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Abstract: It is certain that electrical properties—whether slow (sec) or fast (nsec), even 

optical (fsec)—are described by Maxwell’s equations, and there are terms that depend on 

the rate of the change of the electric and magnetic fields. In particular, Maxwell’s equation 

for the curl of the magnetic field contains both the steady-state conduction current and a 

term depending upon the temporal derivative of the electric displacement field. The latter 

is referred to as the displacement current and is generally believed to have been included 

originally by Maxwell himself, although there is evidence it was earlier considered by 

Kirchhoff. Maxwell’s equations and Kirchoff’s circuit laws both are important over the 

wide range of frequencies with which electronics traditionally deal. Additionally, the 

displacement current is an important contribution to these in both classical and quantum 

mechanics. Here, the development of the displacement current, its importance in both 

classical and quantum mechanics, and some applications are provided to illustrate the 

fundamental role that it plays in the dynamics of a wide range of systems. 
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1. Introduction 

Electrical phenomena always have been interesting to humans. Quite commonly, one 

refers to an analogy between electrical currents and the flow of water, an analogy 

described by Maxwell himself [1]. This analogy between electrons in a device and water 

flowing in a tube allows an interpretation of the intricate electromagnetic phenomena in 

terms of an element familiar to us since our infancy, i.e., playing in the bathtub. However, 

there is a distinct difference: water is incompressible, while the flow of electricity is quite 

compressible and leads to the need for Poisson’s equation (or its more high-frequency 

versions) [2]. Nevertheless, the analogy is so successful that the movement of electrons 

inside a device is often referred to as a “flow”. From the different flowing regimes, the 

steady state is the simplest and most common one. However, a steady-state model cannot 

explain what happens in a waterfall, a whirlpool, or when opening a tap, and the same is 

true in electrical current flow, especially in a semiconductor device. Here, a rigorous and 

general understanding of the dynamics of electrons and the electromagnetic fields inside 

devices and circuits, beyond the steady-state regime, requires significant attention to the 

entire set of Maxwell’s equations, which incorporate the effects of the displacement 

current. 
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Although Maxwell is largely credited with the extension of Ampere’s Law, and the 

introduction of the time-dependent displacement current to his equations in 1861 [3], it is 

now apparent that Kirchhoff himself published a version that includes displacement 

current additions to his own d.c. current laws, and this was carried out several years earlier 

than Maxwell [4,5]. It is important to understand that Maxwell’s equations and Kirchoff’s 

circuit laws both are important over the wide range of frequencies with which electronics 

and electromagnetics traditionally deal. While this historical fact is important to the 

development of electromagnetics, it is the displacement current itself upon with this paper 

will concentrate. 

In the next section, the development of Maxwell’s equations, as well as the important 

role of “gauge” to these equations, will be presented. In the following section, the role of 

Maxwell’s equations in classical and quantum dynamics will be explored. Section 4 will 

address the applications of Maxwell’s equations in some areas outside the normal 

mainstream of electrical activity. Finally, Section 5 will outline some conclusions that 

follow from these discussions. 

2. Maxwell’s Equation and Gauge 

The rates of the change of the charge and electric field are not small in systems that 

respond on the short-time scale or when the individual fields are large. The mechanisms 

and properties of current flow vary significantly on the nanosecond (and shorter) time 

scale. The importance of this clearly lies in Maxwell’s extension of Ampère’s law, 

generally considered to be the second of his equations, which may be written as 

𝛁 ×  𝐇 = 𝐉 +
𝜕𝐃

𝜕𝑡
 (1) 

and has the corresponding constitutive relations 

𝐃 = 𝜖0𝐄
𝐁 = 𝜇0𝐇

, (2) 

in the linear case and in the absence of any dielectric polarization, where 𝜖0 and 𝜇0 are, 

respectively, the permittivity and permeability of free space. We return to a discussion of 

this linearity below. 

On the left-hand side of (1), H is the magnetic field intensity, and for a great many 

years was measured as so many lines per unit length (in the English system) in keeping 

with Faraday’s lines of force [6]. Today, with the S.I. system, it is measured as Amps/m. 

On the right-hand side of (1), the quantity D is known as the electric flux density, 

measured as C/m2, while J is the normal charge current density, in A/m2. Thus, one may 

easily assert that the total current is not only the conduction current J but must be 

expressed as 

𝐉𝑡𝑜𝑡𝑎𝑙 =  𝐉 +
𝜕𝐃

𝜕𝑡
, (3) 

which may be confirmed by taking the divergence of (1) and noting that the charge is 

assured to be conserved with 

∇ ∙ 𝐉𝑡𝑜𝑡𝑎𝑙 = 0. (4) 

A further constitutive relation, which is merely Gauss’ law, is 

∇ ∙ 𝐃 = 𝜌, (5) 

where 𝜌 is the charge per unit volume, or charge density. Using this last result in (3) gives 

us that 

∇ ∙ 𝐉 +
𝜕ρ

𝜕𝑡
= 0, (6) 



Computation 2025, 13, 45 3 of 31 
 

 

which is the continuity equation for the charge and current. The form of the above 

equations results from Maxwell’s own form of the various equations, which he presented 

in 1861 [1]. 

It was remarked previously that Kirchoff presented an earlier form of correction to 

Ampere’s Law [4], Equation (3) above, which appeared as 

2
𝜕𝑖

𝜕𝑠
= −

𝜕𝑒

𝜕𝑡
, (7) 

where the fact of 2 arises from mid-nineteenth century understanding where it was 

assumed by him that there were two components of moving charge (positive and 

negative) that would contribute equally to the current. Here, i is the individual particle 

current, s is position, and e is what Kirchhoff called the “free electricity” (notably, the 

charge to be consistent with the above equations) [4]. It seems to be clear that his form is 

essentially that of (6). 

Let us now turn to Maxwell’s first equation, which is commonly expressed as 

∇ × 𝐄 = −
𝜕𝐁

𝜕𝑡
. (8) 

which is connected to (1) through the relations (2). Now, the first of two potentials, 

denoted as the vector potential, is introduced through 

𝐁 = ∇ × 𝐀, (9) 

and using this in (8) gives 

∇ × 𝐄 = −
𝜕

𝜕𝑡
(∇ × 𝐀). (10) 

In order to relate the electric field to the vector potential, an integration constant 

whose curl is zero may be introduced, and this is used to define the second potential, with 

the scalar potential as 

𝐄 = −
𝜕𝐀

𝜕𝑡
+ 𝐂 , 𝐂 ≡ −∇𝜑. (11) 

One normally sees this without the vector potential in our studies of semiconductor 

devices, but the vector potential term is important and relates to the connection in high-

frequency behavior. 

How one chooses to represent the electric field, and the connections between the 

vector and scalar potentials, is referred to as a gauge condition. To understand how this is 

invoked, the divergence of (11) is taken to yield 

∇2𝜑 +
𝜕

𝜕𝑡
(∇ ∙ 𝐀) = −∇ ∙ 𝐄 = −

𝜌

𝜀
, (12) 

where 𝜀 is the total permittivity. In fact, if the second term on the left was not present, 

this would be Poisson’s equation commonly used in self-consistent potential solutions in 

devices. To see how to proceed, (9) and (11) are used in (1) to give 

∇ × (∇ × 𝐀) =      

         −𝜇0𝜀0

𝜕

𝜕𝑡
(

𝜕𝐀

𝜕𝑡
+ ∇𝜑) + 𝜇𝐉

 (13) 

These various terms can be rearranged to give a different form as 

∇2𝐀 − 𝜇0𝜀0
𝜕2𝐀

𝜕𝑡2 = −𝜇𝐉    

        +𝛁 (∇ ∙ 𝐀 − 𝜇0𝜀0
𝜕𝜑

𝜕𝑡
)
. (14) 

Here, the terms on the upper line comprises a wave equation for the vector potential 

in which the latter is driven by the particle current density. It is the lower line that adds 

terms that change the equation. This is where the gauge appears to play a role. In order to 

have this wave equation, and to also have a wave equation for the scalar potential, it is 
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convenient to set the term in parentheses to zero. This condition is known as the Lorentz 

gauge, or sometimes simply as the gauge equation where 

∇ ∙ 𝐀 − 𝜇0𝜀0
𝜕𝜑

𝜕𝑡
= 0. (15) 

This may now be used in (12) to give an equivalent wave equation for the scalar 

potential 

∇2𝜑 − 𝜇0𝜀0
𝜕2𝜑

𝜕𝑡2 = −
𝜌

𝜀
, (16) 

in which the solutions of the scalar potential are driven by the charge density. Here, it is 

clear that Poisson’s equation is only a low-frequency approximation to this wave 

equation. 

2.1. Gauge and Gauge Invariance 

The Lorentz gauge described above is just the beginning of possibilities. There are 

further constraints that can be imposed. For example, a further approximation is to invoke 

the Coulomb gauge, or the electrostatic gauge as it is sometimes called, in which 

∇ ∙ 𝐀 = 0 (17) 

is invoked (if one invokes this last equation, then (15) becomes somewhat irrelevant). This 

constraint, together with the Lorentz condition (15), requires 

𝜕𝜑

𝜕𝑡
= 0. (18) 

Now, the wave Equation (16) reduces to the normal Poisson equation used in 

situations when a self-consistent potential must be found. This familiar result arises from 

a choice of gauge; it is neither automatically true nor basic. Hence, when one solves the 

Poisson equation for a device, an assumption is being made that only low-frequency 

effects are of interest; the potential and electric field instantaneously follow variations in 

charge. This assumption is also followed by the assumption that the electric field is found 

solely from the scalar potential, thus ignoring the time derivative of the vector potential 

in (11). This further results in the assumption that the charge density is static and time 

invariant on the time scale of interest. This means that the scalar potential follows the 

charge density change instantaneously in clear violation of relativity. So, if one wants to 

use the Coulomb gauge in device simulation, it must first be determined that any charge 

changes, due to the imposition of self-consistency, must be slow enough to validate the 

use of this gauge, and care must be exercised in evaluating fields and potentials. 

Another common gauge arises in the study of the magnetic field effect especially 

when quantum mechanical effects are being studied. There are two gauge choices that are 

made, both of which are consistent with the Coulomb gauge discussed in the previous 

paragraph. These arise from the manner in which the magnetic field and the vector 

potential are constructed to satisfy Equation (9). One of these is termed the Landau gauge 

[7], which is described through the form 

𝐀 = ±𝐵𝑥𝐚𝑦. (19) 

This leads to a magnetic field in the positive or negative z-direction. The second 

approach uses what is termed the symmetric gauge 

𝐀 =
1

2
(−𝐵𝑦𝐚𝑥 + 𝐵𝑥𝐚𝑦). (20) 

This form is particularly useful as it carries the quantization of the states in the vector 

potential into the relativistic regime [8]. In these last two equations, 𝐚𝑥 and 𝐚𝑦 are unit 

vectors along these two axes. 
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The use of a gauge remains important in that it connects the magnetic fields and the 

electric fields. This connection requires that the fields satisfy the Lorentz condition (15). 

