgkin-Huxley model [69], have been
proposed to describe voltage-gated mechanisms.

For the sake of simplicity, we model these mechanisms
by introducing a potential difference threshold, denoted as θ0,
using a hard switch

g =
{

g0 if φr
p − φl

p > θ0;

0 otherwise,
(51)

or a soft one

g = g0 tanh

((
φr

p − φl
p

) − θ0

ε

)
, (52)

where g0 is the maximum conductance and ε is the relaxation.
Then, when the difference of potential between the two sides
of the plate is large enough, the plate becomes conductive and
the electron is transported.

III. RESULTS

In the simulation, we consider the 1D computation domain
and the plate is in the middle. On the left side of the plate, we
have

X +
1 + X 2−

2

kl
f

�
kl

r

X3 + e−.

On the right side of the plate

X 2+
4 + X −

5 + e− kr
f

�
kr

r

X6.

Let us introduce the following characteristic values: L =
4.3 × 10−1 µm, c0 = 1 mM, ce,0 = CpRT

F 2 = 4.35 ×
102 mol/µm2, D∗ = 10−9 m2/s, t∗ = L2

D∗ = 1.85 × 10−4 s,
RT
F = 25.6 mv, and k∗

f = 2.33 × 104 M/s. These values
represent the characteristic length, concentration, electron
density, diffusion constant, time, electric potential, and
reaction rate, respectively. With these characteristic values,
we can derive the dimensionless system as

∂Cs
i

∂t
= ∇ · (

Ds
i

(∇Cs
i + ziC

s
i ∇φs

))
,

− ∇ · (δ2∇φs) =
N∑

i=1

ziC
s
i , (53)

with the boundary conditions

js
i · ns = −γiζRs, on �,

−∇φs · ns = λs
(
φs − φs

p

)
, on �,

∂

∂t
(−∇φl · nl ) + ζ

δ2
�zlRl = g

(
ln

(
Cr

e

Cl
e

)
+ φl

p − φr
p

)
, on �,

∂

∂t
(−∇φr · nr) + ζ

δ2
�zrRr = −g

(
ln

(
Cr

e

Cl
e

)
+ φl

p − φr
p

)
, on �,

js · n = 0, φs = 0, on ∂�/�,

(54)
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where

Rl = kl
f ,0e−�Zl β(φl

p−φl )
N
i=1

(
Cl

i

)ai − kl
r,0e�Zl (1−β )(φl

p−φl )
(
Cl

e

)−�zl


N
i=1

(
Cl

i

)bi

= kl
f 


N
i=1

(
Cl

i

)ai − kl
r

(
Cl

e

)−�zl


N
i=1

(
Cl

i

)bi
,

Rr = kr
f ,0e−�Zrβ(φr

p−φr )(Cr
e

)�zr


N
i=1

(
Cr

i

)ai − kr
r,0e�Zr (1−β )(φr

p−φr )
N
i=1

(
Cr

i

)bi
.

= kr
f

(
Cr

e

)�zr


N
i=1

(
Cr

i

)ai − kr
r 


N
i=1

(
Cr

i

)bi
,

with ks
f = ks

f ,0e−�Zsβ(φs
p−φs ) and ks

r = ks
r,0e�Zs (1−β )(φs

p−φs ).

Here δ = λD
L is the ratio between Debye length λD =√

RT ε0εr
F 2c0

and macroscale length; ζ = k∗
f L

D∗c0
is the ratio between

the reaction time and diffusion time; λs = CsL
ε0εr

is the ratio
between macroscale length and effective width for the Stern
layer; and g = gt∗L

ε0εr
is the ratio between the diffusion time and

electric conduction time.
The initial concentrations and dimensionless parameters

are set to be C1(t = 0) = 1, C2(t = 0) = 1
2 , C3(t = 0) = 0,

C4(t = 0) = 1
2 , C5(t = 0) = 1, C6(t = 0) = 0, δ = 0.1, g =

0.1, kl
r,0 = kr

r,0 = 0.001. The results in the remaining part of
the paper are presented in a dimensionless format.

