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Abstract 

Kirchhoff’s current law says that current does not accumulate. The continuity equation says 

that current does accumulate when currents and voltages vary. The continuity equation is the more 

general result, derivable from conservation of charge or the Maxwell equations. Kirchhoff’s current 

law is often a poor approximation when applied to the fast time varying signals of modern circuits. 

Engineers deal with this difficulty by supplementing circuits with parasitic (stray) capacitances that 

provide the displacement current ignored by Kirchhoff’s law. Maxwell used a different unfamiliar 

definition of true (or total) current that avoids this difficulty, because it includes the displacement 

current. The engineering approach works well as our electronic technology demonstrates. 

Maxwell’s approach may work better, after all he said “ … the time-variation of the electric 

displacement, must be considered in estimating the total movement of electricity.” 
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Kirchhoff’s current law has been used successfully to analyze signals for many years, 

including the very fast signals (10-9 s) in our computers.  

 

The law is stated succinctly in Zangwill [1], p. 524, in general form in three dimensions 

𝐝𝐢𝐯 𝐣 = 0 (1) 

and in circuit form there and in most textbooks 

∑ 𝐼𝑘 = 0𝑘  (2) 

In words, current does not accumulate anywhere: eq. (1). Current does not accumulate at the 

nodes of a circuit: eq. (2). Current  𝐣 or 𝐼𝑘 here means the flux of charges with mass, e.g., the flux of 

electrons.  

In contrast, the continuity equation of electrodynamics says that current does accumulate 

current accumulates as charge 𝜌 for signals that vary with time.  

𝐝𝐢𝐯 𝐣 = −
𝜕𝜌

𝜕𝑡
  (3) 

These equations (1) and (3) contradict each other, except when 𝜕𝜌 𝜕𝑡 = 0⁄ . Signals are in general 

time dependent — involving 𝜕𝜌 𝜕𝑡 ≠⁄ 0 — and so this contradiction undermines the use of 

Kirchhoff’s law to analyze rapidly changing signals in circuits. 

The continuity equation (3) is the more general result, a conservation law. The continuity 

equation is derived from  conservation of charge as shown explicitly in the textbooks of Zangwill 

[1], p. 32, and Griffiths [2], p. 222, 356. The continuity equation (3) is also an inescapable corollary 

of the Maxwell equations (Appendix) and applies to quantum mechanical systems as well [3, 4].  

Kirchhoff’s Current Law is an Approximation. The conclusion is that Kirchhoff’s current eq. (1) & 

(2) are not general laws. They are poor approximations when applied to rapidly changing signals in 

circuits.  

The size of the error depends on the time dependence of signals but is unlikely to be small in 

circuits that operate in nanoseconds, as in our computers. The errors are immediately observable, 

for example, in a circuit made of one megohm resistors. Transients will be observed throughout 

the circuit on the (roughly) 1 microsecond time scale. Those transients are not predicted by eq. (1) 

or (2) when applied to a network of pure resistors, defined by Ohm’s law applied to pure 1 megohm 
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resistors. The microsecond time scale is much slower than the time scales used in the design of 

computer circuits. Most of those circuits are in fact designed with by eq. (2) as easily verified by 

reference to textbooks of circuit design. 

This is a serious matter. Signals in circuits are perhaps the most important application of 

electrodynamics. They are certainly the most numerous. There are some seven billion computer 

powered mobile phones in use today, according to estimates by Google Search. Each contains 

billions of circuits. Hence the number of circuits analyzed with Kirchhoff’s law is more than 

7 × 1018.  

In my view, circuits should not be analyzed with a current law that is a poor approximation. In 

my view, the most numerous application of electrodynamics should use well defined 

approximations, avoiding arbitrary ambiguity and replacing art with science, wherever feasible. 

Maxwell’s redefinition of current. Maxwell himself proposed a definition of total or true current 

[5] that includes displacement current and so allows one to avoid these difficulties [6], 

implemented in [7]. Indeed, Maxwell insisted on that redefinition, using the words “ … that the 

time-variation of the electric displacement, must be considered in estimating the total movement of 

electricity.” Quotation and supporting equations are in Vol. 2, Section 610, p. 232 of his treatise [5]. 

The engineering approach, Engineers have dealt with this problem differently. They do not 

modify the definition of current, nor do they generalize Kirchhoff’s current law into the Maxwell 

current law of the Appendix. Rather, they modify the model circuit (containing only idealize 

resistors and no capacitances, stray or otherwise) that is analyzed by Kirchhoff’s law eq. (2). 

Engineers supplement circuit components of their model with a parallel capacitance called a 

stray or parasitic capacitance [8]. The parasitic capacitance does not exist as a separate physical 

capacitor.  

The parasitic capacitances create an artificial circuit that is then analyzed by Kirchhoff’s law 

eq. (2). The displacement current through the parasitic capacitance of the artificial circuit more or 

less provides the term missing in the model circuit. (The model circuit contains only idealized 

resistors and no capacitances, stray or otherwise. The artificial circuit contains the model circuit 

and supplements it with stray capacitances. The real circuit contains real resistors that are not 

described precisely by Ohm’s law because the real components have displacement currents as 

universally requires by the Maxwell equations, see Appendix).  
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The artificial circuit can approximate the behavior of the real circuit with its displacement 

currents that arise from the unavoidable properties of the electric field. In this way, engineers 

reconcile [7] Kirchhoff’s current laws eq. (1) and (2) with the continuity equation (3). 