When this is true, the fields are said to be gauge invariant. If the fields do not satisfy this 

requirement, then the full Equations (12) and (14) must be solved to give the two potentials 

self-consistently. Given an initial gauge, a gauge transformation can be made that is 

subject to the new potentials as 

𝐀 →  𝐀 + ∇Λ,

𝜑 →  𝜑 −
𝜕Λ

𝜕𝑡
.
 (21) 

The function Λ provides the transformation that creates the change in gauge. 

It is important that, in general, (21) gives the same electromagnetic fields, which 

implies that the same forces and dynamics are generated by fields in the new gauge as 

were generated by the original fields. Moreover, (21) is a major gauge change for time-

varying fields. There are simple gauge changes that are not time-varying, and that 

essentially are decisions on how to describe energy and potential, as well the fields 

independently. It is important to recognize that Newton’s law, which for charged particles 

depends on the electric field, does not change with the gauge. Therefore, one cannot know 

which form of electromagnetic potentials (before or after the gauge transformation) have 

generated the dynamics of a given experiment. The fact that the gauge is unobservable 

does not mean that the fields are unobservable. Rather, the gauge condition implies that 

the observed fields are gauge invariant. 

In both classical mechanics and quantum mechanics, the electromagnetic interactions 

may be taken into account through a change in the momentum, known as the Peierls’ 

substitution, through 

𝐩 → 𝐩 − 𝑒𝐀. (22) 

This is particularly useful in Hamiltonian dynamics, and particularly quantum 

mechanics, in that it requires the vector potential to satisfy any uncertainty relations. In 

order to keep the wave function gauge invariant (Newton’s law or the Schrödinger 

equation have to keep their same shape in any gauge), apart from the transformation (21) 

in the electromagnetic potentials, the wave function must transform as follows: 

𝜓(𝐫)  →  𝑒𝑖𝑒Λ ℎ⁄ 𝜓(𝐫), (23) 

with Λ  being the local (space–time dependent) function used in (21). Of course, the 

observable results obtained from the wave function are independent of the gauge 

transformation (for example, the probability |𝜓(𝒓)|2  is independent of Λ  by 

construction). 

The computation of the wave function in one specific scenario can be more easily 

formulated in one gauge than in another. For example, there is a common gauge 

transformation when the wavelength of the electromagnetic field is much larger than the 

region of interest where the system’s dynamics are described. Thus, the spatial 

dependence of the vector potential can be neglected in that region, 𝑨(𝒓, 𝑡) ≈ 𝑨(𝒓𝟎, 𝑡) . 

Then, the following gauge Λ(𝐫, t) = −𝒓 · 𝑨(𝒓𝟎, 𝑡) when applied to (21) gives a zero vector 

potential 𝐴 → 𝐴 + ∇ Λ = A(𝒓𝟎, 𝑡) − A(𝒓𝟎, 𝑡) = 0 and a new scalar potential 𝜑 → 𝜑 −
𝜕Λ

𝜕𝑡
=

𝜑(𝒓, 𝑡) + 𝜕(𝒓 · 𝑨(𝒓𝟎, 𝑡))/𝜕𝑡. In other words, when this gauge transformation is applicable, 

the shape of the Schrodinger equation remains the same but the vector potential term 𝑒𝑨 

in (22) disappears as the price of dealing with a more complicated scalar potential. 

An important aspect of this last equation arises when the electromagnetic fields 

themselves are quantized. Generally, this latter process involves expanding the fields in 

their respective Fourier modes, which may be represented as a sum over harmonic 

oscillators (one oscillator per mode). This quantization of the fields is generally described 
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as second quantization, while the normal quantization of a harmonic oscillator is first 

quantization. The difference is mostly semantic. The important aspect arises from the fact 

that the fields themselves must be gauge-invariant. Therefore, any quantization of the 

fields also must require the corresponding observable results to be gauge-invariant. An 

example of such gauge invariance in quantum transport may be found in the use of 

nonequilibrium Green’s functions [9,10]. 

A final remark is that the gauge transformation actually requires the existence of the 

displacement current and a continuity equation. This is discussed further in Appendix A. 

2.2. Polarization and Magnetization 

Polarization and magnetization describe the processes by which various materials 

modify the propagation properties that they exhibit. That is, they describe effects which 

change the constitutive relations (2). These changes can be linear effects or extremely 

nonlinear effects. The generalized form for these two equations becomes 

𝐃 = 𝜖0𝐄 + 𝐏
𝐁 = 𝜇0𝐇 + 𝐌

. (24) 

Here, P is the polarization, and M is the magnetization. That is, the polarization represents 

an additional charge in the material, and the magnetization represents additional sources 

of magnetic flux. 

As commented above, the properties of materials can lead to linear effects or 

nonlinear effects. In the linear case, the polarization is represented as a simple function of 

the electric field E, while the magnetization is represented as a simple function of the 

magnetic field intensity H. In this linear response approach, (24) is then written as 

𝐃 = 𝜖0𝐄 + 𝜒𝑒𝜖0𝐄 = 𝜖𝐄,
𝐁 = 𝜇0𝐇 + 𝜒𝑚𝜇0𝐇 = 𝜇𝐇,

 (25) 

where the 𝜒′𝑠 are the susceptibilities. In this form, the “relative” dielectric constant 𝜖𝑟 =

1 + 𝜒𝑒   and “relative” permeability 𝜇𝑟 = 1 + 𝜒𝑚  have been introduced. Then, the total 

permittivity and permeability are the products of these relative values and the free space 

values. This approach is simplistic, and it neglects a great many effects that are present in 

real materials. This is because the polarization and magnetization are really quite 

complicated entities and vary differently from simple single-material crystalline atomic 

materials to quite difficult organic and biological materials. Even such a common material 

as water does not have a fully understood polarization behavior. 

In a linear material such as a normal semiconductor like silicon, the electric 

susceptibility is determined by the polarization of the bonding (outer shell) electrons that 

form the covalent bond. At frequencies up to the extreme ultraviolet, this susceptibility is 

constant at a value of 10.68 in the linear response regime. In compound semiconductors, 

however, there can be an atomic contribution to the susceptibility due to the slight ionic 

contribution to the bonding. This atomic contribution appears for microwaves below 

around a 20–40 micrometer wavelength. Hence, there is an optical value and a larger “low 

frequency” value. In gallium arsenide, for example, the two values for the susceptibility 

are 9.89 and 10.9, with the transition occurring in the region 32–24.4 micrometer. A more 

complicated material such as SiO2 has two such transitions, with three different values for 

the susceptibility [11]. Liquids in general, and ionic solutions in particular, have much 

more complicated behavior [12]. Life exists in ionic solutions for the most part. Hence, 

biological material can be expected to be considerably more complicated in their dielectric 

response. 

However, such a simple material as silicon can be quite nonlinear in reality [13]. In 

such a case, the polarization can be expanded as 
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𝑃(𝑡) = 𝜀0[𝜒𝑒0𝐸(𝑡)            

+𝜒𝑒1𝐸2(𝑡) + 𝜒𝑒2𝐸3(𝑡)+. . . ]
. (26) 

This is especially useful in nonlinear optics, where silicon can be used as a waveguide 

material and takes advantage of the extensive technology for such processing. The first-

order process (𝜒𝑒0) is the simple dipole contribution discussed in the previous paragraph. 

The real part of this is the normal propagation, while the imaginary part describes gain or 

loss processes in the material (to be described further below). The second-order process 

(𝜒𝑒1) is not present in materials, such as silicon, that are inversion symmetric. The third-

order process (𝜒𝑒2 ) can give rise to third-harmonic generation or four-wave mixing in 

which two incoming frequencies (or two photons at the same frequency) parametrically 

combine to create photons at two different frequencies [14]. The latter is an important 

process in quantum optics, especially in quantum information processing. The simple idea 

of a constant permittivity is no longer allowable even in this simple material. 

Then there are polarizations and magnetizations that are relatively independent of E 

and H. These are materials like ferroelectrics and ferromagnetics and usually involve iron 

(hence the names) in some form. While in some cases, these polarizations and 

magnetization can be reversed in sufficiently high fields, which gives rise to hysteresis in 

D vs. E and B vs. H curves, there are known materials where this is not the case, and the 

two effects are basically permanently fixed in direction. One such type of material is a 

pyroelectric that possesses a permanent polarization. 

2.3. Conduction and Displacement Currents 

Equation (3) defines the total current in a simple and complete manner since it 

describes the continuity of charge at a point. That is, as may be seen in (6), the net 

conduction currents flowing into a point in space must provide a temporal change in the 

amount of charge existing at that point. The simplest example of this is the common 

capacitor, such as shown in Figure 1. In this case, the insulator that separates the two 

parallel plates is a vacuum, but it could also be any good insulator. The common circuit 

law is that the a.c. current through the capacitor is given by 

𝐼 = 𝐶
𝑑𝑉

𝑑𝑡
, (27) 

where V is the applied voltage and 

𝐶 =
𝜖𝐴

𝐿
, (28) 

where A is the area of the capacitor plates, and L is the distance between the two plates. 

By converting the current-to-current density with 𝐽 = 𝐼/𝐴, and the voltage to electric field 

with 𝐸 = 𝑉/𝐿, the current density is shown to be entirely a displacement current 

𝐽 = 𝜖
𝑑𝐸

𝑑𝑡
. (29) 

Thus, the conduction current that flows into, and out of, the capacitor through the wires, 

actually flows through the capacitor by displacement current. Current continuity is 

maintained throughout the system. 
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Figure 1. A vacuum capacitor. In a normal capacitor, the permittivity would be corrected 

with the relative permittivity of the material used as dielectric in the vacuum region. 

