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Voltage-gated Kv channels play fundamental roles in many biological processes, such as the generation
of the action potential. The gating mechanism of Kv channels is characterized experimentally by single-
channel recordings and ensemble properties of the channel currents. In this work, we propose a bubble
model coupled with a Poisson-Nernst-Planck (PNP) system to capture the key characteristics, particularly
the delay in the opening of channels. The coupled PNP system is solved numerically by a finite-difference
method and the solution is compared with an analytical approximation. We hypothesize that the stochastic
behaviour of the gating phenomenon is due to randomness of the bubble and channel sizes. The predicted
ensemble average of the currents under various applied voltage across the channels is consistent with
experimental observations, and the Cole-Moore delay is captured by varying the holding potential.

Keywords: voltage-gated channels; Poisson-Nernst-Planck system; bubble model; Cole-Moore delay.

1. Introduction

Voltage-gated ion channels play fundamental roles in many biological activities, such as signal
generation and propagation in the nervous system, pacemaker activity in the heart, and coordination
of contraction in skeletal muscle [10, 42, 44]. For example, the voltage-gated Na (Nav) and K (Kv)
channels are key players in the generation of action potential (AP) signals in the nervous system [32],
cardiac and skeletal muscle. This rapid and transient change of membrane potential propagates long
distances (meters) in the nervous system and muscle fibers as well. The opening and closing of ion
channels as the voltage changes across the membrane determine the depolarization (positive change
of membrane potential) and repolarization (negative change of membrane potential) that form the
propagating AP [33, 39, 40, 41].
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The opening of ion channels follows the change in voltage with a delay and that delay is an important
determinant of the conduction velocity of AP. The conduction velocity helps determine how fast the
nervous system can function. Therefore, understanding the mechanism of delay is of great biological
importance. One of the objectives of the present work is to model the delay in the opening of single Kv
channels as well as their ensemble properties. It is not unreasonable to expect that the delay is set by a
process that is optimized as much as possible within the constraints of physics, protein structure, and
evolutionary history [30].

Hodgkin and Huxley (HH) provided an empirical model of the generation of AP in 1952 [35].
The conductances they used are ensemble averages of those from many channels. Understanding
the molecular mechanisms that produce these conductances and the AP is one of the main goals
of biophysics for the past seventy years. Recent advances in structural biology [52] and single-
channel recording [55] have catalyzed our understanding of the physical mechanisms that produce these
conductances. The ionic basis of selective conduction is now understood reasonably well for sodium
channels [11, 25, 26, 49].

The opening and closing of voltage-dependent channels involves many steps [5, 6, 8]. Some of
the steps in the voltage-dependent gating of Kv are now known in molecular and physical detail [7,
15, 17, 36, 46, 47]. The first step is the response of the voltage sensor to the voltage change, and
significant progress has been made in understanding the physics of that response. It is plausible [35]
that the permeability changes depend on the presence of voltage sensors in the form of charged or
dipole particles, as suggested earlier in a different form [34, 39]. The second step is the communication
of the voltage sensor with the conduction pore of the channel. The gating phenomenon was revealed
experimentally in the single-channel ON-OFF currents (that occur at random intervals) measured by
bilayer or patch-clamp experiments from one channel protein at a time [58, 68]. The development of
patch-clamp experiments [31] was a breakthrough in the understanding of the gating mechanisms and
provided experimental verification at high resolution of many studies and models.

In the patch-clamp experiments, the recordings of single Kv channels showed a delay of currents in
response to a step voltage change. The ionic current was generated rapidly after the delay, and vanished
when the channel closed suddenly [32, 50, 51, 66]. The recordings also showed that the delays varied in
each ON-OFF experiment: the gating transitions are stochastic. The ensemble average has a smoother
transient time course for the currents (or opening and closing of channels), which resembles the classical
macroscopic currents (or voltage-dependent conductances) in the HH model.

The delay in opening was first studied in the inaugural issue of the Biophysical Journal [19] in the
ensemble of channels. Cole and Moore were able to control the resting potential (i.e., their holding
potential) present before the AP mechanism was turned on. The earlier work of Hodgkin and Huxley
had not addressed this issue in detail because the actual resting potential of their squid nerve was
substantially different from that used as a holding potential [54]. Hodgkin and Huxley chose to use
nerve fibers with more positive resting potentials so their voltage clamp system could control the voltage
throughout the nerve fiber, something not easy to do [64]. Cole and Moore found the delay in the
response of the nerve fiber to a change in voltage was much larger when the initial potential (also called
the holding potential) was more negative.

Given the importance of this delay (we call the Cole-Moore delay), it is striking that a molecular
scale biophysical explanation has not been developed [38], as far as we know, until very recently
[57]. Given the obvious evolutionary disadvantage of additional delay, it seems likely that whatever
is responsible for the delay is an essential component of the ionic channels that create the AP. We
expect the cause of the Cole-Moore delay to be found in many channel types where it has not been
investigated in detail.
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The amount of work on channel proteins that produce the AP has increased spectacularly in the
last decades. The most important single advance (from a biophysical point of view) is the ON-OFF
properties of the single channels, that in ensemble produce the delay. Many researchers have proposed
that the ON-OFF property arises from the collapse of a bubble. When the single-channel current is
zero, a region of the conduction pore acts as a hydrophobic gate [1] that excludes water and ions from
that region of the protein, forming a dewetted region, which is known as a bubble. It is believed that
the hydrophobic gating plays a critical role in understanding the ion channel permeation and gating
[3, 4, 43, 45]. Direct evidence for the existence of bubbles is emerging as structural biologists exploit
the magnificent capabilities of modern techniques of x-ray crystallography and cryoelectron microscopy
[1, 48].

Various modeling efforts have been devoted to understanding the gating mechanisms of Kv channels
[16]. In the early years, kinetic models (or called Markov models) were used for channel gating, by
assuming the voltage sensor has multiple subunits which make transitions between different states
[9, 59, 65]. Formally, such kinetic models have some similarity to Hodgkin and Huxley’s, as the four n-
gates in the HH model can be interpreted as four independent subunits that control the gating [32]. Such
models have been able to predict some important features of the gating mechanism of Kv channels
(e.g., Shaker channel) and to fit experimental data, but could not reveal much about the physics of
the gating process. With the availability of more structural information about channels and advances
in computing power, quantitative models using molecular dynamics (MD) have been developed in
recent decades [22, 23, 44]. MD simulations incorporating physical laws and interactions of atoms
provide insights into the movement of the voltage sensors, intermediate states, and closure of the pore
(forming a dewetted region). However, the MD approach is limited by the timescale of the simulations,
resolving events in the timescale of 10−15s, and the total simulation length is orders of magnitude
lower than the timespan (e.g., 10−3 s) of experimentally or biologically relevant processes. This makes
it difficult to directly validate the MD results by using the macroscopic currents in experiments. To
overcome these limitations, alternative multiscale or macroscopic models [24, 37, 46, 56] have been
developed with reasonable approximations. Some models are based on the formulation of Brownian
dynamics, where the voltage sensor is treated as a Brownian particle [14]. Brownian models are able to
predict macroscopic gating currents, where the free parameters involved have been estimated based on
multiscale modeling approaches [18].

