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Abstract

Microcirculation of blood and oxygen transport play important roles in bi-
ological function of optic nerve and are directly affected by damages or
pathologies. This work develops a multi-domain model for optic nerve, that
includes important biological structures and various physical mechanisms in
blood flow and oxygen delivery. The two sets of vasculature network are
treated as five domains in the same geometric region, with various exchanges
among them (such as Darcy’s law for fluid flow) and with the tissue domain
(such as water leak, diffusion). The numerical results of the coupled model
for a uniform case of vasculature distribution show mechanisms and scales
consistent with literature and intuition. The effects of various important
model parameters (relevant to pathological conditions) are investigated to
provide insights into the possible implications. The vasculature distribution
(resting volume fractions here) has significant impacts on the blood circula-
tion and could lead to insufficient blood supply in certain local region and
in turn affect the oxygen delivery. The water leak across the capillary wall
will have nontrivial effects after the leak coefficients pass a threshold. The
periodic arterial pressure conditions lead to expected periodic patterns and
stable spatial profiles, and the uniform case is almost the averaged version
of periodic case. The effects of viscosity, the stiffness of blood vessel wall,
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oxygen demand, etc. have also been analyzed. The framework can be ex-
tended to include ionic transport or to study the retina when more biological
structural information is available.

Keywords: microcirculation, optic nerve, oxygen transport, blood flow,
multi-domain model

1. Introduction

Most of biology involves complex structures that are nearly machines
designed to perform biological functions. Machines in our technology cannot
be understood without their structure as well as the physics that they use
and the engineering function they perform. A natural approach for these
biological problems is to use physical laws in the form of conservation laws in
three dimensions and time, together with structural information presented
by biologists, and to compute physiological results required by biologists and
clinicians. This approach has been used to study biological systems of some
complexity, for example, the electrocytes of electrical eels [1, 2], the optic
nerve of amphibians [3], the lens of the eye [4]. The history of this approach
is reviewed in [5].

The eye is made of a series of tissue structures such as the lens, the retina,
and the optical nerve that work together. The retina converts the light to
electric signals, which travele to the brain through optic nerve. In each tissue
structure, many physical mechanisms [6, 7, 8] involving fluid flow and trans-
port of ions and oxygen work together in well-designed biological structures
to achieve specific goals and maintain homeostasis states. Many eye diseases
such as glaucoma [9] and diabetic retinopathy [10, 11] are due to the damage
of optical nerve and retina related to the coupling of the above mechanisms.
Cardiovascular pathologies such as hypertension and diabetes can induce
changes in micro-circulations in the retina and optical nerve, and then are re-
flected by functional or structural changes. Non-invasive experimental/clinic
data from the eye (say the retina) can provide an important “window” into
the cardiovascular pathologies [12, 13]. Therefore, mathematical modeling is
needed to uncover the relationship between diseases/alterations in structures
and the physical mechanisms. The challenges are the coupling of different
mechanisms in multiple time and spatial scales as well as the incorporation of
crucial biological structural information. On the other hand, too many scales
and too much cellular detail in the model will make analysis/computation

2



extremely tricky.
There have been many modeling and experimental studies [6, 14, 15, 16,

17] for both retina and optic nerve, particularly for retina since vascular
and geometrical information is more accessible experimentally. The book [6]
includes an excellent review of different levels of mathematical models for
blood flow in the eye as well as oxygen transport, see also [18, 19, 20, 7].
The microcirculation and autoregulation have been studied in [21, 22, 16,
23, 24]. A recent work [25] has studied the coupling between the blood
microcirculation and oxygen transport in retina, where a computer-generated
vascular tree network is used for blood flow in vessels and delivery of oxygen
to the tissue. A one-dimensional model of blood circulation in retina arterial
network has been developed by utilizing clinic imaging [26]. A viscoelastic
and porous-media model [27, 15] has been developed to study the mechanics
and hemodynamics of optic nerve head. The blood flow and neurovascular
coupling mechanisms in optic nerve have been reviewed in [28].

Multi-domain modeling has shown success in the study of complex biolog-
ical tissues, such as the lens [4], the optic nerve [3, 29], brain tissue [30], and
cardiac tissue [31, 32]. At the tissue (coarse-grained) level, a given spatial
point is present in every domain in the multidomain model, where exchanges
occur between domains (to represent mechanisms at a refined cellular level).
In particular, a tridomain model [3, 29] has been developed for fluid flow
and electrodiffusion in optic nerve (without vasculature), and the clearance
of potassium is studied. The multi-domain model for the vasculature here
can be treated as generalization of compartment (vessel segment) models
[33, 6], in the sense that more spatial and structural information could be
incorporated.

The objective of this work is to develop multi-domain model for blood
microcirculation and oxygen transport in optic nerve, with important biolog-
ical structures and physical mechanisms incorporated. This work will focus
on the vasculature and the exchanges between the vasculature and tissue in
optic nerve, and can potentially be combined with the previous tri-domain
model on fluid flow and electrodiffusion of ions in tissue [3, 29] in future
work. This work studies the optic nerve because of its relative simple geo-
metric structure, but the framework can be generalizaed to the retina. The
multi-domain model includes five domains for the vasculature due to two
complete sets of blood circulation pathways and one domain for the tissue.
The part for blood circulation incorporates Darcy’s law for in-domain flow,
the leak to the tissue (the changes are related to diseased state), and volume
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fraction (equivalently blood vessel radius) changes due to force balance. The
part for the oxygen transport considers both the dissolved and bound oxygen
in hemoglobin and incorporates the mechanisms due to diffusion, convection
and oxygen consumption.

The coupled model is solved by a finite-difference scheme and a Matlab
solver (ode15s). The simulated results for the baseline case with a uniform
resting volume fraction show reasonable mechanisms and consistent scales for
important quantities with literature. More importantly, the effects of non-
uniform resting volume fractions, periodic boundary condition, and various
parameters are studied to provide insights into the consequences of biological
structural changes and parameter changes due to diseases. For example, with
non-uniform distribution of resting volume fractions, local regions could suffer
insufficient capillary exchanges and oxygen supply. The leak coefficient could
have have strong impact on blood circulation and oxygen delivery after it
passes a threshold. With periodic boundary arterial pressures, the results
show almost the same averaged quantities as the baseline simulation with
constant pressure conditions. The effects of viscosity, the stiffness of blood
vessel wall, the demand for oxygen, the local partial blockage of vasculature
etc. have also been analyzed.

The manuscript is organized as follows. Section 2 develops the mathe-
matical model of blood circulation and oxygen transport with six domains.
The model is simulated in Section 3 for a baseline case with uniform resting
volume fractions and constant boundary pressures. The effects of various
parameters and biological structural changes are analyzed in Section 4. Con-
clusions are provided in Section 5.

2. Mathematical Model with Six Domains

CRA Central Retinal Artery CRV Central Retinal Vein
PCA Posterior Ciliary Artery RBC Red Blood Cell
MAP Mean Arterial Pressure 1D one-dimensional

Table 1: Abbreviations in the paper

Some abbreviations are listed in Table 1 for easy reading. Figure 1(a)
sketches the optic nerve, where the retrolaminar region is the major region
with nearly radial symmetry. In this work, we focus on the retrolaminar
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(a) Optic nerve

CRA	 CRV	

PCA	

Ωv

Ωao

Ωex

Ωai

Ωci

Capillary	

Ωco

Capillary	

(b) Six domains and pathways

Figure 1: (a) The optic nerve and retrolaminar region in an axial sectional view. The fig-
ure is taken from [28], and we are grateful to the authors for making such a useful drawing.
(b) The six vascular and tissue domains. The green arrows denote the water exchanges
between vascular domain and tissue (extra-vascular domain), the orange arrows denote
the blood flow pathways, and the blue arrows denote the in-domain blood circulation.
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region in the optic nerve [15, 6, 34, 35] in a 1D setting. We consider six
overlapping domains for the vasculature and tissue in the same geometric
region R0 < r < R1 and 0 < z < L in cylindrical coordinates, but it is
assumed to be uniform (or averaged) in the longitudinal z direction so that
it is a 1D problem in the radial direction and symmetric about r = 0. The
six domains are sketched in Figure 1(b) and are defined as:

Ωai: Arteries and arterioles starting from CRA at inner boundary r = R0

Ωao: Arteries and arterioles starting from PCA at outer boundary r = R1

Ωv: Veins and venules connected to CRV at r = R0

Ωci: Capillaries between Ωai and Ωv

Ωco: Capillaries between Ωao and Ωv

Ωex: the extra-vascular domain, i.e, tissue domain including the axons and
glial cells and extracellular space.

2.1. Water/blood circulation

The water/blood circulation in optic nerve is based on porous-media type
flows and exchanges among the domains. The circulation is both the blood
flow among the vascular domains (the first 5 domains above) and the water
flow (leak) for the exchange between vascular and extravascular domains.
For the 1D geometric region R0 < r < R1, the governing equations from
conservation laws are

∂ηai
∂t

+
1

r

∂ (rηaiu
r
ai)

∂r
+Qai,ex +Qai,ci = 0,

∂ηao
∂t

+
1

r

∂ (rηaou
r
ao)

∂r
+Qao,ex +Qao,co = 0,

∂ηv
∂t

+
1

r

∂ (rηvu
r
v)

∂r
+Qv,ex +Qv,co +Qv,ci = 0,

∂ηci
∂t

+Qci,ex −Qai,ci −Qv,ci = 0,

∂ηco
∂t

+Qco,ex −Qao,co −Qv,co = 0,

1

r

∂

∂r

( ∑
k=ai,ao,v,ex

ηkru
r
k

)
= 0,

ηai + ηao + ηv + ηex + ηci + ηco = 1,

(1)
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where ηj is the volume fraction of each domain Ωj (j = ai, ao, v, ci, co, ex),
the spatial derivative terms 1

r
∂
∂r

(r(ηku
r
k)) are the in-domain flows in the polar

coordinates with velocity ur
k (k = ai, ao, v, ex), all the Qi,j are the exchanges

between different domains. There is in-domain flow in artery and vein do-
mains, since they are connected with branching structures. There is also
in-domain flow in extravascular domain since it is spatially connected. But
there are no in-domain flows for capillary domains at this tissue-scale mod-
eling, because they are only connected to arteries and veins at a smaller
spatial scale and different capillary networks do not exchange directly with
each other. The second last equation is derived by combining the dynamics
of ηex and the algebraic constraint in the last equation. We will give the
detailed models for all the terms in above equation and boundary conditions
in the next subsections.

