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Abstract

Microcirculation of blood and transport of oxygen play important roles in the
biological function of the optic nerve and its diseases. This work develops
a multi-domain model for the optic nerve, that includes important biolog-
ical structures and various physical mechanisms in blood flow and oxygen
delivery. The two vascular networks are treated as five domains in the same
geometric region, with various exchanges among them (such as Darcy’s law
for fluid flow) and with the tissue domain (such as water leak, diffusion).
The numerical results of the coupled model for a uniform case of vascula-
ture distribution show mechanisms and scales consistent with literature and
intuition. The effects of various important model parameters (relevant to
pathological conditions) are investigated to provide insights into the possible
implications. The vasculature distribution (resting volume fractions here)
has significant impacts on the blood circulation and could lead to insufficient
blood supply in certain local regions and thereby affect the delivery of oxy-
gen. The water leak across the capillary wall will have nontrivial effects after
the leak coefficients pass a threshold. The pulsatile arterial pressure leads to
expected pulsatile patterns and stable spatial profiles, and the uniform case
is almost the averaged version of pulsatile case. The effects of viscosity, the
stiffness of blood vessel wall, oxygen demand, etc. have also been analyzed.
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retina when more biological structural information is available.

Keywords: microcirculation, optic nerve, oxygen transport, blood flow,
multi-domain model

1. Introduction

Most of biology involves complex structures that are nearly machines
designed to perform biological functions. Machines in our technology cannot
be understood without their structure as well as the physics that they use
and the engineering function they perform. A natural approach for these
biological problems is to use physical laws in the form of conservation laws in
three dimensions and time, together with structural information presented
by biologists, and to compute physiological results required by biologists and
clinicians. This approach has been used to study biological systems of some
complexity, for example, the electrocytes of electrical eels [1, 2], the optic
nerve of amphibians [3], and the lens of the eye [4]. The history of this
approach is reviewed in [5].

The eye is made of a series of tissue structures such as the lens, the retina,
and the optic nerve that work together. The retina converts the light to elec-
tric signals, which travel to the brain through the optic nerve. In each tissue
structure, many physical mechanisms [6, 7, 8] involving fluid flow and trans-
port of ions and oxygen work together in well-designed biological structures
to achieve specific goals and maintain homeostasis. Many eye diseases such
as glaucoma [9] and diabetic retinopathy [10, 11] are due to the damage of
the optic nerve and retina related to the coupling of the above mechanisms.
Cardiovascular pathologies such as hypertension and diabetes can induce
changes in microcirculation in the retina and optic nerve, and then are re-
flected by functional or structural changes. Non-invasive experimental/clinic
data from the eye (say the retina) can provide an important “window” into
the cardiovascular pathologies [12, 13]. Therefore, mathematical modeling is
needed to uncover the relationship between diseases/alterations in structures
and the physical mechanisms. The challenges are the coupling of different
mechanisms in multiple time and spatial scales as well as the incorporation of
crucial biological structural information. On the other hand, too many scales
and too much cellular detail in the model will make analysis/computation
extremely tricky.
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16, 17] for both the retina and the optic nerve, particularly for the retina
since vascular and geometrical information is more accessible experimentally.
The book [6] includes an excellent review of different levels of mathematical
models for blood flow in the eye as well as oxygen transport, see also [18,
19, 20, 7]. The microcirculation and autoregulation have been studied in
[21, 22, 16, 23, 24]. A recent work [25] has studied the coupling between the
blood microcirculation and oxygen transport in retina, where a computer-
generated vascular tree network is used for blood flow in vessels and delivery
of oxygen to the tissue. A one-dimensional model of blood circulation in
retina arterial network has been developed by utilizing clinic imaging [26]. A
viscoelastic and porous-media model [27, 15] has been developed to study the
mechanics and hemodynamics of the optic nerve head. The blood flow and
neurovascular coupling mechanisms in the optic nerve have been reviewed in
[28].

Multi-domain modeling has shown success in the study of complex biolog-
ical tissues, such as the lens [4], the optic nerve [3, 29], brain tissue [30], and
cardiac tissue [31, 32]. At the tissue (coarse-grained) level, a given spatial
point is present in every domain in the multidomain model, where exchanges
occur between domains (to represent mechanisms at a refined cellular level).
In particular, a tridomain model [3, 29] has been developed for fluid flow and
electrodiffusion in the optic nerve (without vasculature), and the clearance of
potassium is studied. The multi-domain model for the vasculature here can
be treated as a generalization of the compartment (vessel segment) models
[33, 6], in the sense that more spatial and structural information could be
incorporated.

The objective of this work is to develop a multi-domain model for blood
microcirculation and oxygen transport in the optic nerve, with important
biological structures and physical mechanisms incorporated. This work will
focus on the vasculature and the exchanges between the vasculature and
tissue in the optic nerve, and can potentially be combined with the previous
tri-domain model on fluid flow and electrodiffusion of ions in tissue [3, 29]
in future work. This work studies the optic nerve because of its relatively
simple geometric structure, but the framework can be generalized to the
retina. The multi-domain model has six domains, including five vascular
domains (two sets of artery-capillary pairs that share a common venous tree)
and one extravascular domain. To model blood circulation, we utilize Darcy’s
law for in-domain flow and also include the leak to the tissue (the changes are

3



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofrelated to the diseased state) and changes of volume fraction (equivalently

blood vessel radius) due to force balance. The oxygen transport considers
both the dissolved and bound oxygen in hemoglobin and incorporate the
mechanisms due to diffusion, convection, and oxygen consumption.

The coupled model is solved by a finite-difference scheme and a Matlab
solver (ode15s). The simulated results for the baseline case with a uniform
resting volume fraction show reasonable mechanisms and consistent scales for
important quantities with literature. More importantly, the effects of non-
uniform resting volume fractions, pulsatile boundary conditions, and various
parameters are studied to provide insights into the consequences of biological
structural changes and parameter changes due to diseases. For example, with
a non-uniform distribution of resting volume fractions, local regions could
suffer insufficient capillary exchanges and oxygen supply. The leak coefficient
could have strong impact on blood circulation and oxygen delivery after it
passes a threshold. With pulsatile boundary arterial pressures, the results
show almost the same averaged quantities over one period as the baseline
simulation with constant pressure conditions. The effects of viscosity, the
stiffness of the blood vessel wall, the demand for oxygen, the local partial
blockage of vasculature, etc. have also been analyzed.

The manuscript is organized as follows. Section 2 develops the mathe-
matical model of blood circulation and oxygen transport with six domains.
The model is simulated in Section 3 for a baseline case with uniform resting
volume fractions and constant boundary pressures. In Section 4, we inves-
tigate the effects and sensitivity of physical parameters including leak coef-
ficients, blood viscosity, modulus of the blood vessel wall, the permeability
of blood flow, oxygen consumption parameters, boundary arterial pressure
and boundary oxygen supply parameters. The effects of biological structural
changes are also analyzed in Section 4, through changes of resting (nonuni-
form) volume fractions. Conclusions are provided in Section 5.

2. A Hexa-Domain Model

Some abbreviations are listed in Table 1 for easy reading. Figure 1(a)
sketches the optic nerve, where the retrolaminar region is the major region
with nearly radial symmetry. In this work, we focus on the retrolaminar
region in the optic nerve [15, 6, 34, 35]. We consider six overlapping domains
for the vasculature and tissue in the same geometric domain Ω = {(r, z)|R0 <
r < R1, 0 < z < L} in cylindrical coordinates as shown in Figure 1(a). It
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(a) Optic nerve and domain Ω
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Ωco

Capillary	

(b) Six domains and pathways

Figure 1: (a) The optic nerve and retrolaminar region in an axial sectional view. The left
figure is taken from [28] with permission.The right figure sketches the geometric domain
Ω considered in this work. (b) Six domains including 5 vascular and one extravascular
domains. The green arrows denote the water exchanges between the vascular domain and
tissue (extra-vascular domain), the orange arrows denote the blood flow pathways, and
the blue arrows denote the in-domain blood circulation.
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PCA Posterior Ciliary Artery RBC Red Blood Cell
MAP Mean Arterial Pressure 1D one-dimensional

Table 1: Abbreviations in the paper

is assumed to be uniform (or averaged) in the longitudinal z direction so
that the model considered in this paper is one-dimensional (1D) in the radial
direction and symmetric about r = 0. The six domains are sketched in Figure
1(b) and are defined as:

Ωai: Arteries and arterioles starting from CRA at inner boundary r = R0

Ωao: Arteries and arterioles starting from PCA at outer boundary r = R1

Ωv: Veins and venules connected to CRV at r = R0

Ωci: Capillaries between Ωai and Ωv

Ωco: Capillaries between Ωao and Ωv

Ωex: the extra-vascular domain, i.e, tissue domain including the axons and
glial cells and extracellular space.

In the above, each of the domains Ωj (j = ai, ao, v, ci, co, ex) occupies the
same geometric domain Ω in Figure 1(a), the first five are the vascular do-
mains for the two sets of vasculature networks and the last one is the tissue
or extra-vascular domain.

2.1. Water/blood circulation

The water/blood circulation in the optic nerve is based on porous-media
type flows and exchanges among the domains. The circulation is both the
blood flow among the vascular domains (the first 5 domains above) and
the water flow (leak) for the exchange between vascular and extravascular
domains. For the 1D geometric region R0 < r < R1, the governing equations
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∂ηai
∂t

+
1

r

∂ (rηaiu
r
ai)

∂r
+Qai,ex +Qai,ci = 0,

∂ηao
∂t

+
1

r

∂ (rηaou
r
ao)

∂r
+Qao,ex +Qao,co = 0,

∂ηv
∂t

+
1

r

∂ (rηvu
r
v)

∂r
+Qv,ex +Qv,co +Qv,ci = 0,

∂ηci
∂t

+Qci,ex −Qai,ci −Qv,ci = 0,

∂ηco
∂t

+Qco,ex −Qao,co −Qv,co = 0,

1

r

∂

∂r

( ∑

k=ai,ao,v,ex

ηkru
r
k

)
= 0,

ηai + ηao + ηv + ηex + ηci + ηco = 1,

(1)

where ηj is the volume fraction of each domain Ωj (j = ai, ao, v, ci, co, ex),
the spatial derivative terms 1

r
∂
∂r

(r(ηku
r
k)) are the in-domain flows in the polar

coordinates with velocity ur
k (k = ai, ao, v, ex), all the Qi,j are the exchanges

between different domains. There are in-domain flows in artery and vein
domains, since they are connected with branching structures. There is also
in-domain flow in the extravascular domain since it is spatially connected.
But there are no in-domain flows for capillary domains at this tissue-scale
modeling, because they are only connected to arteries and veins at a smaller
spatial scale and different capillary networks do not exchange directly with
each other. The second to last equation is derived by combining the dynamics
of ηex and the algebraic constraint in the last equation. We will present
the detailed models for all the terms in the above equation and boundary
conditions in the next subsections.

