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Abstract 

Kirchhoff’s current law was originally derived for systems such as telegraphs that switch 

in 0.1 s. It is used widely today to design circuits in computers that switch in ~0.1 nano-

seconds, one billion times faster. Current behaves differently in one second and one-tenth 

of a nanosecond. A derivation of a current law from the fundamental equations of elec-

trodynamics—the Maxwell equations—is needed. Here is a derivation in one line: 

𝐝𝐢𝐯 𝐜𝐮𝐫𝐥 𝐁 𝛍𝟎⁄  =  𝟎 =  𝐝𝐢𝐯 (𝐉 + (𝛆𝒓 − 𝟏)𝛆𝟎𝛛𝐄 𝛛𝐭⁄ + 𝛆𝟎𝛛𝐄 𝛛𝐭⁄ ) =  𝐝𝐢𝐯 𝐉𝐭𝐨𝐭𝐚𝐥 . Maxwell’s 

‘true’ current is defined as 𝐉𝐭𝐨𝐭𝐚𝐥. The universal displacement current found everywhere is 

ε0 ∂𝐄 ∂t⁄  .The conduction current 𝐉  is carried by any charge with mass, no matter how 

small, brief, or transient, driven by any source, e.g., diffusion. The second term 

(ε𝑟 − 1)ε0 ∂𝐄 ∂t⁄  is the usual approximation to the polarization currents of ideal dielec-

trics. The dielectric constant ε𝑟  is a dimensionless real number. Real dielectrics can be 

very complicated. They require a complete theory of polarization to replace the 

(ε𝑟 − 1)ε0 ∂𝐄 ∂t⁄  term. The Maxwell current law div 𝐉𝐭𝐨𝐭𝐚𝐥 = 0 defines the solenoidal field 

of total current that has zero divergence, typically characterized in two dimensions by 

streamlines that end where they begin, flowing in loops that form circuits. Note that the 

conduction current 𝐉 is not solenoidal. Conduction current 𝐉 accumulates significantly 

in many chemical and biological applications. Total current 𝐉𝐭𝐨𝐭𝐚𝐥  does not accumulate in 

any time interval or in any circumstance where the Maxwell equations are valid. 𝐉𝐭𝐨𝐭𝐚𝐥 

does not accumulate during the transitions of electrons from orbital to orbital within a 

chemical reaction, for example. 𝐉𝐭𝐨𝐭𝐚𝐥 should be included in chemical reaction kinetics. 

The classical Kirchhoff current law div 𝐉 = 0 is an approximation used to analyze ideal-

ized topological circuits found in textbooks. The classical Kirchhoff current law is shown 

here by mathematics to be valid only when 𝐉 ≫ ε0 ∂𝐄 ∂t,⁄  typically in the steady state. 

The Kirchhoff current law is often extended to much shorter times to help topological 

circuits approximate some of the displacement currents not found in the classical Kirch-

hoff current law. The original circuit is modified. Circuit elements—invented or rede-

fined—are added to the topological circuit for that purpose. 

Keywords: Kirchhoff law; maxwell equations; circuits; solenoidal 

 

1. Introduction 

Kirchhoff’s current law [1–6] was originally derived for systems such as telegraphs 

that switch in 0.1 s. See historical note in Appendix A. It is used widely today to design 

circuits in computers that switch in ~0.1 nanoseconds, one billion times faster.  
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Current behaves differently on the second and nanosecond time scale [7–10]. The 

Maxwell equations describe electrodynamics without significant measured error on all 

time scales [11,12]. A derivation of Kirchhoff’s current law from the Maxwell equations is 

clearly needed. The derivation in this paper uses standard procedures of numerical anal-

ysis. It does not change the system being described by the current law. It provides error 

terms and validity conditions for the approximation itself. 

2. Derivation 

We start with the Maxwell Ampere law, which is one of the Maxwell equations. We 

define total current as Maxwell defined his ‘true current’ in Vol. 2, Section 610, p. 232 of 

his A Treatise on Electricity and Magnetism [13]. Variables are defined in the Details section 

below. 

𝐜𝐮𝐫𝐥 𝐁 = μ0(𝐉 + (ε𝑟 − 1)ε0 ∂𝐄 ∂t⁄ + ε0 ∂𝐄 ⁄ ∂t) = μ0𝐉𝐭𝐨𝐭𝐚𝐥  

where     𝐉𝐭𝐨𝐭𝐚𝐥 = 𝐉 +  (ε𝑟 − 1)ε0 ∂𝐄 ∂t⁄ + ε0 ∂𝐄 ⁄ ∂t  

(1) 

Next, take the divergence of both sides using an identity of vector calculus “div curl 

= 0” [14–16]. The identity can be simply derived from the usual differential definition of 

the vector operators in Cartesian coordinates. 

