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Abstract 

 

Incompressible flows have special properties extensively studied in fluid mechanics using the 

theory of solenoidal or divergence-free fields. Fluids become compressible at short enough times. Here 

we point out that the total current defined by the Maxwell Ampere Law of electrodynamics forms a 

solenoidal divergence-free field on all measurable time scales ranging over more than 33 orders of 

magnitude. 
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Incompressible flows have special properties extensively studied in fluid mechanics [1-3] using 

the theory of solenoidal or divergence-free fields. Incompressible flows have no divergence. The flows 

form ‘solenoidal fields’ that do not have sources or sinks, in the ordinary monopolar meaning of those 

words. The circuits are generated by dipoles and the boundary conditions describing physical systems. In 

two dimensions, incompressible flow is usually along streamlines that can be precisely defined. The 

streamlines loop back on themselves, ending where they start, forming circuits. Three dimensional 

solenoidal fields are not so simple, Ch.5 & 6 of [4].  

Incompressible fluids and their flows approximate the properties of fluids like water, which indeed 

do not change much in volume when pressure is changed.  

Of course, it takes some time before incompressibility shows itself. Incompressible fluids are 

compressible on time scales set by the speed of sound. The time scale of compressibility can reach from 

nanoseconds to microseconds in typical cases. Incompressibility on all time scales is impossible when 

dealing with the mechanics of real fluids. The flow of total current is different, eq. (5).  

This article identifies a flow that is truly incompressible, without measurable time dependence. 

It is the flow of total current defined by 

𝐉𝐭𝐨𝐭𝐚𝐥 = 𝐉 +  ε0 ∂𝐄 ⁄ ∂t (1)  

𝐉  is the flow of any charge with mass, however small, however brief and transient the flow, 

whatever its source, including, for example, diffusion. It includes the polarization charge of dielectric 

materials. 𝐄 is the electric field. ε0 is the electric constant.  

Total current was identified by Maxwell himself as one of the main features of his theory of 

electrodynamics [5], Vol. 2 Section 610 p. 232: “One of the chief peculiarities of this treatise”. Indeed, 

Maxwell called it “the true current” [6] that was required to estimate the flow of electricity.  

In classical electrodynamics, the flow of total (i.e., true) current is described by the Maxwell 

Ampere Law [4, 7] where 𝐁 is the magnetic field and μ0 is the magnetic constant. 

𝐜𝐮𝐫𝐥 𝐁 = μ0(𝐉 + ε0 ∂𝐄 ∂t⁄ ) = μ0𝐉𝐭𝐨𝐭𝐚𝐥 (2) 

The Maxwell Ampere law identifies the total current 𝐉𝐭𝐨𝐭𝐚𝐥  itself as the vorticity (vortex field) of 𝐁 μ0⁄  

if we use the language of fluid mechanics [2]. 

The classical magnetic field is specified by its curl eq. (2) and its divergence, along with the 

experimental fact that magnetic charge (i.e., monopoles) do not exist. That is to say 

𝐝𝐢𝐯 𝐁 = 0 (3) 

The Maxwell Ampere law identifies the total current 𝐉𝐭𝐨𝐭𝐚𝐥  itself as the vorticity (vortex field) of 𝐁 μ0⁄  

if we use the language of fluid mechanics [2].  

These field equations are incomplete because they do not deal explicitly with physical boundary 

conditions (imposed by experiments or engineering devices) or the possibilities of intrinsic permanent 

magnetic (‘spin’) dipoles 𝝁 mentioned in the closing paragraphs of this paper. See p. 384 of Griffiths [4] 
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writing about spin “the world does include particles with intrinsic spin”, but Griffiths makes clear that 

classical electrodynamics itself does not deal with spin dipoles: “they are not classical electrodynamics” 

(original has italics).  

Taking the divergence shows that 𝐉𝐭𝐨𝐭𝐚𝐥  forms a solenoidal divergence-free field because 

𝐝𝐢𝐯 𝐜𝐮𝐫𝐥 =  𝟎 is a well-known identity [2, 8] true for any function that satisfies the Maxwell equations. 

