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Abstract

Chemical reactions move charges. A mathematical model for chemical reactions in
electrolytes is developed using an energy variational method consistent with classical ther-
modynamics. Electrostatics and chemical reactions are included in consistently defined
energetic and dissipative functionals. The energy variation method is extended to open
systems with inputs and outputs of charge, mass, and energy. Open systems can trans-
form the input energy of one type into the output energy of another type. Models for
reactions in the bulk and on boundaries are analyzed with this framework. In particular,
we develop a two-domain model for a reaction system with self-regulation, and internal
switching, that plays an important role in the electron transport chain of mitochondria
that creates the ATP so important for life. Simulations are conducted to study the effects
of electric potential on reaction rate and switching within the two-domain system.

Keywords— Open system, Mass action, Electrochemistry

1 Introduction
Theories for chemical reactions based on the law of mass actions often ignore electric effects [9, 29], even
though the reactants, catalysts and enzymes of chemistry and biology depend on charge interactions
for much of their function [53, 73, 12]. Recently, mathematical models have been developed in the
electrochemical tradition [25, 1, 2, 58, 8], some using variational princlies [65, 64].

Here, we extend this work by proposing a general thermodynamics-consistent framework for elec-
trochemical reactions both in the bulk and on the interface in biological systems. Our model naturally
fits chemical reactions into the conservation laws of currents and make it possible to use the classical
circuit analysis. Classical circuit analysis provides a coarse grain description of electrodynamics that is
exact if Kirchhoff’s law is applied to the total current, including the displacement current [20]. Specif-
ically, we investigate the electric effects on the rate of chemical reactions using several reduced (‘toy’)
models that show interesting dynamics and interactions between diffusion, reaction, and electric fields
of ionic solutions.

Various consistent frameworks have been developed for nonequilibrium systems based on the second
law of thermodynamics and Onsager’s linear response theory. Onsage’s variational principle, which was
first proposed in [44, 45] and later generalized by Edwards [16], Doi [15], and Qian [47], is a popular
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approach to irreversible systems. It is based on the maximum dissipation principle proposed by Lord
Rayleigh [55] motivated by the analysis of uncharged systems. The principle states that for a system
described by variables α1, · · · , αn that describe the displacement from thermodynamic equilibrium
with the (corresponding) rates α̇1, · · · , α̇n, and with free energy F (α1, · · · , αn), the thermodynamic
flux α̇i follows the dynamic path that minimizes the Rayleigh function. This function is the sum of the
dissipation function Φ and the rate of the change of the free energy Ḟ in an isothermal system. [62]
provide a more detailed review. In order to include the fluid kinetic energy [24] for fluid equations, Wang
et al. [63, 71] proposed the Generalized Onsager principle (GOP) for both reversible and irreversible
processes.

Energetic Variational Approach (EnVarA) is another powerful tool proposed by Liu et al. [49, 19,
68]. The general framework of EnVarA is a combination of statistical physics and nonlinear thermody-
namics. All the physics are integrated into the definitions of total energy E and dissipation functional
∆. The Least action principle [23] yields the conservative force Fcon by taking the variation of the
action functional with respect to the flow map in the Lagrange frame of reference. The Maximum
principle [44, 45] yields dissipative force Fdis by taking the variation of the rate function. The final
equation of momentum is achieved by balancing these two forces balance Fcon = Fdis. A more detailed
review can be found in [64].

Based on the consideration of the second law of thermodynamics, in particular, the requirement
that the rate of energy dissipation needs to be non-positive, Ren et al. [48, 75, 74] proposed a more
straightforward method built on a concept in [31]. First, the energy functional E is defined according
to different physical fields. Based on the laws of conservation, the kinematic assumptions are listed
with unknown terms like fluxes and stresses. By taking the time derivative of the total energy dE

dt ,
those unknowns could be described so each term in dE

dt is negative. Following Ren’s Method, Shen et
al. proposed an energy variation method [51, 52] with predefined energetic and dissipative functionals.
The unknown terms in the kinematics assumptions are obtained by matching dE

dt with a predefined
dissipative function ∆.

Most existing work focuses on closed systems with no flux entering from the boundary, and flux
conditions are added as boundary conditions. However, most biological systems, and all powered
devices of engineering, are open systems with flux flowing in and out of the domain under consideration.
In this paper, we propose a thermodynamically consistent framework for open systems
with both energetic and dissipative components on the boundary as well as in the bulk.

The law of mass action [42] is a fundamental principle in chemistry that relates the concentrations
of reactants and products in a chemical reaction to its equilibrium constant. Recently, models have
been proposed for the chemical reaction based on thermodynamics laws [30, 72, 39]. Wang et al.
[65, 64, 38] extended with the EnVarA framework for a chemical reaction system with general mass
action kinetics. The Butler-Volmer equation is a widely used phenomenological equation used to
describe the rate of charge transfer carried by ions or electrons [10, 22, 14]. An important question that
has not been addressed explicitly is how to fit chemical reactions into the mathematics of Kirchhoff’s
law and conservation of total current that make possible classical circuit analysis that so reduces the
complexity of analysis of electric fields and flows. In this paper, we show one way to describe chemical
reactions in ionic solutions with an extension of classical field theory that does not violate the traditions
of either chemistry or electrodynamic field theory.

Our methods link the electric field and reaction dynamics as Wang, et al, [65, 64] have for reactions
that do not involve charge or electrodynamics. The generalization that combines circuit analysis and
chemical reactions allows us to study systems of some importance including all the powered systems
of engineering and the electron transport chains that oxidise metabolites to create the chemical power
source of life, ATP.

The rest of the paper is organized as follows. In Section 2, we derive the general field theory for
open system with flux on the boundary and then the method is use to derive equations for an ionic
system with reaction in bulk region, on the boundary and on the interior interface. The simulation
results for a bidomain rection system are presented in Section 3. The discussions and conclusions are
shown in Section 4.
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2 Mathematical Models
For a close system, the First Law of Thermodynamics states that the rate of change of the sum of
the kinetic energy K and the internal energy U is equal to the sum of the rates of change of work W
and heat Q, so d(K+U)

dt = dW
dt + dQ

dt . From the standard statistical physics, the internal energy U takes
into account the particles interactions. Such interactions can be local, such as hard core interactions
and nonlocal, such as Coulomb electrostatic interactions. The Second Law of Thermodynamics, in
the isothermal case, is given by, T dS

dt = dQ
dt + ∆, where T is temperature, S is entropy and ∆ ≥ 0

is entropy production. As a reformulation of the linear response assumption, this entropy production
functional can be represented as the sum of various rates such as the velocities and the strain rates.
By subtracting the Second Law from the First Law, under the isothermal assumption, assuming both
laws are valid for nonequilibrium open systems, we have,

dE

dt
=
dW
dt
−∆, (1)

where E = K+F is the total energy and F := U −T S is the Helmholtz free energy.In case no external
forces or fields are applied, i.e. dW

dt = 0, we can derive the dissipation law dE
dt = −∆.