A. Equal intrinsic reaction rates

We first consider the simplified case that the left and right
reactions with the same intrinsic reaction rate, kl

f ,0 = kr
f ,0 =

1. Figure 3 shows the results of the dynamics of reaction
rates, electron density, concentrations of substances, and con-
ductance over time with different timescale ratio ζ = 0.1
(diffusion dominates), ζ = 1 (diffusion-reaction equal), ζ =
10 (reaction dominates).

As shown in Fig. 3(a), the left reaction can be seen as a
source—an input—that continually produces electrons until
one of the reactants, in this case, X2, is depleted. X2 is the
output. [Fig. 3(c)]. The electrons generated on the left are
transported to the right side by the electrochemical potential
difference, subsequently driving the reaction on the right side,
the output side. Eventually, the output reaction achieves equi-
librium after the switch turns off [Fig. 3(b)].

As timescale ratio ζ increases, the reaction rate also
increases [Fig. 3(a)]. The reactants on the left plates are
consumed much faster [Fig. 3(c) left] and more electrons ac-
cumulate on the left side of the plates [Fig. 3(b)]. The electric
potential difference between two sides of the plates φr

p − φl
p

increases and opens the gate so that electrons are transported
to the right side of the plate [Figs. 3(b) and 3(d)]. Then the
right reaction starts [Fig. 3(c) right]. Due to the transport of
electrons, the difference in potential between two sides of
the plate decreases. The switch then turns off producing the
gating dynamics shown in Fig. 3(d). Since the total amounts
of reactants on the left region are limited, the left reaction
stops after a period of time because it runs out of electrons.
Without a supply of electrons, the switch turns and the right-
side reaction stops. The larger ζ is, the earlier the reaction
stops and the switch turns off. The molecular mechanism of

the switch remains to be investigated. It resembles the gate of
ion channels and may have the same molecular basis [70].

In Fig. 4, we show how the reaction rate ks
f changes with

electric potential difference �φs = φs
p − φs, i.e., the phase

portraits, in Eq. (38). The squares and triangles are the start
points and end points of the phase portraits, respectively. ks

f ,0
is the intrinsic rate constant shown as the solid black line
in the figure. When the electric potentials vary with time,
the forward reaction rates on the plate vary correspondingly.
Since �zl < 0 and φl

p < φl
s , then the reaction rate on the left

plate is smaller than the reference value kl
f ,0. On the right

plate, since �zr > 0, the reaction rate is always greater than
the reference value kr

f ,0. In summary, the electric potential in-
hibits the oxidation reaction on the left-hand input side, while
accelerating the reduction reaction on the output right-hand
side.

The spatial distributions of electric potential and concen-
trations in two regions at equilibrium are shown in Fig. 5. For
different ζ , the equilibrium is almost the same. The electric
potentials on two sides of the plate φs

p are lower than the po-
tentials of the electrolyte φs due to the existence of capacitors.
The left plate potential is lower than the potential on the right
plate due to the accumulation of electrons. Since C3 and C6 are
neutral particles, they are uniformly distributed in space. The
distributions of cations and anions are changed by the electric
field.

In Figs. 6 and 7, we compare the results with different
effective capacitance λs. The reaction rate increases as the
capacitance increases. And more electrons could be stored
on the capacitors. At the equilibrium, due to larger capaci-
tance, the electric potential difference between the two sides
electrolyte decreases. The effect on the spatial distributions of
substances at equilibrium is mainly on the left region due to
the decrease of electric potential difference.