𝐝𝐢𝐯 𝐜𝐮𝐫𝐥 𝐁 =  𝟎 =  𝐝𝐢𝐯 (μ0(𝐉 +  (ε𝑟 − 1)ε0 ∂𝐄 ∂t⁄ + ε0 ∂𝐄 ⁄ ∂t))  

=  𝐝𝐢𝐯(μ0𝐉𝐭𝐨𝐭𝐚𝐥) 
(2) 

This establishes the three-dimensional version of the current law: 

Maxwell Current Law in Three Dimensions: 𝐝𝐢𝐯 𝐉𝐭𝐨𝐭𝐚𝐥 = 𝟎 (3) 

3. Underlying Identity 

The identity “div curl = 0” can be understood at many different levels of abstraction, 

ranging from elementary [15] to vector calculus [14], to the general Helmholtz decompo-

sition of vector fields [11,14], to the exterior calculus and theory of differential forms [17]. 

Slides 39 and 40 of [18] present the Cartesian derivative derivation. Slide 40 also gives an 

integral derivation with an easily visualized representation. 

We are motivated to use the variable 𝐉𝐭𝐨𝐭𝐚𝐥 = 𝐉 +  (ε𝑟 − 1)ε0 ∂𝐄 ∂t + ε0 ∂𝐄 ⁄ ∂t ⁄  be-

cause Maxwell gave it special significance. He called attention to the definition of total 

current 𝐉𝐭𝐨𝐭𝐚𝐥  as ‘One of the chief peculiarities of this treatise’. He called 𝐉𝐭𝐨𝐭𝐚𝐥 ‘the true 

current’. 

4. True Current 

Maxwell could hardly have chosen a stronger adjective than ‘true’ to describe 𝐉𝐭𝐨𝐭𝐚𝐥. 

Maxwell was explicit about why he used the name true current. He said that “… estimat-

ing the total movement of electricity [requires] an equation of true currents” such as the 

Maxwell Ampere law Equation (1). See Vol. 2, Section 610, p. 232 of [13]. Maxwell gives a 

number of fully worked out examples that show how neglecting the displacement cur-

rent in Equation (1) gives incorrect results. 

The treatment in this paper, of course, depends on mathematics and not on Maxwell’s 

opinion of what was true, however vigorously he said it. Maxwell’s vigorous language is 

supported by the mathematics.  

The mathematics provide a proof of Maxwell’s opinion. It is easy to show—as in 

Equations (1)–(3) or in one line in the Abstract—that the Maxwell current law is a mathe-

matical corollary of the Maxwell Ampere differential equation, made without physical or 

mathematical approximation or even argument. 
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5. Maxwell Current Law 

The Maxwell current law embodies the same physics as the Maxwell equations of 

electrodynamics themselves. The Maxwell current law is as good a representation of elec-

tromagnetic phenomena as the Maxwell partial differential equations themselves. The 

Maxwell current law is true whenever and under any conditions that the Maxwell Am-

pere law is true. The Maxwell current law clearly applies on the time scale of gamma rays, 

10−21 seconds and probably much faster.  

The Maxwell current law applies at times much shorter than chemical reactions or 

thermal (‘Brownian’) motion. The Maxwell current law shows that total current does not 

accumulate even on these very rapid time scales. Total current flows out of a region as fast 

it flows in, without any delays at all. In a series of chemical reactions involving an electron 

changing orbitals, the total current does not accumulate. It involves no delay. Thus, in a 

series of chemical reactions, the total current 𝐉𝐭𝐨𝐭𝐚𝐥  =  𝐉 + (ε𝑟 − 1)ε0 ∂𝐄 ∂t + ε0 ∂𝐄 ⁄ ∂t ⁄  

must be the same in each of the reactions. It must be exactly equal at all times and in all 

conditions. 

6. Chemical Reactions 

Total current is not usually considered in treatments of chemical reactions: terms in-

volving the time derivative ∂𝐄 ⁄ ∂t are usually not included in the analysis of chemical 

reactions. They are likely to have significant effects on the rapid time scales involved in 

chemical reactions, including changes in electron orbitals. In my opinion, they need to be 

dealt with explicitly [19] if chemistry is to be as exact a science as electrodynamics. 