This can be extended into the general a.c. current regime by assuming that the 

currents and fields vary as 𝑒𝑥𝑝(𝑖𝜔𝑡) . With this, and using Maxwell’s constitutive 

equations, one observes that 

𝐉𝑡𝑜𝑡𝑎𝑙 = 𝜎𝐄 + 𝑖𝜔𝜖𝐄, (30) 

where the conduction current (the first term on the right) has been added, and σ is the 

conductivity of the material. Hence, it is obvious that the displacement current is a key 

part of the impedance relationship between the field and current. This impedance follows 

directly from (3) as 

𝑍 = 𝜎 + 𝑖𝜔𝜖. (31) 

(Note that both 𝜎 and 𝜖 are the total functions; e.g., 𝜖 = 𝜖𝑟𝜖0, as discussed above.) This 

is a clear link between circuit theory (no matter the frequency) and electromagnetic theory, 

which is crucial to the entire field of electronics. The importance of this impedance directly 

affects modern semiconductor devices as the carriers (electrons and hole) in these devices 

have a natural inductive behavior in addition to their normal conductance. This point will 

appear again below. 

Now, one sees that Kirchoff’s circuit equations and Maxell’s electromagnetic 

equations are intimately connected and express the same physics in different 

environments. No matter the electronics system, these equations and the displacement 

current are essential to the full understanding of impedance in electronics. 

2.4. A Simple Gauge Example: I 

It might occur to the reader that pure ballistic transport should yield infinite 

conductance. That is, if there is no scattering, what causes resistance that gives rise to only 

a finite conductance. Here, one has to consider the transition between the metallic leads 

and the channel, which, itself, can lead to non-zero resistance. This is a contact resistance 

between the ballistic channel and the reservoirs that give access to it. This can be examined 

with a simple example that also illustrates the possibility of a gauge transformation. 

Consider first the case in which the potential energy is uniformly zero throughout 

the system, and an electric field is applied in the region between 𝑥 = 0 and 𝑥 = 𝐿. This 

electric field may be written as a vector with the form 𝑬 = −𝐸𝒂𝑥, where E is the amplitude 

of the field. Particles that enter the active region at 𝑥 = 0 are then accelerated in the field 

according to Newton’s law as 

𝑚
𝑑𝑣

𝑑𝑡
= 𝑒𝐸

𝑣 =
𝑒𝐸

𝑚
𝑡 + 𝑣0

. (32) 

For ease of following the train of thought, the integration constant 𝑣0 = 0. A second 

integration gives the position of the particle as 
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𝑥 =
𝑒𝐸

2𝑚
𝑡2. (33) 

The time to traverse the length L is easily found to be 

𝑡 = √
2𝑚𝐿

𝑒𝐸
. (34) 

From this, one can find the velocity of the particle at the end of the active region to 

be 

𝑣 = √
2𝑒𝐸𝐿

𝑚
, (35) 

and this leads to the (kinetic) energy gain as 

𝑇 =
1

2
𝑚𝑣2 = 𝑒𝐸𝐿. (36) 

As an alternative approach, a gauge transformation is made in which the electric field 

is transferred to the total energy so that the latter consists of both potential and kinetic 

energy. With this alternative, the energy appears as shown in Figure 2. Now, the particles 

entering the active region at 𝑥 = 0 travel ballistically (at a constant energy as shown with 

the blue arrow) across the active region. That is, they move in a manner that conserves the 

total energy, the sum of the kinetic and potential energies. As they move, the potential 

energy that exists at the entrance (on the left) is gradually converted to kinetic energy so 

that the energy gain at L is still eEL. That is, the physics of the energy and velocity gain is 

precisely the same in both gauges. Hence, the gauge transformation is merely a method 

of looking at the problem in different ways in order to find one approach that explains the 

problem in a perhaps better manner. 

 

Figure 2. Variation of the energy for a situation in which the electric field is gauged in with the 

potential. 

The problem with this simple example is that Kirchhoff’s laws are violated. The 

conduction current density in either situation is 

𝐽 = −𝑛𝑒𝑣 = 𝜌𝑣, (37) 

where n is the number of particles per square meter in the cross-section of the device, and 

𝜌 is the charge density. Since the velocity increases as one moves from left to right, the 

particle density n must decrease in order to have current continuity. This simple fact has 

not been considered in these discussions so far, but it must be considered in order to 

satisfy Kirchhoff’s current law (4). Thus, either approach above is inconsistent with (4). In 

order to make it consistent, Poisson’s equation must be used. 

To proceed, the first gauge will be used so that the initial boundary conditions can be 

set to 

𝜑(0) = 0
𝑑𝜑

𝑑𝑥
|

𝑥=0
= 0

. (38) 

Poisson’s equation is then 
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𝑑2𝜑

𝑑𝑥2 = −
𝜌(𝑥)

𝜖
=

𝐽

𝜖𝑣(𝑥)
, (39) 

and (37) has been used. Using (35), the velocity can be related to the potential as 

𝑣(𝑥) = √
2𝑒𝜑(𝑥)

𝑚
, (40) 

and (39) can be rewritten as 

𝑑2𝜑

𝑑𝑥2 = −
1

𝜖
√

𝑚

2𝑒

𝐽

√𝜑
. (41) 

The integrations are relatively straightforward [14] and yield the result that 

𝐽 =
4𝜖

9𝐿2 √
2𝑒

𝑚
𝜑3/2. (42) 

This relatively well-known result is the Langmuir–Child Law [15,16]. It is clear here 

that the conductance is not linear in potential. While this result holds for ballistic 

transport, it is not the only possible result, in particular, in semiconductors with a 

relatively constant doping density. 

In a semiconductor, the density is usually set by the doping. When the number of 

carriers drops, such as is required in the first two cases due to the need to satisfy 

Kirchhoff’s current Equation (4), an additional space charge is created in the channel due 

to the un-neutralized donors. The result of this argument is that the linear potential drop 

shown in Figure 2 cannot exist, as pointed out above, if the carriers are moving via ballistic 

transport. Such a linear potential drop only can occur if there is sufficient scattering to 

assure that the carriers move with a near-equilibrium energy. The logical conclusion that 

allows for constant density is that the electric field must essentially be near zero in the 

actual channel if the carriers are to move via ballistic transport. 

This implies that the potential drop must divide between the cathode and the anode 

transition regions, the “magic” regions discussed above that were referred to as contact 

resistance regions. Such a potential variation is illustrated in Figure 3. It is usually 

assumed that most of the discontinuity is at the cathode but not always. Now, ballistic 

transport can occur through the constriction without the carriers gaining excess energy 

from the applied bias. At the same time, the potential drops in the transition regions now 

require that dipole charge densities exist at each transition. The potential drop can only 

occur through the existence of such dipole charge densities. This complication of the 

simple example arises from the additional need to conserve current in the “device” that is 

being considered. Both solutions, Figures 2 and 3, are mathematically possible, but once 

current conservation is considered, only Figure 3 remains. The physical rationale is that 

the desire for pure ballistic transport cannot over-rule over physical constraints, such as 

current continuity, which is present in Maxwell’s equations through (6). The physically 

pleasing example of Figure 2 just does not satisfy (6) so must be excluded from the 

discussion. 

 

Figure 3. Potential variation for ballistic transport and a result satisfying Kirchhoff’s current law. 

The shaded areas, in which the potential drops occur, are contact resistances. To support the 



Computation 2025, 13, 45 11 of 31 
 

 

potential drops, these regions must have dipole charges composed of accumulation and depletion 

of charge. 

2.5. A Simple Gauge Example: II 

As a second example of a simple gauge transformation, consider the standard 

harmonic oscillator that is treated in most quantum mechanics textbooks. For this system, 

the Schrödinger equation may be written as 

−
ℏ2

2𝑚

𝑑2𝜓

𝑑𝑥2 +
𝑚𝜔2𝑥2

2
𝜓 = 𝐸𝜓. (43) 

Here, ω is the natural frequency of the oscillator, and the other symbols have their 

normal meaning. Referring to a textbook [17], the energy of the oscillator is quantized into 

Planck units as 

ℇ𝑛 = (𝑛 +
1

2
) ℏ𝜔, (44) 

where n is an integer. The wave functions form an infinite set in which each member may 

be defined by 

𝜓𝑛(𝑥)~𝑒𝑥𝑝 (
−𝑚𝜔𝑥2

2ℏ
) 𝐻𝑛 (√

𝑚𝜔

ℏ
𝑥), (45) 

within a normalization constant, and 𝐻𝑛 is a Hermite polynomial. 

Now, consider the addition of an electric field through the potential 𝜑 = 𝑒𝐸𝑥. The 

standard approach is to treat this potential as a small perturbation and to use perturbation 

theory to examine how the energy levels and wave functions change. At the first order, 

the perturbation leads to the coupling of each state to its neighbors above and below in 

energy, while the second order produces a downward correction for each level of 

∆ℇ = −
𝑒2𝐸2

2𝑚𝜔2. (46) 

However, these results are obtained only at the expense of considerable calculations. 

To understand both (44) and the above statement that the field couples a level with 

the ones just below and just above, one can note that the Hamiltonian on the left side of 

(43) can be split into the product of two operators as [18] 

𝑎 = √
𝑚𝜔

2ℏ
(𝑥 −

ℏ

𝑚𝜔

𝜕

𝜕𝑥
) ,

𝑎† = √
𝑚𝜔

2ℏ
(𝑥 +

ℏ

𝑚𝜔

𝜕

𝜕𝑥
) .

 (47) 

A little manipulation shows then that the Hamiltonian can be written as 

𝐻 = (𝑎†𝑎 +
1

2
) ℏ𝜔 = ℇ. (48) 

These two operators raise and lower the energy state as 

𝑎†𝜓𝑛−1 → 𝜓𝑛

𝑎𝜓𝑛+1 → 𝜓𝑛
, (49) 

where a number of normalization parameters have been left out. However, using the 

product of operators in (48) just gives the original state and the number of particles, and 

this leads to (44). When one now turns to the perturbation change in the wave number, 

one notes that the position operator x in the potential  leads to 

𝑥~𝑎 + 𝑎†, (50) 

leads to the perturbation relation 

𝛿𝜓𝑛~〈𝜓𝑛|(𝑎 + 𝑎†)|𝜓𝑚〉 (51) 
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in Dirac notation, and (49) tells us that 𝑚 = 𝑛 ± 1. Thus, the change in a particular state 

comes only from coupling to the ones above and below. 