Open systems have some fluxes that flow in or out through the boundary and have distinctive
energy dissipation laws that differ from those of closed systems. In open systems, energy can change
both because of the flux across the boundary and also because of the change in dissipation. For open
systems, we assume the following energy law

dE

dt
= PE,∂Ω −∆, (2)

where PE,∂Ω is the energy exchange rate through energy due to the variation of total particles, energy.
It is important to note that both the total energy and dissipation functionals incorporate contributions
from both the bulk region and the boundary.

2.1 Bulk reaction
We consider a domain that has reactions in bulk and connects to an infinite large reservoir with
fixed chemical potential on the boundary. We focus on elementary reactions containing N species
{Cz11 , C

z2
2 , · · · , C

zN
N }

a1C
z1
1 + a2C

z2
2 + · · ·+ aNC

zN
N

kf


kr
b1C

z1
1 + b2C

z2
2 + · · ·+ bNC

zN
N , (3)

where kf and kr are the forward and backward reaction rates, Ci is the concentration of ith species,
respectively. Here ai and bi are the stoichiometric coefficients, and zi is the valence of ith species. If
let γi = bi − ai. Charge conservation implies

∑N
i=1 γizi = 0.

Based on the laws of conservation of chemical elements and Maxwell equations, we have the fol-
lowing kinematic assumptions 

∂Ci
∂t = −∇ · ji + γi R,

∇ · (D) =
∑N

i=1 ziCiF,

∇×E = 0,

(4)

where ji, i = 1, · · · , N are the passive fluxes, zi is the valence of ith particle, F is Faraday constant
and R = Rf −Rr is the net reaction rate function with forward and reverse reactions rate Rf and Rr.
D is Maxwell’s electrical displacement field and D = ε0εrE with electric field E, dielectric constant
ε0 and relative dielectric constant εr. The equation ∇×E = 0 implies that there exists a φ such that
E = −∇φ.

The boundary conditions are{
ji · n = ji,ex, i = 1 · · · , 4, on ∂Ω,
D · n = 0, on ∂Ω.

(5)

where ji,ex is the flux of ith ion supplied from an external source, n is the unit out normal vector.
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Remark 2.1. By multiplying zie on both sides of the first equation , we have

∂

∂t
(∇ ·D) =

N∑
i=1

ziF
∂Ci
∂t

(6)

= −
N∑
i=1

∇ · (ziFji) +

N∑
i=1

γiR

= −
N∑
i=1

∇ · (ziFji) (7)

which is consistent with the electrostatic Maxwell equations. Treatment of transient problems, involving
displacement currents is needed to deal with some important experimental work [3, 6, 61, 7, 11, 60].

The total energetic functional is defined as the summation of entropies of mixing, internal energy
and electrical static energy [57, 65].

E = Eent + Eint + Eele

=

N∑
i=1

∫
Ω
RT

{
Ci

(
ln

(
Ci
c0

)
− 1

)}
dx+

∫
Ω

N∑
i=1

CiUidx+

∫
Ω

N∑
i=1

ziFCiφ−
∫

Ω

D ·E
2

dx

=

N∑
i=1

∫
Ω
RT

{
Ci

(
ln

(
Ci
c0

)
− 1

)}
dx+

∫
Ω

N∑
i=1

CiUidx+

∫
Ω

D ·E
2

dx, (8)

where R is universal gas constant, T is temperature, Ui is the internal energy density of ith particle
and c0 is concentration.

Then the chemical potentials can be calculated from the variation of total energy

µ̃i =
δE

δCi
= RT ln

Ci
c0

+ Ui + ziφF, i = 1, · · · , N. (9)

It is assumed in the present work that the dissipation of the system energy is due to passive diffusion
and chemical reaction. Additional dissipations (and energies for that matter) can be included if needed
in later applications.

∆ =

∫
Ω


N∑
j=1

RT

DiCi
|ji|2 +RTR ln

(
Rf
Rr

) dx+

N∑
i=1

∫
∂Ω

1

gi
|ji,ex|2dS

=

∫
Ω


N∑
j=1

RT

DiCi
|ji|2 +RT (Rf −Rr) ln

(
Rf
Rr

) dx+
N∑
i=1

∫
∂Ω

1

gi
|ji,ex|2dS, (10)

where gi is the conductivity of ith species on the boundary.
The boundary energy communication rate PE,∂Ω is induced by the mass communication flux with

energy density µex

PE,∂Ω = −
N∑
i=1

∫
∂Ω
µ̃i,exji,exdS, (11)

where µ̃i,ex is the fixed external chemical potential of ith species.
We need the time derivative of the total energy function (8) to apply the dissipation law, either for

open or closed systems.

dE

dt
=

∫
Ω

N∑
i=1

{
µi
∂Ci
∂t

}
dx+

∫
Ω
E · ∂D

∂t
dx
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=

∫
Ω

N∑
i=1

{
µi
∂Ci
∂t

}
dx−

∫
Ω
∇φ · ∂D

∂t
dx

=

∫
Ω

N∑
i=1

{
µi
∂Ci
∂t

}
dx+

∫
Ω
φ∇ ·

(
∂D

∂t

)
dx

=

∫
Ω

N∑
i=1

{
µi
∂Ci
∂t

}
dx+

∫
Ω
φF

N∑
i=1

{
zi
∂Ci
∂t

}
dx

=

∫
Ω

N∑
i=1

{
µ̃i
∂Ci
∂t

}
dx

= −
∫

Ω

N∑
i=1

{µ̃i∇ · ji} dx+

∫
Ω
R(

N∑
i=1

γiµ̃i)dx (12)

=

∫
Ω

N∑
i=1

{∇µ̃i · ji} dx+

∫
Ω
R(

N∑
i=1

γiµ̃i)dx−
∫
∂Ω

N∑
i=1

(µ̃i − µ̃i,ex)ji · ndS −
∫
∂Ω
µ̃i,exji · ndS.

= −∆ + PE,∂Ω. (13)

By comparing with the dissipation function, we have
ji = − Di

RT Ci∇µ̃i, i = 1, · · · , N in Ω
ji · n = gi(µ̃i − µ̃i,ex) on ∂Ω

RT ln
(
Rf
Rr

)
= −

∑N
i=1 γiµ̃i on ∂Ω.