2.1.1. In-domain flows and permeability

The in-domain velocity in vascular domains follows the Darcy’s law

ur
k = −κk(r)τk

µb

∂pk
∂r

, k = ai, ao, v, (2)

where κk is the in-domain blood permeability, µb is the viscosity of blood,
and τk is the tortuosity. The tortuosity τk includes the effect of vessel struc-
ture and orientation of blood vessels (in r-direction). From derivations in
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κk(r) =
1

8
βk(r)ηk, k = ai, ao, v, (3)

where βk(r) depends on the structure of blood vessels, e.g., the distribution of
branches, the level of branching, segment length, etc. But for simplicity, the
coefficient βk(r) is assumed to be a constant here, and its value is estimated in
the Appendix A.1. The permeability κk may depend on the concentration of
oxygen through the changes in ηk due to changes in the vessel wall properties.
For the extravascular domain Ωex, we set

ur
ex = −κexτex

µex

∂pex
∂r

, (4)

where kex, τex, µex are the permeability, tortuosity and viscosity in Ωex.

2.1.2. Exchange through blood vessel wall

Here, we consider the water exchange rates Qj,ex between the vascular
domains Ωj (j = ai, ao, v, ci, co) and the extravascular domain Ωex, due the
leak/exchange through the blood vessel wall. The water exchange rate Qj,ex

per unit control volume follows the form

Qj,ex = Mj,exUj,ex, j = ai, ao, v, ci, co, (5)

where Mj,ex is the area of blood vessel wall for domain Ωj per unit control
volume and Uj,ex is the water velocity from Ωj to Ωex. The quantity Mj,ex is
modeled by (see Appendix A.1 for details)

Mj,ex = M0
j,ex

√
ηj, (6)

where M0
j,ex is a constant depending on blood vessel structures and estimated

in Appendix A.1 (related to βj). The dependence of Mj,ex on the radius of
the blood vessel is reflected through ηj. The water velocity across the blood
vessel wall is modeled as

Uj,ex = Lj,ex(pj − pex − (πj − πex)), j = ai, ao, v, ci, co (7)

where Lj,ex is the leak coefficient [36, 16] (for capillary, see also [37] [38] [39]),
and πj, πex are the colloidal osmotic pressures [16] (e.g., due to ions, proteins
etc.). The leak coefficient in artery and vein domains is much smaller than
that in capillary domains under normal conditions.
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The blood flow rates between the capillary domains and the connected
artery or vein domain are modeled by

Qai,ci = Kai,ci(pai − pci), Qv,ci = Kv,ci(pv − pci),

Qao,co = Kao,co(pao − pco), Qv,co = Kv,co(pv − pco),
(8)

where Kj,k is the effective conductance (or the inverse of resistance). We
take Kai,ci from artery domain Ωai to capillary domain Ωci for example. It
relates to the conductance in both artery and capillary domains since it flows
in the small arterioles for some distance before reaching the capillary. The
conductance is modeled as the harmonic average

Kai,ci =
KaiKci

Kai +Kci

, Kai = δaiη
2
ai

ϵai
tanh(ϵai)

, Kci = δciη
2
ci

ϵci
tanh(ϵci)

, (9)

where Kj (j = ai, ci) is the effective conductance in Ωj with parameter δj
estimated in Appendix A.1 (related to βj and µb). The dimensionless ratio
ϵj/tanh(ϵj) (with j = ai, ci) is a correction factor due to the water leak [16]

ϵj =
1

2

√
(Mj,exLj,ex)/(δjη2j ), j = ai, ci. (10)

In the limit when there is no water leak through the blood vessel wall Lj,ex →
0, we get ϵai → 0 and ϵj/tanh(ϵj) → 1, so the correction factor has no effect.
The presence of leak increases the conductance. In a similar way, we can
define Kao,co Kv,ci, Kv,co, as well as the parameters δj, ϵj (j = ao, co, v).

2.1.4. Force balance on blood vessel wall

The force balance on the blood vessel wall of each vascular domain is
modeled by [16, 3]

λj(ηj − ηrej ) = pj − pex − (P re
j − P re

ex ), j = ai, ao, v, ci, co, (11)

where λj is the elastic modulus of the blood vessel wall [15, 40], P re
j , P re

ex are
resting or reference pressures, and ηrej is the resting volume fraction. The
modulus λj is set as constant here, but it could be affected by the oxygen
concentration and in turn leads to changes in volume fractions (or the radius
of blood vessels). The quantity ηrej (r) could depend on the spatial variable r
and the profile is related to the structural information. We investigate both
uniform and Gaussian profiles for ηrej (r) in the simulations.
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√
ηj and√

ηrej in the formula (11). If ηj is not far from ηrej , the two models will be
similar up to first-order approximations with slightly different definitions for
the modulus.

2.1.5. Boundary conditions

As there are in-domain flows (i.e., spatial derivatives) for the four domains
Ωj (j = ai, ao, v, ex), we need to propose boundary conditions at r = R0, R1

for these domains.
(1) For the artery domain Ωai, we set

pai(R0, t) = Pai,0(t),
∂pai
∂r

(R1, t) = 0, (12)

where Pai,0 is the given CRA pressure at the start of that artery domain Ωai.
The condition at the outer boundary r = R1 means no blood flow out of the
domain there. Alternatively, if Pai,0(t) is not given, we can use the prescribed
blood flow rates at the boundary

ηaiR0u
r
ai = Q∗

ai. (13)

(2) For the other artery domain Ωao, we set

∂pao
∂r

(R0, t) = 0, pao(R1, t) = Pao,1(t), (14)

where Pao,1 is the given PCA pressure at the start of artery domain Ωao and
there is no blood flow on the inner boundary. Alternatively, if Pao,1(t) is not
given, we can use the flow rates condition

ηaoR1u
r
ao = −Q∗

ao. (15)

(3) For the vein domain Ωv, we set

pv(R0, t) = Pv,0(t),
∂pv
∂r

(R1, t) = 0. (16)

where Pv,0(t) is the given CRV pressure at inner boundary where the blood
drains out of this optic nerve region.
(4) For the extravascular domain Ωex, we set

∂pex
∂r

(R0, t) = 0,
∂pex
∂r

(R1, t) = 0, (17)

which means no water flow out of the region through domain Ωex.
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We start by introducing some background knowledge and notations. The
total oxygen concentration C̄O2 (per unit blood volume) in vascular do-
mains consists of two parts: the dissolved oxygen and the oxygen bound
to hemoglobin in red blood cells (RBC) [6, 19, 42]. Mathematically, we have

C̄O2 = CO2 +H SO2 (18)

where CO2 the dissolved oxygen, H is the oxygen-binding capacity of blood
(per unit blood volume), and SO2 is the oxygen saturation of Hemoglobin. In
many works [7, 25], the dissolved oxygen concentration is often represented
by oxygen partial pressure PO2 with the formula

CO2 = αO2PO2 (19)

where αO2 is the solubility coefficient of oxygen in blood. But in order to
distinguish the pressure pk for water/blood flows and the above oxygen partial
pressure in domain Ωk, we will directly use the oxygen concentration CO2 in
our model. The oxygen saturation SO2 is given by Hill’s equation [25, 19]

SO2 =
P n
O2

P n
O2

+ P n
50

=
Cn

O2

Cn
O2

+ Cn
50

(20)

where we have multiplied αO2 before PO2 and P50 to get the last equality,
C50 = αO2P50 is the half-saturation constant, and n is the Hill’s exponent
parameter. The quantity H is often written as [7]

H = [Hb]CHb, (21)

where [Hb] is the hemoglobin concentration per unit volume of blood and
CHb is the oxygen-binding capacity of hemoglobin. Under normal conditions,
the quantities H, [Hb], CHb can be assumed as constants, see Table A.9 in
Appendix A.2. But here we will also consider abnormal cases with large
water leak through blood vessels, so the hemoglobin concentration and hence
the quantity H can vary spatially, since hemoglobin can not leak out with
water.

In each of the five vascular domains, we have the above quantities and
relations. To simplify the notations, we will omit the subscript O2 but add
the domain subscript. In summary, we have

C̄k(Ck, Hk) = Ck +Hk
Cn

k

Cn
k + Cn

50

, k = ai, ao, v, ci, co, (22)
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gen concentration, and oxygen-binding capacity of blood in the domain Ωk.
For the extravascular domain Ωex, only the dissolved oxygen concentration
Cex(r, t) is needed and well-defined.

By conservation laws, the dynamics of Hk (k = ai, ao, v, ci, co) are given
by

∂(ηaiHai)

∂t
− 1

r

∂

∂r
(rηaiu

r
aiHai) +Qai,ciHai = 0,

∂(ηaoHao)

∂t
− 1

r

∂

∂r
(rηaou

r
aoHao) +Qao,coHao = 0,

∂(ηvHv)

∂t
− 1

r

∂

∂r
(rηvu

r
vHv) +Qv,ciHci +Qv,coHco = 0,

∂(ηciHci)

∂t
−Qai,ciHai −Qv,ciHci = 0,

∂(ηcoHco)

∂t
−Qao,coHao −Qv,coHco = 0,

(23)

Under normal conditions when all the water leak termsQj,ex (j = ai, ao, v, ci, co)
through blood vessel walls are negligibly small compared with other terms
Qi,j in blood flow equations in (1), this system is equivalent to the first
five equations in (1) with constant solutions Hk = H0 (k = ai, ao, v, ci, co)
(verified in simulations). Next, the equations for oxygen exchange are given
by

∂

∂t
(ηaiC̄ai) +

1

r

∂ (ηairJ
r
ai)

∂r
+ Sai,ex + Sai,ci = 0,

∂

∂t
(ηaoC̄ao) +

1

r

∂ (ηaorJ
r
ao)

∂r
+ Sao,ex + Sao,co = 0,

∂

∂t
(ηvC̄v) +

1

r

∂ (ηvrJ
r
v )

∂r
+ Sv,ex + Sv,ci + Sv,co = 0,

∂

∂t
(ηciC̄ci) + Sci,ex − Sai,ci − Sv,ci = 0,

∂

∂t
(ηcoC̄co) + Sco,ex − Sao,co − Sv,co = 0,

∂

∂t
(ηexCex) +

1

r

∂ (ηexrJ
r
ex)

∂r
+ Sex −

∑

j=ai,ao,v,ci,co

Sj,ex = 0,

(24)

where Jr
j (j = ai, ao, v, ex) are the in-domain oxygen fluxes in the r-direction,

Si,j are the oxygen exchange rates between different domains, and Sex is the
consumption rate of oxygen (e.g., for pumps of ions in axons [8]) given by
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Sex(Cex) = Smax
ex

Cex

Cex + C1/2

, (25)

where Smax
ex and C1/2 are two parameters for the maximum consumption

rate and concentration at half-max consumption. Detailed models will be
given below for in-domain and inter-domain fluxes Jr

j and Si,j, as well as the
boundary conditions.