It turns out that the solution with the electric field is much easier to obtain with a 

gauge transformation. It is not obvious that this is the approach being used, but it will 

become evident at the end. Here, the additional term in the Hamiltonian is taken together 

with the harmonic potential and squared as 

𝑉 =
𝑚𝜔2𝑥2

2
+ 𝑒𝐸𝑥        

=
𝑚𝜔2(𝑥+𝑥0)2

2
−

𝑒2𝐸2

2𝑚𝜔2

. (52) 

It is clear that the energy shift applies to each and every eigenstate since it does not 

involve any individual energy. Moreover, the first term in the second line gives the 

information that the harmonic oscillator is shifted in position by the amount 𝑥0, where 

𝑥0 =
𝑒𝐸

𝑚𝜔2. (53) 

Hence, the gauge transformation arises from using the field in the potential itself, 

which results in a physical shift of the harmonic oscillator, as shown in Figure 4. The new 

wave function is found by using (45) with x replaced by 𝑥 + 𝑥0 . This can be seen by 

introducing the displacement operator to shift the wave function as 

𝜓(𝑥 + 𝑥0) = 𝑒𝑖𝑝𝑥0/ℏ𝜓(𝑥). (54) 

Now, the gauge potential can be found by comparing this result with (23) so that the 

displacement operator actually is a gauge transformation. Now, this gauge shifts the wave 

function in position rather than in momentum. The pre-factor in (54) is known in quantum 

mechanics as a displacement or translation operator [17]. If one expands the exponential 

term, the full Taylor series for the shifted wave function (in terms of the unshifted one) is 

obtained. 

 

Figure 4. In an applied electric field, the harmonic oscillator is shifted both in position and energy 

along the electric potential line, shown in red. 

3. Some Implications 

The two simple examples for gauge transformations in the previous sections 

illustrated the effect for a classical particle and a quantum wave function. But, is there a 

difference? Certainly, classical mechanics has a long history of using particles which are 

subjected to Hamilton’s equations of motion or Lagrangian mechanics [19]. However, 

many readers may not be familiar with the use of particles in quantum mechanics, 

although connection with atomic physics should clearly show the possibility of particle 

contributions. Indeed, Feynman clearly had particles in mind in constructing his path 

integral approach to quantum mechanics [20]. Already in 1928, Kennard [21] had shown 

that quantum particles would move in response to the classical forces plus a quantum 

force of the form of the Bohm potential [22]. Additionally, in most cases, quantum motion 

and wave functions, either directly or through simulations of Wigner functions or density 
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matrices, are amenable to particle treatments [23]. The reader should keep in mind that 

particles and waves are parallel approaches to a quantum mechanics that contains both 

[24]. 

3.1. Guided Waves 

The importance of the displacement current is well recognized today in both 

electromagnetics and circuits, particularly for the a.c. case. In many cases, however, the 

treatment reduces to linear response in which a single relative permeability or relative 

permittivity is used. Linear response is a very special case and represents only a very small 

part of the world of electromagnetics. Certainly, the general case is that P is time-varying, 

just as E is. If P is also either nonlinear in the field or is inhomogeneous, the result is not 

simple wave propagation but can lead to very complicated nonlinear equations and/or 

distinctly different propagation properties in different crystalline directions (within a 

crystalline material) [25]. The entire field of nonlinear optics depends upon moving 

beyond linear response. The fact that there is so much effort (and publications) in 

microwave theory and techniques unfortunately masks the point that it is based upon a 

relatively simplistic approximation. 

A particular example of the difficulties is the millimeter-integrated circuit (MMIC). 

Transport of the millimeter waves on the MMIC is usually by strip lines (open waveguides 

that induce propagating waves guided by a top surface metal strip line and the underlying 

ground plane, using a non-absorbing substrate material), although coplanar waveguides 

are also used [26]. These waveguides have relatively low impedance (lower than free 

space) but must be matched to the very-high impedance (reactive in most cases) inputs 

and outputs of the transistors. That is, the inputs are largely dominated by the gate 

capacitance. This requires complicated matching networks to be included in the circuit. 

Moreover, the millimeter waves must be isolated from the power leads, and the d.c. power 

must be isolated from the waveguides. All of this requires design constraints that are not 

always compatible to each other. Generally, this leads to a difficult design problem [27]. 

3.2. Ion Channels 

An important application of the conservation of total current occurs in the ion 

channels of biological membranes. These ion channels are mostly narrow pores through 

proteins that allow otherwise impermeable ions to pass into cells. Ion channels control an 

enormous range of biological functions in health and disease and are extensively studied. 

The narrow pores of biological channels are rarely wide enough to allow ions to pass by 

each other with high probability. The current flow through the pores has been viewed as 

a single file hopping phenomenon [28,29]. The ion channels of nerve, skeletal, and cardiac 

muscle responsible for nerve signaling and the coordination of contraction use the total 

current to make the nerve signal, as is apparent from both experiments and theory [30]. It 

is important to recognize that nerve signals are not d.c. but are pulsed a.c. and require 

displacement current for their efficient signal propagation. 

The single file passage of the ions certainly is of great importance for the charge 

current carried by these ions through the channel, as shown in Figure 5 [31]. However, the 

total current through the pore of the channel includes another component, the 

displacement current produced by the polarization of matter and space. The sum of those 

components is conserved even though the individual components are not. The charge 

current varies dramatically with position. The displacement current varies dramatically 

with position. However, their sum does not vary with position, at all, as indicated by (6). 
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Figure 5. Serial passage of potassium ions through an ion channel. The black just denotes repeating 

the sequence of conformations. Reprinted from A. Mirenenko et al. [31] under the creative commons 

usage license. 

Maxwell’s equations—and versions of Kirchhoff’s law that are consistent with 

these—ensure that the total current is conserved whenever these equations are used [32]. 

In a narrow single file channel, the displacement current takes over from the charge 

current (and vice versa) exactly so that the total current is constant along the length of the 

narrow channel. The consequences of the interplay of charge current and displacement 

current are to simplify the system dramatically. The total current does not vary with 

spatial location in a narrow one-dimensional system. However complicated the hopping 

and single file behaviors actually are, the total current is the same at all spatial locations 

in the channel because one component of the total current takes over from the other to 

make it so. The electric and magnetic fields change the movement of charges on the atomic 

scale according to the requirement of electromagnetics. 

The implications for atomic scale theory were clearly known in theories of one-

dimensional transport [32]. In other words, a theory of the total current does not need to 

have the spatial location as an independent variable. Of course, a theory of total current is 

not a complete theory of electrodynamics, let alone charge movement. The spatial variable 

is obviously needed for complete understanding. In many situations, however, a 

measurement of total current is enough to allow significant understanding and control of 

a system. Those situations include many of the circuits of our electronic technology. They 

also include many ion channels. 

3.3. High-Frequency Quantum Devices 

The great success of our information society is based on encoding the physical values 

of currents and voltages inside electron devices as digital (or analog) information. 

Typically, the simulation of such devices is performed considering only the particle 

current while ignoring the displacement current. However, this fails at high frequency as 

noted above. To understand when this low frequency assumption is acceptable, consider 

some values for the total current 𝐉𝒕𝒐𝒕𝒂𝒍 mentioned in (3). On the right-hand side of (3), the 

particle current is proportional to the electric field through the conductivity 𝜎, and the 

displacement current is evaluated assuming a sinusoidal temporal dependence of the 

displacement field 𝐃 = ϵ𝐄 corresponding to a frequency ω. The typical conductivity 𝜎 

in silicon is less than 10−1 Ω−1𝑚−1, and, using ϵ = 10𝜖0 = 8.85 × 10−11 F𝑚−1, one finds 

the displacement current in semiconductors devices can be safely ignored up to a few 

GHz. However, since the displacement current in (3) grows linearly with ω , the 

displacement current cannot be ignored for high enough frequencies (obviously, the 

displacement current cannot be ignored at any frequency in capacitors because the 

conductivity is zero, as discussed above). 

A relevant question is just how is displacement current modeled in semiconductor 

devices operating at tens of GHz? A straightforward answer comes from the semi-classical 

simulation of electron devices. For example, the typical Monte Carlo solution of the 
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Boltzmann equation provides the semi-classical trajectory 𝒙(𝑡) for each electron so that 

the total charge density 𝜌 can easily be defined. Then, the displacement current in (29) 

can be evaluated from the time derivative of 𝐃  obtained by using Gauss’ Law in (5). 

However, when quantum phenomena become relevant, the mandatory inclusion of the 

displacement current in quantum transport simulators becomes a more complicated issue, 

either from a computational or fundamental point of view [33,34]. 

The displacement current is computed on a single device for a classical device. 

However, in quantum devices, difficulties arise because computing the time evolution of 

the current in a single device is far more challenging than computing the average value of 

the current over an ensemble of identical devices at different times. Strictly speaking, 

determining the time evolution of the total current in a single device requires simulating 

the effects of a quantum multi-time measurement at intervals proportional to the inverse 

of the maximum acquired frequency. According to the orthodox quantum theory, for the 

so-called strong measurement [23,33], any measured property of a system coincides with 

the eigenvalue of an operator linked to such property, and the state of the system 

“collapses” into the eigenstate of such eigenvalue. For modeling d.c. currents, the 

“collapse” is ignored assuming that time-averaged current is equivalent to an average 

over identical devices whose current is measured just once. However, the previous 

ergodic argument is no longer valid in far-from-equilibrium semiconductor devices, 

especially at high frequencies. In principle, one would have to face the perplexing effects 

of the “collapse” postulated by the orthodox machinery. However, in practice, this 

orthodox theory is avoided by more causal versions of quantum mechanics [33]. 

Additionally, in these approaches, the high-frequency performance of quantum devices 

is mainly understood from static (d.c.) quantum simulations. It is assumed that the 

quantum device behaves as a (small-signal) circuit. The resistances and capacitances of 

such circuit are then computed from static (d.c.) quantum simulations to evaluate 

variations of current (conductance) or charge (capacitance) for different voltage. 

Fortunately, a direct quantum modeling of the displacement current in quantum 

devices without either the (small-signal) circuit assumption or the perplexing effects of 

the “collapse” law is possible. There are quantum theories where electrons have well-

defined properties independently of their measurement (observation). Such quantum 

theories without observers, for example, Bohmian mechanics [22,35], are well known in 

the community dealing with the foundations of quantum mechanics. These remain mostly 

ignored in the electron device community. Yet, the great advantage of the Bohmian 

formulation of quantum phenomena is that the evaluation of the displacement current can 

be performed following a similar strategy used in the semi-classical Monte Carlo 

simulations [13,35,36]. More details about such Bohmian trajectories will be presented in 

Section 4. Once quantum (Bohmian) trajectories 𝒙(𝑡)  are determined, satisfying the 

continuity Equation (6), the computation of the displacement follows in a straightforward 

manner without any need of the orthodox “collapse”. In Figure 6, the total current 

(particle plus displacement current), computed from Bohmian trajectories, is plotted as a 

function of time for a resonant tunneling diode biased on a sinusoidal signal at different 

frequencies. The frequency-dependent non-linear behavior of the total current can be 

related to memory effects. There is plenty of room for unexplored applications of 

tunneling devices working at frequencies higher than the inverse of the electron transit 

time, where displacement current becomes more important than the particle current [37]. 
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Figure 6. Total current for a resonant tunneling diode as a function of time for different input 

frequencies f of a small-signal input voltage (dashed black in arbitrary units). In bottom left, power 

spectral density (PSD) as a function of the output frequency for the three currents, confirming 

(nonlinear) harmonic generation [37]. 