Total current  𝐉𝐭𝐨𝐭𝐚𝐥 forms a divergence-free solenoidal field, as mathematicians call 

it, characteristic of flows of incompressible fluids [16]. Physical fluids compress before 

they become incompressible. They are not entirely incompressible. Physical fluids com-

press before they become divergence-free. Physical fluids can be nearly incompressible, 

but only after a time—nanoseconds to microseconds typically—determined by the speed 

of sound in the fluid.  

Total current is different. It is exactly solenoidal. Total current is entirely incompress-

ible. Total current is divergence-free on all time scales in which the Maxwell equations 

are valid. Those time scales extend over 33 orders of magnitude without measured error, 

and in all likelihood extend much further [20]. Few physical laws are accurate over such 

a large dynamic range. 

7. Solenoidal Fields and Circuits 

In two dimensions, streamlines of divergence-free solenoidal fields have special 

properties: the streamlines usually end where they start, forming looping circuits [21]. The 

circuits are generated and modified by physical constraints and boundary conditions that 

often supply energy. The physical constraints and boundary conditions arise in dipoles, 

not single charges, and perhaps also in the other coupled Maxwell equations and their 

boundary conditions. In three dimensions, flows are much more complex and streamlines 

are harder to define, as discussed at length in [11,22]. Current behaves differently on the 

second and nanosecond time scales in two and three dimensions, see [16]. 

Circuits are usually defined by simplified models that do not depend on the actual 

size and layout of the components of the circuit. I call these models—which are used in 

thousands of books and papers—topological circuits to distinguish them from represen-

tations that include the actual size of components and their nonideal properties.  

The simplified topological circuits of engineering [4,23–25] are discrete versions of 

two-dimensional fields of total current 𝐉𝐭𝐨𝐭𝐚𝐥  in which all streamlines form loops. Real 

circuits [3–5,8,10,26–30] are built to approximate the two-dimensional topological circuits 
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using the ‘art of electronics’ [9,25] with inspiration and hope [10]. Defining the relation of 

topological and real circuits is a tricky subject beyond the scope of this paper, see Appen-

dix B. Loosely put, one can say that topological circuits show what would happen if total 

current could be confined entirely to a branching network of one-dimensional elements, 

each branch of which contained a series arrangement of circuit elements. It is hard to spec-

ify the qualitative let alone quantitative requirements that ensure this one-dimensional 

idealization and approximation. The topological circuit is most helpful if the branching 

network lies almost entirely in a two-dimensional plane, without much overlap. 

The one-dimensional idealization allows the successful design of the circuits of our 

computers that function over an enormous range of time scales. Their success is likely to 

be related to the incompressible nature of total current over an even large range of time 

scales.  

Details: There are no explicit adjustable parameters in this formulation of the Max-

well equations without dielectric constants. In this formulation, the Maxwell equations 

are not constitutive equations. In their classical formulations, the Maxwell equations are 

constitutive equations that depend in many ways on details of properties of materials 

[11][12]. 

   𝐁  is the magnetic field. 𝐄  is the electric field. The conduction current 𝐉 is carried 

by any charge with mass, no matter how small, brief, or transient, driven by any source, 

e.g., diffusion [31]. The term 𝐉 + (ε𝑟 − 1)ε0 ∂𝐄 ∂t⁄  includes the usual approximation to 

the polarization currents of ideal dielectrics (ε𝑟 − 1)ε0 ∂𝐄 ∂t⁄ . ε𝑟 is the dielectric constant, 

a dimensionless real number. The total current 𝐉𝐭𝐨𝐭𝐚𝐥 = 𝐉 +  (ε𝑟 − 1)ε0 ∂𝐄 ∂t + ε0 ∂𝐄 ⁄ ∂t ⁄  

also includes the universal displacement current found everywhere ε0 ∂𝐄 ⁄ ∂t. The mag-

netic constant is μ0. The electric constant is ε0. 

The properties of matter are included only in the description of the conduction cur-

rent and the terms  𝐉 +  (ε𝑟 − 1)ε0 ∂𝐄 ∂t⁄ . They do not enter Equation (1) explicitly. There 

are no explicit adjustable parameters in this formulation of the Maxwell Ampere law. Real 

dielectrics can be very complicated because they involve all changes in charge density in 

response to applied electric fields [11,12]. Real dielectrics require a complete theory of 

polarization to replace the (ε𝑟 − 1)ε0 ∂𝐄 ∂t⁄  term as shown in [31]. 