Here we take a different approach. Following the previous hypothesis of the hydrophobic region,
we construct a specific macroscopic model of a bubble within the framework of Poisson-Nernst-Planck
(PNP) systems and show how it produces the time course of single Kv channels and the ensemble
properties, including the Cole-Moore delay. The PNP system and its variants have been found successful
in modeling and simulation of many biological processes [12, 28, 37, 61, 62, 63, 67], such as current-
voltage curves through ion channels, the selectivity of ion channels, and ion transport processes in the
cell and tissue scales. In this work, a bubble is assumed to be present in the pore (or filter) region of
the Kv channel, due to the structural and physical properties of the channel. In the bubble, ions are not
present and so cannot carry charge through it, whereas outside the bubble, ion transport is governed
by the PNP system. The model is constructed so it can easily accommodate more specific structural
information such as the shape, permanent charge (e.g., the spatial distribution of acid and base residue
side chains), and dielectric properties of the channel. We calculate the properties of a single channel
containing a bubble and an ensemble average based on a simple statistical distribution of such channels
to represent the macroscopic currents usually recorded in studies of the opening and closing of channels.
This average does not depend on models [20, 21] of single-channel kinetics. It only assumes that the
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opening of each channel is independent of the others (because channels are many Debye lengths apart,
shielded by the ions, water dipoles, and the ionic atmosphere of proteins and lipid bilayer).

This manuscript is arranged as follows. Section 2 sets up the bubble model within the framework
of PNP systems, followed by a nondimensionalization. In section 3, the results for a single channel are
presented. The bubble model is solved by a finite-difference method and also solved with analytical
approximations. The results for the profiles of quantities in the model and the macroscopic currents
through the channel are cross-validated by both methods. Section 4 shows the results for ensemble
properties of the Kv channels and the Cole-Moore delay, with certain assumptions on the statistical
distributions of the bubble locations and cross-sectional area of the channel. Finally, some concluding
remarks are provided in Section 5.

2. A bubble model for a voltage-gated Potassium channel

2.1. The model setup

We consider a voltage-gated Potassium (Kv) channel in one spatial dimension, as shown in Figure 1.
The total length of channel is set as 2L, and the length of the middle (filter and pore) region is 2s. The
positions x = ±s are the locations of the two edges of the middle region. The bubble, together with
negative charge qb < 0, can occupy all or part of it, and is centered at x = xb. We assume that the
charge is uniformly distributed inside the bubble. The left chamber is connected to a bath environment
similar to the exterior of a cell, while the right chamber is connected to one similar to interior of a cell.
We anticipate that when the voltage at the right end of the channel is elevated, the bubble shrinks and
moves to the right. We assume that the right interface of the bubble is fixed at x = s and the left interface
x = sb =−s+2xb is mobile. When the left and right interfaces coincide, the bubble vanishes.

Bubble	
qb

sb xb s−s−L L

εr = εr1 εr = εr1
εr = εr0

K+	 Cl-	 K+	 Cl-	Na+	 Na+	pbφ = 0 φ =V0 +V1

FIG. 1. Sketch of the Kv channel with a bubble in the middle region. The middle bubble centered at xb blocks the channel before
it collapses. The effective charge on the bubble is qb, indicated by the red circles. There is a dipole moment with strength pb on
the left bubble interface, indicated by the green line The voltages on the two ends are set as φ(−L) = 0 and φ(L) =V0 +V1 during
the dynamics of bubble, where V0 is the initial holding potential and V1 is the voltage jump (elevated).

Remark 1. We represent the complex charges in the pore and bubble as an effective charge qb on the
bubble in this one-dimensional low resolution model. The effective negative charge here is a lumped
property of the channel from various effects in a high-dimensional setting, such as the charges from
the channel protein (e.g., the residue side chains), differences in dielectric properties of channel wall
and pore region, and channel’s conformational changes during the bubble dynamics. More detailed
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formulations will be left for future study with a general bubble shape in a high-dimensional setting.

We consider the case with three ions species K+, Na+ and Cl− (called the major bio-ions) outside
of the bubble, and the ions can not penetrate into the bubble (due to energy barriers and the nature of
hydrophobic gate). Outside of the bubble, the PNP system is used to model ion transport

− ε0
∂

∂x

(
εr1

∂

∂x
φ(x, t)

)
= e0(C1(x, t)+C2(x, t)−C3(x, t)), −L < x < sb, s < x < L,

∂Ci(x, t)
∂ t

=− ∂

∂x
Ji(x, t) = Di

∂

∂x

(
∂

∂x
Ci(x, t)+

e0zi

kBT
Ci(x, t)

∂

∂x
φ(x, t)

)
, i = 1,2,3,

(2.1)

where C1, C2 and C3 are the concentrations (with unit mM) of K+, Na+ and Cl− with valences z1 = 1,
z2 = 1 and z3 =−1, φ is the electric potential (with unit V), Di (i = 1,2,3) are diffusion coefficients (see
Appendix A), εr1 = 40 is the dielectric constant outside of the bubble, and the constants ε0,e0,kB,T are
given by

kB = 1.38×10−23J/K, e0 = 1.602×10−19C, ε0 = 8.854×10−12C/(V ·m),

T = 292.15K, kBT/e0 ≈ 25.17mV,
(2.2)

Inside the bubble, we have

− ε0
∂

∂x

(
εr0

∂

∂x
φ(x, t)

)
=

qb

Vb
, sb(t)< x < s, (2.3)

where Vb = (s− sb)A is the volume of the bubble, A is the cross sectional area for the bubble region and
is assumed to be a constant A = (0.7nm)2, and εr0 = 2 is the dielectric constant inside the bubble.

In addition, we assume that there exists a dipole on the left interface of the bubble x= sb, responsible
for maintaining a voltage difference on the two sides of the bubble. Since the membrane potential is
not 0 at equilibrium, the presence of the dipole with a suitable dipole strength pb guarantees that the
bubble is in equilibrium initially. The dipole strength pb is introduced to reflect some effects of curved
bubble interfaces in high-dimensional formulation, such as approximation of the Maxwell stress. We
can rewrite the equation of φ in a compact form in the entire domain −L < x < L

−ε0
∂

∂x

(
εr(x, t)

∂

∂x
φ(x, t)

)
= e0(c1(x, t)+ c2(x, t)− c3(x, t))+

qB(x, t)
Vb

+ pb
∂

∂x
(δ (x− sb)), (2.4)

with the following functions in a piecewise form

εr(x, t) =

{
εr0, [sb,s],
εr1, others,

ci(x, t) =

{
0, [sb,s],
Ci(x, t), others,

qB(x, t) =

{
qb, [sb,s],
0, others,

(2.5)

where the dependence of εr and qB on t is through the quantity sb(t).
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The total electric force on the bubble is∫
A

∫ s

sb

qb

Vb

(
− ∂

∂x
φ(x, t)

)
dxdA =−qb

φ(s, t)−φ(sb, t)
s− sb

, (2.6)

then the motion of the bubble is modeled by

dxb

dt
=−qbDb

kBT
φ(s, t)−φ(sb, t)

s− sb
, (2.7)

where Db (�Di) is the diffusion coefficient of the bubble. Here combined coefficient qbDb
kBT is considered

as the reciprocal of frictional coefficient for the bubble motion, and the total electric force is the driving
force balancing the friction between the bubble and channel wall. Using the relationship sb =−s+2xb,
we can rewrite equation (2.7) as

dsb

dt
=−2qbDb

kBT
φ(s, t)−φ(sb, t)

s− sb
. (2.8)

The boundary conditions at the two ends are given by

φ(−L, t) = 0, φ(L, t) =V0 +V1H(t− t1),

ci(−L, t) = cL
i , ci(L, t) = cR

i ,
(2.9)

where V0 is the initial (holding) membrane potential when the bubble is in equilibrium (or resting state),
V1 is the voltage jump at t = t1, H(t) is a Heaviside function, and cL

i and cR
i (i = 1,2,3) are given bath

concentrations at the left and right ends [51], which are electro-neutral. In the experiment, the holding
potential V0 is not the same as the Nernst potential of K+. The leak current is allowed to flow through a
different pathway while maintaining V0.