In order to be fair, it is necessary to point out that many in the quantum community 

prefer to use the Schrödinger equation based non-equilibrium Green’s functions [38] to 

simulate the full nonlinear response of semiconductor devices [39], ignoring somehow 

that the time evolution of the current in an ensemble of devices can obscure what is the 

time evolution in a single device, especially if the device exhibits a non-Markovian 

behavior [40]. Normally, the typical implementation of the non-equilibrium Green’s 

functions is difficult and consumes considerable computational resources and does not 

yield the efficient computations using Monte Carlo approaches [41]. More recently, 

progress has been made in using Monte Carlo techniques to evaluate the Green’s functions 

and greatly speed up device simulations [42]. 

4. Displacement Current in Quantum Mechanics 

As explained in the above sections, the interaction of a classical particle with a 

classical electromagnetic field is modeled using the so-called canonical momentum 𝒑 =

 𝑚𝒗 + 𝑒𝑨 in the definition of the kinetic energy 𝑚𝒗𝟐/2. Then, the typical Hamiltonian 

becomes 

𝐻 =
1

2
𝑚𝒗𝟐 + 𝑒𝜑 =

(𝒑−𝑒𝑨)2

2𝑚
+ 𝑒𝜑. (55) 

The description of a classical state in a given experiment is a trajectory 𝒓𝑗(𝑡), where 

the superscript 𝑗 indicates one of a large number of possible trajectories. To understand 

the displacement current in a quantum scenario, one must explain how the classical 

Hamiltonian (55) is transformed into a quantum one. To simplify the discussion, only one 

electron will be considered in this section. Initially, it may not be obvious to the reader 

why this solitary electron would not simply move freely, without interaction. The 

electromagnetic fields in (55), represented by the vector 𝑨 and scalar 𝜑 potentials (see 

Section 2), are generated by other particles. However, to avoid dealing with a many-

particle scenario that will unnecessarily complicate all discussions, only one electron 

interacting with the electromagnetic field is considered. In particular, a system with a 

quantum electron interacting with a classical electromagnetic field (such as light) will be 

presented first. Then, a system with a quantum electron and quantum light will be 

discussed. A numerical example will be provided in this latter case. 
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4.1. Quantum Electron and Classical Light 

The quantum version of the Hamiltonian (55) is obtained through the so-called 

canonical quantization [23,43], where the classical canonical variables 𝒓  and 𝒑  are 

substituted by quantum non-commuting operators, 𝒓 → �̂� = 𝒓 and 𝒑 → �̂� = −𝑖ℏ𝛁, with 

[�̂�, �̂�] = 𝑖ℏ (this expression is understood as being zero unless equal components of the 

two vector operators are considered; that is, [�̂�𝑖, �̂�𝑗] = 𝑖ℏ𝛿𝑖𝑗). Then, the Hamiltonian (55) 

can be written as 

𝐻𝑒 =
(−𝑖ℏ𝛁−𝑒𝑨)2

2𝑚
+ 𝑒𝜑. (56) 

The quantum state is defined by the (complex) wave function Ψ(𝒓, 𝑡) , which is a 

solution of the following Schrödinger equation 

𝑖ℏ
∂Ψ(𝒓,𝑡)

𝜕𝑡
= 𝐻𝑒Ψ(𝒓, 𝑡).          

    = (
(−𝑖ℏ𝛁−𝑒𝑨)2

2𝑚
+ 𝑒𝜑) Ψ(𝒓, 𝑡)

. (57) 

Since quantum mechanics is a statistical theory, Ψ(𝒓, 𝑡)  is not a description of a 

single experiment but a description of the ensemble of all (identical) experiments. The 

differences between the displacement current linked to an ensemble of experiments and 

the displacement current for a single classical experiment will be emphasized here. 

Once the wave function Ψ(𝒓, 𝑡) is obtained from (57), the “charge” density may be 

determined from it as 

𝜌(𝒓, 𝑡) = 𝑒|Ψ(𝒓, 𝑡)|2. (58) 

The physical meaning of 𝜌(𝒓, 𝑡) is the probability of finding the electron at position 

𝒓 at time 𝑡 when the same experiment is repeated many times [23,44]. It is important to 

note that a continuity equation is “hidden” in (57). The temporal variations of the charge 

in (58) are computed as 

𝜕ρ

𝜕𝑡
= 𝑒Ψ

𝜕Ψ∗

𝜕𝑡
+ eΨ∗ 𝜕Ψ

𝜕𝑡
  

   = 𝑒Ψ
𝐻𝑒Ψ∗

−𝑖ℏ
+ 𝒆Ψ∗ 𝐻𝑒Ψ

𝑖ℏ

, (59) 

and this expression leads to a continuity equation 

𝜕𝜌(𝒓,𝑡)

𝜕𝑡
+ 𝛁 · 𝑱(𝒓, 𝑡) = 0, (60) 

where the conduction (or particle) current 𝑱(𝒓, 𝑡) is defined as 

𝑱(𝑟, 𝑡) =
𝑒

𝑚
𝐼𝑚{Ψ∗(𝒓, 𝑡)       

     × (∇ −
𝑒

ℏ
𝑨(𝒓, 𝑡)) Ψ(𝒓, 𝑡)}

. (61) 

The terms 𝜌(𝒓, 𝑡) and 𝑱(𝑟, 𝑡) are the quantum sources of the electromagnetic fields 

through (1) and (8), and these must satisfy Maxwell’s equations. In particular, Gauss’ law 

relates the charge density to the electric field as follows 

𝛁 · 𝑬(𝒓, 𝑡) = ρ(𝒓, 𝒕)/𝜖0. (62) 

After properly fixing the electric field 𝑬(𝒓, 𝑡)  through boundary conditions, the 

numerical solution of (62) allows one to find 𝑬(𝒓, 𝑡) everywhere from the charge density, 

using Poisson’s Equation (16) as the field is obtained easily from the scalar potential, as 

discussed there. 

Using (62) in (60) leads to a new, more interesting form: 
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𝜕ρ(𝒓,𝒕)

𝜕𝑡
+ 𝛁 · 𝐽(𝒓, 𝑡) =            

= 𝜖0
𝜕𝛁·𝑬(𝒓,𝑡)

𝜕𝑡
+ 𝛁 · 𝐽(𝒓, 𝑡)   

    = 𝛁 · (𝜖0
𝜕𝑬(𝒓,𝑡)

𝜕𝑡
+ J(𝒓, 𝑡)) = 0.

  (63) 

The term on the left-hand side of (63) is just the quantum version of the total (particle 

plus displacement) current J𝑇(𝒓, 𝑡), which is defined through the last term as 

𝑱𝑇(𝒓, 𝑡) = 𝜖0
𝜕𝑬(𝒓,𝑡)

𝜕𝑡
+ 𝑱(𝒓, 𝑡). (64) 

If the electromagnetic field is assumed to be “external” and known a priori, the 

numerical solution of (57) is sufficient to compute the total current in (64) through (58) 

and (61). However, assuming a priori knowledge of the electromagnetic fields is not 

always a good approximation because of the interplay between charges and fields as 

manifested in (62). A complicated self-consistent solution of the Schrödinger Equation (57) 

along with Maxwell’s equations is required. On one side, (57) provides the quantum 

sources 𝜌(𝒓, 𝑡)  and 𝑱(𝑟, 𝑡)  once the vector 𝑨(𝒓, 𝑡)  and scalar 𝜑(𝒓, 𝑡)  are known. 

Additionally, on the other side, Maxwell’s equations provide the electromagnetic 

potentials 𝑨(𝒓, 𝑡) and 𝜑(𝒓, 𝑡) once the quantum sources 𝜌(𝒓, 𝑡) and 𝑱(𝑟, 𝑡) are known. 

This, of course, means iterating from one equation to the other until self-consistency is 

achieved. 

In some scenarios in the modeling of nano-electronic devices [23], the role of the 

vector potential 𝑨(𝒓, 𝑡) is neglected and the self-consistent loop involves only (57) and 

(62) (or Poisson’s equation). An additional understanding of the physical meaning of the 

displacement current in (64) can be obtained by recognizing that the terms 𝜌(𝒓, 𝑡) and 

𝑱(𝒓, 𝑡) in (58) and (61), as well as the electric and magnetic fields, refer to results obtained 

for an ensemble of many repeated experiments. 

Now let us return to a description of an individual quantum experiment that can be 

obtained through the quantum (Bohm) trajectories [22,23,35]. In Bohmian mechanics, the 

charge density in (58) can be written as an ensemble over many different trajectories 

𝜌(𝒓, 𝑡) = 𝑒|Ψ(𝒓, 𝑡)|2           

       =
1

𝑀
∑ 𝑒M

j=1 δ(𝒓 − 𝒓𝑗(𝑡)),
  (65) 

where each trajectory 𝒓𝑗(𝑡) is linked to a particular experiment with 𝑗 = 1,2, . . , 𝑀 → ∞. 

Similarly, the ensemble current density in (61) can be rewritten as a sum over different 

experiments 

𝑱(𝒓, 𝑡) =
1

𝑀
∑ 𝑒M

j=1 𝒗(𝑡)δ(𝒓 − 𝒓𝑗(𝑡)), (66) 

where 

𝒗𝑗(t) =
𝑑𝒓𝑗(𝑡)

𝑑𝑡
=

𝑱(𝒓𝑗(𝑡),𝑡)

|Ψ(𝒓𝑗(𝑡),𝑡)|
2  (67) 

is the Bohmian velocity of the 𝑗-th trajectory [22]. Notice that all trajectories are guided 

by the same wave function Ψ(𝒓, 𝑡)  solution of (57), but different trajectories 𝒓𝑗(𝑡) =

𝒓𝑗(0) + ∫ 𝒗𝑗(t)
𝑡

0
𝑑𝑡 are generated due to different initial positions 𝒓𝑗(0). At this point, it 

is interesting to rewrite the Gauss’ law in (62) using (65) as 
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𝜖0∇ · 𝑬(𝒓, 𝑡) = ρ(𝒓, 𝒕)        

=
1

𝑀
∑ ρ𝑗(𝒓, 𝒕)M

j=1        

=
1

𝑀
∑ 𝑒M

j=1 δ (𝒓 − 𝒓𝑗(𝑡))

= 𝜖0∇ · (
1

𝑀
∑ 𝑬𝑗(𝒓, 𝑡)M

j=1 )

=
1

𝑀
∑ 𝜖0∇ · 𝑬𝑗(𝒓, 𝑡)   ,M

j=1

  (68) 

where the individual 𝑬𝑗(𝒓, 𝑡) are defined as the electric field of an individual experiment 

satisfying its own individual Gauss’ law 

ε0∇ · 𝑬𝑗(𝒓, 𝑡) = 𝑒δ (𝒓 − 𝒓𝑗(𝑡)). (69) 

Here, an individual particle motion on the RHS defines the local charge density of 

this individual experiment. It becomes now evident from (68) and (69) that the electric 

field in (62) is a summation of an ensemble of experiments. 