2.2.1. In-domain oxygen flux

The in-domain oxygen fluxes in the four domains Ωj (j = ai, ao, v, ex)
consist of convective and diffusive terms

Jr
k = C̄ku

r
k −Dkτk

∂Ck

∂r
, k = ai, ao, v,

Jr
ex = Cexu

r
ex −Dexτex

∂Cex

∂r
,

(26)

where Dj, τj, u
r
j (j = ai, ao, v, ex) are the diffusion constant of oxygen, the

tortuosity, and the blood/water velocity defined in (2,4).

2.2.2. Oxygen exchange through blood vessel wall

The oxygen exchange rate per unit volume from Ωj to Ωex follows

Sj,ex = Mj,exJj,ex, j = ai, ao, v, ci, co, (27)

where Mj,ex is defined in (6). The oxygen flux Jj,ex per unit area is modeled
by

Jj,ex = lj,ex(Cj − Cex) + Uj,exC
upwind
j,ex , j = ai, ao, v, ci, co, (28)

where Uj,ex is defined in (7), lj,ex is the oxygen permeability through the blood

vessel wall [25, 20], and Cupwind
j,ex is the upwind or upstream concentration

determined by the sign of Uj,ex. Combining (27,28) with the use of (5), we
obtain

Sj,ex = Mj,exlj,ex(Cj − Cex) +Qj,exC
upwind
j,ex , j = ai, ao, v, ci, co, (29)

and Cupwind
j,ex is given by

Cupwind
j,ex =

{
Cj if Qj,ex ≥ 0,

Cex if Qj,ex < 0.
(30)
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The oxygen exchange rates between capillaries and other vascular do-
mains are

Sai,ci = Qai,ciC̄ai +Dai,ci(Cai − Cci), Sao,co = Qao,coC̄ao +Dao,co(Cao − Cco),

Sv,ci = Qv,ciC̄
upwind
ci,v +Dv,ci(Cv − Cci), Sv,co = Qv,coC̄

upwind
co,v +Dv,co(Cv − Cco),

(31)
where Di,j are effective diffusion constants between domains (estimated in

Appendix A.2), the Qi,j terms are defined in (8), and C̄upwind
k,v (k = ci, co)

is the total oxygen concentration before entering to Ωv. We take C̄upwind
ci,v for

example. One simple option is C̄upwind
ci,v = C̄ci, but this does not consider the

possible gradient inside the capillary network point. If there is more than
sufficient oxygen supply for exchange to the extravascular domain, we assume
a linear decreasing profile for dissolved oxygen concentration Cci within a
point (network) in the capillary domain, which implies

Cupwind
ci,v = 2Cci − Cai, if Cupwind

ci,v > Cex. (32)

When the above Cupwind
ci,v ≤ Cex, the capillary domain cannot supply oxygen

through the permeability term in (28) so the concentration will not decrease
further. In summary, we adopt the model

Cupwind
ci,v = max{2Cci − Cai, Cex}, (33)

and define
C̄upwind

ci,v = C̄(Cupwind
ci,v , Hci), (34)

by using the function in (22). Similarly, C̄upwind
co,v can be defined by replacing

subscripts ci, ai by co, ao.

2.2.4. Boundary conditions

Now we propose boundary conditions for both Hk (k = ai, ao, v) and Cj

(j = ai, ao, v, ex) at r = R0, R1. For the Hk, we have

Hai(R0, t) = H0,
∂Hai

∂r
(R1, t) = 0,

∂Hao

∂r
(R0, t) = 0, Hao(R1, t) = H0,

∂Hv

∂r
(R0, t) = 0,

∂Hv

∂r
(R1, t) = 0,

(35)
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conditions (see Table A.9), and all the Neumann conditions imply that
hemoglobins (or RBC) can not flow out these boundaries consistent with
flow boundary conditions (12,14,16). For the concentrations, we have

Cai(R0, t) = Cai,0,
∂Cai

∂r
(R1, t) = 0,

∂Cao

∂r
(R0, t) = 0, Cao(R1, t) = Cao,1,

∂Cv

∂r
(R0, t) = 0,

∂Cv

∂r
(R1, t) = 0,

∂Cex

∂r
(R0, t) = 0,

∂Cex

∂r
(R1, t) = 0,

(36)

where Cai,0 and Cao,1 are given dissolved oxygen concentrations at arteries
CRA and PCA. Neumann conditions are adopted for other conditions, which
will not have much effect on numerical results, since the in-domain diffusive
terms are very small compared with the convective terms by fluid flow.

2.3. Nondimensionalization

2.3.1. The water/blood circulation

We adopt the scalings

t̃ =
t

t0
, r̃ =

r

R1

, p̃k =
pk
Pv,0

, π̃k =
πk

Pv,0

,

P̃ re
k =

P re
k

Pv,0

, Q̃j,k = Qj,kt0, λ̃j =
λj

Pv,0

.
(37)

The time scale t0 is chosen to be

t0 = 1mm/(10mm/s) = 0.1s, (38)

where typical length scale 1mm is chosen based on the scale of maximum
radius R1 = 0.79mm for the domain, and the typical velocity scale 10mm/s
is chosen based on some typical blood flow velocity in [16]. The above choice
will also give O(1) dimensionless velocity for the in-domain blood flows. Sub-
stituting the above scalings in the system in Section 2.1 and after removing
the tilde for the unknown variables p̃k, Q̃j,k and independent variables r̃, t̃ for

15
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∂ηai
∂t

− 1

r

∂

∂r

(
κ̄air

∂pai
∂r

)
+Qai,ex +Qai,ci = 0,

∂ηao
∂t

− 1

r

∂

∂r

(
κ̄aor

∂pao
∂r

)
+Qao,ex +Qao,co = 0,

∂ηv
∂t

− 1

r

∂

∂r

(
κ̄vr

∂pv
∂r

)
+Qv,ex +Qv,ci +Qv,co = 0,

∂ηci
∂t

+Qci,ex −Qai,ci −Qv,ci = 0,

∂ηco
∂t

+Qco,ex −Qao,co −Qv,co = 0,

∂

∂r

( ∑

k=v,ai,ao,ex

κ̄kr
∂pk
∂r

)
= 0,

(39)

where the water/blood flow rates are

Qj,ex = L̄j,ex [pj − pex − (π̃j − π̃ex)] , j = ai, ao, v, ci, co

Qk,ci = K̄k,ci(pk − pci), k = ai, v,

Qk,co = K̄k,co(pk − pco), k = ao, v,

(40)

and the parameters are

L̄j,ex = L̃j,ex
√
ηj, L̃j,ex = M0

j,exLj,exPv,0t0, j = ai, ao, v, ci, co,

κ̄j = β̃jη
2
j , β̃j =

βjτjPv,0t0
8R2

1µb

, j = ai, ao, v,

κ̄ex = κ̃exηex, κ̃ex =
Pv,0κexτext0

R2
1µex

,

K̄j,ci =
K̄jK̄ci

K̄j + K̄ci

, j = ai, v, K̄j,co =
K̄jK̄co

K̄j + K̄co

, j = ao, v

K̄j = δ̃jη
2
j

ϵ̄j
tanh(ϵ̄j)

, ϵ̄j =
1

2
η
−3/4
j

√
L̃j,ex/δ̃j, j = ai, ao, v, ci, co.

δ̃j = δjPv,0t0, j = ai, ao, v, ci, co.

(41)

In the above notations (and in the next subsection), the quantities with a bar
(e.g. κ̄j) are effective coefficients and depend on the unknown variables (e.g.,
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that do not depend the unknowns. The algebraic constraint for volume
fractions is

ηai + ηao + ηv + ηex + ηci + ηco = 1, (42)

and the force balance constraint is given by

λ̃j(ηj − ηrej ) = pj − pex − (P̃ re
j − P̃ re

ex ), j = ai, ao, v, ci, co. (43)

The dimensionless form for the boundary conditions in Section 2.1.5 will have
the same form except that the given pressures are nondimentionalized and
the dimensionless domain is r ∈ [R̃0, R̃1] with R̃1 = 1. The dimensionless
flow rates conditions in (13,15) have the form

− κ̄aor
∂pao
∂r

∣∣∣∣
r=R̃1=1

= −Q∗
ao, − κ̄air

∂pai
∂r

∣∣∣∣
r=R̃0

= Q∗
ai. (44)

2.3.2. The oxygen transport

We adopt the scalings

t̃ =
t

t0
, r̃ =

r

R1

, C̃k =
Ck

Cai,0

, ˜̄Ck =
C̄k

Cai,0

, H̃k =
Hk

Cai,0

,

S̃max
ex =

Smax
ex t0
Cai,0

, C̃50 =
C50

Cai,0

, C̃1/2 =
C1/2

Cai,0

,

(45)

The timescale t0 is the same as in (38), since the in-domain diffusion timescale
R2

1/Dk ∼ 103s is much larger. Substituting the scalings and after removing

the tilde for the unknowns H̃k, C̃k,
˜̄Ck and independent variables t̃, r̃, we have

the equations for Hk

∂(ηaiHai)

∂t
− 1

r

∂

∂r

(
κ̄air

∂pai
∂r

Hai

)
+Qai,ciHai = 0,

∂(ηaoHao)

∂t
− 1

r

∂

∂r

(
κ̄aor

∂pao
∂r

Hao

)
+Qao,coHao = 0,

∂(ηvHv)

∂t
− 1

r

∂

∂r

(
κ̄vr

∂pv
∂r

Hv

)
+Qv,ciHci +Qv,coHco = 0,

∂(ηciHci)