At the two interfaces x = sb and s, the electric potential and electric displacement are continuous,
and there is no ionic flux across the bubble interfaces (boundary surface for ions). Mathematically, the
interface conditions for φ and boundary conditions for ci are given by

[φ ] = 0,
[

εr(x, t)
∂

∂x
φ(x, t)

]
= 0, Ji = 0, (i = 1,2,3), at x = sb,s (2.10)

where square brackets mean the jump across the interface, e.g., [φ(s, t)] = φ(s+, t) − φ(s−, t).
Alternatively if we include the effect of dipole (pb in equation (2.4)) on the interface rather than in
the equation, we obtain a nonzero jump [φ ] at x = sb. When the two interfaces coincide (i.e., sb = s),
the bubble collapses. We assume that the dipole disappears (i.e., it is treated as an intrinsic property of
the bubble) and the interface conditions are replaced by continuity conditions

[φ ] = 0,
[

εr(x, t)
∂

∂x
φ(x, t)

]
= 0, [ci] = 0, [Ji] = 0, (i = 1,2,3), at x = s. (2.11)

The initial condition for φ and ci at t = 0 is set as

φ(x,0) = 0, −L < x < L,

ci(x,0) =


cL

i −L < x < sb =−s,
0, sb < x < s,
cR

i , s < x < L,

(2.12)
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where i = 1,2,3. This initial condition will be used to compute the initial equilibrium profiles of φ(x, t)
and ci(x, t) with fixed initial interface position sb = sb0. Then at t = t1 the voltage jump V1 is turned on,
and the above initial equilibrium profiles are used as initial conditions at t = t1 for the whole system
including the dynamics of the bubble with initial condition

sb(t1) = sb0. (2.13)

In summary, we have a system of equations for ion transport coupled with the motion of the bubble,
given by (2.4), (2.1)2 and (2.8), together with boundary and interface conditions (2.9,2.10,2.11). The
total current is conserved in this model, by including three different forms of current, given in Appendix
B. This is a special case of the continuity of total current for Maxwell equations [27, 29], and is also
similar to the case of a PNP system for electric eels [62].

Remark 2. If the dipole does not vanish (i.e., it is treated as property of the channel or channel wall)
after the bubble collapses, we will have nonzero jump [φ ] related to the dipole, and [ci] = 0 is replaced
by continuity of electro-chemical potential.

2.2. Nondimensionalization

In this subsection, we nondimensionalize our model, which will be used in the calculations in the
subsequent sections. We adopt the following scales

x̃ =
x
L
, s̃ =

s
L
, x̃b =

xb

L
, Ṽb =

Vb

LA
, φ̃ =

φ

kBT/e0
, Ṽ0 =

V0

kBT/e0
, Ṽ1 =

V1

kBT/e0
,

c̃i =
ci

c0
, c̃L

i =
cL

i
c0

, c̃R
i =

cR
i

c0
, D̃i =

Di

D0
,(i = 1,2,3), D̃b =

Db

D0
,

p̃b =
pb

e0c0L2 , q̃b =
qb

e0
, t̃ =

t
t0
, t0 =

L2

D0
, J̃ =

J
J0
, J0 =

D0c0

L
.

(2.14)

The typical values in the above scales and the values in boundary conditions of (2.9) are based on [51]
and given in Appendix A.

Substituting (2.14) into the system in the previous subsection, we obtain a dimensionless system
for variables with tilde (like φ̃ ). In order to simply the notations, we drop the tilde and use the
same quantities (like φ ) in the dimensionless system. We have the following set of equations in
nondimensional form

− ε
∂

∂x

(
εr(x, t)

∂

∂x
φ(x, t)

)
= c1(x, t)+ c2(x, t)− c3(x, t)+

1
β

qB(x, t)
(s− sb)

+ pb∂x(δ (x− sb)), −1 < x < 1,

∂ci(x, t)
∂ t

=− ∂

∂x
Ji(x, t) = Di

∂

∂x

(
∂

∂x
ci(x, t)+ zici(x, t)

∂

∂x
φ(x, t)

)
, i = 1,2,3, −1 < x < sb and s < x < 1,

(2.15)
with εr,qB and ci (i= 1,2,3) defined in the same way as in (2.5). Here the two dimensionless parameters
are defined by

ε =
ε0kBT
e2

0c0L2 , β = LAc0. (2.16)



8 ZILONG SONG ET AL.

The motion of the bubble is given by

dsb

dt
=−2Dbqb

φ(s, t)−φ(sb, t)
s− sb

. (2.17)

Boundary conditions are given by

φ(−1, t) = 0, φ(1, t) =V0 +V1 ∗H(t− t1),

ci(−1, t) = cL
i , ci(1, t) = cR

i , (i = 1,2,3).
(2.18)

Interface conditions for φ and boundary conditions for ci at bubble interfaces are

[φ ] = 0,
[

εr
∂

∂x
φ

]
= 0, Ji = 0,(i = 1,2,3), at x = sb,s. (2.19)

After the bubble collapses (for the case that the dipole disappears), we have

[φ ] = 0,
[

εr
∂

∂x
φ

]
= 0, [ci] = 0, [Ji] = 0,(i = 1,2,3), at x = sb = s. (2.20)

The dimensionless initial conditions has the same form as (2.12,2.13) except that L is replaced by 1.

3. Results for a single channel

We first compute the initial state when the bubble is in equilibrium by solving the system of equations
with a numerical method, followed by the results of the non-equilibrium state including the motion of
the bubble and time evolution of the concentrations and electric potential. After the bubble collapses,
the ionic fluxes reaches a steady state. In addition, we also present the results obtained with reasonable
approximations (verified by numerical evidence) for the intermediate quasi-steady states and the final
steady state.

3.1. Initial state and strength of dipole

We examine the case that the bubble initially occupies the entire filter region and stays at equilibrium,
i.e., sb = −s. We write φ(x, t) in equilibrium state as φ(x) here. When V0 = 0, the bubble is in
equilibrium due to symmetry. If V0 6= 0, one the other hand, equilibrium is achieved for an appropriate
dipole strength pb.