2.1.1. In-domain flows and permeability

The in-domain velocity in vascular domains follows the Darcy’s law

ur
k = −κk(r)τk

µb

∂pk
∂r

, k = ai, ao, v, (2)

where κk is the in-domain water permeability, µb is the viscosity of blood,
and τk is the tortuosity. The tortuosity τk includes the effect of vessel struc-
ture and orientation of blood vessels (in r-direction). From derivations in
appendix and [15], the permeability is given by

κk(r) =
1

8
βk(r)ηk, k = ai, ao, v, (3)

where βk(r) depends on structure of blood vessels, e.g., the distribution of
branches, the level of branching, segment length etc. But for simplicity, the
coefficient βk(r) is assumed to be a constant here and its value is estimated
in the appendix. The permeability κk may depend on the concentration of
oxygen through the changes in ηk due to changes in the vessel properties.
For the extravascular domain Ωex, we set

ur
ex = −κexτex

µex

∂pex
∂r

, (4)

where kex, τex, µex are the permeability, tortuosity and viscosity in Ωex.
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2.1.2. Exchange through blood vessel wall

Here, we consider the water exchange rates Qj,ex between the vascular
domains Ωj (j = ai, ao, v, ci, co) and the extravascular domain Ωex, due the
leak/exchange through blood vessel wall. The water exchange rate Qj,ex per
unit control volume follows the form

Qj,ex = Mj,exUj,ex, j = ai, ao, v, ci, co, (5)

where Mj,ex is the area of blood vessel wall for domain Ωj per unit control
volume and Uj,ex is the water velocity from Ωj to Ωex. The quantity Mj,ex is
modeled by (see appendix for details)

Mj,ex = M0
j,ex

√
ηj, (6)

where M0
j,ex is a constant depending on blood vessel structures and estimated

in appendix (related to βj). The dependence of Mj,ex on the radius of blood
vessel is reflected through ηj. The water velocity across the blood vessel wall
is modeled as

Uj,ex = Lj,ex(pj − pex − (πj − πex)), j = ai, ao, v, ci, co (7)

where Lj,ex is the leak coefficient [36, 16] (for capillary, see also [37] [38] [39]),
and πj, πex are the colloidal osmotic pressures [16] (e.g., due to ions, proteins
etc.). The leak coefficient in artery and vein domains is much smaller than
that in capillary domains under normal conditions.

2.1.3. Exchange between vascular domains

The blood flow rates from artery to capillary or from capillary to vein are
modeled by

Qai,ci = Kai,ci(pai − pci), Qv,ci = Kv,ci(pv − pci),

Qao,co = Kao,co(pao − pco), Qv,co = Kv,co(pv − pco),
(8)

where Kj,k is the effective conductance (or the inverse of resistance). We take
Kai,ci from artery domain Ωai to capillary domain Ωci for example. It relates
to both artery and capillary domains since it flows in the small arterioles for
some distance before reaching the capillary. The conductance is modeled as
the harmonic average

Kai,ci =
KaiKci

Kai +Kci

, Kai = δaiη
2
ai

ϵai
tanh(ϵai)

, Kci = δciη
2
ci

ϵci
tanh(ϵci)

, (9)
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where Kj (j = ai, ci) are the effective conductance in the two domains with
parameter δj estimated in the appendix (related to βj and µb). The dimen-
sionless ratio ϵj/tanh(ϵj) (with j = ai, ci) is a correction factor due to the
water leak [16]

ϵj =
1

2

√
(Mj,exLj,ex)/(δjη2j ), j = ai, ci. (10)

In the limit when there is no water leak through blood vessel wall Lj,ex → 0,
we get ϵai → 0 and ϵj/tanh(ϵj) → 1, so there is no effect from correction
factor. The presence of leak increases the conductance. In a similar way, we
can define Kao,co Kv,ci, Kv,co, as well as the parameters δj, ϵj (j = ao, co, v).

2.1.4. Force balance on blood vessel wall

The force balance on the blood vessel wall of each vascular domain is
modeled by [16, 3]

λj(ηj − ηrej ) = pj − pex − (P re
j − P re

ex ), j = ai, ao, v, ci, co, (11)

where λj is the elastic modulus of the blood vessel wall [15, 40], P re
j , P re

ex are
resting or reference pressures, and ηrej are the resting volume fractions. The
modulus λj is set as constant here, but it could be affected by the oxygen
concentration and in turn leads to changes in volume fractions (or the radius
of blood vessels). The quantity ηrej (r) could depend on the spatial variable r
and the profile is related to the structural information. We investigate both
uniform and Gaussian profiles for ηrej (r) in later examples. An alternative
model of force balance [26, 41] is to use

√
ηj and

√
ηrej in the formula (11).

If ηj is not far from ηrej , the two models will be similar up to first-order
approximations with slightly different definitions for the modulus.

2.1.5. Boundary conditions

As there are in-domain flows (i.e., spatial derivatives) for the four domains
Ωj, j = ai, ao, v, ex, we need to propose boundary conditions at r = R0, R1

for these domains.
(1) For the artery domain Ωai, we set

pai(R0, t) = Pai,0(t),
∂pai
∂r

(R1, t) = 0, (12)

where Pai,0 is the given CRA pressure at the start of that artery domain Ωai.
The condition at the outer boundary r = R1 means no blood flow out of the
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region there. Alternatively, if Pai,0(t) is not given, we can use the prescribed
the blood flow rates at boundary

ηaiR0u
r
ai = Q∗

ai. (13)

(2) For the other artery domain Ωao, we set

∂pao
∂r

(R0, t) = 0, pao(R1, t) = Pao,1(t), (14)

where Pao,1 is the given PCA pressure at the start of artery domain Ωao and
there is no blood flow on the other end. Alternatively, if Pao,1(t) is not given,
we can use the flow rates condition

ηaoR1u
r
ao = −Q∗

ao. (15)

(3) For the vein domain Ωv, we set

pv(R0, t) = Pv,0(t),
∂pv
∂r

(R1, t) = 0. (16)

where Pv,0(t) is the given CRV pressure at inner boundary where the blood
drains out of this optic nerve region.
(4) For extravascular domain Ωex, we set

∂pex
∂r

(R0, t) = 0,
∂pex
∂r

(R1, t) = 0, (17)

which means no water flow out of the region through domain Ωex.

2.2. Oxygen transport

We start by introducing some background knowledge and use of notations
here. The total oxygen concentration C̄O2 (per unit blood volume) in vascular
domains consists of two parts: the dissolved oxygen and the oxygen bound
to hemoglobin in red blood cells (RBC) [6, 19, 42]. Mathematically, we have

C̄O2 = CO2 +H SO2 (18)

where CO2 the dissolved oxygen, H is the oxygen-binding capacity of blood
(per unit blood volume), and SO2 is the oxygen saturation of Hemoglobin. In
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many works [7, 25], the dissolved oxygen concentration is often represented
by oxygen partial pressure PO2 with the formula

CO2 = αO2PO2 (19)

where αO2 is the solubility coefficient of oxygen in blood. But in order to
distinguish the pressure pk for water/blood flows and the oxygen partial
pressure here, we will directly use the oxygen concentration CO2 in our model.
The oxygen saturation SO2 is given by Hill’s equation [25, 19]

SO2 =
P n
O2

P n
O2

+ P n
50

=
Cn

O2

Cn
O2

+ Cn
50

(20)

where we have multiplied αO2 before PO2 and P50 to get the last equality,
C50 = αO2P50 is the half-saturation constant, and n is the Hill’s exponent
parameter. To estimate H, it is often written as [7]

H = [Hb]CHb, (21)

where [Hb] is the hemoglobin concentration per unit volume of blood, CHb

is the oxygen-binding capacity of hemoglobin. Under normal conditions, the
quantities H, [Hb], CHb can be assumed as constants, see table in appendix.
But here we will also consider abnormal cases with large water leak through
blood vessels, so the hemoglobin concentration and hence the quantity H
can vary spatially, since hemoglobin can not leak out with water.

In each of five vascular domains, we have the above quantities and rela-
tions. To simplify the notations, we will omit the subscript O2 but add the
domain subscript. In summary, we have

C̄k(Ck, Hk) = Ck +Hk
Cn

k

Cn
k + Cn

50

, k = ai, ao, v, ci, co, (22)

where C̄k, Ck and Hk are the total oxygen concentration, dissolved oxy-
gen concentration, and oxygen-binding capacity of blood in the domain Ωk.
For the extravascular domain Ωex, only the dissolved oxygen concentration
Cex(r, t) is needed and well-defined.