∂t
−Qai,ciHai −Qv,ciHci = 0,

∂(ηcoHco)

∂t
−Qao,coHao −Qv,coHco = 0,

(46)
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∂

∂t
(ηaiC̄ai)−

1

r

∂

∂r

(
κ̄aiC̄air

∂pai
∂r

+ D̄air
∂Cai

∂r

)
+ Sai,ex + Sai,ci = 0,

∂

∂t
(ηaoC̄ao)−

1

r

∂

∂r

(
κ̄aoC̄aor

∂pao
∂r

+ D̄aor
∂Cao

∂r

)
+ Sao,ex + Sao,co = 0,

∂

∂t
(ηvC̄v)−

1

r

∂

∂r

(
κ̄vC̄vr

∂pv
∂r

+ D̄vr
∂Cv

∂r

)
+ Sv,ex + Sv,ci + Sv,co = 0,

∂

∂t
(ηciC̄ci) + Sci,ex − Sai,ci − Sv,ci = 0,

∂

∂t
(ηcoC̄co) + Sco,ex − Sao,co − Sv,co = 0,

∂

∂t
(ηexCex)−

1

r

∂

∂r

(
κ̄exCexr

∂pex
∂r

+ D̄exr
∂Cex

∂r

)
+ Sex −

∑

j=ai,ao,v,ci,co

Sj,ex = 0,

(47)
where total oxygen concentration C̄k is

C̄k(Ck, Hk) = Ck +Hk
Cn

k

Cn
k + C̃n

50

, k = ai, ao, v, ci, co, (48)

the oxygen exchange and consumption rates are given by

Sj,ex = Qj,exC
upwind
j,ex + l̄j,ex(Cj − Cex), j = ai, ao, v, ci, co,

Sai,ci = Qai,ciC̄ai + D̃ai,ci(Cai − Cci),

Sao,co = Qao,coC̄ao + D̃ao,co(Cao − Cco),

Sv,k = Qv,kC̄
upwind
k,v + D̃v,k(Cv − Ck), k = ci, co,

Sex = S̃max
ex

Cex

Cex + C̃1/2

,

(49)

and the coefficients are defined by

D̄j = D̃jηj, D̃j =
Djτjt0
R2

1

, j = ai, ao, v, ex,

l̄j,ex = l̃j,ex
√
ηj, l̃j,ex = M0

j,exlj,ext0, j = ai, ao, v, ci, co,

D̃j,ci = Dj,cit0, j = ai, v, D̃j,co = Dj,cot0, j = ao, v.

(50)

The boundary conditions in (35,36) will take the same form except that
Cai,0, Cao,1, H0 are nondimensionalized by Cai,0.
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In our implementation, the partial differential equations in (39), (46),(47)
with boundary conditions are converted to dynamic systems by using the
finite-difference method for the spatial variable r. In the finite-difference
scheme, the upwind scheme is used for the convective terms in (46) and
(47) (otherwise it is unstable) and central discretization is adopted for other
terms. Then, they are solved as a whole system of differential-algebraic equa-
tions (DAE) by combining with the algebraic constraints (42),(43),(48). The
DAE system is solved in Matlab using the built-in solver ode15s. All the 28
unknowns pk, ηk, Ck (k = ai, ao, v, ci, co, ex) and C̄j, Hj (j = ai, ao, v, ci, co)
at all discrete spatial points are solved simultaneously. In this section, we con-
sider a uniform case that resting volume fractions ηrej (r) (j = ai, ao, v, ci, co, ex)
follow uniform distribution, i.e., they are assumed to be constants. All the
chosen parameters are given/estimated in Appendix A. This case will serve
as a reference case for the study of the effects of resting volume fractions and
other parameters in the next section.

3.1. Water/blood circulation
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Figure 2: The dynamics of pai and pex at two points r = 0.53, 1.

The values used in the initial conditions at t = 0 are set to be consistent
with the algebraic constraints and the boundary conditions for pressures. At
t = 2, most of the unknowns have reached the steady state. Figure 2(a) shows
the dynamics of artery pressure pai at two locations r = 0.53, 1. The pressure
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ofpex in Figure 2(b) reaches the steady state slower (at about t = 200), because

it is more sensitive to the small variations of volume fractions ηk during the
dynamics via the effective permeability κ̄k in (39)6.
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Figure 3: The spatial profiles of (a) volume fractions ηj and (b) pressures pj in domain
Ωj at steady state.

Next, we illustrate the steady-state profiles with t = 200 in the dimen-
sionless geometric region 0.14 < r < 1. Figure 3(a) shows profiles of volume
fractions in the five vascular domains, which are almost uniform since the
difference ηk − ηrek is quite small (with max around 2.5 × 10−3) due to the
large moduli λ̃k. The remaining percentage of about 85% is for ηex (not
shown in the figure). Figure 3(b) shows the pressures in the six domains,
where for convenience of comparison we have defined

pπex = pex +∆π̃ = pex + π̃v − π̃ex. (51)

It shows that the pressures in the two artery domains drop along the di-
rection of blood flow, and the pressure in capillary domain lies between the
connected artery and vein domains. The modified extravascular pressure pπex
lies between the artery and vein pressures, and the sign of the difference be-
tween pπex and vascular pressures will determine the direction of water leak
through blood vessel wall.

Figure 4(a) shows the blood flow rates going through capillaries between
the vascular domains. These are the dominant terms in the governing equa-
tions in (39) and are to be balanced with the in-domain flows through arteries
and veins. The signs of Qi,j in Figure 4(a) indicate that blood flows from
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Figure 4: (a) Blood flow rates between vascular domains; (b) In-domain velocities.

artery to capillary and then from capillary to vein. Figure 4(b) shows the
dimensionless in-domain blood/water velocities, which are defined as

ur
j = −β̃jηj

∂pj
∂r

, j = ai, ao, v, ur
ex = −κ̃ex

∂pex
∂r

. (52)

The sign of velocity in Figure 4(b) is consistent with the pressure drops in
Figure 3(b) and we have the following expected observations

• for Ωai, blood flows from inner boundary r = R0 (i.e., the CRA) to
outer boundary r = R1 with decreasing velocity;

• for Ωao, blood flows from outer boundary (i.e., the PCA) to the inner
boundary with decreasing velocity;

• for Ωv, blood flows from the outer boundary to the inner boundary
(i.e., the CRV) with increasing velocity;

• the water flow in Ωex is negligibly small compared with scale of blood
flow.

The maximum velocity occurs at the start of artery (CRA) in Ωai, where
the pressure drop is most significant. The velocity at inner boundary in Ωv

is also relatively large, since the blood will eventually merge and drain from
the system through the CRV. The scaling factor for the velocity is

R1

t0
= 0.79 cm/s, (53)
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with the scales in [14, 26, 25, 43]. Figure 5 shows the water flow rates across
the blood vessel wall, which are much smaller than the blood flow rates in
Figure 4(a). This is expected with the chosen parameters under normal
physiological conditions, but the water flow rates could change significantly
under pathological conditions.
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Figure 5: The water flow rates across the blood vessel wall between (a) the vascular
domains and (b) the extravascular domain.

3.2. Oxygen transport

To better understand the numerical results, we first show the quantities
C̄k in (48) for the vascular domains and Sex in (49)5 (or equation (25) in
dimensional form) for the extravascular domain. Figure 6(a) shows relation
between the total concentration C̄k and dissolved concentration Ck withHk =
H0 = 66.7 in vascular domains, which implies that the majority of the oxygen
is stored in the RBCs. With Ck = 1, we have C̄ ≈ 66, so the dissolved oxygen
is only about 1.5% of the total oxygen while the oxygen stored in RBC is
about 98.5% as expected [7]. Figure 6(b) shows the relation between the
normalized oxygen consumption rate Sex/S̃

max
ex and the oxygen concentration

Cex with C̃1/2 = 0.016, showing that the consumption rate is maintained at
relatively high level (e.g., above 95% of maximum) if Cex is maintained at
reasonable values (e.g., Cex > 0.3). The parameter S̃max

ex in the formula (49)5
or the dimensional parameter Smax

ex in (25) is estimated in Appendix A.2.
Figure 7(a) shows the dynamics of concentrations at a middle point

r = 0.53, which implies that they already reach the steady state at t = 200.
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Figure 6: (a) Relation between total concentration C̄k and dissolved concentration Ck by
(48); (b) Relation between consumption rate Sex/S̃

max
ex and dissolved concentration Cex

in tissue by (49)5.

Figure 7(b) shows the profiles of dissolved concentrations Ck in six domains
at steady state (at t = 200). The highest two curves are for the two artery
domains, and the concentrations decrease along the direction of blood flow.
The middle two curves for the capillary domains lie between those for the
artery and vein domains. This is expected since the major exchange and
supply of oxygen occur via the capillary domains. The oxygen concentra-
tions in the vein and extravascular domains have similar values and are the
lowest among the domains. Figure 7(c) shows the upwind concentrations
Cupwind

co,v , Cupwind
ci,v before entering into the vein domain (see (33)), and in this

reference case they are equal to Cex. The total oxygen concentrations in Fig-
ure 7(d) follow similar shape as in Figure 7(b), but at a much larger order of
magnitude.

Figure 8 shows the oxygen exchange rates between different domains, in-
cluding the diffusion mechanisms (related to D̃i,j and l̄i,j) and the convection
mechanisms (related to blood/water flows Qi,j). In the vascular domains, the
oxygen exchange follows the direction of blood flow from artery to capillary
and then to vein since Sai,ci, Sao,co are positive and Sv,ci, Sv,co are negative in
Figure 8(a,b). In addition, the convection dominates the exchange process
in vasculature since the order of magnitude in Figure 8(a) due to diffusion is
negligibly small compared with that in Figure 8(b) due to convection.

The supply of oxygen to the extravascular domain is mainly through
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Figure 7: Dynamics of concentrations at r = 0.53 and the steady-state profiles of concen-
trations.

diffusion across the blood vessel wall compared with convection, shown in
Figure 8(c,d). Figure 8(c) also shows that the two capillary domains pro-
vide the major supply of oxygen to the extravascular domain, and the total
consumption rate Sex per unit volume is relatively stable. The drop for Ck

(k = ai, ao) in artery domains in Figure 7(b) is also due to the diffusion of
oxygen through blood vessel wall.

In summary, in the present model, the pathway of supply of oxygen is
mainly by convection, from artery to the capillary, and by diffusion, to the
extravascular domain (tissue) consistent with common sense.