Near the interface x = sb, the effect of the other terms is small compared the dipole, and equation
(2.15) becomes

− ε
(
εr(x)φ ′(x)

)′
= pb(δ (x− sb))

′, (3.1)

and integrating once gives
− εεr(x)φ ′(x) = pbδ (x− sb)+C. (3.2)

By integrating again and taking the limit of x→ sb, we obtain

[φ(sb)] =−
pb

ε

(
1

2εr0
+

1
2εr1

)
. (3.3)
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Therefore, for a given V0, we find the following formula for pb

− pb

ε

(
1

2εr0
+

1
2εr1

)
=V0, (3.4)

and then the bubble will be in equilibrium as in the symmetric case with V0 = 0.
For the equilibrium profile, the fluxes are 0 and one can not distinguish the effects of the two cations

Na+ and K+. We can group the two cation species and treat them as a single species. The boundary
values for c1 + c2 and c3 will be equal, and hence we will have exact symmetry for this equilibrium
case. The equilibrium profiles can be determined analytically, and we take V0 = 0 and pb = 0 in the
derivation. Since the bubble is in equilibrium, inside the bubble we have (note sb =−s)

φ(x) = B1x2 +φ(0), B1 =−
qb

4sεεr0β
. (3.5)

Taking the derivative and together with interface conditions at x = s, we have

εr1φ
′(s+) = εr0φ

′(s−) = εr02B1s =
−qb

2εβ
. (3.6)

Due to symmetry, we only consider the right chamber region s < x < 1. It is easy to verify that the PNP
system (2.15) in equilibrium reduces to

εεr1φ
′′ = c3− (c1 + c2) = eφ − e−φ , (3.7)

where cR
3 = 1 has been used. Integrating once gives

1
2

εεr1[(φ
′(x))2− (φ ′(s+))2] = eφ + e−φ − (eφs + e−φs), (3.8)

where φs = φ(s). Then, by combining with (3.5), we get

(φ ′(x))2 = G(φ) =

(
qb

2εβεr1

)2

+
2

εεr1

(
eφ + e−φ − (eφs + e−φs)

)
, (3.9)

which leads to the solution

x =
∫

φ

φs

1√
G(φ)

dφ + s. (3.10)

The unknown constant φs in the solution can be determined by the condition

1 =
∫ 0

φs

1√
G(φ)

dφ + s. (3.11)

Remark 3. Because of symmetry, we can obtain a good estimate for φs from the above derivation

φs ≈− ln
(

q2
b

8εεr1β 2

)
(3.12)

for qb in a certain range. For example, with parameters in the following example, we have φs =−4.72
while the above formula gives φs ≈−4.71.
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FIG. 2. Equilibrium electric potential φ and concentrations c1,c2,c3 when qb =−2.

For the numerical results obtained in this paper, we vary the potentials at the two ends of the domain
while fixing dipole strength as qb = −2. Most of the other parameter values used for the computation
are also fixed and given in Appendix A.

In Figure 2(a), the electric potential φ is plotted for the case of V0 = 0. When V0 =−3.18 (i.e., -80
mV), we determine pb ≈ 0.044 using (3.4) and the electric potential is plotted in Figure 2(b), where the
jump at the interface x = sb is due to the presence of the dipole. The concentrations c1, c2 and c3 (which
can be computed from solution of φ ) are shown in Figures 2(c-e). It can be seen that c1 + c2 in Figure
2(d) is symmetric as expected. The initial membrane potential V0 is balanced by the jump of φ due to the
presence of the dipole. In the non-equilibrium case (before the bubble collapses), we will ignore both
the initial membrane potential V0 and the dipole, so that the value of φ is continuous at the interfaces.
The solutions in Figure 2 will be verified by numerical simulations in the subsequent subsections.

3.2. The dynamics of the bubble motion and channel currents

In this part, we present numerical solutions of the PNP system and bubble motion. Inside the bubble,
there exist no ions and their concentrations ci (i = 1,2,3) are zero. For convenience, the PNP system is
solved inside the bubble by assigning small diffusion coefficients (D1 = D2 = 10−15).



A BUBBLE MODEL FOR THE GATING OF KV CHANNELS 11

-1 -0.5 0 0.5 1

x

-60

-50

-40

-30

-20

-10

0

φ

(a)

-1 -0.5 0 0.5 1

x

0

20

40

60

80

c
1

(b)

-1 -0.5 0 0.5 1

x

0

20

40

60

80

100

120

c
2

(c)

-1 -0.5 0 0.5 1

x

0

20

40

60

80

100

120

c
1
+

c
2

(d)

-1 -0.5 0 0.5 1

x

0

0.2

0.4

0.6

0.8

1

c
3

(e)

-1 -0.5 0 0.5 1

x

-1

0

1

F
lu

x
e

s

×10
-10

-J
1

-J
2

J
3

(f)

FIG. 3. Equilibrium electric potential φ , concentrations c1, c2, c1 + c2, c3, and ionic fluxes Ji (i = 1,2,3) with h = 0.0025.

The finite difference method is used to solve the system, with a uniform mesh h = xk − xk−1. A
temporal semi-implicit discrete scheme is used with tn = n∆t and xk = x0− kh, given by

− ε
εr,k−1/2

h2 φ
n+1
k−1 + ε

εr,k−1/2 + εr,k+1/2

h2 φ
n+1
k − ε

εr,k+1/2

h2 φ
n+1
k+1 − cn+1

1,k − cn+1
2,k + cn+1

3,k = qn+1
k ,

cn+1
i,k − cn

i,k

∆t
=−

Jn+1
i,k+1/2− Jn+1

i,k−1/2

h
, i = 1,2,3,

Jn+1
i,k+1/2 =−Di,k+1/2

cn+1
i,k+1− cn+1

i,k

h
−Di,k+1/2zicn

k+1/2
φ

n+1
k+1 −φ

n+1
k

h
,

(3.13)
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where harmonic average is used for the diffusion coefficient

Di,k+1/2 =
2

1
Di,k

+ 1
Di,k+1

, i = 1,2,3. (3.14)

In this way, we ensure that the ionic fluxes are small near the interface as approximations of Ji = 0
(i = 1,2,3). When the bubble collapses, the diffusion coefficient is guaranteed to be the same as that
outside of the bubble, and the continuity conditions are recovered. The quantities εr,k+1/2 and qn

k in
(3.13) are defined in Appendix B. The discrete scheme also preserves the continuity of the total current
(given in Appendix B), as in the original continuous model.
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FIG. 4. Electric potential φ and ionic concentrations c1,c2,c3 at three different times with V1 = 6.36 during the dynamics of the
bubble.

For qb =−2, we first compute the initial equilibrium with initial condition in (2.12) when the bubble
occupies the entire middle region, i.e. sb0 = −s. We also set V0 = 0 and pb = 0 in the computation so
that φ is continuous. The computation is carried out until the system reaches a steady state. For a given
mesh size h = 0.0025, Figure 3 shows the numerical solution of electric potential φ , concentrations ci
and ionic fluxes Ji (i = 1,2,3), which are in good agreement with the analytical results in the previous
subsection.
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FIG. 5. The fluxes Ji (i = 1,2,3) at three different times with V1 = 6.36 during the dynamics of the bubble.
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FIG. 6. The dynamics of ionic fluxes Ji (i = 1,2,3) with V1 = 6.36.

Next, we present the results on the bubble motion and dynamic behaviour of the PNP system. We
start from the equilibrium state at t = 0 and increase the electric potential from zero to φ(1, t) = V1 =
6.36 (i.e., 160 mV) for 0 < t < t∗ (we already set V0 = 0 and pb = 0), where t∗ is the unknown time
when the bubble collapses. Figure 4 shows φ ,ci (i = 1,2,3) at three different times. The minimum
value for φ inside the bubble gradually increases in Figure 4(a), and the interface sb moves to the right
as indicated by Figure 4. Figure 5 shows the ionic fluxes at three different times, which are small.
After the bubble collapses and the dipole disappears, we reset φ(1, t) =V0 +V1 = 3.18. Figure 6 shows
the three ionic fluxes Ji (i = 1,2,3) at x = ±1. It can be seen that they remain small until the bubble
collapses (i.e., sb = s) at t∗ = 3.13× 106, which is 17.6 ms in dimensional unit. The ionic fluxes and
φ ,ci (i = 1,2,3) reach a steady state soon after the bubble collapses, as shown in Figure 7. At steady
state, the dimensionless ionic flux J1 and the dimensional current I are found to be

J1 ≈−2.834, I = |J1|e0AJ0 ≈ 10pA. (3.15)

Remark 4. The value of the steady state current I obtained above is close to that given in Figure 2(a)
of [51]. When the voltage jump V1 is reset to zero after system reaches a steady state, the ionic fluxes
reduce to zero immediately, indicating the closure of the ion channel. In this sense, our proposed model
provides a plausible mechanism for the channel current through the conduction pore once the bubble
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FIG. 7. The electric potential φ , the fluxes Ji (i = 1,2,3), and the concentrations c1,c2,c3 at the steady state with V1 = 6.36 after
the bubble collapses.

is generated. However, the mechanism of the bubble generation is not considered here and will be the
subject of a future study.