By conservation laws, the dynamics of Hk (k = ai, ao, v, ci, co) is given
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by
∂(ηaiHai)

∂t
− 1

r

∂

∂r
(rηaiu

r
aiHai) +Qai,ciHai = 0,

∂(ηaoHao)

∂t
− 1

r

∂

∂r
(rηaou

r
aoHao) +Qao,coHao = 0,

∂(ηvHv)

∂t
− 1

r

∂

∂r
(rηvu

r
vHv) +Qv,ciHci +Qv,coHco = 0,

∂(ηciHci)

∂t
−Qai,ciHai −Qv,ciHci = 0,

∂(ηcoHco)

∂t
−Qao,coHao −Qv,coHco = 0,

(23)

Under normal conditions when all the water leak termsQj,ex (j = ai, ao, v, ci, co)
through blood vessel walls are negligible small compared with other term Qi,j

in blood flow equations in (1), this system is equivalent to the first five equa-
tions in (1) with constant solutions Hk = H0 (k = ai, ao, v, ci, co) (verified in
simulations). Next, the equations for oxygen exchange are given by

∂

∂t
(ηaiC̄ai) +

1

r

∂ (ηairJ
r
ai)

∂r
+ Sai,ex + Sai,ci = 0,

∂

∂t
(ηaoC̄ao) +

1

r

∂ (ηaorJ
r
ao)

∂r
+ Sao,ex + Sao,co = 0,

∂

∂t
(ηvC̄v) +

1

r

∂ (ηvrJ
r
v )

∂r
+ Sv,ex + Sv,ci + Sv,co = 0,

∂

∂t
(ηciC̄ci) + Sci,ex − Sai,ci − Sv,ci = 0,

∂

∂t
(ηcoC̄co) + Sco,ex − Sao,co − Sv,co = 0,

∂

∂t
(ηexCex) +

1

r

∂ (ηexrJ
r
ex)

∂r
+ Sex −

∑
j=ai,ao,v,ci,co

Sj,ex = 0,

(24)

where Jr
j (j = ai, ao, v, ex) are the in-domain oxygen fluxes in the r-direction,

Si,j are the oxygen exchange rates between different domains, and Sex is the
consumption rate of oxygen (e.g., for pumps of ions on axon [8]) given by the
classical Michaelis-Menten kinetics [25, 24, 18]

Sex(Cex) = Smax
ex

Cex

Cex + C1/2

, (25)

where Smax
ex and C1/2 are two parameters for the maximum consumption rate

and concentration at half-max consumption. Detailed models for in-domain
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and inter-domain fluxes Jr
j and Si,j, as well as the boundary conditions, will

be given below.

2.2.1. In-domain oxygen flux

The in-domain oxygen fluxes in the four domains Ωj (j = ai, ao, v, ex)
consist of convection and diffusion terms

Jr
k = C̄ku

r
k −Dkτk

∂Ck

∂r
, k = ai, ao, v,

Jr
ex = Cexu

r
ex −Dexτex

∂Cex

∂r
,

(26)

where Dj, τj, u
r
j (j = ai, ao, v, ex) are the diffusion constant of oxygen, the

tortuosity, and the blood/water velocity defined in (2,4).

2.2.2. Oxygen exchange through blood vessel wall

The oxygen exchange rate per unit volume from Ωj to Ωex follows

Sj,ex = Mj,exJj,ex, j = ai, ao, v, ci, co, (27)

where Mj,ex is defined in (6). The oxygen flux Jj,ex per unit area is modeled
by

Jj,ex = lj,ex(Cj − Cex) + Uj,exC
upwind
j,ex , j = ai, ao, v, ci, co, (28)

where Uj,ex is defined in (7), lj,ex is the oxygen permeability through the

blood vessel wall [25, 20], and Cupwind
j,ex is upwind concentration determined

by the sign of Uj,ex. Combining (27,28) with the use of (5), we obtain

Sj,ex = Mj,exlj,ex(Cj − Cex) +Qj,exC
upwind
j,ex , j = ai, ao, v, ci, co, (29)

and Cupwind
j,ex is given by

Cupwind
j,ex =

{
Cj if Qj,ex > 0,

Cex if Qj,ex < 0.
(30)

2.2.3. Oxygen exchange between vascular domains

The oxygen exchange rate between capillaries and other vascular domains
are

Sai,ci = Qai,ciC̄ai +Dai,ci(Cai − Cci), Sao,co = Qao,coC̄ao +Dao,co(Cao − Cco),

Sv,ci = Qv,ciC̄
upwind
ci,v +Dv,ci(Cv − Cci), Sv,co = Qv,coC̄

upwind
co,v +Dv,co(Cv − Cco),

(31)
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where Di,j are effective diffusion constant between domains (estimated in

appendix), the Qi,j terms are defined in (8), and C̄upwind
k,v (k = ci, co) is

the total oxygen concentration before entering to Ωv. We take C̄upwind
ci,v for

example. One simple option is C̄upwind
ci,v = C̄ci, but this does not consider the

possible gradient inside the capillary network point. If there is more than
sufficient oxygen supply for exchange to extravascular domain, we assume a
linear decreasing profile for dissolved oxygen concentration Cci within a point
(network) in capillary domain, which implies

Cupwind
ci,v = 2Cci − Cai, if Cupwind

ci,v > Cex. (32)

When the above Cupwind
ci,v ≤ Cex, the capillary domain could not supply oxygen

through the permeability term in (28) so the concentration will not decrease
further. In summary, we adopt the model

Cupwind
ci,v = max{2Cci − Cai, Cex}, (33)

and define
C̄upwind

ci,v = C̄(Cupwind
ci,v , Hci), (34)

by using (22). Similarly, C̄upwind
co,v can be defined by replacing subscripts ci, ai

by co, ao.

2.2.4. Boundary conditions

Now we propose boundary conditions for both Hk (k = ai, ao, v) and Cj

(j = ai, ao, v, ex) at r = R0, R1. For the Hk, we have

Hai(R0, t) = H0,
∂Hai

∂r
(R1, t) = 0,

∂Hao

∂r
(R0, t) = 0, Hao(R1, t) = H0,

∂Hv

∂r
(R0, t) = 0,

∂Hv

∂r
(R1, t) = 0,

(35)

where H0 is averaged oxygen-binding capacity of blood under normal con-
ditions, and all the Neumann conditions imply that hemoglobins (or RBC)
can not flow out these boundaries consistent with equations (12,14,16). For
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the concentrations, we have

Cai(R0, t) = Cai,0,
∂Cai

∂r
(R1, t) = 0,

∂Cao

∂r
(R0, t) = 0, Cao(R1, t) = Cao,1,

∂Cv

∂r
(R0, t) = 0,

∂Cv

∂r
(R1, t) = 0,

∂Cex

∂r
(R0, t) = 0,

∂Cex

∂r
(R1, t) = 0,

(36)

where Cai,0 and Cao,1 are given dissolved oxygen concentrations at arteries
CRA and PCA. Neumann conditions are adopted for other conditions, which
will not influence much on the numerical results, since the in-domain diffusion
terms are very small compared with the convection terms by fluid flow.

2.3. Nondimensionalization

2.3.1. The water/blood circulation

We adopt the scalings

t̃ =
t

t0
, r̃ =

r

R1

, p̃k =
pk
Pv,0

, π̃k =
πk

Pv,0

,

P̃ re
k =

P re
k

Pv,0

, Q̃j,k = Qj,kt0, λ̃j =
λj

Pv,0

.
(37)

The time scale t0 is chosen to be

t0 = 1mm/(1cm/s) = 0.1s (38)

which is consistent with some typical blood flow velocity [16] and will give
O(1) dimensionless velocity for the in-domain blood flows. Substituting the
above scalings in the system in Section 2.1 and after removing the tilde for
the unknown variables p̃k, Q̃ and independent variables r̃, t̃ for mathematical
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simplicity, we have the dimensionless system

∂ηai
∂t

− 1

r

∂

∂r

(
κ̄air

∂pai
∂r

)
+Qai,ex +Qai,ci = 0,

∂ηao
∂t

− 1

r

∂

∂r

(
κ̄aor

∂pao
∂r

)
+Qao,ex +Qao,co = 0,

∂ηv
∂t

− 1

r

∂

∂r

(
κ̄vr

∂pv
∂r

)
+Qv,ex +Qv,ci +Qv,co = 0,

∂ηci
∂t

+Qci,ex −Qai,ci −Qv,ci = 0,

∂ηco
∂t

+Qco,ex −Qao,co −Qv,co = 0,

∂

∂r

( ∑
k=v,ai,ao,ex

κ̄kr
∂pk
∂r

)
= 0,

(39)

where the water/blood flow rates are

Qj,ex = L̄j,ex [pj − pex − (π̃j − π̃ex)] , j = ai, ao, v, ci, co

Qk,ci = K̄k,ci(pk − pci), k = ai, v,

Qk,co = K̄k,co(pk − pco), k = ao, v,

(40)

and the parameters are

L̄j,ex = L̃j,ex
√
ηj, L̃j,ex = M0

j,exLj,exPv,0t0, j = ai, ao, v, ci, co,

κ̄j = β̃jη
2
j , β̃j =

βjτjPv,0t0
8R2

1µb

, j = ai, ao, v,

κ̄ex = κ̃exηex, κ̃ex =
Pv,0κexτext0

R2
1µex

,

K̄j,ci =
K̄jK̄ci

K̄j + K̄ci

, j = ai, v, K̄j,co =
K̄jK̄co

K̄j + K̄co

, j = ao, v

K̄j = δ̃jη
2
j

ϵ̄j
tanh(ϵ̄j)

, ϵ̄j =
1

2
η
−3/4
j

√
L̃j,ex/δ̃j, δ̃j = δjPv,0t0, j = ai, ao, v, ci, co.

