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Abstract 

 

Kirchhoff's current law was originally derived for systems that switch in 0.1 second. It is 

used widely today to design circuits in computers that switch in ~0.1 nanoseconds, one billion 

times faster. A derivation from the fundamental equations of electrodynamics—the Maxwell 

equations—is needed: in one line, 𝐝𝐢𝐯 𝐜𝐮𝐫𝐥 𝐁 μ0⁄  =  𝟎 =  𝐝𝐢𝐯 (𝐉 + ε0 ∂𝐄 ∂t⁄ ) =  𝐝𝐢𝐯 𝐉𝐭𝐨𝐭𝐚𝐥 . 

Here 𝐉 is the current carried by any charge with mass, no matter how small, brief, or transient, 

driven by any source, e.g., diffusion. 𝐉 includes the usual approximation to the polarization 

currents of ideal dielectrics. The Maxwell current law 𝐝𝐢𝐯 𝐉𝐭𝐨𝐭𝐚𝐥 = 0 defines the solenoidal field of 

total current that has zero divergence, typically characterized in two dimensions by streamlines 

that end where they begin forming loops or circuits. The Kirchhoff current law 𝐝𝐢𝐯 𝐉 = 𝟎 is an 

approximation only valid when 𝐉 ≫ ε0 ∂𝐄 ∂t⁄ . 
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Kirchhoff's current law [1-5] was originally derived for systems that switch in 0.1 second [6]. It is 

used widely today to design circuits in computers that switch in ~0.1 nanoseconds, one billion times faster. 

A derivation from the fundamental equations of electrodynamics—the Maxwell equations—is clearly 

needed. 

We start with the Maxwell Ampere Law which is one of the Maxwell equations that describe 

electrodynamics without significant error [7, 8]. And we define total current as Maxwell did. 

𝐜𝐮𝐫𝐥 𝐁 = μ0(𝐉 + ε0 ∂𝐄 ⁄ ∂t) = μ0𝐉𝐭𝐨𝐭𝐚𝐥   𝐉𝐭𝐨𝐭𝐚𝐥 = 𝐉 +  ε0 ∂𝐄 ⁄ ∂t    (1) 

Take the divergence of both sides using an identity of vector calculus [9-11] that is part of the 

general Helmholtz decomposition of vector fields [7, 9] 

𝐝𝐢𝐯 𝐜𝐮𝐫𝐥 𝐁 =  𝟎 =  𝐝𝐢𝐯 (μ0(𝐉 +  ε0 ∂𝐄 ⁄ ∂t))  =  𝐝𝐢𝐯(μ0𝐉𝐭𝐨𝐭𝐚𝐥)   (2) 

This establishes the three-dimensional version a current law  

Maxwell Current Law in Three Dimensions:   𝐝𝐢𝐯 𝐉𝐭𝐨𝐭𝐚𝐥 = 𝟎      (3) 

We are motivated to use the variable 𝐉𝐭𝐨𝐭𝐚𝐥 = 𝐉 + ε0 ∂𝐄 ⁄ ∂t because Maxwell gave it special 

significance as ‘One of the chief peculiarities of this treatise’ [12]. He called it the true current. He could 

hardly have chosen a stronger adjective than ‘true’. Maxwell was explicit about why he used the name 

true current. He said that “ … estimating the total movement of electricity [requires] an equation of true 

currents” like the Maxwell Ampere Law eq. (1). See Vol. 2, Section 610, p. 232 of his “A Treatise on 

Electricity and Magnetism” [13].   

The treatment here, of course, depends on mathematics not Maxwell’s opinion of what was true. 

