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Abstract

Electrodynamics of current provide much of our technology, from telegraphs to the
wired infrastructure powering the circuits of our electronic technology.

Current flow is analyzed by its own rules. It cannot be analyzed one charge at a time.
There are too many charges.

Current flow is important in biology. Currents are carried by electrons in mitochondria.
Currents are carried by ions in nerve and muscle cells.

Currents EVERYWHERE follow the rules of current flow: Kirchhoff’s current law and
its generalizations.

The role of electricity in generating ATP was discovered long ago.
The chain of electron transport has been determined that provides protons to generate
ATP in ATPsynthase. The chain of electron transport forms circuits for currents that
should be analyzed by Kirchhoff’s law.

Circuit analysis is easily applied to short systems like mitochondria that have just one
internal electrical potential using the Hodgkin Huxley Katz HHK equation. The HHK
equation combined with descriptions of chemical reactions forms a computable model
of cytochrome c oxidase that is part of the electron transport chain.

Current laws are needed to analyze the flow of electrons and protons,
as they generate ATP in mitochondria and chloroplasts.
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What does this have to do with nerve fibers ?



lon Channels of the Action Potential are Far Apart
They do not interact chemically
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Channels Interact by Electric Field and Current Flow

NOT by biochemical interactions



Proteins Interact by Electric Field and Current Flow

Function cannot be explained by biochemical interactions following reaction laws

Function depends on ELECTRICAL interactions that follow laws of current flow

@ Extracellular space
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lon Channels INTERACT to create the Action Potential
The interaction is ENTIRELY ELECTRICAL.

The channels do not interact chemically
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The membrane as an RC circuit. The circuit includes sodium,
potassium and leakage ion channels. The batteries represent the
equilibrium potential for each set of ions.
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In short systems,

there is only one potential across the membrane.
Mitochondrig are Short Systems

All channels and all membrane proteins have the same transmembrane potential
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The membrane as an RC circuit. The circuit includes sodium,
potassium and leakage ion channels. The batteries represent the
equilibrium potential for each set of ions.
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HHK equation:

Sum of All Currents = . [; + Cp, Z—I:

Eq. 11
Hodgkin, Huxley, Katz (1952)
'Measurement of current- voltage relations in the membrane of the giant axon of Loligo’, J. Physiol. (London), 116: 424-48.
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HHK Equation is Intuitively Obvious
There is no place for current to go

It can be derived by Kirchhoff’s Current Law

It is also a mathematical corollary of the Maxwell Equations of Electrodynamics.

Itinvolves no assumptions.

Itis valid if all membrane elements have the same transmembrane potential.
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HHK Equation
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One current is driven by the sum of the other currents

NO MATTER WHAT ION IS CARRYING THAT ONE CURRENT

The voltage changes so any one current equals the sum of the other currents

The currents interact
The currents are correlated

The CAUSE of one current is the sum
of the OTHER CURRENTS
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HHK Equation

One current is driven by the sum of the other currents
NO MATTER WHAT ION IS CARRYING THE CURRENT

The voltage changes so one current equals the sum of the other currents
If one current increases, the sum of the others decrease.

The currents interact
The currents are correlated
The cause of one currentis

the sum of the
other currents
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These rules apply to mitochondria.

The current through ATP Synthase is determined
by the sum of all other currents.
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ATP production in mitochondria is driven by
currents that
obey Kirchhoff’s Current Law
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Currents in Circuits Cannot be Computed from Charges

There are too many charges, something like 108

Computing charge charge interactions involves numbers like
1018 factorial (!)

Charge interactions, two at a time are (10')! (1018 — 2)!
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Mitochondria Structural Features

ATP production in mitochondria must be computed
from Kirchhoff’s Current Law

Kirchhoff’s Current Law provides coarse graining of
charge movement.