Figure 9(a) shows the profiles of oxygen binding capacity Hk in vascular
domains, indicating that they are almost a constant (i.e., H0) for all five
vascular domains, which verifies the argument that they can be assumed as
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Figure 8: Oxygen exchange rates between different domains due to diffusion and convection
mechanisms.

a constant under the normal physiological conditions when water leak across
blood vessel wall is small. Figure 9(b) shows the profiles of oxygen saturation
SO2 in the five vascular domains, which are quite similar in shapes to those
in Figure 7(d) since they almost differ by a scaling factor H0. At a fixed
location, there is oxygen saturation drop (about 20 %) from artery to vein
through the capillary, due to capillary oxygen exchanges by diffusion (see
Figure 8(c)). For example, at r = 0.53, the oxygen saturation drops by 19%
(from 97% to 78%) from artery Ωai to vein Ωv through capillary Ωci. When
it is multiplied by Hci, the bound-oxygen drops by 12.8, more than 20 times
the drop of the dissolved oxygen 0.55 (from 0.97 to 0.42). The oxygen supply
is mainly released from the bound oxygen stored in the hemoglobin in RBCs.

In summary, for the reference case with uniform distribution of resting
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Figure 9: The steady-state profiles of (a) oxygen binding capacity Hk and (b) oxygen
saturation SO2,k = Cn

k /(C
n
k + C̃n

50) in (48) in the five vascular domains

volume fractions, the blood supply and oxygen delivery is sufficient and stable
from the two sets of vasculature networks, and the pathways are as expected.

4. Effects and sensitivity of parameters

4.1. Effects of resting volume fractions

The resting volume fractions ηrej (r) in (43) depend on the structural infor-
mation of blood vessels. Without detailed information, we assumed uniform
(constant) profile for ηrej (r) in the previous section. We now consider two
cases with different volume fraction profiles.

In the first case, we assume a Gaussian profile for ηrej (r), called Gaus-
sian case 1 later. On the one hand, when the main branch of blood vessel
divides into two sub-branches, the total cross sectional area of blood vessel
will increase (e.g., 1.2 fold), so the volume fractions will increase according
to the level of branches; on the other hand, some branches will terminate at
a certain length, so the volume fractions will decrease after a certain branch-
ing level. We assume that the two artery resting volume fractions follow a
Gaussian profile with different means and standard deviations.

ηreai (r) ∼ N (0.4, 0.2), ηreao(r) ∼ N (0.7, 0.2). (54)

Roughly speaking, the maximum is located at about 1/3 of the domain from
the start of artery. Suppose the capillaries and the vein at resting state are
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ηreci ∼ N (0.4, 0.2), ηreco ∼ N (0.7, 0.2), ηrev ∼ ηreci + ηreco . (55)

A scaling constant will be multiplied on the profiles of each volume fraction
ηj (j = ai, ao, ci, co, v) to ensure the weighted average value over the whole
domain is the same as those in the uniform case.
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Figure 10: Profiles of volume fractions and pressures at steady state in Gaussian case 1.

The volume fractions ηj at steady state (at t = 200) are shown in Figure
10(a), which follow similar resting Gaussian profiles for ηrej , since the differ-
ence ηj − ηrej is quite small (with max around 3 × 10−3) due to the large

moduli λ̃j.
Figure 10(b) shows the pressure profiles, where one major difference from

the uniform case is that the total pressure drop in the artery domain Ωai is
smaller but that in vein domain Ωv is larger.

Figure 11(a) shows the flow rates between capillary domains and other
vascular domains, which follow similar Gaussian profiles as the volume frac-
tions in each capillary domain, e.g., the maximum values are also aligned
at similar spatial locations r = 0.4, 0.7. The in-domain velocities in Figure
11(b) follow a trend similar to the uniform case, but the velocity in vein Ωv is
larger at r = R0 since the volume fraction (equivalently total cross-sectional
area) ηv is much smaller at r = R0 than that in the uniform case. Table
2 shows the average values of these flows rates in Figure 11(a) and the two
artery boundary flow rates defined in (44), for this Gaussian case 1 in com-
parision with uniform case. The change in average values is partly due to
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Figure 11: The flow rates and velocities in the Gaussian case 1

the fact that Ωao contributes more to inner region (small r) while Ωai con-
tributes more to outer region. The blood supply from the Ωai boundary (i.e.,
the CRA) is significantly increased, while that from the Ωao boundary (i.e.,
the PCA) stays almost the same. Therefore, the resting volume fractions
strongly affects the blood supply and exchanges in the vasculature.

Qai,ci, |Qv,ci| Qao,co, |Qv,co| Q∗
ai Q∗

ao

Uniform Case 0.0076 0.0072 0.0034 0.0034
Gaussian case 1 0.0164 0.0055 0.0060 0.0034
Gaussian case 2 0.0332 0.0068 0.0090 0.0038

Table 2: Average values of capillary flow rates over the whole region and the two artery
boundary flow rates in three cases.

For the oxygen transport part, Figure 12 shows the profiles of Ck and
Hk at steady state (t = 200). Figure 12(a) shows larger variations for the
concentrations compared with the uniform case, where the low concentration
of Cex near r = 1 indicates an insufficient supply of oxygen there. Figure
12(b) shows that Hk in arteries and veins are almost the normal constant
H0, but the Hci, Hco in capillary domains near the boundary has significant
variations since the water leak is comparable with the small blood exchanges
there.

The pathways of oxygen supply to the extravascular domain are similar
to the previous uniform case, but Figure 13 shows larger spatial variations
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Figure 12: The profiles of Ck, Hk at steady state t = 200, with Gaussian case 1.

for oxygen exchange rates in different domains. The oxygen exchange in
Figure 13(a) between capillary and other vascular domains follows Gaussian-
like profiles since it is convection dominant (see Figure 11(a)). Figure 13(b)
shows that the terms Sci,ex, Sco,ex in two capillary sets serve different regions,
one for the inner and the other for the outer region, and their sum is almost
the total oxygen consumption Sex. The total oxygen consumption Sex has a
dip of about 10% near r = 1, which means the insufficient supply of oxygen
in that region, consistent with small Cex in Figure 12(a).

In the second case, called Gaussian case 2, we consider

rηreai (r) ∼ N (0.4, 0.2), rηreao(r) ∼ N (0.7, 0.2),

rηreci ∼ N (0.4, 0.2), rηreco ∼ N (0.7, 0.2), ηrev ∼ ηreci + ηreco .
(56)

This means the absolute values of cross-sectional areas of blood vessels follow
the Gaussian profiles, where the extra factor r is due to the polar coordinates
used. The profiles of volume fractions at steady state are shown in Figure
14(a). The blood supply from boundary is also increased as shown in Table
2, particularly for the Ωai boundary. The insufficiency of oxygen supply near
r = 1 is more severe in this case, shown in Figure 14(b).

In the above two cases, we find that (i) the structural profiles of vas-
culature play essential roles in the overall blood supply and distribution of
exchanges, and (ii) although the total blood supply from the boundary is in-
creased with Gaussian cases, the supply of oxygen could still be insufficient
in some local region due to the uneven exchanges. To simulate more practi-
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Figure 13: The oxygen exchange rates in Gaussian case 1.

cal situations, more information on the blood vessel sizes and distributions
is needed. Also, the maximum consumption parameter Smax

ex could vary in
space, e.g., depending ion channel/pump distributions, so the distribution of
resting capillary volume fractions could help ensure a stable oxygen supply,
so important to biological function.

4.2. Effects of leak coefficients

In this subsection, we consider the effects of leak coefficients Lj,ex in (7).
The changes of these coefficients could be due to the changes of properties of
blood vessel walls and could relate to damages from pathological conditions
[9, 12, 13]. Since the capillary change/damage could occur more easily, we
mainly focus on the coefficients Lci,ex, Lco,ex for illustration.

Parameters Lci,ex, Lco,ex 40 fold 500 fold
% change of ∆pai, Q

∗
ai 1.5%,1.6% 10.1%,10.7%

% change of ∆pao, Q
∗
ao -0.8%, -0.4% 3.6%, 5.9%

% change of ∆pv, Q
∗
v 0.5%, 0.6% 7.7%, 8.3%

average Qci,ex, Qco,ex 32 fold 118 fold

Table 3: Changes of pressure drops ∆pj , boundary flow rates Q∗
j (j = ai, ao, v), and

average water exchange rates by changing the parameters Lci,ex, Lco,ex simultaneously.

For water/blood circulation part, Table 3 and Figure 15 show the changes
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Figure 14: The profiles of volume fractions and oxygen exchange rates in Gaussian case 2.

of pressure drop and water flow rates produced by gradually increasing
Lci,ex, Lco,ex simultaneously. We find

• There are more significant changes for pressure drops ∆pk = |pk(R0)−
pk(R1)| and boundary fluxes Q∗

k (k = ai, ao, v) after the parameters
Lci,ex, Lco,ex reach some threshold (e.g., at the value of 10−2 µm/(Pa s);
about 40 fold of original value), shown in Figure 15(a,b). This is when
the water exchange rates Qci,ex, Qco,ex become comparable with other
flow rates between different domains as shown in Figure 15(c,d). For
example, Table 3 shows that the boundary flux Q∗

ai from CRA increases
by 1.6 % with 40 fold parameter increase, but increases by 10.7% with
500 fold parameter increase.

• There is an additional major pathway for water circulation after the
threshold

Ωci → Ωex → Ωco, Qci,ex > 0, Qco,ex < 0, (57)

which is based on the magnitudes and signs of quantities in Figure
15(c,d), e.g, Qci,ex > 0, |Qai,ci| > |Qv,ci|, |Qao,co| < |Qv,co|. Table 3
and Figure 15(c) show that there is almost proportional change of
Qci,ex, Qco,ex with respect to the parameter change initially before the
threshold, since they are small and unaffected by other flow rates. After
the threshold when Qci,ex, Qco,ex are comparable with other flow rates
in Figure 15(d), their changes will interact with other flow rates and
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circulation.
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Figure 15: The dependence of pressure drops, boundary flow rates, and average exchange
rates on the leak coefficients Lci,ex, Lco,ex with unit µm/(Pa s).