It is easy to show (as does eq. (2)) that the Maxwell Current Law is a mathematical corollary of the Maxwell 

Ampere differential equation. The Maxwell Current Law embodies the same physics as the Maxwell 

equations of electrodynamics themselves. It is as good a representation of electromagnetic phenomena 

as they are. The Maxwell current law is true whenever and under any conditions that the Maxwell Ampere 

law is true. The Maxwell current law applies on the time scale of gamma rays, 10−21seconds. The Maxwell 

current law applies at times much shorter than chemical reactions or thermal (‘Brownian’) motion. Total 

current does not accumulate even on these very rapid time scales. Total current flows out of a region as 

fast it flows in, without any delays at all. Thus, in a series of chemical reactions involving an electron 

changing orbitals, the total current involves no delay. Total current is not usually considered in treatments 

of chemical reactions: terms involving the time derivative ∂𝐄 ⁄ ∂t are usually not included in the analysis 

of chemical reactions. 
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Total current 𝐉𝐭𝐨𝐭𝐚𝐥 forms a solenoidal field, as mathematicians call it, characteristic of flows of 

incompressible fluids [11]. The streamlines of such fields have special properties: in two dimensions, the 

streamlines often end where they start, forming looping circuits in systems modified by physical 

constraints and boundary conditions, which arise in dipoles, not single charges and in the other coupled 

Maxwell equations. In three dimensions flows are much more complex and streamlines are hard to define 

[7]. The simplified topological circuits of engineering are discrete versions of two-dimensional fields of 

total current 𝐉𝐭𝐨𝐭𝐚𝐥 in which all streamlines form loops.  

Details: There are no explicit adjustable parameters in this formulation of the Maxwell equations [14, 

15] without dielectric constants [16]. 𝐁 is the magnetic field. 𝐄 is the electric field. 𝐉 is the conduction 

current of any charge with mass, however brief and transient the current, even if driven by forces not in 

the Maxwell equations, like diffusion [17]. In this formulation, 𝐉 includes the movement of polarization 

charge of ideal dielectrics. The properties of matter are included only in the description of 𝐉. They do not 

enter the equation (2) itself. There are no explicit adjustable parameters in this formulation. μ0 is the 

magnetic constant. ε0 is the electric constant.  

Circuits confine current 𝐉 to a network of one-dimensional components. Circuits are idealized topological 

representations used throughout engineering to show the key features of current flow and electrical 

properties of the actual circuits of our computers and technology. They show the connections of circuit 

components. Topological circuits do not depend on the size or dimensions or details of the layout of the 

actual circuit. The current in each branch of a circuit is the integral of 𝐉𝐭𝐨𝐭𝐚𝐥(𝑟, 𝜃, 𝑧) over the cross-sectional 

area of the components of that branch. The total current is the same everywhere along a branch. The total 

current is the same everywhere in a series circuit even though the microphysics of current flow in each 

component of the series circuit is usually different as illustrated and explained in Fig. 2 of [18]. 

The result is a generalization of Kirchhoff's current law that might be called the 

Maxwell Current Law for Circuits: The sum of all the total currents flowing into a node is zero.   (4) 

The classical Kirchhoff current law is the Maxwell current law without the time dependent term 

involving ∂𝐄 ⁄ ∂t. The classical Kirchhoff current law approximates the Maxwell current law only at long 

times in systems that reach a steady state. (Remember that the total current 𝐉𝐭𝐨𝐭𝐚𝐥  in an idealized 

topological circuit is the sum of conduction 𝐉 and the universal displacement current ε0 ∂𝐄 ⁄ ∂t. In real 

circuits the additional polarization currents of dielectrics are often crudely approximated [16] by adding a 

term (ε0 − 1)ε0 ∂𝐄 ⁄ ∂t  
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Kirchhoff Current Law for Circuits: The sum of all conduction currents 𝐉 flowing into a node is zero (5) 

Three-dimensional Kirchhoff Current Law:    𝐝𝐢𝐯 𝐉 = 0     (6) 

Kirchhoff's law (6) is not true in general. The Maxwell law (3) for total current is true in general. 

The Maxwell law eq. (3) can be used as described in ref. [1] . The Maxwell total current can be used where 

Kirchhoff's current law uses the conduction current 𝐉 to analyze idealized topological circuits. Generalizing 

the Kirchhoff current law this way makes it compatible with electrodynamics under all conditions at any 

time and any location on any scale. This approach can be implemented in standard circuit software 

packages by small modifications of their treatment of shunt capacitance [19-21]. In real circuits the 

additional polarization currents of dielectrics are often crudely approximated [16] by adding a term 

(ε0 − 1)ε0 ∂𝐄 ⁄ ∂t.  