(14)

where the last equation is called De Donder relation [50, 1].
At equilibrium, we have {

ji = ∇Ci,eq + ziF
RT Ci,eq∇φeq = 0,∑4

i=1(ai − bi)µ̃eqi = 0.

The last equation yields

0 = RT ln

ΠN
i=1

(
Ci,eq
c0

)ai
ΠN
i=1

(
Ci,eq
c0

)bi
+

N∑
i=1

(ai − bi)Ui. (15)

According to the definition of equilibrium constant keq [46],

keq =

(
Ci,eq
c0

)ai−bi
=

(
Ci,eq
c0

)−γi
. (16)

Substituting Eq.(16) into Eq. (15) yields

keq = e−
∆U
RT , (17)

with ∆U =
∑N

i=1(ai − bi)Ui .
Then combining the last equation in (14) and (17) yields

ln

(
Rf
Rr

)
= ln

 ΠN
i=1

(
Ci
c0

)ai
ΠN
i=1

(
Ci,eq
c0

)bi
keq

 . (18)

If we assume

Rr = kr,refΠN
i=1

(
Ci
c0

)bi
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then the reaction rate function is

R =

(
kf,refΠN

i=1

(
Ci
c0

)ai
− kr,refΠN

i=1

(
Ci
c0

)bi)
= Rf

(
1− Rr
Rf

)
= Rf,ref

(
1− e

∑N
i=1 γiµ̃i
RT

)
,

where kf,ref =
kr,ref
keq

[65] . kf,ref and kr,ref are are forward and backward reaction rate constants with

unit M
s = Mol

Ls [46]. If we define a local affinity A = −
∑N

i=1 γiµ̃i =
∑N

i=1(ai − bi)µ̃i [13], the chemical
reaction rate equation could be rewritten as

R = Rf
(

1− e−
A
RT

)
. (19)

The governing equations for bulk reaction are given as
∂Ci
∂t = ∇ · (Di∇Ci +Di

ziF
RT Ci∇φ) + γiR,

−∇ · (ε0εr∇φ) =
∑N

i=1 ziFCi,
(20)

with

R =

(
kfΠN

i=1

(
Ci
c0

)ai
− krΠN

i=1

(
Ci
c0

)bi)
(21)

and boundary conditions {
ji · n = gi(µ̃i − µ̃i,ex), i = 1 · · ·N, on ∂Ω,
D · n = 0, on ∂Ω.

(22)

The energy law of this system is

dE

dt
= −

∫
Ω


N∑
j=1

DiCi
RT
|∇µ̃i|2 +RTR ln

(
Rf
Rr

) dx−
N∑
i=1

∫
∂Ω
gi|µ̃i − µ̃i,ex|2dS

−
N∑
i=1

∫
∂Ω
giµ̃i,ex(µ̃i − µ̃i,ex)dS

= −∆ + PE,∂Ω

= −
∫

Ω


N∑
j=1

DiCi
RT
|∇µ̃i|2 +RTR ln

(
Rf
Rr

) dx−
N∑
i=1

∫
∂Ω
giµ̃i(µ̃i − µ̃i,ex)dS. (23)

Here the boundary condition of concentration is Robin type.

• If the boundary conductivity is zero gi = 0, then we obtain the nonflux boundary condition
ji · n = 0; The corresponding energy law is

dE

dt
= −

∫
Ω


N∑
j=1

DiCi
RT
|∇µ̃i|2 +RTR ln

(
Rf
Rr

) dx = −∆. (24)

with zero boundary energy communication rate PE,∂Ω = 0.

• If the conductance is infinitely large, the Dirichlet boundary condition is achieved µ̃i = µ̃i,ex on
the boundary.

• If the conductance is a function of chemical potential, i.e. gi =
ji,0

µ̃i−µ̃i,ex , where ji,0 is constant,
then we obtain the Neumann boundary condition ji · n = ji,0. In this case, the corresponding
energy law is

dE

dt
= −

∫
Ω


N∑
j=1

DiCi
RT
|∇µ̃i|2 +RTR ln

(
Rf
Rr

) dx−
N∑
i=1

∫
∂Ω
µ̃iji,0dS

6



= −∆ + PE,∂Ω (25)

where the boundary energy communication rate is PE,∂Ω = −
∑N

i=1

∫
∂Ω µ̃iji,0dS.

It is very important to understand this requirement. In reality—in experiments and their models—
supplying the unknown flux requires specialized instrumentation, for example, a patch clamp amplifier
in a voltage clamp setup. Almost always, that flux is supplied at one location in space. In that way
a classical voltage clamp can be established. However, if one wishes to "clamp" a field, one must
control the potential at many locations. Each location requires a different flux and thus a different
amplifier and different electrodes to supply that flux. Without such a complicated apparatus, it is
almost impossible to maintain a constant field in space [33]. Indeed, it is nearly impossible to maintain
any pre-specified field because it is practically impossible to apply different fluxes at different locations.
If one assumes a constant field in a theory, without such apparatus in an experiment, one is in effect
introducing flux into the calculation and model that is not present in the experimental setup. One
is introducing an artifactual flux likely to produce artifactual conclusions that are not relevant to the
original experiment [18, 17].

2.2 Boundary reaction on electrode
In this subsection, we consider the Faradic reactions on the surface of an electrode Γ

a1C
z1
1 + a2C

z2
2 + · · ·+ aNC

zN
N + ∆ze−1

kf


kr
b1C

z1
1 + b2C

z2
2 + · · ·+ bNC

zN
N , (26)

where electrons are supplied through Γ and
∑N

i=1 γizi + ∆z = 0. The electrons are supplied with
electric potential equal to the electrode potential φe. During the derivation, we focus on situations
where the oxidized state exists only in the solution and there are no ions inside the electrode.

The conservation law yields the following kinematic assumptions,
∂Ci
∂t = −∇ · ji, in Ω

−∇ · (ε0εr∇φ) =
∑N

i=1 ziFCi, in Ω
(27)

with boundary conditions
ji · n = −γiR, i = 1 · · ·N, on Γ,

F ∂Ce
∂t = Cp ∂(φ−φp)

∂t = jexF −∆zFR, on Γ
ji · n = 0, on ∂Ω/Γ,

(28)

where Ce is the density of electrons on the surface of the plate, φp is the electric potential on the plate,
and Cp is the capacitance, Iex is the current supplied by an external amplifier and the corresponding
inlet electron flux is jex = − Iex

F . Here we use the fact that FCe = Cp(φ− φp).
Then the total energy is defined as the sum of mix energy and internal energy of ions, electric static

energy in the bulk region, and the energy on the interface induced by electrons and capacitor effect