It is straightforward to check that a single trajectory 𝒓𝑗(𝑡), whose charge density is 

given by the RHS of (69), and whose current is given by the expression within the 

summation on the RHS of (66), satisfies the continuity equation as 

 
𝜕ρ𝑗(𝒓,𝒕)

𝜕𝑡
+ 𝛁 · 𝑱𝑗(𝒓, 𝒕) =         

  = 𝑒∇δ (𝒓 − 𝒓𝑗(𝑡)) (−
𝑑𝒓𝑗(𝑡)

𝑑𝑡
) +

  +𝑒𝑣𝑗(t)∇δ (𝒓 − 𝒓𝑗(𝑡)) = 0.

  (70) 

This last equation is just a statement that if the electron appears/disappears in one 

small region of space, a current must appear at the borders of such small region [45]. Then, 

by using (13) in the left-hand side of (70), one obtains 

𝜖0
𝜕∇·𝑬𝑗(𝒓,𝑡)

𝜕𝑡
+ 𝛁 · 𝑱𝑗(𝒓, 𝑡) =.        

= 𝛁 · (𝜖0
𝜕𝑬𝑗(𝒓,𝑡)

𝜕𝑡
+ 𝑱𝑗(𝒓, 𝑡)) = 0.

  (71) 

The terms inside the large parentheses in the last line of this equation provide a 

single-particle/experiment form of the total current, including displacement current. This 

form is free from any divergence terms. This gives the total current due to a single 

particle/experiment as 

𝑱𝑇
𝑗 (𝒓, 𝑡) = 𝜖0

𝜕𝑬𝑗(𝒓, 𝑡)

𝜕𝑡
+ 𝑱𝑗(𝒓, 𝑡), (72) 

which is the single-particle/experiment form of (64). The divergence-free total current for 

a single experiment seen in (72) directly implies that the total current computed from the 

average of an ensemble of experiments seen in (64) is also divergence-free, without the 

need for the additional discussion at the beginning of this section. 

4.2. Quantum Matter and Quantum Light 

Up until this point, the electromagnetic field has been treated as a classical object. 

Now, both matter and light will be considered to be quantum entities. The procedure to 

quantize the electromagnetic field follows the procedure used in quantizing the matter 

from (55) to (56) [23,43,46]. The first step is introducing the energy of the electromagnetic 

field 𝐻𝑅  into the Hamiltonian (55) as 

𝐻𝑒,𝑝 =
(𝒑−𝑒𝑨)2

2𝑚
+ 𝑒𝜑 + 𝐻𝑅 , (73) 

where 𝐻𝑅 represents the energy density of the electromagnetic fields 
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𝐻𝑅 =
𝜖0

2
∫ 𝑑3𝑟 (𝑬⊥ · 𝑬⊥ + 𝑐2𝑩 · 𝑩). (74) 

The electromagnetic energy depends only on the transverse component 𝑬⊥ because 

the energy assigned to the longitudinal filed 𝑬∥ is given (in the Coulomb gauge) by the 

scalar potential 𝜑, (𝑬 = 𝑬⊥ + 𝑬∥) [43,46]. The second step in quantizing light is using the 

appropriate canonical variables in the descriptions of the electromagnetic fields. Books 

dealing with quantum optics provide the necessary mathematical tools to find such 

canonical variables of the electromagnetic fields [43,46]. As an example, we consider a 

simple scenario of one electron interacting with a single mode electromagnetic field with 

a unique frequency 𝜔 [23,47,48]. Then, the classical Hamiltonian (73) can be written as 

𝐻𝑒,𝑝,𝐼 = 𝐻𝑒 + 𝐻𝑝 + 𝐻𝐼          

=
1

2𝑚
𝑝2 + 𝑉(𝑥, 𝑡) +

      +
𝜔

2
(𝑞2 + 𝑠2) −

𝛼

√ℏ
𝑥𝑞.

  (75) 

where the first term on the third line corresponds to the energy of the electromagnetic 

field in (73) written in terms of the canonical variables 𝑞 and 𝑠 [47]. The Hamiltonian in 

(75) is based on assuming that the wavelength of the electromagnetic field is much larger 

than the typical spatial region where the electrons move. In other words, the spatial 

dependence of the vector potential is ignored [46]. The parameter 𝛼 controls the strength 

of the light–matter interaction [47]. For the case 𝛼 = 0, the Hamilton equations of motion 

for the description of the classical light, when applied to the Hamiltonian 𝐻𝑒,𝑝,𝐼  (75), are 

𝑑𝑞

𝑑𝑡
=

𝜕𝐻𝑒,𝑝,𝐼

𝜕𝑠
= 𝜔𝑠    

𝑑𝑠

𝑑𝑡
= −

𝜕𝐻𝑒,𝑝,𝐼

𝜕𝑞
= −𝜔𝑞

. (76) 

Combining these two equations, one can find the equation of motion for 𝑞 as 

𝑑2𝑞

𝑑𝑡2 = −𝜔2𝑞. (77) 

Clearly the solution of (77) gives a sinusoidal signal, 𝑞(𝑡) ∝ sin(𝜔𝑡) , which 

represents the expected time-dependence of the free single-mode electromagnetic field. 

The third step to reach quantum light is the canonical quantization of the canonical 

variables following the prescription just above (56). In terms of the variables used above 

for light, this leads to the substitutions 

𝑞 → √ℏ𝑞 

𝑠 → −𝑖√ℏ
𝜕

𝜕𝑞

, (78) 

so that [𝑞𝑖, 𝑠𝑗] = 𝑖ℏ𝛿𝑖𝑗 . Finally, introducing these substitutions into the classical 

Hamiltonian (75), the new full quantum Hamiltonian is [23,47] 

𝐻𝑒,𝑝,𝐼 = 𝐻𝑒 + 𝐻𝑝 + 𝐻𝐼         

 = −
ℏ2

2𝑚0

𝜕2

𝜕𝑥2 + 𝑉(𝑥, 𝑡)

        −
ℏ𝜔

2

𝜕2

𝜕𝑞2 +
ℏ𝜔

2
𝑞2 − 𝛼𝑥𝑞

.  (79) 

The quantum state of light and matter is now described by the time-dependent wave 

function Ψ(𝑥, 𝑞, 𝑡) that contains information of the electron through the variable 𝑥 and 

information of the light through 𝑞. Such a wave function is a solution of the following 

Schrödinger equation 
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𝑖ℏ
𝜕Ψ(𝑥,𝑞,𝑡)

𝜕𝑡
= (−

ℏ2

2𝑚0

𝜕2

𝜕𝑥2          

      +𝑉(𝑥, 𝑡) −
ℏ𝜔

2

𝜕2

𝜕𝑞2

     +
ℏ𝜔

2
𝑞2 − 𝛼𝑥 𝑞) Ψ(𝑥, 𝑞, 𝑡)

. (80) 

From a mathematical point of view, (80) is just a 2D Schrödinger equation whose 

numerical solution can be worked out in a straightforward manner. 

The behavior of Ψ(𝑥, 𝑞, 𝑡)  can be easily anticipated by using the product wave 

function ψ𝑒,𝑖(𝑥)ψ𝑝,𝑗(𝑞),  where ψ𝑒,𝑖(𝑥)  is defined as the basis function of the electron 

inside an infinite well described by the Hamiltonian 

𝐻𝑒 = −
ℏ2

2𝑚0

𝜕2

𝜕𝑥2
+ 𝑉(𝑥, 𝑡) (81) 

in (80) and ψ𝑝,𝑗(𝑞) is the basis function of the light described by the quantum harmonic 

oscillator of the Hamiltonian 

𝐻𝑝 −
ℏ𝜔

2

𝜕2

𝜕𝑞2
+

ℏ𝜔

2
𝑞2 (82) 

in (80). In particular, ψ𝑒,0(𝑥)  and ψ𝑒,1(𝑥)  are the two first electron eigen-states with 

eigen-energies E𝑒,0  and E𝑒,1 , and ψ𝑝,0(𝑞)  and ψ𝑝,1(𝑞)  are the two eigen-states of the 

light with eigen-energies E𝑝,0 = ℏ𝜔/2  and E𝑝,1 = 3ℏ𝜔/2 . The energies of both the 

electrons and the light are quantized. In particular, when the light is described by E𝑝,1 =

3ℏ𝜔/2, we say that the light has one photon. When the light has the minimum energy 

value E𝑝,0 = ℏ𝜔/2, we say that the light has no photons (vacuum state [43,46]). 

Now, the above description may seem to be somewhat simple, but it corresponds to 

a standard model in both quantum optics [49] and quantum information [50]. This model 

is the Jaynes–Cummings model [51]. The model considers the coupling of a two (energy) 

level atom, which is our “matter” and a mode in an optical cavity, which is described as a 

harmonic oscillator, with quantized energy levels, which is our “light”. A weak interaction 

between these two systems, the light–matter interaction, causes the energy to move back 

and forth between the atom and the cavity. This is just like two coupled pendula, where 

the oscillation itself oscillates between the two pendula. This motion of energy back and 

forth is often referred to as a Rabi oscillation, although this term is usually assigned to the 

amplitude oscillation of the two-level atom [49]. 