Itis exact because it uses extra physics, the Maxwell
Ampere Equation.
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ATP production in mitochondria cannot be computed
1) from charges
2) from Coulomb’s Law
3) existing Molecular Dynamics
4) from chemical reaction theory

ATP production in mitochondria must be computed
from Kirchhoff’s Current Law

Kirchhoff’s Current Law provides coarse graining of
charge movement. It is exact because it uses extra
physics, the Maxwell Ampere Equation.
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All Components of Electron TRANSPORT chain involve Current

Mitochondrial Electron Transport Chain

ATP Synthase
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Pi high pH .k Cycle ,
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All Components of Electron TRANSPORT chain involve Current
ATP.S_ynthase
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All Components of Electron TRANSPORT chain involve Current

ATP Synthase
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All Components of Electron TRANSPORT chain involve Current

A Mitochondrial Electron Transport Chain
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SUlI

— SU Il release of the
’ pumped protons

Complex 4
Cytochrome c Oxidase
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conducting channel conducting channel

Belevich et al, PNAS 2010;107:18469-74.
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Magdalena Misiak National

Institute on Aging 22



Circuit Model of Cytochrome Oxidase C

Project Leader

Shixin Xu Huaxiong Huang Zilong Song
18 % E1f & RF %

Xu, Eisenberg, Song, and Huang. 2023. 'Mathematical Model for Chemical Reactions in Electrolytes
Applied to Cytochrome c Oxidase: An Electro-Osmotic Approach', Computation, 11: 253.
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Circuit Model
of Cytochrome Oxidase C
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2 Derivation of Electro-osmotic Model

We mainly focus on a mathematical model of elementary reactions

Chemical Reaction i m + o St )

where k¢ and A, are two constants for forward and reverse directions, [C;] is the concentration of i*" species,
respectively. Here o is stoichiometric coefficient, z; is the valence of " species and together they satisfy

3
Z g2 — (¥424. (2)
i=1

In particular, we have in mind a case where an active transporter ('pump’) uses the energy supplied by a
chemical reaction to pump molecules. Later, we will focus on the reaction for cytochrome ¢ oxidase, i.e., for
Complex IV of the respiratory chain

- - 1 k
Chemical Reaction o+ 0.+ 2 Lo, 3)
According to the conservation laws, we have the following conservation of chemical elements (like sodium,
potassium and chloride). Note that this conservation is in addition to the conservation of mass, because nuclear

reactions that change one element in another are prohibited in our treatment, as in laboratories and most of

life.
] . %((14{C'1} -+ ﬂ'l[C‘ilD =0, (43)
Chemical Reaction 2 (04[Ca] + azlCa]) =0, (4b)
d , :
E((u[C 3} + (13[C4D = 0. (40)

T 1 . 1 . IR} L | . 1 - . LIS B | — xT PR Ar LI NS 1 —
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In order to derive a thermal dynamical consistent model, the Energy Variation Method [389] is used. Based
on the laws of conservation of elements and Maxwell equations, we have the following kinematic system

A — V. ) =V jp — R,
dF;Qi :*V'jgfﬂ'gR.
I I Al — V. j3— asR,
Field Equations by~ g BT ®)
- = = - - dt - ',4A(4_.
Diffusion, Convection, Migration V(D) =31 s[CilF,
Vx E=0,

where j;,1 = 1,2.3,4 are the passive fluxes and j, is the pump flux, R is reaction rate function. All these
variables are unknown and will be derived by using the Energy Variational method.

The total energetic functional is defined as the summation of mix entropy, internal energy and electrical
static energy.

Etot = Eent s Eint s Eele
4 . 4
1 i C; ; D-E
Energy Functional - X[ rr{ci(un(52)-1)}bas [ Yewas [ 250 o)
i=1 /% co S = Ja 2
Then the chemical potentials could be calculated according to the variation of total energy
dE [y
f = —2 = RT'In - i Uy + zide,l=1,--- 4. (11)
O[(; CQ

It is assumed in the present work that dissipation of the system energy is due to passive diffusion, chemical
reaction and the deduction that energy supplied for pump. Accordingly, the total dissipation functional A is
defined as follows

Dissipation Functional - [{Xur e (i ot) por [ e -

where f, = f,(R. s, x) > 0 is the term induced by energy absorption in the pump.
For open systems, especially flux (current) clamp system, in which some fluxes flow in or out, entering or
leaving the system altogether, we have the following generalized energy dissipation law

Dissipation Principle Eict )

dt

Here .Jg a0 is the rate of boundary energy absorption or release that measures the energy of flows that enter or
leave the system altogether through the boundary. Recall that the chemical potential of a species is the energy
that can be absorbed or released due to a change of the number of particles of the given species and .J; - n is the
total number of #** particles passing through the boundary, per area per unit time. We define .J £.00 as follows
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An Electro-osmotic Model of cytochrome c oxidase

The concentrations and potentials at £242, BNC and proton loading site (PLS) and potentials in N and P

sides (see Fig.(1) (a)) are modeled using the variables ¢, ¢, ¢z, [H|Eg, [H|B, [Hz, pe.

d|H|g S,
dt

F

dHlg Sy
‘(H] T(IE%B+IN%B) — 2R,
Sy
F

(Unose —Ipsx —IpsB).