E = Etot,bulk + EΓ

= Eent + Eint + Eele + EΓ

=

N∑
i=1

∫
Ω

{
RTCi

(
ln

(
Ci
c0

)
− 1

)
+ Ciµi,0

}
dx+

∫
Ω

∑
i

ziFCiφdx−
1

2

∫
Ω

D ·E
2

dx

+

∫
Γ

{
RTCe

(
ln

(
Ce
c0

)
− 1

)
+ Ceµ0,e

}
dx+

∫
Γ
CeF (φ− φp)dS −

1

2

∫
Γ
Cp(φ− φp)2dS,

=
N∑
i=1

∫
Ω

{
RTCi

(
ln

(
Ci
c0

)
− 1

)
+ Ciµi,0

}
dx+

∫
Ω

D ·E
2

dx

+

∫
Γ

{
RTCe

(
ln

(
Ce
c0

)
− 1

)
+ Ceµe,0

}
dx+

1

2

∫
Γ
Cp(φ− φp)2dS, (29)
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Figure 1: Schematic of reaction on the plate with external electron supply Jex = Iex
F
.

where µi,0 is the chemical potential of ith ion at standard state, i.e. 25◦C and 1M .
Then the corresponding chemical potentials of ions and electron are

µ̃i =
δE

δCi
= µi + ziFφ = µi,0 +RT ln

Ci
c0

+ ziFφ, (30)

µ̃e =
δE

δCe
= µe − Fφp = µe,0 +RT ln

Ce
c0
− Fφp. (31)

The dissipation function is defined as

∆ =

∫
Ω

N∑
j=1

DiCi
RT
|∇µ̃i|2dx+

∫
Γ
RTR ln

(
Rf
Rr

)
dS +

∫
Γ

g

F 2
(µ̃e − µ̃ex)dS

=

∫
Ω

N∑
j=1

DiCi
RT
|∇µ̃i|2dx+

∫
Γ
RT (Rf −Rr) ln

(
Rf
Rr

)
dS +

∫
Γ

g

F 2
(µ̃e − µ̃ex)2dS. (32)

where we used the boundary reaction rate function R = Rf −Rr, µex is the external electron chemical
potential of the reservoir that connects to the boundary.

We analyze a setup (see Fig. 1) with a given current of electrons Iex applied to the plate Γ. This
is a flux (really current) boundary condition, of the Neumann type in mathematical language. The
other boundaries of the system are controlled in a different way. On the other boundaries, the electric
potential is fixed as φref and no ions enter or leave the system on those other boundaries, i.e. Ji ·n = 0.
The current flow of electrons is only on the left plate and boundary energy power functional is defined
as follows

PE,∂Ω =

∫
Γ
µ̃ejexdx−

∫
∂Ω/Γ

φref
∂D · n
∂t

dx (33)

Remark 2.2. Integrating the first equation and using the boundary condition on ith ion yields the law
of mass conservation

d

dt

∫
Ω
Cidt =

∫
Γ
γiRdS. (34)

To apply the dissipation theorem, we need the derivative of energy with respect to time. All steps
are shown because this part of the EnVarA treatment applying the dissipation principle may not be
obvious to readers inexperienced with functional and variational methods.

dE

dt

=

∫
Ω

N∑
i=1

{
µ̃i
∂Ci
∂t

}
dx−

∫
∂Ω
φ
∂D · n
∂t

dS +

∫
Γ
µe
∂Ce
∂t

dS +

∫
Γ
(φ− φp)F

∂Ce
∂t

dS

8



= −
∫

Ω

N∑
i=1

{µ̃i∇ · ji} dx−
∫
∂Ω
φ
∂D · n
∂t

dS +

∫
Γ
µ̃e
∂Ce
∂t

dS +

∫
Γ
φF

∂Ce
∂t

dS

= −
∫

Ω

N∑
i=1

{µ̃i∇ · ji} dx−
∫

Γ
φ
∂

∂t
(D · n− FCe) dS +

∫
Γ
µ̃e(jex −∆zR)dS

−
∫
∂Ω/Γ

φ
∂D · n
∂t

dS

=

∫
Ω

N∑
i=1

{∇µ̃i · ji} dx−
∫

Γ
φ
∂

∂t
(D · n− FCe) dS −

∫
Γ

N∑
i

µ̃iji · ndS +

∫
Γ
µ̃e(−∆zR)dS

−
∫
∂Ω/Γ

φ
∂D · n
∂t

dS −
∫
∂Ω/Γ

N∑
i

µ̃iji · ndS +

∫
Γ
µ̃ejexdS

=

∫
Ω

N∑
i=1

{∇µ̃i · ji} dx−
∫

Γ
φ
∂

∂t
(D · n− FCe) dS +

∫
Γ

N∑
i

µ̃iγiRdS −
∫

Γ
µ̃e(∆zR)dS

−
∫
∂Ω/Γ

φ
∂D · n
∂t

dS −
∫
∂Ω/Γ

N∑
i

µ̃iji · ndS +

∫
Γ
(µ̃e − µ̃ex)jexdS +

∫
Γ
µ̃exjexdS

=

∫
Ω

N∑
i=1

{∇µ̃i · ji} dx−
∫

Γ
(−

N∑
i

µ̃iγi + µ̃e∆z)RdS −
∫

Γ
φ
∂

∂t
(D · n− FCe) dS

+

∫
Γ
(µ̃e − µ̃ex)jexdS +

∫
Γ
µ̃exJexdS −

∫
∂Ω/Γ

φ
∂D · n
∂t

dS −
∫
∂Ω/Γ

N∑
i

µ̃iji · ndS

= −∆ + PE,∂Ω. (35)

To implement the dissipation principle, we now compare it with the dissipation function. We are
dealing with an open system so we include the dissipation (and energy) associated with the boundaries
as well as the interior of the system.

ji = − Di
RT Ci∇µ̃i, i = 1, · · · , N, inΩ

D · n = FCe on Γ
jex = g

F 2 (µ̃ex − µ̃e), on Γ

RT ln
(
Rf
Rr

)
= −

∑N
i γiµ̃i + µ̃e∆z, on Γ

ji · n = 0, on ∂Ω/Γ
φ = φref , on ∂Ω/Γ

(36)

where the boundary condition is used [2, 5, 70].
The third equation in (36) yields

R = Rf (1− e
−Ae
RT ). (37)

with the affinity

Ae =

N∑
i=1

(ai − bi)µ̃i + ∆zµ̃e

= RT ln

(Ce
c0

)∆z ΠN
i=1

(
Ci
c0

)ai
ΠN
i=1

(
Ci
c0

)bi
+ ∆µ0 +

N∑
i=1

(ai − bi)ziFφ−∆zFφp

= RT ln

(Ce
c0

)∆z ΠN
i=1

(
Ci
c0

)ai
ΠN
i=1

(
Ci
c0

)bi
+ ∆µ0 + ∆zF (φ− φp)
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= RT ln