3.3. Quasi-static equilibrium

Since the motion of the bubble is extremely slow compared with the diffusive timescale of the ions,
ionic fluxes are essentially zero (Figure 5) before the bubble collapses. Therefore, we can use quasi-
static solution with zero ionic fluxes as an approximation of the intermediate states. A hybrid method
can be used to determine the solution of intermediate states by first obtaining an analytical solution (in
terms of integrals), and then by determining the unknown constants using a numerical method.

Given boundary condition V1 and interface position sb, solving the quasi-static equilibrium is similar
to that for solving the initial state. Again for a fixed t, we write φ(x, t) in quasi-static equilibrium as
φ(x) in the following derivation. We set V0 = 0 and pb = 0 so that the continuity condition of φ can be
used at interface sb. Inside the bubble, we have

φ(x) = B1(x− s)2 + φ̃s(x− s)+φs, B1 =
−qb

2(s− sb)εεr0β
, (3.16)
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where φs, φ̃s are to be determined. The solutions of φ outside of the bubble can be written as

x =
∫

φ

φs

1√
G1(φ ;φs, φ̃s)

dφ + s, s < x < 1,

x =−
∫

φ

φsb

1√
G2(φ ;φs, φ̃s)

dφ + sb, −1 < x < sb,

(3.17)

where φsb = φ(sb) can be expressed by φs and φ̃s. The derivation for G1(φ),G2(φ) are given in Appendix
C. With given parameter values including V1 and sb, the two unknowns φs and φ̃s can be determined by
the two boundary conditions φ(1) =V1 and φ(−1) = 0, i.e.,

1 =
∫ V1

φs

1√
G1(φ ;φs, φ̃s)

dφ + s, −1 =−
∫ 0

φsb

1√
G2(φ ;φs, φ̃s)

dφ + sb, (3.18)

and φ(x),ci(x) (i = 1,2,3) can be obtained afterwards. As an example, for qb = −2, V1 = 6.36 and
sb = 0, solution of φ and ci (i = 1,2,3) can be computed using the procedure outlined above and plotted
in Figure 8.
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FIG. 8. The quasi-static solution of φ , c1, c2, c3 and c1 + c2 for sb = 0 and V1 = 6.36.

For fixed V1, we can treat φ(s),φ(sb) as functions of parameter sb, which can be determined by

dsb

dt
=−2Dbqb

φ(s)−φ(sb)

s− sb
=−2Dbqb f (sb). (3.19)

Note that in the quasi-static case, φ(s, t),φ(sb, t) does not explicitly depend on t, but only depend on sb
(the dependence of φ(s, t) on t is through sb(t)). Integrating in time, we obtain t∗, the time delay after
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the voltage jump and before the bubble collapses,

t∗ =
∫ s

−s

−1
2Dbqb f (x)

dx. (3.20)

This approximate formula provides a way to fast compute the crucial time delay t∗ without solving the
dynamics of the whole system.

Figure 9(a) shows the dependence of quantities φ(s) and φ(sb) on sb and Figure 9(b) shows the
function f (sb). From (3.20), we find that t∗ ≈ 3.26×106, which is 18.3 ms in dimensional unit, which
is slightly longer than that obtained using the finite difference method (17.6 ms) previously.
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FIG. 9. The dependence of φ(s) and φ(sb) on sb and function f (sb) for V1 = 6.36.

3.4. The steady state after the collapse of the bubble

After the bubble collapses, interface conditions Ji = 0 (i = 1,2,3) are replaced by continuity conditions
[Ji] = 0 and qb becomes a point charge (a delta function). Due to the presence of qb, the concentration
of c3 is approximately zero near x = s, and we assume J3/D3 ≈ 0. We write φ(x, t) at steady state as
φ(x) in the derivation. The system at the steady state can be approximated by

−εεr1φ
′′(x) = c1 + c2− c3+

qb

β
δ (x− s),

−J1 = c′1 + c1φ
′,

− J2

D2
= c′2 + c2φ

′,

0 = c′3− c3φ
′,

(3.21)

where D1 = 1 has been used. If we combine the effect of c1,c2 and define Jp = J1 +
J2
D2

, the system can
be reduced to a single equation of φ (see the derivation in Appendix C)

− εεr1φ
′′(x) =

1
2

εεr1
[
(φ ′(x))2− (φ ′(1))2]− Jp(x−1)−2(eφ−V −1), for s < x < 1,

− εεr1φ
′′(x) =

1
2

εεr1
[
(φ ′(x))2− (φ ′(−1))2]− Jp(x+1)−2(eφ −1), for −1 < x < s,

(3.22)
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FIG. 10. Comparison of electric potential φ and concentrations ci (i = 1,2,3) at steady state with V1 = 6.36 between quasi-static
approximation/analysis (solid lines) and the finite difference simulation (dashed lines).

where V =V0 +V1 and cL
3 = cR

3 = 1 have been used. The point charge (delta function) at x = s gives the
jump condition

[φ ′] =
−qb

βεεr1
. (3.23)

Given φ ′(1), φ ′(−1), and Jp, the solutions can be easily determined numerically, in the two regions
s < x < 1 and −1 < x < s. The three constants φ ′(1),φ ′(−1),Jp can be determined by condition (3.23),
[φ ] = 0 and [c1+c2] = 0 at x= s (in practice the numerical procedure is more stable if the ratio (c1(s+)+
c2(s+))/(c1(s−)+ c2(s−)) = 1 is used instead of [c1 + c2] = 0). Once φ(x) is obtained, c1 and J1 can
be computed by equation (3.21)2 and the continuity condition [c1] = 0 at x = s. Similarly, c2 and J2 can
be computed by equation (3.21)3 and the continuity condition [c2] = 0 at x = s.

Figure 10 shows the quasi-static approximations φ and ci (i = 1,2,3) at steady state for V1 = 6.36,
which agrees with those in Figure 7 except for c3. With smaller V1, the quasi-static approximations
are better. For V1 = 6.36, ionic flux J1 is found to be J1 ≈ −2.855 (also ≈ 10 pA in units), which is
close to −2.834 in (3.15) obtained by the finite difference method. The advantage of the method in this
subsection is that the computation is extremely fast compared with the full finite difference method. It
is much more efficient to use the quasi-static approximation to compute the steady states (particularly
the currents) with various different voltage jump V1.

Figure 11 shows the results with V1 = 1.59 (i.e., 40 mV in physical units), and the flux is
J1 ≈−0.264 (i.e., 0.933 pA in units). In above computations, J2 is very small since a small D2 is used,
therefore the dimensionless total current is almost the same as J1. Figure 12 shows the dependence of
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FIG. 11. The electric potential φ and the concentrations ci (i = 1,2,3) at the steady state with V1 = 1.59.
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FIG. 12. The dependence of the dimensionless flux J1 and the dimensional current I on the voltage V =V0 +V1 at steady state.

dimensionless flux−J1 and the dimensional current on the voltage V =V0+V1 at steady state (note that
the initial holding/equilibrium potential V0 =−80 mV in our calculation).