The formulation and approach used in Equation (1) is motivated by the treatment of 

compressibility (of mass) in fluid mechanics. Indeed, this approach is designed to illus-

trate explicitly the role of ‘compressibility’ of charge density [31]. A complete theory of 

polarization current—indeed, of the entire response of matter to changes in the electric 

field [32]—is needed to make Equation (1) a complete description of real situations. The 

complete theory must deal with anisotropy, frequency (time dependence), nonlinearity, 

and many other properties of real matter which are specific to the system and measure-

ment of interest. In essence, the complete theory replaces the (ε𝑟 − 1)ε0 ∂𝐄 ∂t⁄  term in the 

Maxwell Ampere law Equation (1) and Maxwell current law Equation (3). Ref. [33] shows 

how a variational form of a complete theory can be used for this purpose. 

Circuits confine current 𝐉  to a network of one-dimensional components. Circuits are 

idealized topological representations used throughout engineering [4,23–25] to show the 

key features of current flow and electrical properties of the actual circuits of our comput-

ers and technology [3–5,8–10,25–30].  

Topological circuits. Topological circuits have been used successfully to design real-

world systems for some one hundred and seventy-five years. They are the ‘bread and 

butter’ of practical engineering. Appendix B describes some attempts to define these cir-

cuits more precisely. It can be difficult to define a priori in abstract language what math-

ematical features of current fields allow definitions of circuits, but it is clear that an enor-

mous set of current fields do allow such definitions. The set includes essentially all the 
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circuits of our signal, digital, and power technologies including the > 1018 circuits and 

memory circuits used in the smartphones on our planet. 

The connections of circuit components are shown in topological circuits used 

throughout electrical and electronic technology. Topological circuits do not depend on the 

size, dimensions, or details of the layout of the actual circuit: compare the idealized cir-

cuits of Horowitz and Hill in the original editions of their book [25] with the more realistic 

circuits in the updated “X-factor” edition of their text [9], as extended and verified by [7]. 

The current in each branch of a topological circuit is one-dimensional. It is the integral 

of the three-dimensional 𝐉𝐭𝐨𝐭𝐚𝐥(𝑟, 𝜃, 𝑧) over the relevant cross-sectional area of that branch. 

The total current  𝐉𝐭𝐨𝐭𝐚𝐥 is the same everywhere along a branch—i.e., everywhere in every 

component and wire in a series circuit—even though the microphysics of current flow in 

each component of the series circuit is very different. This counterintuitive behavior is 

illustrated and explained in physical terms in and near Figure 2 of [32]. 

The result is a generalized Kirchhoff current law that might be called the 

Maxwell Current Law for Circuits:  

The sum of total currents flowing into a node is zero.  
(4) 

The Maxwell circuit law does not address the issue of when and whether circuits are 

an appropriate idealization or approximation to a system (see Appendix B). The existence 

of a wide class of such circuits is shown by their use throughout our computers and digital 

technology enumerated above. 

The classical Kirchhoff current law is the Maxwell current law but it misses a term. 

The classical Kirchhoff current law does not include a time-dependent displacement cur-

rent term involving ∂𝐄 ⁄ ∂t. As a matter of mathematics, we see that the classical Kirch-

hoff current law approximates the Maxwell current law only when displacement cur-

rent can be neglected; for example, at long times in systems that reach a steady state. 

The contrast between Kirchhoff and Maxwell current laws is striking. There are no ap-

proximations or physical discussions involved in the derivation of Equation (3). 

Kirchhoff Current Law for Circuits: 

The sum of all one-dimensional currents 𝐉 flowing into a node is zero (5) 

is valid when 𝐉 ≫ ε𝑟ε0 ∂𝐄 ⁄ ∂t if we use the idealized ε𝑟  approximation to dielectrics. 

In three dimensions we have the 

Three-dimensional Kirchhoff Current Law: 𝐝𝐢𝐯 𝐉 = 0      for 𝐉 ≫ ε𝑟ε0 ∂𝐄 ⁄ ∂t (6) 

if we use the idealized ε𝑟 approximation to dielectrics. 

Kirchhoff’s laws are not true in general but the three-dimensional Maxwell law (3) 

is true in general. The three-dimensional Maxwell law for total current is true whenever 

the Maxwell equations themselves are true. The three-dimensional Maxwell law Equation 

(3) can be used to generalize and rework the Kirchhoff laws to apply under wider condi-

tions [1]. The Maxwell circuit law Equation (4) can be used when current is confined to a 

branching network of one-dimensional conductors that lie mostly in one plane. 