Much of our electronic technology is testimony to how well the engineering approach works. The 

engineering approach reaches even to microwave frequencies if handled with care [9, 10]. 

Kirchhoff’s law eq. (2) is often an acceptable approximation to circuit behavior when stray capacitances 

are added to the circuit model to simulate displacement current in the real world circuit.  

However, the engineering approach has problems 

1) The engineering approach is a fix-up, as much an art as a science. Artful fixups are 
avoided as much as possible in mature sciences, because they are ambiguous. They 
are hard to teach to students or scientists who have not had time to learn the 
customary practices involved. 
 

2) The values of the parasitic capacitances are not known from analysis. They are not 
unique. They are adjustable parameters that are best determined by fitting data from 
each circuit. Different scientists may fit data in different ways.  
 

3) The engineering approach has difficulty dealing with the capacitances in the complex 
circuits of modern computers [11]. Indeed, a widely used encyclopedic guide to “The 
Art of Electronics” [8] devotes many pages to these issues: p.455-471 are used by these 
authors to “help illuminate this dark area of the electronic art”. A search for the word 
“stray” or “parasitic” reveals many specific examples, where circuits do not work unless 
displacement currents of parasitic capacitances are dealt with artfully where 
“simplified  models provide good  circuit  intuition,  but [they] may often be inadequate.” 
p. 908 of [8]. 
 

4) The capacitance to ground is often ignored in engineering applications despite its 
prominence in the chemical literature as the Born equation [12].  
 
In physics, engineering, and biophysics, most experiments require a large plate of metal 
connected to ground. The ground plate provides a capacitance to ground important for 
the function of high speed circuits [11]. The plate provides robust recording conditions 
and acts as a low pass filter to minimize noise, artifact, and pickup.  
 
The capacitance to ground is an important boundary condition that contributes to the 
energy of the system and so should be included in the simulations of molecular 
dynamics and transport Monte Carlo [13, 14]. Indeed, it is likely to decrease high 
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frequency noise and artifact in simulations as it does in experiments.  
 

5) Most mathematicians are reluctant to change the physical system being approximated. 
Rather, they prefer to deal with approximations explicitly as part of their numerical 
procedures. 
 

Maxwell’s redefinition of current provides an elegant and pleasing way to avoid these 
difficulties. On the other hand, his definition of true current is unfamiliar. It is also uncomfortable 
because its implications have not been worked out in the actual analysis of large numbers of 
practical circuits. 

Conclusion. The treatment of Kirchhoff’s current law in textbooks needs to be modified if it is to 
describe high speed signals. It is not satisfactory to derive the law for time independent systems 
and then use it to describe signals that vary rapidly in time. Engineering practice that allows the 
successful use or modification of Kirchhoff’s current law should be clearly defined in textbooks 
relevant to modern applications. Maxwell’s definition of true current should be applied to a wide 
range of actual circuits to see if it does as well in practice as it promises in principle. 
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Appendix 

Derivation of Continuity Equation from Maxwell equations 

 

We start with the Maxwell-Ampere equation.  

Ampere-Maxwell Equation 𝟏

𝝁𝟎
 𝐜𝐮𝐫𝐥 𝐁 = 𝐉𝒕𝒓𝒖𝒆 = 𝐉̂ + 𝜀𝑟𝜀0 𝜕𝐄 𝜕𝑡 ⁄  (4) 

𝐉𝒕𝒓𝒖𝒆 is Maxwell’s ‘true current’ [6] displayed prominently as his eq. A, p. 465, 480 of [5]. 
Perhaps Maxwell identified this equation as his first, his A equation because of the 
importance of displacement current in the propagation of light from the sun through the near 
vacuum of space. 𝜀0 is the electric constant. 𝜀𝑟  is the dielectric constant, more formally 
called the ‘relative permittivity’. 𝜇0 is the magnetic constant. 𝐉𝒕𝒓𝒖𝒆  is not zero in a vacuum. 
The treatment here uses the familiar dielectric approximation. A treatment without that 
approximation is straightforward [6, 15]. 

Take the divergence of 𝐜𝐮𝐫𝐥 𝐁 in eq. (4) and use the general mathematical result that 
divergence of the curl of a vector field is zero. 

Maxwell Current Law 𝐝𝐢𝐯 ( 𝐉̂ + 𝜀𝑟𝜀0 𝜕𝐄 𝜕𝑡 ⁄ ) = 𝐝𝐢𝐯 𝐉𝒕𝒓𝒖𝒆 = 𝐝𝐢𝐯 𝐜𝐮𝐫𝐥 𝐁 = 𝟎  (5) 

Equation (5) says in mathematics what Maxwell said in words. True current does not 
accumulate. Equation (5) is given a name because of its generality [6]. It is true whenever the 
Maxwell equations are an accurate approximation of electrodynamics. 

If we introduce the charge density 𝜌 using Gauss’ law, the continuity equation (3) is derived. 
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