(41)
In the above notations (and in the next subsection), the quantities with a bar
(e.g. κ̄j) are effective coefficients and depend on the unknown variables (e.g.,
ηj), whereas quantities with a tilde (e.g., β̃j) are dimensionless parameters
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that does not depend the unknowns. The algebraic constraint for volume
fractions is

ηai + ηao + ηv + ηex + ηci + ηco = 1, (42)

and the force balance constraint is given by

λ̃j(ηj − ηrej ) = pj − pex − (P̃ re
j − P̃ re

ex ), j = ai, ao, v, ci, co. (43)

The dimensionless form for the boundary conditions in Section 2.1.5 will have
the same form except that the given pressures are nondimentionalized. The
dimensionless flow rates conditions in (13,15) have the form

− κ̄ao
∂pao
∂r

∣∣∣∣
r=R1=1

= −Q∗
ao, − κ̄air

∂pai
∂r

∣∣∣∣
r=R0

= Q∗
ai. (44)

2.3.2. The oxygen transport

We adopt the scalings

t̃ =
t

t0
, r̃ =

r

R1

, C̃k =
Ck

Cai,0

, ˜̄Ck =
C̄k

Cai,0

, H̃k =
Hk

Cai,0

,

S̃max
ex =

Smax
ex t0
Cai,0

, C̃50 =
C50

Cai,0

, C̃1/2 =
C1/2

Cai,0

,

(45)

The timescale t0 is the same as in (38), since the in-domain diffusion timescale
R2

1/Dk ∼ 103s is much larger. Substituting the scalings and after removing

the tilde for the unknowns H̃k, C̃k,
˜̄Ck and independent variables t̃, r̃, we have

the equations for Hk

∂(ηaiHai)

∂t
− 1

r

∂

∂r

(
κ̄air

∂pai
∂r

Hai

)
+Qai,ciHai = 0,

∂(ηaoHao)

∂t
− 1

r

∂

∂r

(
κ̄aor

∂pao
∂r

Hao

)
+Qao,coHao = 0,

∂(ηvHv)

∂t
− 1

r

∂

∂r

(
κ̄vr

∂pv
∂r

Hv

)
+Qv,ciHci +Qv,coHco = 0,

∂(ηciHci)

∂t
−Qai,ciHai −Qv,ciHci = 0,

∂(ηcoHco)

∂t
−Qao,coHao −Qv,coHco = 0,

(46)
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and the equations for C̄k and Cex

∂

∂t
(ηaiC̄ai)−

1

r

∂

∂r

(
κ̄aiC̄air

∂pai
∂r

+ D̄air
∂Cai

∂r

)
+ Sai,ex + Sai,ci = 0,

∂

∂t
(ηaoC̄ao)−

1

r

∂

∂r

(
κ̄aoC̄aor

∂pao
∂r

+ D̄aor
∂Cao

∂r

)
+ Sao,ex + Sao,co = 0,

∂

∂t
(ηvC̄v)−

1

r

∂

∂r

(
κ̄vC̄vr

∂pv
∂r

+ D̄vr
∂Cv

∂r

)
+ Sv,ex + Sv,ci + Sv,co = 0,

∂

∂t
(ηciC̄ci) + Sci,ex − Sai,ci − Sv,ci = 0,

∂

∂t
(ηcoC̄co) + Sco,ex − Sao,co − Sv,co = 0,

∂

∂t
(ηexCex)−

1

r

∂

∂r

(
κ̄exCexr

∂pex
∂r

+ D̄exr
∂Cex

∂r

)
+ Sex −

∑
j=ai,ao,v,ci,co

Sj,ex = 0,

(47)
where total oxygen concentration C̄k is

C̄k(Ck, Hk) = Ck +Hk
Cn

k

Cn
k + C̃n

50

, k = ai, ao, v, ci, co, (48)

the oxygen exchange and consumption rates are given by

Sj,ex = Qj,exC
upwind
j,ex + l̄j,ex(Cj − Cex), j = ai, ao, v, ci, co,

Sai,ci = Qai,ciC̄ai + D̃ai,ci(Cai − Cci),

Sao,co = Qao,coC̄ao + D̃ao,co(Cao − Cco),

Sv,k = Qv,kC̄
upwind
k,v + D̃v,k(Cv − Ck), k = ci, co,

Sex = S̃max
ex

Cex

Cex + C̃1/2

,

(49)

and the coefficients are defined by

D̄j = D̃jηj, D̃j =
Djτjt0
R2

1

, j = ai, ao, v, ex,

l̄j,ex = l̃j,ex
√
ηj, l̃j,ex = M0

j,exlj,ext0, j = ai, ao, v, ci, co,

D̃j,ci = Dj,cit0, j = ai, v, D̃j,co = Dj,cot0, j = ao, v.

(50)

The boundary conditions in (35,36) will take the same form except that
Cai,0, Cao,1, H0 are nondimensionalized by Cai,0.
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3. Numerical Results

In our implementation, the partial differential equations in (39,46,47)
with boundary conditions are converted to dynamic systems by using finite-
difference method for the spatial variable r. In the finite-difference scheme,
central discretization is adopted and upwind scheme is used for the convection
terms in (46,47) (otherwise it is unstable). Then, they are solved as a whole
system of differential-algebraic equations (DAE) by combining with the alge-
braic constraints (42,43,48). The DAE system is solved in Matlab using the
built-in solver ode15s. All the 28 unknowns pk, ηk, Ck (k = ai, ao, v, ci, co, ex)
and C̄j, Hj (j = ai, ao, v, ci, co) at all discrete spatial points are solved simul-
taneously. In this section, we consider a uniform case that resting volume
fractions ηrej (r) (j = ai, ao, v, ci, co, ex) follow uniform distribution, i.e., they
are assumed to be constants. All the chosen parameters are given/estimated
in appendix. This case will serve as a reference case for the study of the
effects of resting volume fractions and other parameters in the next section.

3.1. Water/blood circulation
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Figure 2: The dynamics of pai and pex at two points r = 0.53, 1.

The values used in the initial conditions at t = 0 are set to be consistent
with the algebraic constraints and the boundary conditions for pressures. At
t = 2, most of unknowns have reached the steady state. Figure 2(a) for the
dynamics of artery pressure pai at two locations r = 0.53, 1. The pressure pex
in Figure 2(b) reaches the steady state slower (at about t = 200), because
it is more sensitive to the small variations of volume fractions ηk during the
dynamics via the effective permeability κ̄k in (39)6.
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Figure 3: The spatial profiles of volume fractions ηj and pressures pj in domain Ωj at
steady state.

Next, we illustrate the steady-state profiles with t = 200 in the dimen-
sionless geometric region 0.14 < r < 1. Figure 3(a) shows profiles of volume
fractions in the five vascular domains, which are almost uniform since the dif-
ference ηk − ηrek is quite small (with max around 2.5 ∗ 10−3) due to the large
moduli λ̃k. The remaining percentage of about 85% is for ηex (not shown in
the figure). Figure 3(b) shows the pressures in the six domains, where for
convenience of comparison we have defined

pπex = pex +∆π̃ = pex + π̃v − π̃ex. (51)

It shows that the pressures in the two artery domains drop along the di-
rection of blood flow, and the pressure in capillary domain lies between the
connected artery and vein domains. The modified extravascular pressure pπex
lies between the artery and vein pressures, and the sign of the difference be-
tween pπex and vascular pressures will determine the direction of water leak
through blood vessel wall.

Figure 4(a) shows the blood flow rates going through capillaries between
the vascular domains.These are the dominant terms in the governing equa-
tions and are to be balanced with the in-domain flows through arteries and
veins. The signs of Qi,j in Figure 4(a) indicate that blood flows from artery
to capillary and then from capillary to vein. Figure 4(b) shows the dimen-
sionless in-domain blood/water velocities, which are defined as

ur
j = −β̃jηj

∂pj
∂r

, j = ai, ao, v, ur
ex = −κ̃ex

∂pex
∂r

. (52)
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Figure 4: Blood flow rates between vascular domains, and the in-domain velocities.

The sign of velocity in Figure 4(b) is consistent with the pressure drops in
Figure 3(b) and we have the following expected observations

• for Ωai, blood flows from inner boundary r = R0 (i.e., the CRA) to
outer boundary r = R1 with decreasing velocity;

• for Ωao, blood flows from outer boundary (i.e., the PCA) to the inner
boundary with decreasing velocity;

• for Ωv, blood flows from the outer boundary to the inner boundary
(i.e., the CRV) with increasing velocity;

• the water flow in Ωex is negligibly small compared with scale of blood
flow.

The maximum velocity occurs at the start of artery (CRA) in Ωai, where
the pressure drop is most significant. The velocity at inner boundary in Ωv

is also relatively large, since the blood will eventually merge and drain from
the system through the CRV. The scaling factor for the velocity is

R1

t0
= 0.79cm/s, (53)

and the maximum velocity with units in this case is 1.1 cm/s, consistent with
the scales in [14, 26, 25, 43]. Figure 5 shows the water flow rates across the
blood vessel wall, which are much smaller than the blood flow rates in Figure
4(a) and expected for the normal parameters. But the water flow rates could
change significantly under pathological conditions.
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Figure 5: The water flow rates across the blood vessel wall between the vascular domains
and the extravascular domain.

3.2. Oxygen transport
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Figure 6: Relation between total concentration C̄k and dissolved concentration Ck, and the
relation between consumption rate Sex/S

max
ex and dissolved concentration Cex in tissue.

To better understand the numerical results, we first show the two func-
tions C̄k(Ck) in the vascular domains and Sex(Cex) in the extravascular do-
main. Figure 6(a) shows relation between the total concentration C̄k and
dissolved concentration Ck with Hk = H0 = 66.7 in vascular domains, which
implies that the majority of the oxygen is stored in the RBC. With Ck = 1, we
have C̄ ≈ 66, so the dissolved oxygen is only about 1.5% of the total oxygen
while the oxygen stored in RBC is about 98.5% as expected [7]. Figure 6(b)
shows the relation between the normalized consumption rate Sex/S

max
ex and
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the oxygen concentration Cex with C̃1/2 = 0.016, showing that the consump-
tion rate is maintained at relatively high level (e.g., above 95% of maximum)
if Cex is maintained at reasonable values (e.g., Cex > 0.3).
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Figure 7: Dynamics of concentrations at r = 0.53 and the steady-state profiles of concen-
trations.