(Ce
c0

)∆z ΠN
i=1

(
Ci
c0

)ai
ΠN
i=1

(
Ci
c0

)bi
keq

e
∆zF
RT

(φ−φp)

 (38)

where ∆µ0 =
∑N

i=1(ai − bi)µi,0 + ∆zµe,0 and keq = e−
∆µo
RT is used. If we assume

Rf = kf,ref

(
Ce
c0

)∆z

ΠN
i=1

(
Ci
c0

)ai
e−

∆ZF
RT

β(φp−φ), (39)

then the reaction rate function could be defined as follows

R = Rf
(

1− e−
∑N
i=1(ai−bi)µ̃i+∆zµ̃e

RT

)
= kf,refe

−∆ZF
RT

β(φp−φ)

(
Ce
c0

)∆z

ΠN
i=1

(
Ci
c0

)ai
− kr,refe

∆ZF
RT

(1−β)(φp−φ)ΠN
i=1

(
Ci
c0

)bi
= kf,refe

−∆ZF
RT

β(∆φ)

(
Ce
c0

)∆z

ΠN
i=1

(
Ci
c0

)ai
− kr,refe

∆ZF
RT

(1−β)(∆φ)ΠN
i=1

(
Ci
c0

)bi
(40)

where we denote ∆φ = φp − φ and β is the so called the transfer coefficient commonly found in the
Frumkin-Butler-Volmer Equation [5, 50, 58, 59, 25].

The details of electron flow are not described in our model Fig. 1 and 2 because those details are
not well known in the biological case which remains our main focus. Those details are significantly
different in each of the many (quite different) systems that are described by the Butler-Volmer equation
of electrode reactions [25].

At equilibrium, i.e. Rf = Rr, we have

∆φeq = φp − φeq =
RT

∆zF
ln

(Ce,eq
c0

)∆z kf,refΠN
i=1

(
Ci,eq
c0

)ai
kr,refΠN

i=1

(
Ci,eq
c0

)bi


=
RT

∆zF
ln

(
kf,ref
kr,ref

)
+

RT

∆zF
ln

(Ce,eq
c0

)∆z ΠN
i=1

(
Ci,eq
c0

)ai
ΠN
i=1

(
Ci,eq
c0

)bi


=
∆µo
∆zF

+
RT

∆zF
ln

(Ce,eq
c0

)∆z ΠN
i=1

(
Ci,eq
c0

)ai
ΠN
i=1

(
Ci,eq
c0

)bi
 (41)

which is call the Nernst equation.
In summary, we have the following system

∂Ci
∂t = −∇ · ji, in Ω

−∇ · (ε0εr∇φ) =
∑N

i=1 ziFCi, in Ω
(42)

with boundary conditions

ji · n = −γiR, i = 1 · · ·N, on Γ,

Cp d(φ−φp)
dt = −Iex −∆zFR = g

F (µ̃ex − µ̃e)−∆zFR, on Γ

R = kf,refe
−∆ZF

RT
β(∆φ)

(
Ce
c0

)∆z
ΠN
i=1

(
Ci
c0

)ai
− kr,refe

∆ZF
RT

(1−β)(∆φ)ΠN
i=1

(
Ci
c0

)bi
, on Γ

D · n = Cp(φ− φp), on Γ
ji · n = 0, φ = φref , on ∂Ω/Γ.

(43)
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The reaction rate function could be written as

R = kf

(
Ce
c0

)∆z

ΠN
i=1

(
Ci
c0

)ai
− krΠN

i=1

(
Ci
c0

)bi
, (44)

where we denote

kf = kf,refe
−∆ZF

RT
β(∆φ), (45)

kr = kr,refe
∆ZF
RT

(1−β)(∆φ), (46)

to include the effects of electric potential on the reaction rates.
If we choose g = I0F

µ̃e−µ̃ex , then the input current is constant I0 and the condition is changed to

be Cp d(φ−φp)
dt = −I0 − ∆zFR which is the set of boundary condition found widely in the literature

[40, 58, 41, 8].

Remark 2.3. Since Cse = Cp(φs − φsp) is the charge density, it should be nonegative during evolu-
tion,which means φs > φsp ≥ 0 for ∀t ≥ 0 .

Remark 2.4. If there is no chemical reaction on the surface Γ, the model degenerates to
∂Ci
∂t = −∇ · ji, in Ω

−∇ · (ε0εr∇φ) =
∑N

i=1 ziFCi, in Ω
(47)

with boundary conditions 
ji · n = 0, i = 1 · · ·N, on ∂Ω,

Cp d(φ−φp)
dt = −Iex, on Γ,

D · n = Cp(φ− φp), on Γ,
φ = φref , on ∂Ω/Γ.

(48)

2.3 Bi-reaction system
We now apply these general principles to a specific system of considerable interest in biological appli-
cations like the electron transport chain (ETC) on the mitochondrial membrane [32, 76, 67, 66], and
red blood cell (RBC) membrane [37, 4]. The electron transport chain (ETC) is a series of biochemical
reactions that occur in the inner mitochondrial membrane of eukaryotic cells or the plasma membrane
of prokaryotic cells. It plays a key role in cellular respiration, which is the process by which cells
convert nutrients (such as glucose) into energy (in the form of ATP). During the ETC, electrons are
transferred from electron donors (such as NADH and FADH2) to electron acceptors (such as oxygen)
through a series of redox reactions. This transfer of electrons is accompanied by the pumping of protons
(H+) across the inner mitochondrial membrane or the plasma membrane, creating an electrochemical
gradient that is used to generate ATP. The oxidation is carried out by a sequence of chemical reac-
tions catalyzed by membrane proteins that link electron flow on one side of a membrane to a chemical
reaction on the other. The general scheme is shown in Fig. 2.

In this section, we consider the case that two compartments Ωs, s = l, r are separated by the plate
Γ. The thickness of the plate is negligible compared with the domain size. There are total N species
{Cz11 , C

z2
2 , · · · , C

zN
N } in two compartments Ωs, s = l, r.

as1C
z1
1 + as2C

z2
2 + · · ·+ asNC

zN
N + ∆zse−1

ksf


ksr
bs1C

z1
1 + bs2C

z2
2 + · · ·+ bsNC

zN
N . (49)

In the left region Ωl, the forward reaction is oxidation the process that produces electrons (∆zl <
0); In the right compartment Ωr, the forward reaction is a reduced process that consumes electrons
(∆zr > 0). In the electrolyte region Ωs, we have the following kinematic assumption

∂Csi
∂t = −∇ · jsi ,

−∇ · (ε0εr∇φs) =
∑N

i=1 ziFC
s
i

(50)
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Figure 2: Schematic of Bi-reaction system. On the right side of the plate, the reduction reaction
consumes the electrons that are produced by the oxidation reaction on the left side of the plate.

for the boundary conditions
jsi · ns = −γiRs, on Γ,

Cp
d(φl−φlp)

dt = −∆zlFRl + Iex,Cp
φr−φrp
dt = −∆zrRrF − Iex, on Γ,

jsi · n = 0, on ∂Ω \ Γ.