This behavior is illustrated in Figure 7. In the contour plots in panel (a) of Figure 7, 

the initial state given by Ψ(𝑥, 𝑞, 0) ≈ ψ𝑒,1(𝑥)ψ𝑝,0(𝑞)  with total energy E𝑒,1 + E𝑝,0  is 

plotted. Notice that the probability of this state has two maxima in the 𝑥  direction 

(corresponding to ψ𝑒,1(𝑥) ) and one maximum in the 𝑞  direction (corresponding to 

ψ𝑝,0(𝑞)). Under the appropriate resonant conditions for light and matter given by E𝑒,1 −

E𝑒,0 ≈ E𝑝,1 − E𝑝,0, another hybrid state arises that has the same energy as the initial one. In 

panel (c) of Figure 7, this new state is ψ𝑒,0(𝑥)ψ𝑝,1(𝑞),  which has energy E𝑒,1 + E𝑝,0 ≈

E𝑒,0 + E𝑝,1. The probability distribution of this new state now has only one maximum in 

the 𝑥  direction (corresponding to ψ𝑒,0(𝑥) ) and two maximums in the 𝑞  direction 

(corresponding to ψ𝑝,1(𝑞)). Thus, the wave function Ψ(𝑥, 𝑞, 𝑡) solution of (73) oscillates 

between ψ𝑒,1(𝑥)ψ𝑝,0(𝑞) (panels (a) and (e) of Figure 7) and ψ𝑒,0(𝑥)ψ𝑝,1(𝑞) (panel (c) in 

Figure 7) at the Rabi frequency [47]. 
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Figure 7. Probability density of the wavefunction Ψ(𝑥, 𝑞, 𝑡) in the 𝑥 − 𝑞 configuration space at 𝑡 = 

0 fs (a), 𝑡 = 20 fs (b), 𝑡 = 40 fs (c), 𝑡 = 60 fs (d), and 𝑡 = 80 fs (e). Red circles indicate the positions 

of 𝑀 = 30 Bohmian trajectories 𝑥𝑗(𝑡) and 𝑞𝑗(𝑡) selected with random initial positions according 

to |Ψ(𝑥, 𝑞, 0)|2 . In (f), the continuous path of these trajectories is plotted, showing their (Rabi) 

oscillations. 

Again, in any discussion of displacement current, it becomes relevant to separate the 

properties of an ensemble of experiments from the properties of an individual experiment. 

We turn now to the former case. 

4.3. Displacement Current for an Ensemble of Experiments 

The electron charge density can be obtained from the modulus of the wave function 

solution of (80) in the form 

𝜌(𝑥, 𝑡) = ∫ 𝑒|Ψ(𝑥, 𝑞, 𝑡)|2𝑑𝑞,
∞

−∞
  (83) 

which must be interpreted as the probability of finding the electron at position 𝑥 at time 

𝑡  when the same experiment is repeated many times for whatever property 𝑞  of the 

light. The unitary evolution of Ψ(𝑥, 𝑞, 𝑡) in (80) ensures that there is a global conservation 

of probability in the whole system. In fact, a straightforward manipulation [47] of (80) 

similar to what has been performed in (60) shows that the total probability is conserved 

because it satisfies the following (local) continuity equation 

𝜕|Ψ|2

𝜕𝑡
+

𝜕𝐽𝑒

𝜕𝑥
+

𝜕𝐽𝑝

𝜕𝑞
= 0, (84) 

where 𝐽𝑒(𝑥, 𝑞, 𝑡) is the particle current of the electron, and 𝐽𝑝(𝑥, 𝑞, 𝑡) is the “current” of 

the amplitude 𝑞(𝑡)  of the electromagnetic mode. The continuity equation in the 

configuration space in (84) can be transformed into a continuity equation in the physical 

space by disregarding the details of the light as performed in (83) by integrating the 

equation 

∫
𝜕|Ψ|2

𝜕𝑡
𝑑𝑞

∞

−∞
+ ∫

𝜕𝐽𝑒

𝜕𝑥

∞

−∞
𝑑𝑞     

+ ∫
𝜕𝐽𝑝

𝜕𝑞

∞

−∞
𝑑𝑞 =

∂𝜌(𝑥,𝑡)

𝜕𝑡
+

𝜕𝐽(𝑥,𝑡) 

𝜕𝑥

= 0,

  (85) 

where the last term on the LHS vanishes since 𝐽𝑒(𝑥, ±∞, 𝑡) = 0, and the electron current 

density is defined as 
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𝐽(𝑥, 𝑡) = ∫ 𝐽𝑒(𝑥, 𝑞, 𝑡)
∞

−∞
𝑑𝑞. (86) 

The charge density in (83) and current density in (86) satisfy the continuity equation 

defined in the right-hand side of (85). Thus, all the ingredients to reach a divergence-less 

total (particle and displacement) current are obtained. The discussions that follow (62) to 

(64) in Section 4.1 define the quantum version of the total current, and this can be 

identically reproduced here. 

As an example, the charge density, electric field, and displacement current are plotted 

in panels (a)–(c) of Figure 8, respectively. They are computed from the same wave function 

Ψ(𝑥, 𝑞, 𝑡) whose time evolution is shown in Figure 7. 

 

Figure 8. (a) Ensemble “Charge” density obtained from 𝜌(𝑥, 𝑡) = ∫|Ψ(𝑥, 𝑞, 𝑡)|2𝑑𝑞 in Figure 1. (b) 

Ensemble electric field from Gauss’s law applied to 𝜌(𝑥, 𝑡)  in (a). (c) Ensemble displacement 

current as the time derivative of the electric field in (b). (d) Ensemble “Charge” density obtained a 

sum of the single-experiment charge densities ρ𝑗(𝑥, 𝑡) = 𝑒δ(𝑥 − 𝑥j(𝑡))  from different J = 1, 2, ,, 

1000 Bohmian trajectories (some of them depicted in Figure 1). (e) Ensemble electric field computed 

as a sum of the single-experiment electric fields solution of the Gauss law ε ∂𝐸𝑗(𝑥, 𝑡)/𝜕𝑥 = ρ𝑗(𝑥, 𝑡). 

(f) Ensemble displacement current computed as a sum of individual displacement currents 

computed from the time derivative of 𝐸𝑗(𝑥, 𝑡). 

Since the light description is included inside the Hamiltonian (73), there is no need 

for a self-consistent solution of the Schrödinger Equation (82) and Maxwell equations as 

had happened in the classical treatment of the light in Section 4.1. As seen in (80), the 

electromagnetic fields are already defined from the Hamilton equations applied to the 

Hamiltonian 𝐻𝑒,𝑝,𝐼 in (75). 

4.4. Displacement Current for a Single Experiment 

The description of quantum phenomena in terms of Bohmian trajectories that has 

been developed above now allows us to describe an individual light–matter experiment 

[23,47]. One can rewrite (83) here as 

𝜌(𝑥, 𝑞, 𝑡) = 𝑒|Ψ(𝑥, 𝑞, 𝑡)|2      

     =
1

𝑀
∑ 𝑒𝑀

j=1 δ(𝑥 − 𝑥𝑗(𝑡))

× δ(q − 𝑞𝑗(𝑡)).

  (87) 
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Here, the 𝑥𝑗(𝑡)  is the quantum (Bohmian) trajectory of an electron guided by the 

wave function solution of (82) following 

𝑥𝑗(𝑡) = 𝑥𝑗(0) + ∫ 𝑣𝑒
𝑗(t)

𝑡

0
𝑑𝑡, (88) 

with 

𝑣𝑒
𝑗(t) =

𝑑𝑥𝑗(𝑡)

𝑑𝑡
=

𝐽𝑒(𝑥𝑗(𝑡),𝑞𝑗(𝑡),𝑡)

|Ψ(𝑥𝑗(𝑡),𝑞𝑗(𝑡),𝑡)|
2  (89) 

the Bohmian velocity of the trajectory [23,47]. Identically, 𝑞𝑗(𝑡)  is the trajectory of the 

parameter 𝑞 that defines the amplitude of the electromagnetic field as a function of time 

𝑞𝑗(𝑡) = 𝑞𝑗(0) + ∫ 𝑣𝑝
𝑗(t)

𝑡

0
𝑑𝑡  (90) 

with 

𝑣𝑝
𝑗(t) =

𝑑𝑞𝑗(𝑡)

𝑑𝑡
=

𝐽𝑝(𝑥𝑗(𝑡),𝑞𝑗(𝑡),𝑡)

|Ψ(𝑥𝑗(𝑡),𝑞𝑗(𝑡),𝑡)|
2. (91) 

the Bohmian velocities determining how fast the amplitude of the electromagnetic field 

changes with time [23,47]. 

The red circles in Figure 7 show the evolution of the Bohmian trajectories for the 

electron and light {𝑥𝑗(𝑡), 𝑞𝑗(𝑡)} in the same configuration space as the wave function. 

They perfectly reproduce the evolution of |Ψ(𝑥, 𝑞, 𝑡)|2 at all times. 

Using (87), the charge density (83) can be written here as 

𝜌(𝑥, 𝑡) = ∫ 𝑒|Ψ(𝑥, 𝑞, 𝑡)|2𝑑𝑞
∞

−∞

=
1

𝑀
∑ 𝑒𝑀

j=1 δ(𝑥 − 𝑥𝑗(𝑡)).
   (92) 

The use of (83), and the continuity equation in the right-hand side of (85), allows one 

to straightforwardly reproduce the definitions of the electric field and the displacement 

current of an individual experiment performed in (68)-(72) in Section 4.1. 

The charge density is plotted in Figure 8d using a 1D version of (92) as a sum of 𝑀 =

1000  individual densities ρ𝑗(𝑥, 𝑡) = 𝑒δ(𝑥 − 𝑥𝑗(𝑡)) . This charge density of Figure 8d 

exactly reproduces the charge density plotted in Figure 8a computed from only the wave 

function. The dynamics of the electrons essentially involve a transition from being 

localized at two maxima at the borders of the infinite well (given by the state ψ𝑒,1(𝑥)) to 

being localized around one maximum at the center (given by the state ψ𝑒,0(𝑥)), and vice 

versa. Since the charge density changes with time, the electric field will also have a time 

dependence, as seen in Figure 8b,e. This time-dependent electric field generates the 

displacement current shown in Figure 8c,f. There is excellent agreement between the 

average over an ensemble of experiments computed from the wave function (top panels 

in Figure 8) and the average over an ensemble of experiments computed from 𝑀 = 1000 

trajectories (bottom panels in Figure 8). Note that the computations based on trajectories 

are noisier; therefore, one needs more trajectories to achieve distributions as smooth as 

the ones computed from the wave function. 

5. Computational Considerations 

While the above discussion has been general in form, it did consider cases where the 

electromagnetics of various media were considered. Perhaps one major point is that there 

is normally no dielectric constant as the dielectric response of most media has a 

complicated frequency dependence with the appearance of resonances. Computing the 

electromagnetic response at the same time as the media response, such as with a 

microwave semiconductor device, can be tricky at the best of times. Nevertheless, there 

are standard approaches to doing this. 
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The standard approach for detailed numerical studies generally adopts a finite-

difference time-domain (FTDT) approach [52], even when coupling this to, e.g., a 

semiconductor device simulation. Using an alternating-direction implicit implementation 

of the FTDT approach is known to satisfy the Courant–Frederichs–Levy stability criteria 

[53]. This becomes especially problematic when semiconductor devices are included as 

these tend to have very high reactive input impedances and matching networks are 

required. Moreover, with millimeter microwave-integrated circuits, the separation of 

signal and bias inputs/outputs has to be handled through these networks. However, this 

has been successfully handled well into the THz regime [54]. The device simulation using 

a full-band, ensemble Monte Carlo method has effectively been coupled to the full-wave 

FTDT electromagnetic simulation by several groups [55,56]. 