Figure 7(a) shows the dynamics of concentrations at a middle point
r = 0.53, which implies that they already reach the steady state at t = 200.
Figure 7(b) shows the profiles of dissolved concentrations Ck in six domains
at steady state (at t = 200). The highest two curves are for the two artery
domains, and the concentrations decrease along the direction of blood flow.
The middle two curves for the capillary domains lie between those for the
artery and vein domains. This is expected since the major exchange and
supply of oxygen occur via the capillary domains. The oxygen concentra-
tions in the vein and extravascular domains have similar values and are the
lowest among the domains. Figure 7(c) shows the upwind concentrations
Cupwind

co,v , Cupwind
ci,v before entering into the vein domain (see (33)), and in this
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reference case they are equal to Cex. The total oxygen concentrations in Fig-
ure 7(d) follow similar shape as in Figure 7(b), but at a much larger order of
magnitude.
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Figure 8: Oxygen exchange rates between different domains due to diffusion and convection
mechanisms.

Figure 8 shows the oxygen exchange rates between different domains, in-
cluding the diffusion mechanisms (related to D̃i,j and l̄i,j) and the convection
mechanisms (related to blood/water flows Qi,j). In the vascular domains, the
oxygen exchange follows the direction of blood flow from artery to capillary
and then to vein by the signs of Si,j in Figure 8(a,b), and the convection
dominates the exchange process by the magnitude in Figure 8(a,b). The
supply of oxygen to extravascular domain is mainly through diffusion across
blood vessel wall compared with convection, shown in Figure 8(c,d). Figure
8(c) also shows that the two capillaries domains provide the major supply of
oxygen to extravascular domain, and the total consumption rate Sex per unit
volume is relatively stable. The drop for Ck (k = ai, ao) in artery domains in
Figure 7(b) is also due to the diffusion of oxygen through blood vessel wall.
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In summary, in the present model, the pathway of supply of oxygen is mainly
from artery to the capillary by convection and to the extravascular domain
(tissue) by diffusion, consistent with common sense.
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k /(C
n
k + C̃n

50) in (48) in the five vascular domains

Figure 9(a) shows the profiles of oxygen binding capacity Hk in vascular
domains, indicating that they are almost a constant (i.e., H0) for all five
vascular domains, which verifies the argument that they can be assumed as
a constant under the normal physiological conditions when water leak across
blood vessel wall is small. Figure 9(b) shows the profiles of oxygen saturation
SO2 in the five vascular domains, which are quite similar in shapes to those
in Figure 7(d) since they almost differ by a scaling factor H0. At a fixed
location, there is oxygen saturation drop (about 20 %) from artery to vein
through the capillary, due to capillary oxygen exchanges by diffusion (see
Figure 8(c)). For example, at r = 0.53, the oxygen saturation drops by 19%
(from 97% to 78%) from artery Ωai to vein Ωv through capillary Ωci. When
it is multiplied by Hci, the bound-oxygen drops by 12.8, more than 20 times
the drop of the dissolved oxygen 0.55 (from 0.97 to 0.42). The oxygen supply
is mainly released from the bound oxygen stored in the hemoglobin in RBCs.

In summary, for the reference case with uniform distribution of resting
volume fractions, the blood supply and oxygen delivery is sufficient and stable
from two sets of vasculature network, and the pathways are as expected.
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4. Effects and sensitivity of parameters

4.1. Effects of resting volume fractions

The resting volume fractions ηrej (r) in (43) depends on the structural
information of blood vessels. Without detailed information, we assumed
uniform (constant) profile for ηrej (r) in the previous section. We now consider
two cases with different volume fraction profiles.

In the first case, we assume a Gaussian profile for ηrej (r), called Gaussian
case 1 later. On the one hand, when the main branch of blood vessel divides
into two sub-branches, the total cross sectional area of blood vessel will in-
crease (e.g., 1.2 fold), so the volume fractions will increase according to the
level of branches; on the other hand, some branches will terminate at certain
length, so the volume fractions will decrease after certain branching level. We
assume that the two artery resting volume fractions follow Gaussian profile
with different mean and standard deviation

ηreai (r) ∼ N (0.4, 0.2), ηreao(r) ∼ N (0.7, 0.2), (54)

roughly speaking the maximum reaches at around the 1/3 of the domain
from the start of artery. Suppose the capillaries and the vein at resting state
are responding to the profiles of the two sets of arteries

ηreci ∼ N (0.4, 0.2), ηreco ∼ N (0.7, 0.2), ηrev ∼ ηreci + ηreco . (55)

A scaling constant will be multiplied on the profiles of each volume fraction
ηj (j = ai, ao, ci, co, v) to ensure the weighted average value over the whole
domain is the same as those in the uniform case.

The volume fractions ηj at steady state (at t = 200) are shown in Figure
10(a), which follow similar resting Gaussian profiles for ηrej , since the differ-
ence between them is quite small (with max around 3∗10−3) due to the large
moduli λ̃j. Figure 10(b) shows the pressure profiles, where one major differ-
ence from the uniform case is that the total pressure drop in artery domain
Ωai is smaller but that in vein domain Ωv is larger.

Figure 11(a) shows the flow rates between capillary domains and other
vascular domains, which follow similar Gaussian profiles as the volume frac-
tions in each capillary domain, e.g., the maximum values are also aligned
at similar spatial locations r = 0.4, 0.7. The in-domain velocities in Figure
11(b) follow similar trend as the uniform case, but the velocity in vein Ωv is
larger at r = R0 since the volume fraction (equivalently total cross-sectional
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Figure 10: Profiles of volume fractions and pressures at steady state in Gaussian case 1.
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Figure 11: The flow rates and velocities in the Gaussian case 1

area) ηv is much smaller at r = R0 than that in the uniform case. Table
2 shows the average values of these flows rates in Figure 11(a) and the two
artery boundary flow rates defined in (44). The change in average values
is partly due to the fact that Ωao contributes more to inner region (small
r) while Ωai contributes more to outer region. The blood supply from the
Ωai boundary (i.e., the CRA) is significantly increased, while that from the
Ωao boundary (i.e., the PCA) stays almost the same. Therefore, the rest-
ing volume fractions strongly affects the blood supply and exchanges in the
vasculature.

For oxygen transport part, Figure 12 shows the profiles of of Ck and
Hk at steady state (t = 200). Figure 12(a) shows larger variations for the
concentrations compared with the uniform case, where the low concentration
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Qai,ci, |Qv,ci| Qao,co, |Qv,co| Q∗
ai Q∗

ao

Uniform Case 0.0076 0.0072 0.0034 0.0034
Gaussian case 1 0.0164 0.0055 0.0060 0.0034
Gaussian case 2 0.0332 0.0068 0.0090 0.0038

Table 2: Average values of capillary flows rates over the whole region and the two artery
boundary flow rates in three cases.
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Figure 12: The profiles of Ck, Hk at steady state t = 200, with Gaussian case 1.

of Cex near r = 1 indicate insufficient supply of oxygen there. Figure 12(b)
shows that Hk in arteries and vein are almost the normal constant, but the
Hci, Hco in capillary domains near boundary has significant variations since
the water leak is comparable with the small blood exchanges there.

The pathways of oxygen supply to the extravascular domain are similar
to the previous uniform case, but Figure 13 shows larger spatial variations
for oxygen exchange rates in different domains. The oxygen exchange in
Figure 13(a) between capillary and other vascular domains follow Gaussian-
like profiles, since it is convection dominant (see Figure 11(a)). Figure 13(b)
shows that the two capillary sets due to terms Sci,ex, Sco,ex serve different
regions, one for inner and the other for outer region, and their sum is almost
the total oxygen consumption Sex. The total oxygen consumption Sex has a
dip of about 10% near r = 1, which means insufficient supply of oxygen in
that region, consistent with small Cex in Figure 12(a).
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Figure 13: The oxygen exchange rates in Gaussian case 1.
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Figure 14: The profiles of volume fractions and oxygen exchange rates in Gaussian case 2.

In the second case, called Gaussian case 2, we consider

rηreai (r) ∼ N (0.4, 0.2), rηreao(r) ∼ N (0.7, 0.2),

rηreci ∼ N (0.4, 0.2), rηreco ∼ N (0.7, 0.2), ηrev ∼ ηreci + ηreco .
(56)

which means the absolute values of cross-sectional areas of blood vessels
follow the Gaussian profiles, where the extra factor r is due to the polar
coordinates used. The volume profiles at steady state are shown in Figure
14(a). The blood supply from boundary is also increased as shown in Table
2, particularly for the Ωai boundary. The insufficiency of oxygen supply near
r = 1 is more severe in this case, shown in Figure 14(b).

In the above two cases, we find that (1) the structural profiles of vas-
culature play essential roles in the overall blood supply and distribution of

29



exchanges, and (2) although the total blood supply from boundary is in-
creased with Gaussian cases, the supply of oxygen could still be insufficient
in some local region due to the uneven exchanges. To simulate more practi-
cal situations, more information on the blood vessel sizes and distributions
is needed. Also, the maximum consumption parameter Smax

ex could vary in
space, e.g., depending ion channel/pump distributions, so the distribution
of resting capillary volume fractions could relate to the biological need to
ensure stable oxygen supply.