𝐝𝐢𝐯 𝐜𝐮𝐫𝐥 𝐁 = 0 = 𝐝𝐢𝐯 μ0(𝐉 + ε0 ∂𝐄 ⁄ ∂t) = 𝐝𝐢𝐯 μ0𝐉𝐭𝐨𝐭𝐚𝐥 (4) 

Maxwell Current Law  𝐝𝐢𝐯 𝐉𝐭𝐨𝐭𝐚𝐥 = 𝟎 (5) 

The identity 𝐝𝐢𝐯 𝐜𝐮𝐫𝐥 =  𝟎 can be easily verified by writing the vector operators in Cartesian 

form. The identity has many interpretations at various levels of abstraction from calculus [8], to vector 

calculus [2] and its Helmholtz decomposition [4], to exterior calculus and differential forms [9]. 

Note that no properties of matter are involved in the formulation of 𝐉𝐭𝐨𝐭𝐚𝐥 and no adjustable 

parameters are present [10, 11]. Only the electrical constant, magnetic constant and/or speed of light 

are involved. Those constants seem not to vary at all in experiments. 

The Maxwell Ampere law is an accurate description of electrodynamics on the shortest time 

scales and smallest distance scales that have been measured. It is accurate on the time scale of gamma 

rays, some 10−20 seconds and also on the time scale of interstellar communication that is more than a 

million (light) years, 3 × 1013  seconds. It may fail at the enormous field strengths specified by the 

Schwinger limit, but experimental evidence of that failure has not yet been found as far as I know.  

I conclude that 𝐉𝐭𝐨𝐭𝐚𝐥 is a perfectly incompressible fluid on all scales that matter. The divergence-

free field of 𝐉𝐭𝐨𝐭𝐚𝐥 is as perfectly incompressible on all time scales as the Maxwell equations are accurate. 

There are few physical laws accurate over a time scale of 33 orders of magnitude! 

Incompressibility of this order has remarkable implications because it means that 𝐉𝐭𝐨𝐭𝐚𝐥   does not 

accumulate at all, ever, even during extremely fast phenomena like thermal motion and electron 

rearrangements of chemical reactions that occur in ~10−17seconds. Electrons changing orbital satisfy 

the Maxwell current law throughout their transition. Atoms in thermal motion satisfy the Maxwell 

current law. Chemical reactants satisfy the Maxwell current law in every sub-reaction. Chemical reactions 

in series have the same total current everywhere. Total current does not accumulate in any time interval 

no matter how brief, in a series of chemical reactions. Displacement current ε0 ∂𝐄 ⁄ ∂t  and total 

current are usually not included in analyses of chemical reactions. 

Circuits. Many of the most-used applications of electricity and electrodynamics involve electrical circuits 

[12]. Circuits deliver the power that enables our modern economy. Circuits provide the signals and 

information of our computers and smart phones.  

The properties of 𝐉𝐭𝐨𝐭𝐚𝐥 involved in circuits can be analyzed with quite simple mathematics when 

𝐉𝐭𝐨𝐭𝐚𝐥 is confined to networks of one-dimensional conductors [13-15]. In that case, the Kirchhoff’s current 

law is widely used as an approximation of the exact Maxwell current law eq. (5). The classical Kirchhoff 
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law of circuit analysis is accurate when displacement current ε0 ∂𝐄 ⁄ ∂t  is small compared to 

conduction current 𝐉. The art of electronics [16] has developed fix-ups [17-19] to deal successfully but 

approximately with the more general case. So further analysis is not really needed from a practical 

scientific point of view. But science is done by scientists and scientists are curious. 

What flows? a speculation. Curious scientists ask “What flows according to the law 𝐝𝐢𝐯 𝐉𝐭𝐨𝐭𝐚𝐥 = 𝟎 ? Is 

there an aether that flows according to the law 𝐝𝐢𝐯 𝐉𝐭𝐨𝐭𝐚𝐥 = 𝟎 ? ". Such an aether need not be the aether 

of 19th century physics [20]; the aether could include the displacement current ε0 ∂𝐄 ⁄ ∂t  and that 

might be enough to make that aether consistent with special relativity, Lorentz transformations, and the 

Michelson Morley experiment.  