Because the mechanism of the switch is not known, we
investigate two types, a soft switch and a hard switch. In
Fig. 8, we present the results obtained when utilizing the soft
switch function (52) with ε = 0.001. As shown in Figs. 8(a)
and 8(b), a comparison with the hard switch reveals that
the right reaction rate function Rr exhibits a smoother be-
havior, particularly noticeable for reaction-dominated case
(ζ = 10). This smoothing effect arises from the gradual tran-
sition around the threshold, allowing the switch to remain in
an open state for an extended duration. Consequently, elec-
trons can be transported continuously from the left to the
right.
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FIG. 3. Dynamics evolution of (a) reaction rates, (b) electron density, (c) substance concentrations, and (d) conductance changes over time
with the same intrinsic reaction rate k f ,0 on both sides of the plate and different timescale ratio ζ . The results show that the reaction on the left
side of the plate is responsible for generating electrons, which are subsequently consumed by the reaction on the right side. The larger ζ is, the
earlier the switch turns off and the reaction achieves equilibrium. Dimensional units are used as defined in the beginning of the Results section.
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FIG. 4. Phase portraits of Reaction rate ks
f and electric potential difference φl

p − φl . Left: left plate; Right: right plate. The black line is
the intrinsic forward reaction rate value ks

f ,0 = 1, s = l, r. The squares are the start points and the triangles are the endpoints of the phase
portraits. It shows that the electric potential inhibits the oxidation reaction while accelerating the reduction reaction. Dimensional units are
used as defined in the beginning of the Results section.

B. Different intrinsic reaction rates

In this subsection, we explore the more general scenario
where the intrinsic reaction rates on the left and right sides
differ, i.e., kl

f ,0 �= kr
f ,0. We maintain a fixed effective capac-

itance λs = 0.1 and a diffusion-reaction timescale ratio ζ =
1. The outcomes are presented in Fig. 9, where solid lines
represent the left-fast-right-slow case (kl

f ,0 = 1, kr
f ,0 = 0.1),

dash-dot lines correspond to the left-slow-right-fast case
(kl

f ,0 = 0.1, kr
f ,0 = 1), and dot lines represent the equal reac-

tion case (kl
f ,0 = 1, kr

f ,0 = 1).
When the left-forward reaction rate constant is faster than

the right one, electrons accumulate on the left plate more
rapidly at the beginning. Consequently, the left plate reac-
tion initially lags behind compared to the equal reaction
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FIG. 5. Space distributions of (a) electric potential; (b) substance concentrations at equilibrium with the same intrinsic reaction rate k f ,0 on
both sides of the plate and different timescale ratio ζ . Dimensional units are used as defined in the beginning of the Results section.
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FIG. 8. Results with soft switch function. Dynamics evolution of (a) reaction rate; (b) electron density; and (c) conductance with fixed
λs = 0.1 and different timescale ratio ζ . Dimensional units are used as defined in the beginning of the Results section.

case (kl
f ,0 = kr

f ,0 = 1). The accumulated electrons activate
the gate earlier than the slower accumulation [Fig. 9(d)].
In cases where substances are rapidly depleted in the left
region [Fig. 9(c)], the switch is closed. Since the right
side forward reaction is slow (kr

f ,0 = 0.1), electrons ac-
cumulate on the right plates [Fig. 9(d)] and maintain
the right reaction smoothly even after the gate is closed
[Fig. 9(a)].

In contrast, when the left-forward reaction rate constant is
slower than the right one, the electron density on the left plate
increases more gradually. When the gate is open, the electrons
are transported to the right side, initiating the reaction on the
right later than in the other two cases [Fig. 9(a)]. Simultane-
ously, since the right-forward reaction rate is high, electrons
are consumed rapidly, inducing high oscillations in the reac-
tion function on the right plate and leading to high-frequency
gating.

IV. DISCUSSION AND CONCLUSIONS

This paper seeks to combine the classical description of
electrochemical reactions with a general variational method.
Based on the first and second laws of thermodynamics, we
generalized the energy variation method [31,32] for an open
system with mass flux communication on the boundary. Then
the framework is used to study the chemical reaction in elec-
trolytes where the charges are taken into consideration. When
the reaction is only in the bulk region, and not at the mem-
brane, the model obtained is a Poisson-Nernst-Planck (PNP)
system with reaction terms that could be taken as a general-
ized version of the diffusion-reaction model in Ref. [11].