4.2. Effects of leak coefficients

In this subsection, we consider the effects of the leak coefficients Lj,ex in
(7). The changes of these coefficients could be due to the changes of prop-
erties of blood vessels walls and could relate to damages from pathological
conditions [9, 12, 13]. Since the capillary change/damage could occur more
easily, we mainly focus on the coefficients Lci,ex, Lco,ex for illustration.

Parameters Lci,ex, Lco,ex 40 fold 500 fold
% change of ∆pai, Q

∗
ai 1.5%,1.6% 10.1%,10.7%

% change of ∆pao, Q
∗
ao -0.8%, -0.4% 3.6%, 5.9%

% change of ∆pv, Q
∗
v 0.5%, 0.6% 7.7%, 8.3%

average Qci,ex, Qco,ex 32 fold 118 fold

Table 3: Changes of pressure drops ∆pj , boundary flow rates Q∗
j (j = ai, ao, v), and

average water exchange rates by changing the parameters Lci,ex, Lco,ex simultaneously.

For water/blood circulation part, Table 3 and Figure 15 show the changes
of pressure drop and water flow rates by gradually increasing Lci,ex, Lco,ex

simultaneously. We find

• There are more significant changes for pressure drops ∆pk = |pk(R0)−
pk(R1)| and boundary fluxes Q∗

k (k = ai, ao, v) after the parameters
Lci,ex, Lco,ex reach some threshold (e.g., at the value of 10−2 µm/(Pa s);
about 40 fold of original value), shown in Figure 15(a,b). This is when
the water exchange rates Qci,ex, Qco,ex become comparable with other
flow rates between different domains as shown in Figure 15(c,d). For
example, Table 3 shows that the boundary flux Q∗

ai from CRA increases
by 1.6 % with 40 fold parameter increase, but increases by 10.7% with
500 fold parameter increase.
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• There is an additional major pathway for water circulation after the
threshold

Ωci → Ωex → Ωco, Qci,ex > 0, Qco,ex < 0, (57)

which is based magnitudes and signs of quantities in Figure 15(c,d),
e.g, Qci,ex > 0, |Qai,ci| > |Qv,ci|, |Qao,co| < |Qv,co|. Table 3 and Figure
15(c) show that there is almost proportional change ofQci,ex, Qco,ex with
respect to the parameter change initially before the threshold, since
they are small and unaffected by other flow rates. After the threshold
when they are comparable with other flow rates in Figure 15(d), their
changes will interact with other flow rates and the additional pathway
will play important roles on the blood/water circulation.
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Figure 15: The dependence of pressure drops, boundary flow rates, and average exchange
rates on the leak coefficients Lci,ex, Lco,ex with unit µm/(Pa s).

For the oxygen transport part, we observe the following:
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• Figure 16(a) shows that there are significant increases for the average
concentrations Ck (k = ci, co, ex, v) after some threshold for the pa-
rameters Lci,ex, Lco,ex (e.g., 10−2 µm/(Pa s)), which is a consequence of
the increased boundary flow rates in Figure 15(b). Figure 16(b) shows
that oxygen binding capacity Hci increases and Hco decreases signifi-
cantly after the threshold, as a consequence of the additional pathway
of water circulation in (57).

• Figure 17(a) shows that the oxygen consumption is kept at steady
level, with less than 0.15% change over the studied range of parameters
Lci,ex, Lco,ex. Figure 17(b) show that the oxygen supply from capillary
domain Ωci increases while that from capillary domain Ωco decreases
(so the sum kept almost constant), as a consequence of the additional
pathway of water circulation in (57).
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Figure 16: Percentage changes of average concentrations Ck and average oxygen binding
capacities Hk by changing the leak coefficients Lci,ex, Lco,ex.

In summary, the water leak coefficients through capillary wall will have
strong impacts on blood circulation after it passes a threshold, due to ad-
ditional pathway of water circulation. This in turn affects oxygen delivery,
with redistributed supply from the two sets of capillaries.

Remark: The effects of leak coefficients Lai,ex, Lao,ex, Lv,ex in arteries and
vein have very similar features as the above case, except the following differ-
ences. With simultaneous changes of these three parameters, the threshold
is smaller and at about 10−3 µm/(Pa s) since the pressure differences across
blood vessel wall of artery and vein is larger. The additional pathway for
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Figure 17: Percentage changes of average oxygen consumption Sex and the oxygen supply
from two capillary domains by changing the leak coefficients Lci,ex, Lco,ex.

water circulation is

Ωai,Ωao → Ωex → Ωv, Qai,ex > 0, Qao,ex > 0, Qv,ex < 0. (58)

For the oxygen transport part, the quantities Hk in different domains are
affected due to (58).

4.3. Effects of blood viscosity µb

In this subsection, we focus on the effects of blood viscosity µb, which
could increase due to aging or other disease progress. For the blood/water
circulation, by gradually changing µb by ±20%, we observe that the param-
eter µb has almost a scaling effect for the water/blood flow. The pressure
profiles in Section 3.1 stay the same, but all the flow rates change by a factor
of 1/µ. Figure 18 shows the percentage changes of boundary flow rates Q∗

k

(k = ai, ao, v) with changes of µ, which align with the change of 1/µb for
illustration of scaling effect. This scaling effect can also be seen from the
governing equations and parameter relations.

For the oxygen transport, Figure 19(a) shows that the average concen-
trations for Cj (j = ci, co, v, ex) over the region decrease as µ increase, for
example, they decrease by 6-8% with µ increased by 20 %. It is a consequence
of decreased blood supply in Figure 18. But the difference between the cap-
illary concentrations and extravascular concentrations is relatively stable, so
the oxygen exchanges from capillary to the extravascular space only drops
slightly (< 1% with µ increased by 20 %), as shown in Figure 19(b). The
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Figure 19: oxygen with changing µ

total consumption is also kept relatively stable in Figure 19(b), with uniform
case for resting volume fractions.

Remark: With the Gaussian case 1, compared with the values in Figure
13(b), the average Sex is decreased from 0.192 to 0.189 with µ increased by
20 %, and locally near r = 1, Sex is impacted significantly, decreasing from
0.175 in to 0.146. This is expected since less boundary blood supply will
have more severe effects on the local region with limited vasculature.

Next, we investigate how much the pressure at artery boundary should be
adjusted to maintain the normal blood supply when the µ increases. At the
boundary, fixed flow rates Q∗

ai, Q
∗
ao in (44) are used to replace the pressure

boundary conditions, and they are set to be the same as the reference case.
Table 4 shows the pressure adjustments at artery boundary to maintain blood
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supply with increase of µ. Pressures have to increase by 8.2% (3.3 mmHg)
for Pai,0 and by 6.5% (2 mmHg) for Pao,1 when µ is increased by 20%. In the
uniform case, the oxygen delivery is not affected much, but for the Gaussian
cases the oxygen supply in local regions will be affected.

In summary, increased viscosity has a scaling effect on blood circulation
according to the decreasing factor 1/µb. This in turn affects the oxygen
concentrations, and could worsen the local oxygen delivery for non-uniform
cases. Biologically, when µ is increased under various factors, as a remedy
for sufficient blood supply and oxygen delivery , the blood pressure in artery
has to increase correspondingly.

increase of µ 0 10% 20%
Pai,0 2 2.0834, (4.2%, 1.7 mmHg), 2.1648, (8.2%, 3.3 mmHg)
Pao,1 1.5 1.5488, (3.3%, 1 mmHg) 1.5974, (6.5%, 2 mmHg)

Table 4: Pressure adjustments at artery boundary to maintain blood supply with increase
of µ.

4.4. Effects of periodic arterial pressure
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Figure 20: Periodic profiles of boundary arterial pressures for Pai,0, Pao,1.

In this subsection, we consider the case of periodic changes of arterial
pressure due to the pulse pressure. Figure 20 shows the periodic profiles of the
dimensionless boundary arterial pressures Pai,0(t) and Pao,1(t) in (12,14) used
as boundary conditions of the following simulation. The profile of variation
is constructed roughly based on a shifted function t ∗ e−t in the first period,
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which has a shape similar to a pulse profile. The period is T=8, which is 0.8
seconds with units. The total variation within one period is about 0.365, i.e.,
the pulse pressure between the systolic and diastolic pressures is about 7.3
mmHg with units. The dimensionless average values (mean arterial pressures,
MAP) for Pai,0, Pao,1 over one period are the same as the reference values 2
and 1.5 (i.e., 40 mmHg and 30 mmHg with units), which are located at 1/3
of total variation and therefore consistent with the common definition. For
illustration, we chose our curves in Figure 20 based on profiles of pressures
and flow rates in [26, 44, 45, 46, 47, 43] and the knowledge of MAP in
[28, 6, 47]. More specific references may be available for more accurate curves
that we have not yet found.
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Figure 21: dynamics of the three pressures pai, pci, pv at three locations r = 0.19, 0.53, 0.96.

Figure 21 shows the dynamics of the three three pressures pai, pci, pv at
three typical locations r = 0.19, 0.53, 0.96 (one in the middle, two close to
two ends). They all show periodic oscillations similar to the given profile in
Figure 20, but with different magnitude of variations. The periodic variations
in arteries are the largest, and the variations in veins are the smallest in
magnitude. The other pressures show similar trend and variations. The
volume fractions show small periodic adjustments due to the force balance
and changes in pressures.

Figure 22 shows the spatial profiles of all pressures in the whole region at
two particular times when the boundary arterial pressures are maximum and
minimum (systolic and diastolic pressures respectively). The spatial profiles
and their relative positions for pressures are quite similar to that in Figure
3, but move up and down simultaneously and stably according to dynamic
changes in boundary arterial pressures in Figure 20.