Remark 5. In the present simple model, the effective permanent charge is evenly distributed in the
bubble only and the size effect of different ions are not considered. We do not expect our model to capture
the current-voltage relation for large V1, including the saturation phenomenon observed experimentally
in the literature. To make our model more realistic, we need to know the distribution of permanent
charge (e.g., acid base side chains) along the system. When that information is available, it can be
incorporated into our model by adding permanent charge to the channel wall in the region −s to +s
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(see Fig. 1) as in a practical implementation [53]. The studies [28, 67] by Weishi Liu and his group
have illustrated the effects of permanent charge on current-voltage relation. With ionic size effect and
the permanent charge, saturation phenomenon of current-voltage curves can be modelled as shown in
[61].

Remark 6. For the case that the dipole does not disappear after bubble collapses, Figure 13 shows the
results for steady state flux, which are quite similar to those in Figure 12 for the above case when dipole
disappears after bubble collapses.
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FIG. 13. The dependence of the dimensional flux J1 and the dimensional current I on the voltage V =V0 +V1 at steady state for
the case that the dipole does not disappear after the bubble collapses.

4. Ensemble properties

In this section, we extend our model by including stochastic effect in two aspects. We assume that the
initial position of the bubble and the cross sectional area of the channel are both random and compute
the ensemble averages of the macroscopic currents through the channel and estimate the Cole-Moore
delay based on certain statistical distributions.

First, we assume that the initial interface position sb0 is random, which could be due to the tiny
fluctuations of strength of dipoles in different channels or due to the mechanism of bubble formation
(which is not considered in the present work). For illustration, we consider that sb0 follows a normal
distribution

sb0 ∼ N(µ,σ2), µ = 0, σ = 0.05, (4.1)

where the choice of σ ensures that sb0 ∈ [−s,s] with s= 0.2 for almost all the generated data. We can use
the previous function f (sb) to compute the ensemble properties of the channel, since there is negligible
effect on the curves of f (sb) with different starting value of sb0. With each different initial position sb0,
the dynamics of the fluxes (particularly the time delay t∗ for opening of the channel) will be different.
By taking the average of these fluxes, we get the ensemble curve for the dynamics of the current through
the channel (i.e., fluxes of K+). Figure 14 (b,c) show the ensemble curves for the current I and the ratio
I/V1 with 50 channels and with 4 different voltage jumps that are given in Figure 14(a). Figure 14 (b)
shows similar features and scale with experiments in Figure 2(a,c) in [51].
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FIG. 14. The ensemble curves for the current I and the ratio I/V1 averaged by 50 random sb0 and with 4 different voltage jumps
V1.
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FIG. 15. The function f (sb) with 3 values of the parameter A1.

The case is more complicated when cross sectional area A is random. We set A = A0A1, where
A1 ∼ N(1,σ2

A) with σA = 0.03 and A0 = (0.7nm)2 (the same as the value in Appendix A). The area A
will affect the dimensionless parameter β , and hence influences the effective permanent charge qb/β .

We start by examining the effect of A1 on t∗. Figure 15 shows f (sb) with 3 different values of A1,
indicating that the effect of A1 on f (sb) and hence on t∗ is very small. Therefore, the previous curve
f (sb) can be used to compute t∗ as an approximation. Then, we study the effect of A1 on the flux J1
or the current I at steady state. Figure 16(a) shows the dependence of J1 on A1, indicating that the
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FIG. 16. The dependence of flux −J1 and current I on the parameter A1.
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FIGURE 2. Multichannel patches. (A) Mean current (upper trace) and associated ensemble 
variance (lower trace) calculated from 200 depolarizations to 80 mV. The holding potential 
was - 80 mV and the solutions were 10 K ASW//400 K. (B) Plot of variance as a function of 
mean current, from the experimental data presented in A. The dots correspond to data 
points; the solid line corresponds to the fit to the function S ~ = ( i l )  - ( I S ~ N ) ,  with i = 2.7 and 
N = 8. (C) Currents obtained from the average of 32-65 pulses to the potentials indicated in 
front of each trace. The holding potential was - 7 0  mV. This is a different patch from that 
shown in A and B. The solutions were 5 K ASW//285 K and the temperature was 19~ 

by the sum of  two Gaussian distributions. The value of  single-channel current  esti- 
mated f rom the fit was 2.7 pA, corresponding to a single-channel conductance of  20 
pS. This value is in good agreement  with that derived f rom the ensemble fluctuation 
analysis described above. Determination of  the number  of  active channels is ren- 
dered difficult by the presence of  slow inactivation. In  this particular patch, no dou- 
ble openings were seen at 50 mV, although they were observed when the membrane  
potential was stepped to 100 mV. I f  one considers that the pat tern of  activity 
observed at 50 mV is due to one active channel (the other  being in a slow-inactivated 
state), the probability of  being open calculated f rom the relative areas of  the ampli- 
tude histogram would be 0.9. 
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FIG. 17. (a) The ensemble curves for the current I with 50 channels, where sb0 ∼ N(0,σ2) and A1(ti) ∼ N(1,σ2
A), with σ =

0.05,σA = 0.03. (b) The experimental curve from Figure 2(a) in [51]

magnitude of J1 will slightly decrease with increase of A1. Since the final dimensional current also
depends on the scaling factor which contains A1, Figure 16(b) shows the dependence of the current I on
the parameter A1, indicating that the current increases with A1. Figure 16(b) also shows the approximate
current A1I(1) where I(1) is taken from previous computation with A1 = 1, which is close to the exact
curve. Therefore, the main effect of A1 on the current is due to the scaling factor. We conclude that
A1I(1) can be used as an approximation for the current in the following figures.

We fix A1 for each channel during the evolution of the bubble, while allowing it (together with sb0) to
vary randomly among 50 channels. The ensemble curves (omitted here) for the current with 50 channels
are very similar to those in Figure 14. We also consider the case that A1 fluctuates randomly when the
bubble evolves. We take A1(ti) ∼ N(1,σ2

A) with σA = 0.03 for each discrete time t = ti and for each
channel. Figure 17(a) shows the ensemble curve for the current with 50 channels, where sb0 ∼ N(0,σ2)
and A1(ti)∼ N(1,σ2

A), with σ = 0.05,σA = 0.03, and 400 discrete ti are used for the time interval of 30
ms. Figure 17(a) agrees well with the experimental results in Figure 17(b), which is Figure 2(a) in [51].
It also shows similar features and fluctuations with Figure 2(c) in [51] and Figure 3.17 in [32].
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To model the Cole-Moore delay [19, 38], we can treat the mean value µ and standard variation σ

as a function of the holding potential V0. For illustration, we take

sb0 ∼ N(µ,σ2),

µ(V0) = s tanh(k(V0−V ∗0 )), V ∗0 =−80mV, k = 0.002/mV,

σ(V0) = σ0 = 0.05

(4.2)

where V0 is the initial holding potential, and V ∗0 is a reference value. Figure 18 shows the ensemble
curves for the current with 100 channels and V0 +V1 = 80 mV, for 7 different holding potential V0
which are [-52, -72, -93, -113, -133, -162, -212]mV, corresponding to curves from left to right. Figure
19 shows the ensemble curves for the current with 100 channels and 600 channels and with V0+V1 = 80
mV, for 2 different holding potential V0 = −52,−212 mV. It can be observed from the figures that the
delay is longer when holding potential V0 is smaller, while the overall shape of the ensemble curves
does not change much.The ensemble curves show similar features as experimental curves in [19].