Then we consider the reactions on the boundary with
current supplied from an external source. Note that our bido-
main model (with different reactions on each side of the
membrane) forms a self-regulatory reaction system. The ef-
fect of electric potential on the reaction rate is consistently
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FIG. 9. Dynamics evolution of (a) reaction rates; (b) electron density; (c) substance concentrations; and (d) conductance function over time
with different intrinsic reaction rates on both sides of the plate. Here we fix the effective capacitance λs = 0.1 and diffusion-reaction timescale
ratio ζ = 1. Hard switch function is used. Dimensional units are used as defined in the beginning of the Results section.
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modeled with a version of the Frumkin-Butler-Volmer equa-
tion [6,9,55,57,58].

Next, we analyze a bidomain model with (1) oxidation on
the left input side that produces electrons and (2) reduction
on the right output side that consumes electrons. Transport
across the membrane of conduction and displacement current
is included.

We analyze this system because it plays an important role
in ATP production and the transport of oxygen/carbon diox-
ide in living systems. Serious disruption in these reactions
is likely to be lethal. Small disruptions lead to a range of
health problems, including anemia, sickle cell disease, and
other blood disorders.

The simulation results are used to illustrate the diffusion-
reaction competition and how the electric potential affects the
reaction rate function. In order to model the gating phenom-
ena, we presented simple both hard switch and soft switch
models that assume the conductivity of the interface depends
on the electric potential difference like the Hodgkin-Huxley
model [71,72].

Our treatment, however, uses only the simplest representa-
tions of the chemical reactions themselves and we are quite
aware that the specifics of the reactions that have been so
exhaustively analyzed in the electrochemistry literature will
need to be introduced to our current based models as more
realism is sought. Different systems in electrochemistry have
different mechanisms. Different systems in biology are also
likely to use somewhat different mechanisms for the reactions
and the switch, with different regulation.

In this regard, it will be of particular interest to biologists to
consult the literature on proton-electron reactions in inorganic
systems [6]. In the future, with more detailed information on
the reactions and biological structure, our model could be
used to study the full electron transport chain during the ATP
production that occurs in almost every cell in an animal and
other processes, perhaps including the blood clotting cascade
process [73,74].

Chemical reactions can also play an important role in the
active motion of soft matter. For example, in some active gels,
chemical reactions between the gel components can generate
mechanical stress that drives the motion of the gel. Similarly,
chemical reactions can be used to generate motion in droplets
or other active soft matter systems. Also, in the current paper,
the fluid is neglected temporarily for simplicity. By adding
the kinetic energy of the fluid to the total energy E and con-
stitutive relation, our model could be used to study the active
rheology of soft matter [19].
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APPENDIX A: DETAILS OF DERIVATION

Equation (11) derivation:

dE

dt
=

∫
�

N∑
i=1

{
μi

∂Ci

∂t

}
dx +

∫
�

E · ∂D
∂t

dx

=
∫

�

N∑
i=1

{
μi

∂Ci

∂t

}
dx −

∫
�

∇φ · ∂D
∂t

dx

=
∫

�

N∑
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μi

∂Ci

∂t
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∫
�

φ∇ ·
(

∂D
∂t

)
dx

=
∫

�

N∑
i=1
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∂Ci

∂t

}
dx +

∫
�

φF
N∑

i=1

{
zi

∂Ci

∂t

}
dx

=
∫

�

N∑
i=1

{
μ̃i

∂Ci

∂t

}
dx

= −
∫

�

N∑
i=1

{μ̃i∇ · ji}dx +
∫

�

R
N∑

i=1

γiμ̃idx

=
∫

�

N∑
i=1

{∇μ̃i · ji}dx +
∫

�

R
N∑

i=1

γiμ̃idx −
∫

∂�

N∑
i=1

(μ̃i − μ̃i,ex ) ji · ndS −
∫

∂�

μ̃i,ex ji · ndS.

= −� + PE ,∂�.
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Equation (29) derivation:

dE

dt
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∫
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Equation (48) derivation:
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+
∫
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APPENDIX B: NUMERICAL SCHEME

Here we present the detailed numerical scheme for the bidomain reaction system (53) and (54),(
Cs

i
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Cs
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)n
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= ∇ · (Ds

i

(∇(
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, (B1)
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where

(Rl )n = kl
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Finite volume methods [75] are used for space discretization.
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