Figure 23 shows the dynamics of the boundary blood flow rates, which
has a similar periodic profiles as the given boundary arterial pressures. The
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Figure 22: spatial profiles of all pressures in the whole region at two particular times (i.e.,
systolic and diastolic pressures respectively).
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Figure 23: The dynamics of the boundary blood flow rates in the periodic case.

average value of blood flow rates over one period is computed to be Q∗
ai =

Q∗
ao = 0.0034, the same as those in Table 5. So for the blood circulation, the

uniform case in Section 3.1 can be considered as the averaged version of the
case with periodic arterial pressure.

Figure 24 shows the dynamics of the concentrations and oxygen consump-
tion at r = 0.53. The concentrations show periodic variations but the total
oxygen consumption is relatively stable with very small changes. The small
change for oxygen consumption is due the relation Sex(Cex) used in Figure
6, because even with changes of Cex (say in [0.4,0.5]), the consumption Sex

stays at almost stable constant level. Then, as a consequence of stable con-
sumption in Figure 24(b) and varying (but sufficient) flow rates in Figure 23,
the concentrations will have more significant variations, i.e., with more blood
flow (and RBCs) from boundary, the concentrations do not need to drop too
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Figure 24: The dynamics of the concentrations and oxygen consumption at r = 0.53.

much to satisfy the stable oxygen consumption. We also notice there is a de-
lay in the timing of peak values of concentrations compared with the timing
of peak values of blood flow rates (i.e., the timing of systolic pressure).

In summary, with periodic pressure conditions, the blood circulation and
oxygen concentrations show similar periodic variations in time and stable
spatial profiles. The uniform case is almost the averaged version of periodic
case.

4.5. Effects of other parameters

In this subsection, we study the effects of a few other model parameters,
including λj, βj, δj in blood circulation part and Smax

ex , C1/2, Cai,0, H0 in the
oxygen delivery part.

First, we study the effects of the modulus λj (j = ai, ao, v, ci, co) of blood
vessel wall in the force balance (11). Since the diameters of blood vessels
could change in response to the environment changes (or stimulus like oxy-
gen) [6, 16, 23], from modeling perspective, this could be reflected by the
response of blood wall property to the environment changes. For example,
in the present framework, the feedback effect of oxygen on the blood flow
could be incorporated through the dependence of λj on oxygen concentra-
tions, since the volume fractions (reflecting the diameter of blood vessels)
will change accordingly and influence the blood flow. Here, we illustrate the
effect of λj (j = ai, ao, v, ci, co) by reducing them simultaneously. Table 5
shows the comparison of the reference uniform case and the case when all λj

are reduced by 50%, showing that the volume fractions for ηj, particularly
for ηai, ηci, are increased, which in turn increases the blood supply from the
boundary, particularly for Q∗

ai. The main reason is that the permeabilities
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κ̄j, K̄j in (41) between vascular domains will increase with the increased vol-
ume fractions (or diameters of blood vessels), leading to more blood flow.
The influence on oxygen delivery is not as significant, since in the uniform
case, the blood supply and oxygen supply is quite sufficient and stable, so
it does not need the increased blood flow to help out. We also tested the
Gaussian case 1, when λj are increased by 50%, the minimum value of Sex

near r = 1 in Figure 13(b) increases from 0.1748 to 0.1794, so in that case
the change of λj can help the local oxygen delivery.

ηai ηao ηci ηco Q∗
ai Q∗

ao

with λj in Uniform case 0.0143 0.0257 0.0070 0.0131 0.0034 0.0034
reduce λj by 50% 0.0160 0.0262 0.0077 0.0135 0.0042 0.0035

Table 5: Effects of λj in the uniform case.
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Figure 25: Pressure profiles and blood exchange rates with local change of βai, which is
reduced to 10% of original value near r = 0.6.

Next, we analyze the effects of partial blockage of blood vessels in some
local region in either artery or capillary, which could be caused by patho-
logical conditions such as arterial stenosis [26, 6]. The blockage leads to
decreased permeability, and for illustration we take βai and δci as the effec-
tive parameter for the blockage of artery and capillary. In Figure 25, we
set βai to be 10% of original value (i.e., 90% decrease) in a small interval
near r = 0.6. Figure 25(a) shows that the pressures pai and pci have a more
significant drop near r = 0.6 to counterbalance some blockage effect. The
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Figure 26: Blood exchange rates and oxygen supply with local change of δci, which is
reduced to 10% of original value near r = 0.6.

average value of blood flow rates Qai,ci and Qv,ci after the blockage location
(the downstream regions) are reduced by 26% (from 0.0065 to 0.0048), shown
in Figure 25(b). The boundary input Q∗

ai is reduced by 15% (from normal
value 0.0034 to 0.0029). For the oxygen delivery part, the overall oxygen
delivery/consumption is still quite stable without observable change, since
the overall blood supply is still sufficient and there is redistribution of oxy-
gen supply in the affected region, i.e., more supply is from the other capillary
domain Ωco. We have also tested the case when βai is reduced by 50% locally,
and the changes for Qai,ci, Qv,ci and Q∗

ai are quite small (< 3% decrease). In
Figure 26, we set δai to be 10% of original value in a small interval near
r = 0.6. The flow rates Qai,ci and Qv,ci are reduced by about 80% (from
0.0071 to 0.0015) locally near r = 0.6, while other regions are almost unaf-
fected. The oxygen consumption only drops slightly ( about 1%) in the local
region near r = 0.6, since it is compensated by more oxygen supply from the
undamaged capillary Ωco. We have also tested the case when both δci, δco are
reduced by 90%, the reduction in flow rates are similar and at about 80%,
but the oxygen consumption only drops by about 8.4%. In brief, the system
is not very sensitive to permeability changes mainly because of the present
of two capillary networks and the relation Sex(Cex) with small C1/2 in Figure
6(b).

Next, we analyze the effects of the parameters Smax
ex and C1/2 in the

Michaelis-Menten formula (25) for oxygen consumption. Due to lack of
data, these two parameters are estimated for different tissues in appendix
[25, 24, 18], so they do not necessarily reflect the real situation for optic
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nerve. These parameters are biologically important, for example, the max
demand Smax

ex could change because of high metabolism or neuron activities.
We examine a case when Smax

ex is increased by 50%. By the first two rows
in Table 6 for Uniform case, the consumption of oxygen also increases corre-
spondingly by roughly 50% on average and keeps stable spatial profile, but
the concentrations Cex, Cv are decreased accordingly as more oxygen from
RBCs has to release to meet the increased need. For Gaussian case 1, the
last two rows in Table 6 show similar increased average consumption and
decreased average concentrations Cex, Cv. But locally near r = 1, the min-
imum oxygen consumption is affected significantly and reduced to 13% of
average value, since the mismatch between demand and supply is worsened
as the blood supply is insufficient there. The parameter C1/2 influence the
shape of the consumption curve in Figure 6(b), with increased C1/2 the curve
will have a smoother transition and lie below the original curve. So with in-
creased C1/2, the average consumption will be smaller for uniform case, and
more local regions will be affected for oxygen delivery in the Gaussian case 1
due to insufficient blood supply and more sensitive changes of Sex with Cex

in certain range (say [0.2, 0.4]). In brief, increased Smax
ex or C1/2 will worsen

the oxygen supply for local regions with insufficient blood supply.

average Cex average Cv average Sex min Sex

reference Uniform case 0.424 0.429 0.193 0.193
increase Smax

ex by 50% 0.357 0.351 0.287 0.287
reference Gaussian case 1 0.456 0.378 0.192 0.175
increase Smax

ex by 50% 0.379 0.308 0.272 0.035

Table 6: Effects of Smax
ex by increasing it by 50%.

Finally, we study the effects of parameters Cai,0 (we set Cai,0 = Cao,1)
and H0 in (35,36), which are related to the supply of oxygen from artery
boundary. Biologically, the oxygen content from boundary artery could drop
due to various conditions like anaemia (i.e, low H0) and high altitude or
carbon monoxide poisoning (i.e., low Cai,0). For the uniform case, when H0

or Cai,0 is decreased by 20%, there is only negligible impact on the oxygen
delivery, e.g., the consumption rate Sex has negligible change (deceased by
< 1%), because the supply of blood flow and hence oxygen is still sufficient.
For the Gaussian case 1, Table 7 shows the comparison when the Cai,0 or H0
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is decreased by 20%. With Cai,0 decreased by 20%, the profile and values of
Sex have negligible change (< 1% for mean and minimum values), while the
concentrations decrease by moderate percentage (e.g., 5-7%). That means
the overall profiles of concentrations are shifted downward to maintain rela-
tively stable oxygen consumption. With H0 decreased by 20%, the oxygen
consumption/supply in some local region will be affected more significantly,
as the minimum Sex drops from 0.175 to 0.146 near r = 1. This is because the
oxygen in hemoglobin (in RBCs) is the main source of oxygen supply, and if
hemoglobin concentration is decreased (here reflected by H0), the supply of
oxygen is worsened in local regions with insufficient blood supply. The con-
centrations like Cex, Cv will be decreased accordingly (by about 10%) since
this allows more oxygen release from hemoglobin to maintain roughly stable
Sex. Overall, decreased H0 has more impact on local regions compared with
decreased Cai,0.

average Cex average Cv average Sex min Sex

reference Gaussian case 1 0.456 0.378 0.192 0.175
decrease Cai,0 by 20% 0.421 0.359 0.191 0.172
decrease H0 by 20% 0.414 0.339 0.189 0.146

Table 7: Effects of H0 and Cai,0 in the Gaussian case 1.