(51)

The total energy is defined as

E = El + Er + EΓ

=
N∑
i=1

∫
Ωl

{
RTC li

(
ln

(
C li
c0

)
− 1

)
+ C liµ0,i

}
dx+

∫
Ωl

Dl ·El

2
dx

+

N∑
i=1

∫
Ωr

{
RTCri

(
ln

(
Cri
c0

)
− 1

)
+ Cri µ0,i

}
dx+

∫
Ωr

Dr ·Er

2
dx

+

∫
Γ

{
RTC le

(
ln

(
C le
c0

)
− 1

)
+ C leµ

l
0,e

}
dx+

1

2

∫
Γ
Cp(φl − φlp)2dS

+

∫
Γ

{
RTCre

(
ln

(
Cre
c0

)
− 1

)
+ Creµ

r
0,e

}
dx+

1

2

∫
Γ
Cp(φr − φrp)2dS. (52)

The dissipative function is defined as

∆ = ∆l + ∆r + ∆Γ

=

∫
Ωl

N∑
j=1

DiC
l
i

RT
|∇µ̃li|2dx+

∫
Γ
RTRl ln

(
Rlf
Rlr

)
dx

+

∫
Ωr

N∑
j=1

DiC
r
i

RT
|∇µ̃ri |2dx+

∫
Γ
RTRr ln

(Rrf
Rrr

)
dx

+

∫
Γ

g(C le)

F 2
(µ̃le − µ̃re)2dS. (53)

For the boundary input energy power, it is assumed to be

PE,∂Ω = −
∫
∂Ω
φref

∂D · n
∂t

dx. (54)

Taking the time derivative of the total energy yields

dE

dt
− PE,∂Ω

=
dEl
dt

+
dEr
dt

+
dEΓ

dt
−
∫
∂Ω
φref

∂D · n
∂t

dx

=

∫
Ωl

N∑
i=1

∇µ̃li · jlidx−
∫

Γ

N∑
i=1

µ̃lij
l
i · nldS −

∫
Γ
φl
∂

∂t
(Dl · nl − FC le)dS +

∫
Γ
µ̃le(−∆zlRl − Je)
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∫
Ωr

N∑
i=1

∇µ̃ri · jri dx−
∫

Γ

N∑
i=1

µ̃ri j
r
i · nrdS −

∫
Γ
φr

∂

∂t
(Dr · nr − FCre )dS +

∫
Γ
µ̃re(−∆zlRr + Je)

−
∫
∂Ω

(φ− φref )
∂D · n
∂t

dS

=

∫
Ωl

N∑
i=1

∇µ̃li · jlidx+

∫
Γ

N∑
i=1

µ̃liγiRldS −
∫

Γ
φl
∂

∂t
(Dl · nl − FC le)dS +

∫
Γ
µ̃le(−∆zlRl − Je)

∫
Ωr

N∑
i=1

∇µ̃ri · jri dx+

∫
Γ

N∑
i=1

µ̃riγiRrdS −
∫

Γ
φr

∂

∂t
(Dr · nr − FCre )dS +

∫
Γ
µ̃re(−∆zlRr + Je)

−
∫
∂Ω

(φ− φref )
∂D · n
∂t

dS

=

∫
Ωl

N∑
i=1

∇µ̃li · jlidx−
∫

Γ
(−

N∑
i=1

µ̃liγiRl + µ̃le∆z
l)RldS −

∫
Γ
φl
∂

∂t
(Dl · nl − FC le)dS

+

∫
Ωr

N∑
i=1

∇µ̃ri · jri dx−
∫

Γ

(
−

N∑
i=1

µ̃riγi + ∆zrµ̃re

)
RrdS −

∫
Γ
φr
∂

∂
(Dr · nr − FCre )dS

+

∫
Γ
(µ̃re − µ̃le)Je −

∫
∂Ω

(φ− φref )
∂D · n
∂t

dS

= −∆. (55)

Matching terms yield

jsi = −DsiC
s
i

RT ∇µ̃
s
i , in Ωs

Rl = kf,refe
−∆ZF

RT
β(η+∆φleq)ΠN

i=1

(
Cli
c0

)ai
− kr,refe

∆zlF
RT

(1−β)(η+∆φleq)ΠN
i=1

(
Cre
c0

)−∆zl (Cli
c0

)bi
on Γl

Rr = kf,refe
−∆ZF

RT
β(η+∆φreq)

(
Cre
c0

)∆zr

ΠN
i=1

(
Cri
c0

)ai
− kr,refe

∆zrF
RT

(1−β)(η+∆φreq)ΠN
i=1

(
Cri
c0

)bi
on Γr

Ds · ns = CseF = Cp(φs − φsp), on Γ

Je = − g
F 2 (µ̃re − µ̃le), on Γ

φ = φref , on ∂Ω/Γ.

In summary, the bidomain reaction system is
∂Csi
∂t = ∇ · (D

s
iC

s
i

RT ∇µ̃
s
i ), in Ωs

−∇ · (ε0εr∇φs) =
∑N

i=1 ziFC
s
i , in Ωs

(56)

for the boundary conditions

jsi · ns = −γiRs, on Γ,

Rl = kf,refe
−∆ZF

RT
β(η+∆φleq)ΠN

i=1

(
Cli
c0

)ai
− kr,refe

∆zlF
RT

(1−β)(η+∆φleq)ΠN
i=1

(
Cre
c0

)−∆zl (Cli
c0

)bi
on Γl

Rr = kf,refe
−∆ZF

RT
β(η+∆φreq)

(
Cre
c0

)∆zr

ΠN
i=1

(
Cri
c0

)ai
− kr,refe

∆zrF
RT

(1−β)(η+∆φreq)ΠN
i=1

(
Cri
c0

)bi
on Γr

Cp
d(φl−φlp)

dt = −∆zlFRl + g
F (µ̃re − µ̃le),Cp

d(φr−φrp)

dt = −∆zrFRr − g
F (µ̃re − µ̃le), on Γ,

Ds · ns = Cp(φs − φsp), on Γ,

jsi · n = 0, φ = φref on ∂Ω \ Γ.