Remark 7. As noted in [38], “the mechanism of the Cole-Moore effect remains a mystery”. It is
commonly shown in experiments and MD simulations [1, 9, 45, 57] that the gating current of the voltage
sensor in the voltage sensor domain (VSD) is concurrent with the hydrophobic gating in the conduction
pore (followed by ionic current). Therefore, many scientists believe that the voltage sensor plays a key
role in the mechanism of Cole-Moore effect [43, 45, 57]. However, the linkage or functional coupling
of VSD to conduction domain is less clear, e.g., various coupling mechanisms have been proposed
[2, 13, 60]. The present work is an attempt of providing a possible mechanism of Cole-Moore effect
directly from the conduction pore. It is also likely that the voltage sensor together with channel wall
properties and conformational changes will have an impact on the positions and sizes of bubbles as
modeled in (4.2). The detailed mechanism is left for future investigation.
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(a)

FIG. 18. The ensemble curves for the current with 100 channels and V0 +V1 = 80 mV, for 7 different holding potential V0= [-52,
-72, -93, -113, -133, -162, -212]mV, corresponding to curves from left to right

5. Conclusion

In this paper, we present a macroscopic bubble model for the gating of Kv Channels. The time delay
in the opening of a single channel is determined by the motion of the bubble before it collapses. The
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FIG. 19. The ensemble curves for the current for V0 +V1 = 80 mV and 2 different holding potential V0, (a) with 100 channels,
and (b) with 600 channels.

bubble motion is coupled with a Poisson-Nernst-Planck system, which is solved by a full numerical
computation as well as a quasi-static approximation method. We also present a stochastic model for the
bubble and channel sizes and the ensemble properties of the Kv channel are consistent with experimental
observations. Furthermore, the Cole-Moore delay is explored by assuming the dependence of bubble
properties on the holding potential.

Although the present simple model captures some key features in the ensemble properties, some
parts are oversimplified and there is room for improvement. The permanent charges in the channel are
lumped together in the model, and the distinction and effects of charges on bubble and on the channel
wall could be examined in the future. The selectivity of channel is not considered in detail here, which
depends on the ion sizes (which makes the PNP system very complicated). This is circumvented by
assuming small diffusion constants of other ions except K+ in the present work. The generalization to
high-dimensional case is also interesting and nontrivial, since the bubble interface will have a curved
shape and specific forces (e.g., some force due to the maxwell stress) can act on the interface.

A. Parameter values

We adopt the following values for the physical parameters [50, 51]

L = 0.75nm, s = 0.15nm, A = (0.7nm)2, c0 = 560 mM≈ 3.37×1026/m3,

cL
1 = 10mM, cL

2 = 550mM, cL
3 = 560mM,

cR
1 = 400mM, cR

2 = 160mM, cR
3 = 560mM,

D0 = D1 = 10−10m2/s, D2 = D3 = 10−12m2/s,Db = 10−19m2/s,

AJ0 = AD0c0/L≈ 2.2×107/s, e0AJ0 ≈ 3.53 pA,

t0 =
L2

D0
= 5.625×10−9s, V0 =−80mV, V1 = 160mV.

(A.1)
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The dimensionless quantities are

ε =
ε0kBT
e2

0c0L2 ≈ 7.3×10−3, β = LAc0 ≈ 0.12,

cL
1 ≈ 0.018, cL

2 ≈ 0.982, cL
3 = 1,

cR
1 ≈ 0.71, cR

2 ≈ 0.29, cR
3 = 1,

D1 = 1, D2 = D3 = 0.01, Db = 10−9,

V0 =−3.18, V1 = 6.36.

(A.2)

B. Continuity of the total current

B.1. The continuous system

The total current consists of three different forms of current in different regions

(i) the current from the change of electric field (for the whole interval/channel)
(ii) the current from the ionic fluxes (outside of the bubble)

(iii) the current from the motion of the bubble charge (in the bubble)

We will illustrate the continuity of the total current by the dimensional system in Section 2.1. For the
region outside of the bubble (−L< x< sb,s< x< L), we define the total current (per unit cross-sectional
area) as Ipnp

total

Ipnp
total(x, t) = ε0εr∂tE +

3

∑
i=1

e0ziJi =−ε0εr∂txφ + e0(J1 + J2− J3). (B.1)

Taking the time derivative of (2.1)1 and using (2.1)2, we get

∂xIpnp
total = 0, (B.2)

which implies the continuity of current outside of the bubble.
In the bubble, the define the total current (per unit cross-sectional area) as

Ibubble
total (x, t) = ε0εr∂tE +∂tQb =−ε0εr∂txφ −∂tQb, (B.3)

where Qb is the total bubble charge (per unit area) stored in the interval [sb,x] (it is the magnitude of
total negative charge)

Qb =
∫ x

sb

qb

Vb
dx =

qb(x− sb)

A(s− sb)
. (B.4)

If Qb increases, that means some positive current of the bubble charge goes across the interface at x.
Another interpretation is based on the velocity of the cross sectional surface at x

v(x) =
(s− x)
(s− sb)

dsb

dt
, (B.5)

and one can easily verify that
∂tQb = Jb =−

qb

Vb
v(x). (B.6)

Taking the time derivative of (2.3), we get the continuity of the total current in the bubble

∂xIbubble
total = 0. (B.7)
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B.2. The discrete numerical scheme

The quantities qn+1
k and εr,k+1/2 are defined as

qn+1
k =

∫ xk+1/2

xk−1/2

1
β

qb

(s− sb)
dx, (B.8)

and
εr,k+1/2 =

h
h1
εr1

+ h2
εr0

, h1 = sb− xk, h2 = xk+1− sb, if sb ∈ [xk,xk+1]. (B.9)

Next we show the continuity of the total current in the discrete scheme. The equation of φ can be written
as

Jn+1
φ ,k+1/2− Jn+1

φ ,k−1/2 = hcn+1
1,k +hcn+1

2,k −hcn+1
3,k +hqn+1

k ,

Jn+1
φ ,k+1/2 =−εεr,k+1/2

φ
n+1
k+1 −φ

n+1
k

h
.

(B.10)

Summing over k = 1, ..,N gives

Jn+1
φ ,N+1/2− Jn+1

φ ,1/2 = h
N

∑
k=1

cn+1
1,k +

N

∑
k=1

hcn+1
2,k −

N

∑
k=1

hcn+1
3,k +

N

∑
k=1

hqn+1
k . (B.11)

Repeat it for Jn with the time step tn , take the difference, divide it by ∆t, and then we get

Jn+1
φ ,N+1/2− Jn

φ ,N+1/2

∆t
−

Jn+1
φ ,1/2− Jn

φ ,1/2

∆t

=h
N

∑
k=1

cn+1
1,k − cn

1,k

∆t
+h

N

∑
k=1

cn+1
2,k − cn

2,k

∆t
−h

N

∑
k=1

cn+1
3,k − cn

3,k

∆t

+
h
∆t

(
N

∑
k=1

qn+1
k −

N

∑
k=1

qn
k

)

=−
(

Jn+1
1,N+1/2− Jn+1

1,1/2

)
−
(

Jn+1
2,N+1/2− Jn+1

2,1/2

)
+
(

Jn+1
3,N+1/2− Jn+1

3,1/2

)
+

h
∆t

(
Qn+1

b −Qn
b
)
.