For the oxygen transport part, we observe the following:

• Figure 16(a) shows that there are significant increases for the average
concentrations Ck (k = ci, co, ex, v) after some threshold for the pa-
rameters Lci,ex, Lco,ex (e.g., 10−2 µm/(Pa s)), which is a consequence of
the increased boundary flow rates in Figure 15(b). Figure 16(b) shows
that oxygen binding capacity Hci increases and Hco decreases signifi-
cantly after the threshold, as a consequence of the additional pathway
of water circulation in (57).
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level, with less than 0.15% change over the studied range of parameters
Lci,ex, Lco,ex. Figure 17(b) show that the oxygen supply from capillary
domain Ωci increases while that from capillary domain Ωco decreases
(so the sum is kept almost constant), as a consequence of the additional
pathway of water circulation in (57).
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Figure 16: Percentage changes of average concentrations Ck and average oxygen binding
capacities Hk by changing the leak coefficients Lci,ex, Lco,ex.

In summary, the water leak coefficients through the capillary wall will
have strong impacts on blood circulation after they pass a threshold, due
to an additional pathway of water circulation. This in turn affects oxygen
delivery, with a redistributed supply from the two sets of capillaries.

Remark 2: The effects of leak coefficients Lai,ex, Lao,ex, Lv,ex in arteries and
veins have very similar features as the above case, except the following differ-
ences. With simultaneous changes of these three parameters, the threshold
is smaller and at about 10−3 µm/(Pa s) since the pressure differences across
the blood vessel wall of the artery and vein is larger. The additional pathway
for water circulation is

Ωai,Ωao → Ωex → Ωv, Qai,ex > 0, Qao,ex > 0, Qv,ex < 0. (58)

For the oxygen transport part, the quantities Hk in different domains are
affected due to (58).

33



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

10
-4

10
-2

10
0

L
ci,ex

,L
co,ex

0

0.05

0.1

0.15

%
 c

h
a
n
g
e
 o

f 
S

e
x

(a)

10
-4

10
-2

10
0

L
ci,ex

,L
co,ex

-5

0

5

%
 c

h
a
n
g
e
 o

f 
S

S
ci,ex

S
co,ex

(b)

Figure 17: Percentage changes of average oxygen consumption Sex and the oxygen supply
from two capillary domains by changing the leak coefficients Lci,ex, Lco,ex.

4.3. Effects of blood viscosity µb

In this subsection, we focus on the effects of blood viscosity µb, which
could increase due to aging and disease. For the blood/water circulation, by
gradually changing µb by ±20%, we observe that the parameter µb has almost
a scaling effect for the water/blood flow. The pressure profiles in Section 3.1
stay the same, but all the flow rates change by a factor of 1/µ. Figure 18
shows the percentage changes of boundary flow rates Q∗

k (k = ai, ao, v) with
changes of µ, which align with the change of 1/µb for illustration of scaling
effect. This scaling effect can also be seen from the governing equations and
parameter relations.

For the oxygen transport, Figure 19(a) shows that the average concen-
trations for Cj (j = ci, co, v, ex) over the region decrease as µ increase, for
example, they decrease by 6-8% with µ increased by 20 %. The decrease
is a consequence of decreased blood supply in Figure 18. But the differ-
ence between the capillary concentrations and extravascular concentrations
is relatively stable, so the oxygen exchanges from the two capillaries to the
extravascular space only drops slightly (< 1% with µ increased by 20 %), as
shown in Figure 19(b). The total consumption is also kept relatively stable
in Figure 19(b), computed with the uniform case for resting volume fractions.

Remark 3: The average Sex is decreased from 0.192 to 0.189 compared with
the values in Figure 13(b), computed with the Gaussian case 1 and when µ
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Figure 18: Percentage change of boundary blood supply with changing µ.
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Figure 19: oxygen with changing µ

increased by 20 %. In addition, Sex is impacted significantly locally near
r = 1, decreasing from 0.175 in to 0.146. This decrease is expected since less
boundary blood supply will have more severe effects on the local region with
limited vasculature.

Next, we investigate how much the pressure at the artery boundary should
be adjusted to maintain the normal blood supply when µ increases. At the
boundary, fixed flow rates Q∗

ai, Q
∗
ao in (44) are used to replace the pressure

boundary conditions, and they are set to be the same as the reference case.
Table 4 shows the pressure adjustments at the artery boundary needed to
maintain blood supply with increase of µ. Pressures have to increase by 8.2%
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by 20%. In the uniform case, the oxygen delivery is not affected much, but
for the Gaussian cases the oxygen supply in local regions will be affected.

In summary, increased viscosity has a scaling effect on blood circulation
decreasing according to the factor 1/µb. The decreasing blood circulation
in turn affects the oxygen concentrations. It could worsen the local oxygen
delivery for non-uniform cases. Biologically, the blood pressure in the artery
has to increase correspondingly when µ is increased under various conditions,
in order to provide sufficient blood supply and oxygen delivery.

increase of µ 0 10% 20%
Pai,0 2 2.0834, (4.2%, 1.7 mmHg), 2.1648, (8.2%, 3.3 mmHg)
Pao,1 1.5 1.5488, (3.3%, 1 mmHg) 1.5974, (6.5%, 2 mmHg)

Table 4: Pressure adjustments at artery boundary to maintain blood supply with an
increase of µ.

4.4. Effects of pulsatile arterial pressure
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Figure 20: Pulsatile profiles of boundary arterial pressures for Pai,0, Pao,1.

The pressure in arteries varies periodically as the heart beats so we con-
sider the case of pulsatile changes of arterial pressure. Figure 20 shows the
pulsatile profiles of the dimensionless boundary arterial pressures Pai,0(t) and
Pao,1(t) in (12,14) used as boundary conditions of the following simulation.
The profile of variation is constructed roughly based on a shifted function
t ∗ e−t in the first period, which has a shape similar to a pulse profile. The
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ofperiod is T=8, which is 0.8 seconds with units. The total variation within

one period is about 0.365, i.e., the pulse pressure between the systolic and
diastolic pressures is about 7.3 mmHg with units. The dimensionless average
values (mean arterial pressures, MAP) for Pai,0, Pao,1 over one period are the
same as the reference values 2 and 1.5 (i.e., 40 mmHg and 30 mmHg with
units), which are located at 1/3 of total variation and therefore consistent
with the common definition. For illustration, we chose our curves in Figure
20 based on profiles of pressures and flow rates in [26, 44, 45, 46, 47, 43] and
the knowledge of MAP in [28, 6, 47]. More specific references may be avail-
able for more accurate curves that we have not yet found in the dauntingly
large experimental literature.
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Figure 21: dynamics of the three pressures pai, pci, pv at three locations r = 0.19, 0.53, 0.96.

Figure 21 shows the dynamics of the three pressures pai, pci, pv at three
typical locations r = 0.19, 0.53, 0.96 (one in the middle, two close to two
ends). They all show pulsatile oscillations similar to the profile shown in
Figure 20, but with different magnitudes of variations. The pulsatile varia-
tions in arteries are the largest in magnitude, and the variations in veins are
the smallest. The other pressures show similar trend and variations. The
volume fractions show small pulsatile changes due to the force balance and
changes in pressure.

Figure 22 shows the spatial profiles of all pressures in the whole region at
two particular times when the boundary arterial pressures are maximum and
minimum (systolic and diastolic pressures respectively). The spatial profiles
and their relative positions for pressures are quite similar to those in Figure
3, but move up and down simultaneously and stably according to dynamic
changes in boundary arterial pressures shown in Figure 20.

Figure 23 shows the dynamics of the boundary blood flow rates, which
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Figure 22: spatial profiles of all pressures in the whole region at two particular times (i.e.,
systolic and diastolic pressures respectively).

0 10 20 30

t

2

4

6

8

10

J

×10
-3

Q
ai

∗

Q
ao

∗

Q
v

∗

Figure 23: The dynamics of the boundary blood flow rates in the pulsatile case.

have a similar pulsatile profile to the given boundary arterial pressures. The
average value of blood flow rates over one period is computed to be Q∗

ai =
Q∗

ao = 0.0034, the same as those in Table 2 with uniform case. So for the
blood circulation, the uniform case in Section 3.1 can be considered as the
averaged version of the case with pulsatile arterial pressure. In nonlinear time
dependent systems of complex structure, the average of the output variable
must be computed.

Figure 24 shows the dynamics of the concentrations and oxygen consump-
tion at r = 0.53. The concentrations show pulsatile variations but the total
oxygen consumption is relatively stable with very small variation. The small
variation for oxygen consumption is due to the relation Sex(Cex) used in Fig-
ure 6, because even with changes of Cex, say in [0.4,0.5], the consumption
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Figure 24: The dynamics of the concentrations and oxygen consumption at r = 0.53.

Sex stays at almost stable constant level. Then, as a consequence of stable
consumption in Figure 24(b) and varying (but sufficient) flow rates in Figure
23, the concentrations will have more significant variations, i.e., with more
blood flow (and RBCs) from boundary, the concentrations do not need to
drop too much to provide and allow stable oxygen consumption. We also no-
tice there is a delay in the timing of peak values of concentrations compared
with the timing of peak values of blood flow rates (i.e., the timing of systolic
pressure).

In summary, with pulsatile pressure conditions, the blood circulation and
oxygen concentrations show similar pulsatile variations in time and stable
spatial profiles. The uniform case is almost the averaged version of pulsatile
case despite the evident complex time dependent nonlinear system involved.
The simple behavior of averaged quantities, compared to what might happen
in such complex systems, may help the animal control the systems involved
in a stable reproducible way.

4.5. Effects of other parameters

In this subsection, we study the effects of a few other model parameters,
including λj, βj, δj in blood circulation part and Smax

ex , C1/2, Cai,0, H0 in the
oxygen delivery part.

First, we study the effects of the modulus λj (j = ai, ao, v, ci, co) of the
blood vessel wall in the force balance of equation (11). The diameters of
blood vessels might change in response to the physiological changes (or stim-
ulus like oxygen) [6, 16, 23]. In our models, this could come from the response
of blood vessel wall property to the physiological changes. For example, in
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pear in the model as the dependence of λj on oxygen concentrations. Here,
we illustrate the effect of λj (j = ai, ao, v, ci, co) by reducing all the moduli
λj simultaneously. Table 5 shows the comparison of the reference uniform
case and the case when all λj are reduced by 50%, showing that the volume
fractions for ηj, particularly for ηai, ηci, are increased, which in turn increases
the blood supply from the boundary, particularly for Q∗

ai. The main reason
for the increase in blood supply is the change in permeabilities between vas-
cular domains κ̄j, K̄j in (41). The permeabilities increase with the increased
volume fractions (or diameters of blood vessels), leading to more blood flow.
The influence on oxygen delivery is not as significant, since in the uniform
case, the blood supply and oxygen supply is quite sufficient and stable: the
increased blood flow is not needed to help out. We also tested the Gaussian
case 1, when all λj are increased by 50%, the minimum value of Sex near
r = 1 in Figure 13(b) increases from 0.1748 to 0.1794, so in that case the
change of λj can help the local oxygen delivery.