5. Conclusions

In this work, we have developed a multi-domain model for blood circu-
lation and oxygen transport in optic nerve, with biological structures and
various physical mechanisms incorporated. The arteries, veins and capil-
laries for vasculature are treated as different domains in the model for the
same geometric region. Simulated baseline results show mechanisms and
scales consistent with literature and intuition. Then, the effects of various
important model parameters (relevant to pathological conditions) are investi-
gated in detail, and the model provide insights into the possible implications
from those parameter changes. Vasculature distribution (or resting volume
fractions here), leak coefficients after a threshold, blood viscosity, maximum
oxygen demand, and hemoglobin concentrations have significant impacts on
the blood circulation and oxygen delivery, particularly for local regions with
insufficient blood supply.
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There are limitations for the current model and possible generalizations
from this framework. This work focuses on a 1D case based on optic nerve
geometry and simplicity considerations, but it can be extended to high-
dimensional cases when more biological structural information is available.
It could be extended for retina as well, where more image/experimental data
are available. The coupling here in the model is only between blood circu-
lation and oxygen transport, but could include ion transport mechanisms in
different subdomains of by the tissue domain.

Appendix A. Parameter values and estimates

Appendix A.1. Parameters in blood/water circulation

Estimate of βj and M0
j,ex

First, we estimate the values of βk (k = ai, ao, v) in (3), and we omit
the subscript k in some derivation below. In Poiseuille’s flow through a
cylindrical blood vessel of radius rbv, the permeability κ (the κj in the formula
of (2)) is derived as [15, 16]

κ =
1

8
r2bv.

The volume fraction η is given by [15]

η = πr2bvNbvL/V,

where V is a control volume, L and Nbv are the length and number of parallel
blood vessels in the control volume. So, we can write them as

r2bv = βη, β =
V

πNbvL
, κ =

1

8
βη,

where the last one is the formula (3) used in the maintext, and the first
formula will be used to estimate the coefficient β. Here we assume constant
β for simplicity (of course, β could be varying as it characterizes the structural
information about distribution of branches) and estimate it by choosing an
average radius of blood vessel for each domain. For example, we choose
average rbv = 30µm for vein domain and get

βv ≈
r2bv
ηrev

=
(30µm)2

0.1
= 9000(µm)2.
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Table A.8: The parameters in blood circulation

parameter value references
Radius of central vessels R0 113 µm [15]
Radius of optical nerve R1 790 µm [15]

Tissue/Extravascular pressure Pex,1 2.92 mmHg [15]
CRA pressure Pai,0 40 mmHg [15]
PCA pressure Pao,1 30 mmHg [15]
CRV pressure Pv,0 20 mmHg [15]

osmotic pressure constant πex 8 mmHg [16]
osmotic pressure constant πj in vessel 28 mmHg [16]

vascular volume fraction
∑

ηrek 15.67 % [15]
capillary, averaged ηreco + ηreci 1.9 % =1.27+ 0.63 % [48]
volume fraction, average ηrev 10 % [15, 16]

volume fraction, average ηreao + ηreai 3.77 %= 2.51+1.26 % [15, 16]
area coefficient M0

v,ex 0.021 /µm estimate

area coefficient M0
ao,ex 0.016 /µm estimate

area coefficient M0
ai,ex 0.011 /µm estimate

area coefficient M0
co,ex 0.075 /µm estimate

area coefficient M0
ci,ex 0.053 /µm estimate

permeability coefficient βv 9000 (µm)2 estimate
permeability coefficient βao 16000 (µm)2 estimate
permeability coefficient βai 31500 (µm)2 estimate

permeability κex 4× 10−4(µm)2 [3]
tortuosity τex 0.9 estimate

tortuosity τai, τao, τv 0.5 estimate
leak coefficient Lao,ex, Lai,ex, Lv,ex 1× 10−6 µm/(Pa s) [3]
water leak coefficient Lci,ex, Lco,ex 2.54× 10−4 µm/(Pa s) [39]

permeability coefficient δai 0.39 /(Pa s) estimate
permeability coefficient δao 0.2 /(Pa s) estimate
permeability coefficient δv 0.11 /(Pa s) estimate

permeability coefficient δci, δco 3.25, 1.61 /(Pa s) [48]
viscosity µb, µex 0.011 Pa s [15, 25, 49]

modulus λj, j = ai, ao, ci, co 7.8× 105 Pa [15]
modulus λv 1.5× 105 Pa estimate

resting pressure P re
ex 2.92 mmHg estimate

resting pressure P re
ai , P

re
ao 25 mmHg estimate

resting pressure P re
v , P re

ci , P
re
co 20 mmHg estimate
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Similarly we choose rbv = 20µm for two artery domains and get βai, βao

respectively as in Table A.8. We also choose rbv = 3µm for capillary domains
to get βci, βco (although not directly used in maintext), which will be used
to estimate M0

ci,ex, δci,M
0
co,ex, δco.

Next, we estimate M0
j,ex defined in (6), and omit j, ex in the general

formula below. By definition, the area of blood vessel wall per unit control
volume is

M = 2πrbvNbvL/V = 2
√
1/β

√
η = M0√η ⇒ M0 = 2

√
1/β,

where the definitions of η, β are used in the second equality. Then, for each
domain, we have the estimate

M0
j,ex = 2

√
1/βj, j = ai, ao, v, ci, co.

Estimate of δj
The estimate of δj is also based on βj. For example, δai is estimated as

δai =
1

8

βaiτai
µb

1

(∆r)2
≈ 0.39/(Pa s)

where ∆r = R1 − R0 = 677µm is used. Similarly the same ∆r is used for
estimates of δao, δv. For capillary domains, we have used ∆r = 50µm to esti-
mate δci, δco, because capillary network is local and connects the artery and
vein domains. The estimated δci, δco have similar values as those calculated
from [48].

Other estimates
The total resting volume fractions for two arteries are taken from [15, 16].

We split it as two parts, 2/3 for the domain Ωao and 1/3 for the domain Ωai,
because it is believed that the artery from PCA is the primary component
[15, 35]. Similarly, we adopted the split the total capillary resting volume
fraction (from [48]) as two parts, 2/3 and 1/3 respectively for the two capil-
lary domains Ωco,Ωci. The modulus λj for arteries are taken from [15] (see
also [43, 40]), and the λv is chosen to be 5 times smaller than that, because
the compliance (related to the inverse of λjηj here) is about 24 times larger
in veins [16]. The tortuosity in blood vessels are chosen as 0.5 because this is
related to the relative orientation/angle of blood vessels to the radial direc-
tion, while it is set as 0.9 for extracellular space since it is almost connected
in every direction.
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Appendix A.2. Parameters in oxygen transport

Since we directly used the concentration of oxygen instead of partial pres-
sure of oxygen in our model, the values from the following references will be
converted by multiplying oxygen solubility coefficient αO2. After conversion,
the max consumption rate is 6∗10−4 ml O2/ml/s in [25] for retina, and some
consumption rate in the range [1, 42] ∗ 10−4 ml O2/ml/s is used in [24], the
value 23 ∗ 10−4 ml O2/ml/s is used in [18] for the brain. Based on some
simulation, in order to be compatible with estimates of blood flow velocity
and normal oxygen concentrations (about 40 mmHg partial pressure multi-
plied by αO2) in vein, we choose a relatively larger one 6 ∗ 10−3 ml O2/ml/s
for the optical nerve. The values of C1/2, C50 etc are taken from [25] after
conversion.

The permeability of oxygen in capillary is estimated by the formula [25]

lci,ex = lco,ex =
Dw

tcap
=

1 ∗ 10−9m2/s

0.5µm
= 0.002m/s

where Dw is the diffusivity and tcap is the thickness for capillary vessel wall.
The values are similar to those in [20]. For artery and vein, we used the same
formula, but with a much smaller diffusion constant and a larger vessel wall
thickness [42]

lai,ex = lao,ex = lv,ex =
Dw

tai
=

1 ∗ 10−10m2/s

2µm
= 5 ∗ 10−5m/s.

For the estimates, we also referred to [18].
For the effective diffusion constants between vascular domains, we take

Dai,ci for example, which is estimated by harmonic average

Dai,ci =
D∗

aiD
∗
ci

D∗
ai +D∗

ci

≈ 3.6 ∗ 10−5/s

where

D∗
ai =

ηaiDaiτ̃ai
(∆r)2

≈ 3.6 ∗ 10−5, D∗
ci =

ηciDciτ̃ci
(∆r̃)2

≈ 3.3 ∗ 10−3

where ∆r = 667µm and ∆r̃ = 50µm are used for artery and capillary. The
other three Dao,co, Dv,ci, Dv,co are estimated similarly.
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Table A.9: Parameters in oxygen transport

max consumption rate Smax
ex 6× 10−3 ml O2/ml/s estimate

half-max parameter C1/2 4.8× 10−5 ml O2/ml [25]
solubility coefficient in blood αO2 3× 10−5 ml O2/ml /mmHg [25]
boundary concentration Cai,0, Cao,1 3× 10−3 ml O2/ml [25]

average concentration of [Hb] in blood 0.15 g/ ml [7, 19]
binding-capability of Hb, CHb 1.34 ml O2/g [7]

average binding-capability of blood, H0 0.2 ml O2/ml [7, 24]
Hill exponent nHill 2.7 [25]

Half saturation constant in Hb, C50 8× 10−4 ml O2/ml [25]
diffusion constant Dk, k = ai, ao, v, ci, co 2.18× 10−9 m2/s [25]

diffusion constant Dex 1× 10−9 m2/s [25]
oxygen permeability, lci,ex, lco,ex 0.002 m/s [25]

oxygen permeability, lai,ex, lao,ex, lv,ex 5× 10−5 m/s [25]
diffusion constant Dai,ci, Dao,co 3.6× 10−5 /s,7.3× 10−5 /s estimate
diffusion constant Dv,ci, Dv,co 2.8× 10−4 /s estimate
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