Flows of quasi-particles play a crucial role in the theory and practice of electronics [21-23]. The 

quasi-particles holes and ‘electrons’ are properties of the band structure of semiconductors that capture 

the correlations underlying the successful design of transistors. In this tradition, one can ask whether a 

quasi-particle for 𝐉𝐭𝐨𝐭𝐚𝐥  can be usefully defined. It might be called a ‘Maxion’ to honor Maxwell’s 

understanding of true current.  

The flows 𝐉𝐭𝐨𝐭𝐚𝐥   of a Maxion must include both the ethereal displacement current ε0 ∂𝐄 ⁄ ∂t 

and the flow 𝐉 of charges with mass. Other properties of the Maxion are not preordained and can be 

specified for convenience. 

It is important to remember that real electrons are not just charges. They have a permanent 

magnetic dipole 𝛍,  a vector called spin with magnitude |𝛍| = μ = ±1

2
,  as well as their permanent 

negative charge. Together the charge and spin form a real electron that might be called a ‘Magtron’ (see 

p. 384 of [4]). A Maxion is a Magtron along with its displacement current. The classical physics of 

Magtrons and Maxions seems worth investigating to isolate the effects of classical electrodynamics on 

spintronic  devices and such chemical issues as structure of orbitals and the Pauli exclusion principle. 

Note that the Pauli exclusion principle and thus spin are involved in the properties of most chemical 

reactions.   

A Maxion with spin forms a charged electromagnetic point-vortex, in the language of fluid 

dynamics [2, 24], a magnetic point-dipole with the field 𝐁𝜹 =
𝜇0𝜇

4𝜋𝑟3
(2 cos 𝜃 �̂� + sin 𝜃 𝜃)  in spherical 

coordinates that adds a source and source term 𝝁 x 𝛁𝜹𝟑𝑫 to the 𝐁 field found in eq. (2) & (3). 𝛁𝜹𝟑𝑫 

is the gradient of the three dimensional Dirac delta function(al), see p. 48 of [4].  

The magnetic point-dipole acts as a physical source that helps create the magnetic field 𝐁 of 

real electrons with spin.  

The magnetic point-dipole can be viewed either as a boundary condition or dipolar source term 

 𝝁 x 𝛁𝜹𝟑𝑫 that supplements the classical Maxwell partial differential equations (3) & (2) 𝐝𝐢𝐯 𝐁 = 𝟎  

and 𝐜𝐮𝐫𝐥 𝐁 = μ0𝐉𝐭𝐨𝐭𝐚𝐥 . The mathematics of such dipoles needs further investigation. It “is not classical 

electrodynamics” (see p. 384 of [4] italics in the original). The point-dipole 𝝁 x 𝛁𝜹𝟑𝑫 is singular and so 

it does not automatically satisfy the identities of vector calculus. The near singular behavior of the spin 
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actually present in an electron means that vector identities like 𝐝𝐢𝐯 𝐜𝐮𝐫𝐥  (𝝁 x 𝛁𝜹𝟑𝑫) = 𝟎 cannot be 

taken for granted. They may or may not apply to point-dipoles and layers of dipoles. The identities for 

dipole sources must be studied by the limiting processes of functional analysis that define 𝛁𝜹𝟑𝑫 . 

An extension of classical electrodynamics to analyze an electron with spin and displacement 

current—a Magtron/Maxion—would certainly be interesting. Would it yield a Rydberg formula, Pauli 

exclusion principle and the periodic table of chemistry? What would a wave equation of a 

Magtron/Maxion tell us of spintronics?   

The effect of the magnetic point-dipole 𝝁 x 𝛁𝜹𝟑𝑫 on the total current 𝐉𝐭𝐨𝐭𝐚𝐥 will emerge from 

analysis. From the physical point of view of classical electrodynamics, 𝐉𝐭𝐨𝐭𝐚𝐥  satisfies the Maxwell 

current law everywhere: in the plasma and near-vacuum of electron tubes (valves in UK usage); in 

delocalized orbitals that carry current in wires; in band structures of semiconductors. It is difficult to see 

how a single definition of a quasi-particle for total current could deal with the diversity of microphysics 

in all these systems, even if the magnetic point-dipole of the electron and displacement current is 

included. But mathematical analysis is needed.   
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