Remark 4: The parameter λj could depend on many factors, including the
Young’s modulus, thickness of blood vessel wall, and the reference/prestress
states in mechanical models, see [26]. Some models for the modulus λj (or
effective tensions) include the details of smooth muscle cells, e.g., the chem-
ical states or the smooth muscle tone, through introduction of an activation
parameter [6, 23, 22]. The activation parameter then depends on the changes
of physiological conditions, such as oxygen concentration, release of ATP, the
incoming blood pressures etc. We will leave the detailed description of λj to
future work. Here we only briefly mention that a simple model for autoregu-
lation [16] assumes that the resistance in blood vessels increases with venous
oxygen concentration. In the context of the present model, we can assume
the modulus λj increases with tissue oxygen concentration Cex. In that case,
smaller oxygen supply (smaller Cex) means smaller λj and larger volume frac-
tions ηj (larger diameter of blood vessels) by (11) and consequently larger
permeability κk in (3).

Next, we analyze the effects of partial blockage of blood vessels in some
local regions in either artery or capillary, which could be caused by patho-
logical conditions such as arterial stenosis [26, 6]. The blockage leads to
decreased permeability, and for illustration, we take βai and δci as the effec-
tive parameter for the blockage of artery and capillary. In Figure 25, we set
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ai Q∗
ao

with λj in Uniform case 0.0143 0.0257 0.0070 0.0131 0.0034 0.0034
reduce λj by 50% 0.0160 0.0262 0.0077 0.0135 0.0042 0.0035

Table 5: Effects of λj in the uniform case.
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Figure 25: Pressure profiles and blood exchange rates with local change of βai, which is
reduced to 10% of original value near r = 0.6.

βai to be 10% of original value (i.e., 90% decrease) in a small interval near
r = 0.6, more precisely in r = [0.52, 0.62]. Figure 25(a) shows that the pres-
sures pai and pci have a more significant drop near r = 0.6 to counterbalance
some blockage effect. The average value of blood flow rates Qai,ci and Qv,ci

downstream from the locations of blockage are reduced by 26% (from 0.0065
to 0.0048), shown in Figure 25(b). The boundary input Q∗

ai is reduced by
15% (from normal value 0.0034 to 0.0029). For the oxygen delivery part, the
overall oxygen delivery/consumption is still quite stable without observable
change, since the overall blood supply is still sufficient and there is redistri-
bution of oxygen supply in the affected region. More supply comes from the
other capillary domain Ωco. We have also tested the case when βai is reduced
by 50% locally, and the changes for Qai,ci, Qv,ci and Q∗

ai are quite small (< 3%
decrease).

In Figure 26, we set δai to be 10% of original value in a small interval r =
[0.52, 0.62] with other region unchanged. In Figure 26 (a), the flow rates Qai,ci

and Qv,ci are reduced by about 80% (from 0.0071 to 0.0015) locally in that
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Figure 26: Blood exchange rates and oxygen supply with local change of δci, which is
reduced to 10% of original value near r = 0.6.

modified region r = [0.52, 0.62], while other regions are almost unaffected.
This is because the local change in δai only affects the local exchange between
capillary domain Ωci and the corresponding artery and vein domains Ωai,Ωv

through the effective conductance in (8,9). There are no in-domain flows
in capillary since they are not directly connected in different locations, and
the other capillary network related to Ωco is a separate network and hence
Qao,co and Qv,co are unaffected. In Figure 26 (b), only significant changes
for Sci,ex, Sco,ex are observed in the local modified region r = [0.52, 0.62],
as a consequence of local changes of blood supply. But overall, the oxygen
consumption only drops slightly (about 1%) , since it is compensated by
more oxygen supply from the undamaged capillary Ωco. We have also tested
the case when both δci and δco are reduced by 90%, the reduction in flow
rates are similar and at about 80%, but the oxygen consumption only drops
by about 8.4% mainly due to the relation Sex(Cex).

In brief, the system is not very sensitive to permeability changes mainly
because of the presence of two capillary networks and the relation Sex(Cex)
with small C1/2 in Figure 6(b).

Next, we analyze the effects on oxygen consumption of the parameters
Smax
ex and C1/2 in the Michaelis-Menten formula (25). Due to lack of data,

these two parameters are estimated based on different tissues in Appendix
A.2 [25, 24, 18] and the simulated results for oxygen concentrations, so they
do not necessarily reflect the real situation for the optic nerve. These param-
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ex could
change because of high metabolism or neuron activities. We examine a case
when Smax

ex is increased by 50%. The first two rows in Table 6 show, for the
uniform case, that the consumption of oxygen also increases correspondingly
by roughly 50% on average and keeps stable spatial profile, but the concen-
trations Cex, Cv are decreased accordingly as more oxygen from RBCs has to
release to meet the increased need. For Gaussian case 1, the last two rows in
Table 6 show similar increased average consumption and decreased average
concentrations Cex, Cv. But locally near r = 1, the minimum oxygen con-
sumption is affected significantly and reduced to 13% of average value, since
the mismatch between demand and supply is worsened: the blood supply is
insufficient there. The parameter C1/2 influences the shape of the consump-
tion curve in Figure 6(b). With increased C1/2 the curve will have a smoother
transition and lie below the original curve. So with increased C1/2, the av-
erage consumption will be smaller for uniform case, and more local regions
will be affected for oxygen delivery in the Gaussian case 1 due to insufficient
blood supply and more sensitive changes of Sex with Cex in certain range
(say [0.2, 0.4]).

In brief, increased Smax
ex or C1/2 will worsen the oxygen supply for local

regions with insufficient blood supply.

average Cex average Cv average Sex min Sex

reference Uniform case 0.424 0.429 0.193 0.193
increase Smax

ex by 50% 0.357 0.351 0.287 0.287
reference Gaussian case 1 0.456 0.378 0.192 0.175
increase Smax

ex by 50% 0.379 0.308 0.272 0.035

Table 6: Effects of Smax
ex by increasing it by 50%.

Finally, we study the effects of parameters Cai,0 (we set Cai,0 = Cao,1)
and H0 in (35,36), which are related to the supply of oxygen from the artery
boundary. Biologically, the oxygen content from the boundary artery could
drop due to various conditions like anemia (i.e, low H0) and high altitude or
carbon monoxide poisoning (i.e., low Cai,0). For the uniform case, when H0

or Cai,0 is decreased by 20%, there is only negligible impact on the oxygen
delivery, e.g., the consumption rate Sex has negligible change (deceased by
< 1%), because the supply of blood flow and hence oxygen is still sufficient.
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is decreased by 20%. With Cai,0 decreased by 20%, the profile and values of
Sex have negligible change (< 1% for mean and minimum values), while the
concentrations decrease by moderate percentage (e.g., 5-7%). That means
the overall profiles of concentrations are shifted downward to maintain rela-
tively stable oxygen consumption. With H0 decreased by 20%, the oxygen
consumption/supply in some local region will be affected more significantly,
as the minimum Sex drops from 0.175 to 0.146 near r = 1. This is because the
oxygen in hemoglobin (in RBCs) is the main source of oxygen supply, and if
hemoglobin concentration is decreased (here reflected by H0), the supply of
oxygen is worsened in local regions with insufficient blood supply. The con-
centrations like Cex, Cv will be decreased accordingly (by about 10%) since
this allows more oxygen release from hemoglobin to maintain roughly stable
Sex. Overall, decreased H0 has more impact on local regions compared to
decreased Cai,0.

average Cex average Cv average Sex min Sex

reference Gaussian case 1 0.456 0.378 0.192 0.175
decrease Cai,0 by 20% 0.421 0.359 0.191 0.172
decrease H0 by 20% 0.414 0.339 0.189 0.146

Table 7: Effects of H0 and Cai,0 in the Gaussian case 1.

5. Conclusions

In this work, we have developed a multi-domain model for blood circula-
tion and oxygen transport in the optic nerve, with biological structures and
various physical mechanisms incorporated. The arteries, veins and capillaries
of the vasculature are treated as different domains in the model for the same
geometric region. Simulated baseline results show mechanisms and scales
consistent with literature and intuition. Then, the effects of various impor-
tant model parameters (relevant to pathological conditions) are investigated
in detail, and the model provide insights into the possible implications from
those parameter changes.

Vasculature distribution (represented by resting volume fractions here)
has significant impact on blood flow and oxygen transport. With uniform dis-
tributions, we find that the blood flow is sufficient and oxygen delivery is quite
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tribution like Gaussian profiles, the flood flow and oxygen transport changes
drastically, e.g., leading to limited oxygen supply locally. Therefore, the
biological structural data for vasculature distribution (volume frac-
tions) is crucially important to make accurate predictions.

Some existing models have also attempted to generate vasculature based
on branching processes in simulations. Once the biological data are available,
they can be incorporated.

We also comment that we have included two complete sets of vasculature
with artery, capillary and vein for the optic nerve, while some existing models
may have only concentrated on the artery or capillary. For tissues with one
set of vasculature, the five vascular domains here will be simplified to three
domains.

The effects of leak coefficients, particularly for the capillary, are inves-
tigated, showing that blood circulation and hence oxygen supply will be
strongly affected. The change of leak coefficients are related to damages in
optic nerve due to pathological conditions, such as glaucoma and diabetic
retinopathy. More work is needed in the future to make connections between
these parameters and diseased states.

We have investigated the effects of blood viscosity and incoming artery
pressures. The viscosity affects blood circulation through a scaling factor.
When viscosity is increased due to aging or other physiological conditions,
the incoming blood pressure in the artery has to increase to maintain original
blood circulation.

The case which mimics the natural heart beat is also investigated. Pul-
satile incoming (boundary) artery pressure produces similar averaged quan-
tities for blood circulation as in the constant pressure case. But one of our
paper’s limitations is that the changes of blood vessel modulus have not yet
been incorporated into the dynamics of the natural beating, pulsatile case.

We have studied the sensitivity of results to other model parameters in-
cluding modulus, permeability, maximum oxygen consumption rate, oxygen
content supply from the boundary, etc., through variations by a certain per-
centage. We note that the feedback effect of oxygen on blood circulation
could be modeled through modulus changes in future models. The estimate
of maximum oxygen consumption rate is also important and needs more
biological data.