The classical Kirchhoff current law is only true when 𝐉 ≫ ε0 ∂𝐄 ⁄ ∂t. It is a long time (low 

frequency) approximation. Like other long-time approximations, it fails to describe even the qualitative 

properties of currents outside the region of validity of the approximation. The Kirchhoff current law fails 

qualitatively at short times because  ε0 ∂𝐄 ⁄ ∂t ≫ 𝐉 at short times. This is an issue of mathematics not 

physical science or tradition. 

If the branch of a circuit is a resistance R, the Kirchhoff approximation is accurate for times much 

longer than RC time constant where C is the ideal stray parasitic capacitance, conservatively estimated as 

10 pF [4, 5] but often much larger. 

The Kirchhoff approximation is seriously in error on the 0.1 nanosecond time scale used in 

computer circuits, where RC might be 100 nsec to 1 microsecond in well implemented CMOS pull 

down/pull up circuit with R = 10 or 100 kohms. The Kirchhoff current law is qualitatively in error in typical 

computer circuits because their time scale is at least four orders of magnitude faster than the RC time 

constant of push down/pull up resistors. 

The “the art of electronics” [22] modifies the idealized circuit so it better approximates the 

properties of real circuits. The modification invents circuit elements and adds them into the original 

idealized circuit. Adding in the invented circuit elements supplements the idealized topology with some of 

the properties of the real circuit. The invented circuit elements include nonideal effects arising from the 

layout of components in the real circuit. They also include the universal displacement current  ε0 ∂𝐄 ⁄ ∂t 

needed according to the Maxwell Ampere equation (1). The invented supplemental elements are artfully 

placed so the Kirchhoff approximation can approximate reality.  
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The location and value of these invented supplemental components is subjective. The 

supplemental elements do not have definite numerical values that will be the same in every 

implementation or numerical calculation. Different people will choose different values and locations. The 

supplementary elements are not included in the classical idealized topological circuit diagrams because 

most of them depend on the details of the layout of circuits. The supplementary elements represent 

nonideal properties like the inductance and coupling capacitance of real circuit components. These details 

vary from one real circuit to another even though they implement the same topological circuit.  

Nonetheless, well placed supplemental elements clarify the behavior seen in real circuits. Without 

them, the short time behavior of Kirchhoff’s law is incompatible with experimental results and the 

fundamental equations of electrodynamics. They significantly extend the usefulness of the Kirchhoff 

approximation. 

The invented elements hide the universal displacement current ε0 ∂𝐄 ⁄ ∂t  always required by the 

Maxwell Ampere differential equation. The necessity of the displacement current is easy to overlook. 

Conclusion. The wide use of Kirchhoff’s current law in classical approaches should not hide the following  

realities: 

(1) the classical approach is often used far outside the realm of its validity.  

(2) Designs using supplemental circuit elements do not provide unique numerical results 

because the placement and value of the supplemental elements is subjective. It is more 

art than science.  

(3) Maxwell current provides the general and unique designs appropriate for general 

topological networks, consistent with the laws of electrodynamics. The designs using 

Maxwell current are mathematics as well as science.  

(4) Further invented elements can supplement a Maxwell circuit design as is useful in 

applications. In this way, Maxwell circuit designs can deal with nonideal properties of real 

circuit components and layouts in the tradition of the art of electronics. 

(4) Supplementary circuit elements depend only on the nonideal properties and layout 

of a real circuit when Maxwell’s current is used. They are no longer surrogates for the 

displacement current that always flows according to the Maxwell Ampere law eq.(1). The 

Maxwell circuit design clarifies the traditional art of electronics in this way as well as 

making it compatible with the Maxwell equations themselves. 
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Supplemental Note: The derivation in this paper depends on the vector calculus operators div and curl 

and their properties, particularly the identity 𝐝𝐢𝐯 𝐜𝐮𝐫𝐥 =  𝟎. The identity can be easily verified from 

substitution in the Cartesian definitions of the differential operators given in textbooks and interchange of 

the orders of differentiation. The identity can be understood at many different levels of abstraction, 

ranging from elementary [10] to vector calculus [9] to the exterior calculus and differential forms [23]. 
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