(57)

Remark 2.5. At equilibrium, we have

∆zlRlF = −∆zrRrF = g(µ̃re − µ̃le). (58)

Remark 2.6. If there is no reaction, the model degenerates to
∂Csi
∂t = ∇ · (D

s
iC

s
i

RT ∇µ
s
i ), in Ωs

−∇ · (ε0εr∇φs) =
∑N

i=1 ziFC
s
i , in Ωs

(59)
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for the boundary conditions
jsi · ns = 0, on ∂Ω,

Cp
d(φl−φlp)

dt = g(µ̃re − µ̃le) = −Cp
d(φr−φrp)

dt on Γ,
Ds · ns = Cp(φs − φsp), on Γ,

φ = φref on ∂Ω \ Γ.

(60)

Let c0, t∗ = L2

D∗ , D∗, L, RT
F be the characteristic concentration, time, diffusion constant, length,

and electric potential. Then the equations could be written as in Ωs
∂Csi
∂t = ∇ · (Ds

i (∇Csi + ziC
s
i∇φs)),

−∇ · (δ2∇φs) =
∑N

i=1 ziC
s
i ,

(61)

with the boundary conditions

jsi · ns = −γiζRs, on Γ,
Ds · ns = λs(φ

s − φsp), on Γ
∂
∂t(Dl · nl) + ζ

δ2 ∆zlRl = g(C le, φ
l
p, φ

r
p)(µ̃

r
e − µ̃le) = g(C le, φ

l
p, φ

r
p)(ln(C

r
e

Cle
) + φlp − φrp)), on Γ

∂
∂t(Dr · nr) + ζ

δ2 ∆zrRr = −g(C le)(µ̃
r
e − µ̃le) = −g(C le)(ln(C

r
e

Cle
) + φlp − φrp), on Γ.

js · n = 0, φs = 0, on ∂Ω/Γ
(62)

whereDs = −εs∇φs,Rl = ΠN
i=1

(
C li
)ai klf,refe−∆Zlβ(φlp−φl)−klr,ref (C le)

−∆zlΠN
i=1

(
C li
)bi e∆Zl(1−β)(φlp−φl),

Rr = (Cre )∆zrΠN
i=1 (Cri )ai krf,refe

−∆Zrβ(φrp−φr) − krr,refΠN
i=1 (Cri )bi e∆Zr(1−β)(φrp−φr). Here δ = λD

L is the

ratio between Debye length λD =
√

RTε0εr
F 2c0

and macroscale length; ζ =
k∗fL

D∗c0
is the ratio between

reaction time and diffusion time; λs = CsL
ε0εr

is the ratio between macroscale length and effective width
for the Stern layer; and g = gt∗L

ε0εr
is the ratio between diffusion time and electric conduction time. To

consider the gating phenomena, the conductance g is modeled with a hard threshold θ0

g =

{
g0 if φrp − φlp > θ0;

0 otherwise, (63)

or a soft one

g = g0 tanh

(
(φrp − φlp)− θ0

ε

)
, (64)

with relaxation ε. When the difference of potential between two sides of plates is large enough, then
the plate becomes conductive and the electron is transported.

Alternating Access and Switches. We turn now to an extra process that is crucial in the
actual function of coupled systems such as shown in Fig. 2. Such systems include a switch that allows
alternating access to the reactions on either side of the membrane [26, 27].

The switch usually provides alternating access to an occluded state that is not connected (or
accessible) to either side of the protein. The occluded state blocks the conduction path (and incidentally
often traps ions in the ’middle’ of the transporter) and thus prevents backward flux. Alternating
access mechanisms create flux across the transporter protein without allowing backward flux which
would seriously degrade the efficiency of the transporter. Transporters were first thought to use quite
different mechanisms from channels [56, 34]. However, recent work [21] shows otherwise. Alternating
access is apparently created by correlated motions of gates that account for activation and inactivation
in classical voltage-activated sodium channels [26, 28]. The physical basis of the gates is not discussed in
the classical literature. The gate is usually described as a conformational change and left at that without
discussing what conformation one is dealing with (distribution of mass? distribution of potential?
distribution of charge? etc.) or the physics of how that conformation changes.

Alternating access might arise in other ways, for example, from bubbles in the conduction pathway,
as are widely thought to form gates in ion channels [43]. Another possibility is that the gate in the
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oxidase is like the switch in a semiconductor (diode) rectifier. The switches might be rectifiers produced
by spatial distributions of permanent charge, of opposite signs, as rectification (and switching) is
produced in PN diodes and bipolar transistors. Diode rectifiers depend on changes in the shape (i.e.,
conformation) of the electric field, not changes in the distribution (i.e., conformation) of mass. In the
next, we are going to study how the switch functions affect electron transportation.

3 Results
In the simulation, we consider the 1D computation domain [0, 1] and the plate is in the middle, at
x = 0.5. On the left side of the plate, we have

A+ +B2−
klf


klr

C + e−.

On the right side of the plate,

D2+ + E− + e−
krf


krr
F.

The initial concentrations and dimensionless parameters are set to be C1(t = 0) = 1, C2(t = 0) = 1
2 ,

C3(t = 0) = 0, C4(t = 0) = 1
2 , C5(t = 0) = 1, C6(t = 0) = 0, δ = 0.1, g = 0.1, klr,ref = krr,ref = 0.001.

3.1 Left and right with equal reaction rates
We first consider that the left and right reactions with the same reaction rate, klf,ref = krf,ref = 1. Fig.
3 shows the results of the dynamics of reaction rates, electron density, concentrations of substances,
and conductance over time with different cases ζ = 0.1 (diffusion dominates), ζ = 1 (diffusion-reaction
equal), ζ = 10 (reaction dominates). As ζ increases, the reaction rate also increases (Fig. 3a). The
substances on the left plates are consumed much faster (Fig. 3c left) and more electrons accumulate
on the left side of the plates (Fig. 3b). The electric potential difference between two sides of the plates
φrp − φlp increases and opens the gate so that electrons are transported to the right side of the plate
(Fig. 3b,d). Then the right reaction starts 3c right). Due to the transport of electrons, the difference
in potential between two sides of the plate decreases. The switch then turns off producing the gating
dynamics shown in Fig. 3d. Since the total amounts of reactants on the left region are limited, the left
reaction stops after a period of time because it runs out of electrons. Without a supply of electrons,
the switch turns and the right-side reaction stops. The larger ζ is, the earlier the reaction stops and
the switch turns off.

In Fig. 4, we show the phase diagram of potential difference and forward reaction rate function
kf in Eq.(45). The squares and triangles are the start points and end points of the phase diagrams,
respectively. kf,ref is the reference constant shown as the solid back line in the figure. When the
electric potentials variate with time, the forward reaction rates on the plate variate correspondingly.
since ∆zl < 0 and φlp < φls, then the reaction rate on the left plate is smaller that the reference value
kf,ref . On the right plate, since ∆zr > 0, so the reaction rate is always greater than the reference
value.