The Maxwell total current 𝐉𝐭𝐨𝐭𝐚𝐥  can be used in place of the conduction current 𝐉 to 

analyze idealized topological circuits. The Maxwell total current 𝐉𝐭𝐨𝐭𝐚𝐥  can be used where 

the classical Kirchhoff’s current law uses the conduction current 𝐉. Generalizing the Kirch-

hoff current law this way makes it compatible with electrodynamics under all conditions 

at any time and any location on any scale. This approach can be implemented in standard 

circuit software packages by small modifications of their code that deals with shunt ca-

pacitance [34–36], for example by using the Cpar parameter found within the component 

attribute editor of LTSpice. The paper “What Current Flows Through a Resistor?” [37] 

shows in detail one way to implement this modification.  
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The classical Kirchhoff current law is only true when 𝐉 ≫ ε0 ∂𝐄 ⁄ ∂t. It is usually a 

long-time (low-frequency) approximation. Like other long-time approximations, it fails to 

describe even the qualitative properties of currents outside the region of validity of the 

approximation. It does not predict transients at all (because it does not have time as a 

variable) and so does not describe one of the most prominent properties of real circuits. 

These short times are found in modern circuits almost everywhere. 

8. Failures of the Classical Kirchhoff Law  

The Kirchhoff current law fails qualitatively at short times because the displacement 

current is much larger than the conduction current at short times: ε0 ∂𝐄 ⁄ ∂t ≫ 𝐉 at short 

times. This failure is an issue of mathematics, not physical science or tradition. This math-

ematical issue is not corrected by fixups that change the definition of circuit elements [7–

10] in the topological circuits, however useful that change may be in applications [38–40].  

In mathematics or numerical analysis, approximations are not considered quantita-

tively useful—and in that sense valid—when they are used beyond their region of valid-

ity. They are not considered valid when they miss some of the most prominent features of 

the system being described, such as transients. In mathematics, one does not change the 

object being approximated. In mathematics, one changes the approximation. Some work-

ers identify the fixups that change circuits—and bring idealized circuits closer to reality—

as “black magic”, presumably for that reason [10]. 

The analysis of this paper allows quantitative estimation of errors in idealized cir-

cuits. If the branch of a circuit is a resistance R, the Kirchhoff approximation is accurate 

for times much longer than the RC time constant where C is the ideal stray parasitic ca-

pacitance, conservatively estimated as 10 pF (picofarads) [4,5] but often much larger. 

The Kirchhoff approximation is seriously in error in many applications. Engineers 

examining circuits constructed only of physical resistors, roughly 10 kohms to 100 k ohms 

in value, will see transients ‘everywhere’ when they make measurements on the nanosec-

ond time scales of modern circuits. Specifically, on the 0.1 nanosecond time scale used in 

computer circuits, RC might be 100 nsec to 1 microsecond in a well-implemented CMOS 

pull down/pull up circuit with R = 10 or 100 kohms. The Kirchhoff current law is quali-

tatively in error in typical computer circuits because the time scale of the classical 

Kirchhoff current law is at least four orders of magnitude slower than the RC time con-

stant of push down/pull up resistors. There are billions of pull down/pull up resistors in 

our computer memories. The details of their performance are important determinants of 

the performance of our computers and smartphones. 

9. Art of Electronics 

The “art of electronics” [7–10,25] modifies idealized topological circuits so that they 

better approximate the properties of real circuits. The modification invents circuit ele-

ments and adds them into the original idealized circuit. Adding in the invented circuit 

elements supplements the idealized topology by providing some—but not all—of the dis-

placement currents ignored in the classical Kirchhoff current law. The displacement cur-

rents include the universal displacement current ε0 ∂𝐄 ⁄ ∂t needed according to the Max-

well Ampere Equation (1). The invented circuit elements also include nonideal effects aris-

ing from the layout of components in the real circuit [7–10]. The invented supplemental 

elements are artfully placed so the Kirchhoff approximation can approximate reality. 

The location and value of these invented supplemental components is subjective. The 

supplemental elements do not have definite numerical values that will be the same in 

every implementation or numerical calculation. Different people will choose different 

values and locations. The fixups are indeed ‘black magic’ [10] and do not satisfy the 
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objectivity expected in a mature settled science particularly one so important for so much 

of the technology we use every day. 