(B.12)

Rearranging the terms leads to

Jn+1
φ ,N+1/2− Jn

φ ,N+1/2

∆t
+
(

Jn+1
1,N+1/2 + Jn+1

2,N+1/2− Jn+1
3,N+1/2

)
− h

∆t

(
Qn+1

b −Qn
b
)

=
Jn+1

φ ,1/2− Jn
φ ,1/2

∆t
+ Jn+1

1,1/2 + Jn+1
2,1/2− Jn+1

3,1/2,

(B.13)

where the three terms on the left-hand side are the discrete version of the three forms of currents defined
in (i), (ii), (iii) in the previous subsection. If the sum is over the entire interval (i.e., N +1/2 is the right
end), the term Qn+1

b −Qn
b disappears since the total bubble charge Qn

b is conserved by definition, and
the total current is conserved at the two ends.
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C. Derivation for quasi-static state and steady state

C.1. The quasi-static state

For the quasi-static state, we ignore the dipole and V0 (equivalently the φ is shifted up by a constant V0
and continuity condition of φ will be used at interface). We first consider the right part s < x < 1. We
get

c1 = cR
1 e−(φ−V1), c2 = cR

2 e−(φ−V1), c3 = eφ−V1 ,

εεr1φ
′′ = eφ−V1 − e−(φ−V1),

(C.1)

where cR
3 = cR

1 + cR
2 = 1 have been used. Integrating once gives

1
2

εεr1[(φ
′(x))2− (φ ′(s+))2] = eφ−V1 + e−(φ−V1)−B2, (C.2)

where

B2 = eφs−V1 + e−(φs−V1), φ
′(s+) =

εr0

εr1
φ
′(s−) = εr0

εr1
φ̃s. (C.3)

Then, we obtain

(φ ′(x))2 = G1(φ ;φs, φ̃s) =

(
εr0

εr1
φ̃s

)2

+
2

εεr1
[eφ−V1 + e−(φ−V1)−B2] (C.4)

and

x =
∫

φ

φs

1√
G1(φ ;φs, φ̃s)

dφ + s. (C.5)

For the left part −1 < x < sb, we get

εεr1φ
′′ = eφ − e−φ ,

1
2

εεr1[(φ
′(x))2− (φ ′(sb−))2] = eφ + e−φ −B3,

(C.6)

with
B3 = eφsb + e−φsb , φsb = B1(sb− s)2 + φ̃s(sb− s)+φs

φ
′(sb−) =

εr0

εr1
φ
′(sb+) =

εr0

εr1
[φ̃s +2B1(sb− s)],

(C.7)

where B1 is given in (3.16). Then, we get

(φ ′(x))2 = G2(φ ;φs, φ̃s) = (φ ′(sb−))2 +
2

εεr1
[eφ + e−φ −B3] (C.8)

and

x =−
∫

φ

φsb

1√
G2(φ ;φs, φ̃s)

dφ + sb. (C.9)
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C.2. The steady state

Now we consider the steady state. Define

p = c1 + c2, Jp = J1 +
J2

D2
, (C.10)

then the two equations for c1 and c2 lead to

− Jp = p′(x)+ pφ
′(x). (C.11)

Let V =V0 +V1. For the right part x > s, we get

c3 = cR
3 eφ−V = eφ−V . (C.12)

Multiplying φ ′ in the equation of φ (i.e., equation (3.21)1, and the delta function is put into the jump
conditions) gives

− εεr1φ
′′(x)φ ′(x) = pφ

′− c3φ
′ =−Jp− p′− c′3, (C.13)

and integrating gives

p =
1
2

εεr1
[
(φ ′(x))2− (φ ′(1))2]− Jp(x−1)− c3 +2, (C.14)

where the boundary conditions at x = 1 have been used. Substituting into (3.21)1, we get

−εεr1φ
′′(x) =

1
2

εεr1
[
(φ ′(x))2− (φ ′(1))2]− Jp(x−1)−2(eφ−V −1), (C.15)

for x > s. Similarly for the left part x < s, we have

c3 = cL
3eφ , c1 =

1
2

εεr1
[
(φ ′(x))2− (φ ′(−1))2]− Jp(x+1)− c3 +2,

− εεr1φ
′′(x) =

1
2

εεr1
[
(φ ′(x))2− (φ ′(−1))2]− Jp(x+1)−2(eφ −1).

(C.16)
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results and quantitative models. Pflügers Archiv-European Journal of Physiology, 472(1):27–47, 2020.
17. Luigi Catacuzzeno, Luigi Sforna, Fabio Franciolini, and R Eisenberg. Why are voltage gated na channels

faster than k channels? one multi-scale hierarchical model. bioRxiv. Cold Spring Harbor Laboratory, 11,
2020.

18. Luigi Catacuzzeno, Luigi Sforna, Fabio Franciolini, and Robert S Eisenberg. Multiscale modeling shows
that dielectric differences make nav channels faster than kv channels. Journal of General Physiology, 153(2),
2021.

19. Kenneth S Cole and John W Moore. Potassium ion current in the squid giant axon: dynamic characteristic.
Biophysical Journal, 1(1):1–14, 1960.

20. David Colquhoun and AG Hawkes. On the stochastic properties of single ion channels. Proceedings of the
Royal Society of London. Series B. Biological Sciences, 211(1183):205–235, 1981.

21. David Colquhoun and Alan G Hawkes. The principles of the stochastic interpretation of ion-channel
mechanisms. In Single-channel recording, pages 397–482. Springer, 1995.

22. Lucie Delemotte, Marina A Kasimova, Daniel Sigg, Michael L Klein, Vincenzo Carnevale, and Mounir Tarek.
Exploring the complex dynamics of an ion channel voltage sensor domain via computation. BioRxiv, page
108217, 2017.

23. Lucie Delemotte, Mounir Tarek, Michael L Klein, Cristiano Amaral, and Werner Treptow. Intermediate states
of the kv1. 2 voltage sensor from atomistic molecular dynamics simulations. Proceedings of the National
Academy of Sciences, 108(15):6109–6114, 2011.

24. Anatoly Dryga, Suman Chakrabarty, Spyridon Vicatos, and Arieh Warshel. Coarse grained model
for exploring voltage dependent ion channels. Biochimica et Biophysica Acta (BBA)-Biomembranes,
1818(2):303–317, 2012.

25. Todor Dudev and Carmay Lim. Factors governing the na+ vs k+ selectivity in sodium ion channels. Journal
of the American Chemical Society, 132(7):2321–2332, 2010.

26. Todor Dudev and Carmay Lim. Ion selectivity strategies of sodium channel selectivity filters. Accounts of
chemical research, 47(12):3580–3587, 2014.

27. Bob Eisenberg, Nathan Gold, Zilong Song, and Huaxiong Huang. What current flows through a resistor?
arXiv preprint arXiv:1805.04814, 2018.



A BUBBLE MODEL FOR THE GATING OF KV CHANNELS 29

28. Bob Eisenberg and Weishi Liu. Poisson–nernst–planck systems for ion channels with permanent charges.
SIAM Journal on Mathematical Analysis, 38(6):1932–1966, 2007.

29. Bob Eisenberg, Xavier Oriols, and David Ferry. Dynamics of current, charge and mass. Computational and
Mathematical Biophysics, 5(1):78–115, 2017.

30. Stephen Jay Gould. The Flamingo’s Smile: Reflections in Natural History. Norton, New York, 1987.
31. Owen P Hamill, A Marty, Erwin Neher, Bert Sakmann, and Frederick J Sigworth. Improved patch-clamp

techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv,
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