The space distributions of electric potential and substances in two regions at equilibrium are shown
in Fig. 5. For different ζ, the equilibrium is almost same. The electric potentials on two sides of the
plate φsp are lower than the potentials of the electrolyte φs due to the existence of capacitors. And the
left plate potential is lower than the potential on the right plate due to the accumulation of electrons.
Since C3 and C6 are neutral particles, they are spacial uniformly distributed. The distributions of
cations and anions are effected by the electric field.

In Fig. 6 and Fig. 7, we compare the results with different effective capacitance λs. The reaction
rate increases as the capacitance increases. And more electron could be stored on the capacitors. At
the equilibrium, due to larger capacitance, the electric potential difference between two sides electrolyte
decreases. The effect on the spacial distributions of substances at the equilibrium is mainly on the left
region due to the decrease of electric potential difference.
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Figure 3: Results with same reaction rate. (a) Reaction rates on both sides of the plate over
time; (b) Electron Density on both sides of the plate over time; (c) Substance concentrations
on both sides of the plate over time; (d) Conductance function over time.

In Fig. 8, we show the results when the switch function (64) is used with ε = 0.001. Compared
with the hard switch, the reaction rate function R is more smooth, especially for larger capacitance
λs = 0.1. When capacitance is λs = 0.01, as ζ increases, the switch could maintain an open state for
a longer time due to the accumulation of electrons on the left plate (Panel c red dot line).
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Figure 4: Phase diagram of Reaction rate klf and electric potential difference φlp−φls. Left: left
plate; Right: right plate. The black line the reference forward reaction rate value kf,ref = 1.
The squares are the start points and the triangles are the end points of the phase diagrams.
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Figure 5: Results with same reaction rate space distribution at equilibrium. (a) Electric po-
tential; (b) Substance concentrations.

3.2 Reaction Rates
In this subsection, we consider the case when the left and the right reaction rate is different, i.e.
klf,ref 6= krf,ref . Here we fix the effective capacitance λs = 0.1 and diffusion-reaction time scale
ratio ζ = 1. The results are shown in Fig.9 where the solid lines are for the left-fast-right-slow case
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Figure 6: Results with same reaction rate different λs. (a) Reaction rate; (b) Electron density;
(c) Substance concentrations.

klf,ref = 1, krf,ref = 0.1, the dash-dot lines are for the left-slow-right-fast case klf,ref = 0.1, krf,ref = 1

case and the dot lines are for the equal reaction case klf,ref = 1, krf,ref = 1. When the left forward
reaction rate constant is faster than the right one, electrons accumulate on the left plate more and
faster in the beginning. As a consequence, the left plate reaction slows down compared to the equal
reaction case klf,ref = krf,ref = 1. The accumulated electron active the gate earlier than the slower one
(Fig.9d). When the substances run out in the left region in a very short time (Fig.9c), then the switch
is closed. Since the right side forward reaction is slow krf,ref = 0.1, electrons accumulate on the right
plates (Fig.9d) and maintain the right plates reaction smoothly even after the gate is closed (Fig.9a).
In contrast, when the left forward reaction rate constant is slower than the right one, the electron
density on the left plate increases slowly. When the gate is open, the electrons are transported to the
right plate and start the reaction on the right later than the other two cases (Fig.9a). At the same
time, since the right forward reaction rate is large, the electron is consumed very fast which induces
high oscillation of reaction function on the right plate and high-frequency gating.

4 Discussion and Conclusion
This paper seeks to combine the classical description of chemical reactions with a general variational
treatment of forces and flows taking care to use a treatment of current flow in circuits beyond the usual
electrostatic approach. Based on the first and second laws of thermodynamics, we generalized the
energy variation method [51, 52] for an open system with flux communication on the boundary. Then
the framework is used to study the chemical reaction in electrolytes where the charges are taken into
consideration. When the reaction is in the bulk region, the obtained model is a Poisson-Nernst-Planck
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Figure 7: Results with same reaction rate different λs space distribution at equilibrium. (a)
Electric potential; (b) Substance concentrations.

(PNP) system with reaction terms that could be taken as a generalized version of the diffusion-reaction
model in [65]. Then we consider the reactions on the boundary with the external current supply and
on the interface of the self-regulation bidomain reaction system. The effect of electric potential on
the reaction rate is consistently modeled by the Frumkin-Butler-Volmer Equation [5, 50, 58, 59, 25].
Then, we proposed a bidomain model for electron transportation across the interface with oxidation on
the left side that produces electrons and reduction on the right that consumes electrons. The electron
transportation process plays an important role in ATP production and the transport of oxygen/carbon
dioxide. Any disruption in these reactions can lead to a range of health problems, including anemia,
sickle cell disease, and other blood disorders. The simulation results are used to illustrate the diffusion-
reaction competition and how the electric potential affects the reaction rate function. In order to model
the gating phenomena, we presented simple both hard switch and soft switch models that assume the
conductivity of the interface depends on the electric potential difference like the Hodgkin-Huxley model
[36, 35].

Our treatment, however, uses only the simplest representations of the chemical reactions themselves
and we are quite aware that the specifics of the reactions that have been so exhaustively analyzed in
the electrochemistry literature will need to be introduced to our current based models as more realism
is sought. In this regard, it will be of particular interest to biologists to consult the literature on
proton-electron reactions in inorganic systems [25]. In the future, with more detailed information on
the reactions and biological structure, our model could be used to study the full electron transport
chain during the ATP production or blood clotting cascade process [69, 54]. Chemical reactions can
also play an important role in the active motion of soft matter. For example, in some active gels,
chemical reactions between the gel components can generate mechanical stress that drives the motion
of the gel. Similarly, chemical reactions can be used to generate motion in droplets or other active soft
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matter systems. Also, in the current work, the fluid is neglected temporarily for simplicity. By adding
the kinetic energy of the fluid to the total energy E and constitutive relation, our model could be used
to study the active rheology of soft matter [62].
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Figure 8: Results with soft switch function. (a) Reaction rate with λs = 0.01; (b) Reaction
rate with λs = 0.1; (c) Electron density with λs = 0.01; (d) Electron density with λs = 0.1; (e)
Conductance with λs = 0.01; (f) Conductance with λs = 0.1.
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Figure 9: Results with different reaction rates. (a) Reaction rates on both sides of the plate over
time; (b) Electron Density on both sides of the plate over time; (c) Substance concentrations
on both sides of the plate over time; (d) Conductance function over time.
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