F|e|d d[H]x

Tpox —Ixp)
Jt (EX XP)

Equations 4. _-s, .

dt F

, d(op — on)
CET =(Unspe —Ipsx —IpsB).
, d¢p — on)
CBT =Ilgp+INsB + Le,

, dlox — op)
Ox =20 — (I x — Ixp).
dt

d(dy — dp)
Cm% + Iieak + IX‘}p —Ie =0,

wiheunents Structure and Boundary Conditions

RT [H
In_r = max (gD (C)N — g — —1n - }E) .—ST'I-"'O) = mar (g?D(,uN —I1E), —.S'I-TTO) ,

F “Hp
RT |H
I =gK(oN — 0B — 5 In ‘{Hf/) J;(MN*HB)
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More Structure and Boundary Conditions

RT H
Ipp=y9B(dp —¢B — - %) = QFB(#D — I'B),
‘ ‘ RT H
Ixp=ygx(dx —dp— ?ln [[H]]i) = Q?X(HX — pp),

Igsx = Ipump + Ixteak = Ppump(Re)(tx — pup) — 9e(px — pE),
I, = _FJe:

Tiear = gm(ﬂN - .U-P) = gm(@N — ¢p — Eother)~

IE—)»X - Ipump + Iﬂ.‘leak-

Iyieak = —9B(px — HE):
; Gpumpmar(BRe, 0)(ux — pp), pix — pr < O,
PP T gpumpmar (R 0)du, exp (= U512 ) i — i > Gy,

R = k¢ [HY 2021202 — by [H20).

(37c)
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Parameter Values

Variable Notations Values (with Unit)
FEay site effective capacitance Cp 1E-1 fAms/mV/(jum)?
BNC site effective capacitance Cp 1E-1 fAms/mV/(um)?
PLS site effective capacitance Cx 1E-1 fAms/mV/(jum)?
Membrane capacitance Cx 7.5E-2 fAms/mV/(jm)?
D channel conductance for A+ ap 3.75E-3pS/ (mum)?
K channel conductance for H™ K 1E-3 pS/(um)?
E2B channel conductance for gB S5E-2 pS/(pum)?
E2X channel conductance for H™ 9E 1E-3 pS/(pum)?
E2X Pump rate for H+ qgp 369 pSms/(pm)? M
X2P channel conductance for H+ gx 9.8E-4 pS/(jum)?
Membrane conductance for leak 9m 1pS/(pin)?
Mito. matrix H T concentration [H]mat 0.01 pM
Mito. inner membrane space H ™ concentration [H lims 0.063 uM
Nernst Potential due to other Ions Eoiner —160mV
Reaction site [Os] concentration [0s] 0.0028 .M
Reaction site [H20)] concentration [H20)] 0 uM
Electron current Ie -5.24 fA
Forward reaction rate coefficient ki 1333
Backward reaction rate coefficient ke 0.005
surface volume ratio Sy 1000
Potential Threshold Oth 210 mv
Decay rate € 1 (ms)~?
Table 2: Parameters
Variable Notations | Values (with Unit)
Flays site HT concentration Hlg 0.01196 p M
BNC site HT concentration Hlg 0.01682 pM
PLS site H™ concentration Hx 0.01441 pM
BNC site electric density Pe 0.01166 pM
Floyo site electric potential OF -5 mV
BNC site electric potential &B -14.1562 muv
PLS site electric potential bx 200 mw
N site electric potential oN 0 muv
P site electric potential op 160 mw

Table 1: Default Initial Values
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Results

In models like this
either
everything can be computed
or nothing!



Everything has been Computed
Model can be modified to deal

with other information
and predict experiments

Not yet digested
by experimental community!
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Any Questions?
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