There are other possible generalizations from this framework. This work
focuses on a 1D case based on the optic nerve geometry and simplicity con-
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space) when more biological structural information is available. Some exist-
ing multi-domain models on optic nerve have focused on the ion transport
and water flow in the tissue domain (with subdomains), and the modeling
of vasculature with multi-domains here can be combined with those mod-
els so that the physical coupling mechanisms for water flow, ion transport,
oxygen transport etc. can be studied together. We also hope to extend this
framework to the retina, where more image/experimental data are available.

The multidomain model of oxygen transport in the optic nerve has been
investigated in great detail for a specific reason. The possibility exists that
many diseases of great interest are the result of prolonged deprivation of
oxygen. Our work seeks to understand the processes that control oxygen
deprivation, for that reason.

We show that many changes in parameters can cause oxygen deprivation.
The confusing clinical picture of such diseases as glaucoma may arise because
there are many ways to deprive tissues of oxygen, as we show here. Perhaps
each of them leads to a similar final clinical picture, e.g. end stage glaucoma.
We believe that a combination of modelling and experimentation will be
needed to separate the different kinds of glaucoma (for example) produced
by different changes in parameters and thus to lead to appropriate treatments
for each kind.

Appendix A. Parameter values and estimates

Appendix A.1. Parameters in blood/water circulation

Appendix A.1.1. Estimate of βj and M0
j,ex

First, we estimate the values of βk (k = ai, ao, v) in (3), and we omit
the subscript k in some derivation below. In Poiseuille’s flow through a
cylindrical blood vessel of radius rbv, the permeability κ (the κj in the formula
of (2)) is derived as [15, 16]

κ =
1

8
r2bv.

The volume fraction η is given by [15]

η = πr2bvNbvL/V,
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parameter value references
Radius of central vessels R0 113 µm [15]
Radius of the optic nerve R1 790 µm [15]

Tissue/Extravascular pressure Pex,1 2.92 mmHg [15]
CRA pressure Pai,0 40 mmHg [15]
PCA pressure Pao,1 30 mmHg [15]
CRV pressure Pv,0 20 mmHg [15]

osmotic pressure constant πex 8 mmHg [16]
osmotic pressure constant πj in vessel 28 mmHg [16]

vascular volume fraction
∑

ηrek 15.67 % [15]
capillary, averaged ηreco + ηreci 1.9 % =1.27+ 0.63 % [48]
volume fraction, average ηrev 10 % [15, 16]

volume fraction, average ηreao + ηreai 3.77 %= 2.51+1.26 % [15, 16]
area coefficient M0

v,ex 0.021 /µm estimate

area coefficient M0
ao,ex 0.016 /µm estimate

area coefficient M0
ai,ex 0.011 /µm estimate

area coefficient M0
co,ex 0.075 /µm estimate

area coefficient M0
ci,ex 0.053 /µm estimate

permeability coefficient βv 9000 (µm)2 estimate
permeability coefficient βao 16000 (µm)2 estimate
permeability coefficient βai 31500 (µm)2 estimate

permeability κex 4× 10−4(µm)2 [3]
tortuosity τex 0.9 estimate

tortuosity τai, τao, τv 0.5 estimate
leak coefficient Lao,ex, Lai,ex, Lv,ex 1× 10−6 µm/(Pa s) [3]
water leak coefficient Lci,ex, Lco,ex 2.54× 10−4 µm/(Pa s) [39]

permeability coefficient δai 0.39 /(Pa s) estimate
permeability coefficient δao 0.2 /(Pa s) estimate
permeability coefficient δv 0.11 /(Pa s) estimate

permeability coefficient δci, δco 3.25, 1.61 /(Pa s) [48]
viscosity µb, µex 0.011 Pa s [15, 25, 49]

modulus λj, j = ai, ao, ci, co 7.8× 105 Pa [15]
modulus λv 1.5× 105 Pa estimate

resting pressure P re
ex 2.92 mmHg estimate

resting pressure P re
ai , P

re
ao 25 mmHg estimate

resting pressure P re
v , P re

ci , P
re
co 20 mmHg estimate
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blood vessels in the control volume. So, we can write them as

r2bv = βη, β =
V

πNbvL
, κ =

1

8
βη,

where the last one is the formula (3) used in the maintext, and the first
formula will be used to estimate the coefficient β. Here we assume constant
β for simplicity (of course, β could be varying as it characterizes the structural
information about distribution of branches) and estimate it by choosing an
average radius of blood vessel for each domain. For example, we choose
average rbv = 30µm for vein domain and get

βv ≈
r2bv
ηrev

=
(30µm)2

0.1
= 9000(µm)2.

Similarly we choose rbv = 20µm for two artery domains and get βai, βao

respectively as in Table A.8. We also choose rbv = 3µm for capillary domains
to get βci, βco (although not directly used in maintext), which will be used
to estimate M0

ci,ex, δci,M
0
co,ex, δco.

Next, we estimate M0
j,ex defined in (6), and omit j, ex in the general

formula below. By definition, the area of blood vessel wall per unit control
volume is

M = 2πrbvNbvL/V = 2
√
1/β

√
η = M0√η ⇒ M0 = 2

√
1/β,

where the definitions of η, β are used in the second equality. Then, for each
domain, we have the estimate

M0
j,ex = 2

√
1/βj, j = ai, ao, v, ci, co.

Appendix A.1.2. Estimate of δj
The estimate of δj is also based on βj. For example, δai is estimated as

δai =
1

8

βaiτai
µb

1

(∆r)2
≈ 0.39/(Pa s)

where ∆r = R1 − R0 = 677µm is used. Similarly the same ∆r is used for
estimates of δao, δv. For capillary domains, we have used ∆r = 50µm to esti-
mate δci, δco, because capillary network is local and connects the artery and
vein domains. The estimated δci, δco have similar values as those calculated
from [48].
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The total resting volume fractions for two arteries are taken from [15, 16].
We split it as two parts, 2/3 for the domain Ωao and 1/3 for the domain Ωai,
because it is believed that the artery from PCA is the primary component
[15, 35]. Similarly, we adopted the split the total capillary resting volume
fraction (from [48]) as two parts, 2/3 and 1/3 respectively for the two capil-
lary domains Ωco,Ωci. The modulus λj for arteries are taken from [15] (see
also [43, 40]), and the λv is chosen to be 5 times smaller than that, because
the compliance (related to the inverse of λjηj here) is about 24 times larger
in veins [16]. The tortuosity in blood vessels are chosen as 0.5 because this is
related to the relative orientation/angle of blood vessels to the radial direc-
tion, while it is set as 0.9 for extracellular space since it is almost connected
in every direction.

Appendix A.2. Parameters in oxygen transport

Since we directly used the concentration of oxygen instead of partial pres-
sure of oxygen in our model, the values from the following references will be
converted by multiplying oxygen solubility coefficient αO2. After conversion,
the max consumption rate Smax

ex is 6∗10−4 ml O2/ml/s in [25] for retina, and
some consumption rate in the range [1, 42] ∗ 10−4 ml O2/ml/s is used in [24],
the value 23 ∗ 10−4 ml O2/ml/s is used in [18] for the brain. Based on some
simulation, in order to be compatible with estimates of blood flow velocity
and normal oxygen concentrations (about 40 mmHg partial pressure multi-
plied by αO2) in vein, we choose a relatively larger one 6 ∗ 10−3 ml O2/ml/s
for the the parameter Smax

ex in optic nerve. The values of C1/2, C50 etc are
taken from [25] after conversion. Many other parameters in Table A.9 are
also taken from [25] except CHb, H0, because their parameters (a factor of
0.45 is double counted there) are inconsistent with other references [7, 24].

The permeability of oxygen in capillary is estimated by the formula [25]

lci,ex = lco,ex =
Dw

tcap
=

1 ∗ 10−9m2/s

0.5µm
= 0.002m/s

where Dw is the diffusivity and tcap is the thickness for capillary vessel wall.
The values are similar to those in [20]. For artery and vein, we used the same
formula, but with a much smaller diffusion constant and a larger vessel wall
thickness [42]

lai,ex = lao,ex = lv,ex =
Dw

tai
=

1 ∗ 10−10m2/s

2µm
= 5 ∗ 10−5m/s.
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max consumption rate Smax
ex 6× 10−3 ml O2/ml/s estimate

half-max parameter C1/2 4.8× 10−5 ml O2/ml [25]
solubility coefficient in blood αO2 3× 10−5 ml O2/ml /mmHg [25]
boundary concentration Cai,0, Cao,1 3× 10−3 ml O2/ml [25]

average concentration of [Hb] in blood 0.15 g/ ml [7, 19]
binding-capability of Hb, CHb 1.34 ml O2/g [7]

average binding-capability of blood, H0 0.2 ml O2/ml [7, 24]
Hill exponent nHill 2.7 [25]

Half saturation constant in Hb, C50 8× 10−4 ml O2/ml [25]
diffusion constant Dk, k = ai, ao, v, ci, co 2.18× 10−9 m2/s [25]

diffusion constant Dex 1× 10−9 m2/s [25]
oxygen permeability, lci,ex, lco,ex 0.002 m/s [25]

oxygen permeability, lai,ex, lao,ex, lv,ex 5× 10−5 m/s [25]
diffusion constant Dai,ci, Dao,co 3.6× 10−5 /s,7.3× 10−5 /s estimate
diffusion constant Dv,ci, Dv,co 2.8× 10−4 /s estimate

For the estimates, we also referred to [18].
For the effective diffusion constants between vascular domains, we take

Dai,ci for example, which is estimated by harmonic average

Dai,ci =
D∗

aiD
∗
ci

D∗
ai +D∗

ci

≈ 3.6 ∗ 10−5/s

where

D∗
ai =

ηaiDaiτ̃ai
(∆r)2

≈ 3.6 ∗ 10−5, D∗
ci =

ηciDciτ̃ci
(∆r̃)2

≈ 3.3 ∗ 10−3

where ∆r = 667µm and ∆r̃ = 50µm are used for artery and capillary. The
other three Dao,co, Dv,ci, Dv,co are estimated similarly.
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Highlights

1. A multi-domain model with vasculature is developed for optic nerve microcirculation.

2. The model includes various physical mechanisms for blood flow and oxygen transport.

3. The vasculature distribution has significant impact on local blood and oxygen supply.

4. Pulsatile arterial pressure produces similar averaged quantity as constant pressure. 

5. Effects of the leak across blood vessel wall and other parameters are investigated.
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