10. Supplementary Elements 

The supplementary elements are not included in the classical idealized topological 

circuit diagrams because the invented elements and fixups depend on the size and details 

of the layout of circuits as discussed in detail in references [7–10]. The supplementary 

elements represent nonideal properties such as the inductance and coupling capacitance 

of real circuit components. These details vary from one real circuit to another even though 

they implement the same topological circuit. Compare the idealized early editions of Hor-

owitz and Hill [25] with the “X-factor” used to describe these details in their more recent 

and realistic edition [9]. 

Nonetheless, well-placed supplemental elements added to topological circuits clarify 

the behavior seen in real circuits. Without them, the short time behavior of Kirchhoff’s law 

in topological circuits is incompatible with the transients seen in nearly every experiment. 

Without them, the short time behavior of Kirchhoff’s law is incompatible with the funda-

mental equations of electrodynamics, for example, the Maxwell Ampere law Equation (1). 

With the fixups, Kirchhoff approximations can be useful even at microwave frequencies 

[38–40].  

11. Invented Elements 

The invented elements of the fixups, however, have another difficulty. They hide the 

universal displacement current ε0 ∂𝐄 ⁄ ∂t that is always required by the Maxwell Am-

pere differential equation. The necessity of the displacement current is easy to overlook 

when hidden in the invented circuit elements. An understanding of the universal nature 

of the displacement current ε0 ∂𝐄 ⁄ ∂t  is necessary to understand electrodynamics, as 

Maxwell demonstrated, long ago, when he introduced displacement current into Am-

pere’s law. Without understanding the universal displacement current, one cannot under-

stand how light propagates in a vacuum devoid of charge [41]. One cannot understand 

how one can see stars are astronomers see galaxies thousands of light years from earth. 

12. Conclusions 

The wide classical use of Kirchhoff’s current law should not hide the following real-

ities: 

(1) The classical approach is often used far outside the realm of its validity, requiring 

‘black magic’ [10] for justification. Most scientists would agree that black magic 

should be minimized in engineering and science, however important it is in under-

standing human behavior. 

(2) Designs using supplemental invented or modified circuit elements do not provide 

unique numerical results because the placement and value of the supplemental ele-

ments is subjective. The placement and value of the invented elements is more art 

than science. Science and engineering should be objective wherever possible, most 

would agree. 

(3) Maxwell current makes it possible to be more objective when dealing with topologi-

cal or real circuits. It allows topological networks to be consistent with the laws of 

electrodynamics. Topological networks designed without the Maxwell current law 

are in fact inconsistent with the universal laws of electrodynamics. This is a disqui-

eting situation given the enormous importance in our daily lives of circuits de-

signed by topological networks. The designs using Maxwell current are derived by 
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mathematics from the equations of electrodynamics and so are unique, objective, 

and can be part of a mature settled science. 

Invented subjective supplementary elements can still be used in an ad hoc way to 

supplement a Maxwell circuit design when that is useful in applications, even extending 

to microwave frequencies [38–40]. In this way, Maxwell circuit designs can deal with the 

widely varied (and rapidly evolving) nonideal properties of real circuit components and 

layouts over a very wide time scale in the remarkably successful tradition of the art of 

electronics [7–10,25]. 

(4) When Maxwell’s current is used as just described, supplementary invented circuit 

elements depend only on the nonideal properties and layout of a real circuit. They 

are no longer surrogates for the universal displacement current ε0 ∂𝐄 ⁄ ∂t that al-

ways flows according to the Maxwell Ampere law Equation (1). The Maxwell circuit 

design clarifies the traditional art of electronics in this way as well as making it com-

patible with the Maxwell equations themselves and the experimentally observed be-

havior of real circuits, where transients are ‘everywhere’. Maxwell circuit design 

brings some light to the dark arts and black magic used to design the circuits of our 

computers [7–10,25]. It restores transients—which are present in the real world—to 

the otherwise entirely DC analysis of traditional Kirchhoff current laws. 
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Appendix A. Historical References 

The reviewers were kind enough to mention important historical references to Kirch-

hoff’s current law that should be included here [42–44]. 

Appendix B. Circuit Representations 

This paper does not address the issue of the general validity of topological circuits. It 

seeks to present current laws to analyze circuits already known to be useful. That includes 

a significant number of circuits. It includes nearly all the circuits of our computers, of our 

digital technology, and of our power and signal distribution systems, including the more 

than 1018 circuits and memory circuits in the smartphones on our planet. 

The referees kindly mentioned the following references on the general validity of cir-

cuits that should be included here [45–50]. 
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