In the quantum regime, we have emphasized several times that the typical procedure 

used to compute the dc current in quantum devices—the time-averaged current in a single 

device is inferred from the average current of an ensemble of identical devices at a single 

time—is not always the best strategy in devices where the displacement current becomes 

relevant [33]. In such cases, quantum multi-time correlations at intervals proportional to 

the inverse of the maximum acquired frequency are necessary. It has been shown in the 

literature [33,34,40,57], and emphasized in this paper, that the use of quantum (Bohmian) 

trajectories [23,35,45] presents several computational advantages for quantum multi-time 

measurements in electron devices. Under the reasonable assumption that the 

measurement of the total current can be modeled by the so-called weak measurement (not 

a strong measurement), the computation of the total current in a single device at several 

times can be obtained without explicitly describing the measuring apparatus [36]. 

Furthermore, adopting a common framework for classical and quantum electrons in terms 

of trajectories enables reusing classical techniques for computing displacement currents 

(such as the Ramo–Shockley theorem) in quantum scenarios [58], and it facilitates 

multiscale device simulations, where quantum and classical modeling are mixed [33]. 

6. Discussion 

By now, it should be clear to the reader that the thread running through this work is 

the importance of the displacement current in that it forces the consideration of time-

varying events in electromagnetics. Certainly, nearly everyone (in physics and electrical 

engineering) is trained in Maxwell’s equations and electromagnetic waves, but it is 

seldom that they realize the role played by the displacement current, particularly in lower-

frequency circuits. Without this time-varying term, there would be no wave equations for 

use in fields ranging from electric power distribution to optical information processing. 

The time-varying term can be important over a range of frequencies, extending from tens 

of Hz to THz. 

There is also an important caveat that comes with the importance of time variation. 

Phrases, even when almost universally accepted, such as “dielectric constant” are an 

oxymoron. The dielectric function is never constant except over very narrow frequency 

ranges—and the circumstances in which it can be considered constant forms a very small 

set of conditions that are usually very special. 

Even in what is known as linear response [59], the dielectric function of a simple 

material like a semiconductor is a very complicated (and even nonlinear) function of 

frequency with multiple poles and zeroes [60], and it is further complicated by the 

formation of excitons (bound electron and hole pairs), the existence of band-gap 

narrowing, and other dynamic effects. The method of studying this dielectric function is 

spectroscopy [12]. In composite systems, this becomes much harder to accomplish. 

It is clear that a simple system such as the ion channel of Figure 5 is an enormously 

complicated compound system, with each atom or molecular structure having its own 



Computation 2025, 13, 45 26 of 31 
 

 

dielectric response. The properties of ion channels change dramatically when as few as a 

handful of atoms are changed and so dielectric properties must be understood with atomic 

resolution [61]. Determining the overall dielectric response is extremely difficult and 

challenges our level of understanding at the fundamental level [13,62]. 

In modern semiconductor devices, layers of thin-film materials are stacked and 

adjoined to one another. Even with simple stacking of thin films, such as in the growth of 

superlattices and heterostructures, the determination of the dielectric response, even over 

a limited range of frequency, is difficult [63]. By the time one tries to couple single photons 

to single quantum dots embedded into photonic bandgap material, the task is almost 

impossible [64]. Even the optical dielectric response of a single semiconductor (or even 

metal) layer is governed by the valence (bonding) electron response to the a.c. signals, and 

this is usually in the ultra-violet spectral region. The determination of the temporal 

response in this region, and the delay in which the electrons follow the optical signal, has 

been determined by the use of attosecond laser pulses [65]. 

Section 4 demonstrated that there is no fundamental difference between the classical 

and quantum descriptions of the displacement current [23,33]. If needed, both can be 

described in terms of individual trajectories or at the level of an ensemble over many 

experiments. The only differences between quantum and classical displacement currents 

are that the dynamics of quantum electrons exhibit exotic behaviors that are not present 

in classical dynamics, such as tunneling and energy quantization [23,33,48]. Apart from 

this, everything that we have discussed in previous sections for classical systems applies 

to quantum ones as well. 

The use of individual Bohmian trajectories has another advantage that is typically 

unnoticed in the literature. As seen in Figure 7f, each electron in a single experiment 

oscillates, but the ensemble results tend to wash out these oscillations because some 

electrons oscillate from right to left in some experiments, while others oscillate from left 

to right in other experiments. However, in the laboratory, only one experiment at a time 

is conducted. Thus, in some scenarios, the information from a single experiment can be 

more relevant than that obtained from an ensemble of experiments. The same happens, 

for example, when dealing with electronic devices at high frequencies where 

displacement current is fully relevant [23,38]. The proper behavior of the displacement 

current in an individual electron device is not guaranteed by the fact that a displacement 

current computed as an average over an ensemble of identical devices is adequate. In 

other words, if you put one hand in the fridge and the other hand on the oven, the 

ensemble temperature of your hands might seem satisfactory, but neither of your hands 

will work satisfactorily! 

There is a beautiful moral that arises from the discussion of this section. It seems that 

Kirchhoff was motivated by the continuity equation to postulate the origin of the 

displacement current. Despite the fact that the concept of an electron was not known at 

that time, the meaning of Kirchhoff’s law (4), or the continuity Equation (6), indicates that 

the electrons leaving a volume are equal to those entering plus the time change of the 

electron density inside the volume. By Gauss’ law, such temporal variation of the charge 

generates the displacement current. Kirchhoff’s intuition at the middle of the 19th century 

is the seminal work for the development of our information society, which actually may 

be considered to extend from the telegraph in the 1840s to today’s internet. After almost 

two centuries, his intuition is still helpful in computing displacement current, even in 

modern quantum electron devices working at THz frequencies, allowing the never-

ending progress of our information society. Indeed, the addition of the displacement 

current to Ampere’s Law, and the continuity of the total current, provides the important 

elements necessary to design and understand our circuits for today’s technology and 

provide striking insights into many other systems of daunting complexity. 
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There is an additional lesson extracted from the discussion of the quantum 

displacement current. A quantum description of a single experiment can be carried out in 

terms of Bohmian trajectories. A single trajectory satisfies a continuity equation by 

construction as seen in (70). If the electron appears/disappears in one small region, a 

current must appear at one of the borders of such a small region. From such a trivial 

continuity equation for a single trajectory, a divergence-less total current for a single-

experiment can be easily deduced using Gauss’ law, as seen in (72). Then, an ensemble of 

trajectories/experiments also implies a divergence-free total current by construction. At 

this point, one can interpret that (64) is just a consequence of (72), meaning that the 

fundamental origin of the divergence-less total current is just the fact that matter, even at 

the quantum level, can be described by quantum trajectories. Of course, one is also 

allowed to interpret that (64) is more fundamental than (72) and that (72) is just a 

byproduct of (64) with no deeper ontological implications. In this second option, the 

fundamental origin of the divergence-free total current is hidden in the fact that the 

Hamiltonians used to describe nature include a continuity equation inside (as will be 

pointed out in Appendix A). Thus, the displacement current is in fact just a fundamental 

law of nature. 
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Appendix A. The Continuity Equation and Gauge Invariance 

Throughout the paper, it has been emphasized at several points just how the 

displacement current emerges naturally from a continuity equation. In this appendix, we 

discuss how the continuity equation is required to construct a gauge theory for (classical 

or quantum) electromagnetics. Combining both results, we conclude that the 

displacement current is a fundamental ingredient of any physical theory. 

In the paper, the interaction of light and matter is described through the Hamiltonian 

𝐻 defined in (55). Here, it is more convenient to discuss the interaction of “light” and 

“matter” through the Lagrangian 𝐿 defined as 

𝐿 = 𝒗 · 𝒑 − 𝐻.           

= 𝒗 · 𝒑 −
(𝒑−𝑒𝑨)𝟐

2𝑚
− 𝑒𝜑

= 𝑚𝒗𝟐 + 𝑒𝒗 · 𝑨.      

−
1

2
𝑚𝒗𝟐 − 𝑒𝜑

=
1

2
𝑚𝒗𝟐 + 𝐿𝐼         

  (A1) 

where we have used 𝑚𝒗 = 𝒑 − 𝑒𝑨, which gives the definition of the velocity. Thus, in this 

framework, the interaction of “light” and “matter” is given by the interacting Lagrangian 

𝐿𝐼 = 𝑒𝒗 · 𝑨 − 𝑒𝜑 . In fact, the term 𝑒𝒗  can be understood as the conduction current 

𝑱(𝒓, 𝑡) = 𝑒𝒗𝛿(𝒓 − 𝒓𝒂(𝒕))  evaluated at the position 𝒓𝒂(𝒕)  of the particle, while 𝑒  is the 

charge density 𝜌(𝒓, 𝑡) = 𝑒𝛿(𝒓 − 𝒓𝒂(𝒕)) at the position of the particle. Thus, the coupling 

between matter and light is defined by the Lagrangian 𝐿𝐼 written as 
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𝐿𝐼 = 𝑒𝒗 · 𝑨 − 𝑒𝜑.            

= ∫ 𝑑𝒓𝟑[𝜌(𝒓, 𝑡)𝜑(𝒓, 𝑡)
∞

−∞

−𝑱(𝒓, 𝑡) · 𝐀(𝒓, 𝑡)]

. (A2) 

The development leading to (A2) has been conducted for a simple single-particle 

system, but the final expression in this equation is completely general either for classical 

or quantum systems. 

Hamilton’s principle (also known as the stationary-action principle or the principle 

of least action) says that the physical trajectories 𝒓(𝑡) of the system from the initial time 

𝑡0  to the final time 𝑡𝑓  are the ones that are stationary points of the system’s action 

functional constructed from the Lagrangian as 

𝑆(𝒓(𝑡), 𝑡) = ∫ 𝑑𝑡
𝑡𝑓

𝑡0
 L(𝒓(𝑡), 𝑡). (A3) 

The Euler–Lagrange equations are the equations of motion of the system, written in 

terms of the Lagrangian, that minimize the action. Such equations of motion must be 

gauge invariant. Thus, when putting (A2) into (A3), one obtains 

𝑆𝐼 = ∫ 𝑑𝑡
𝑡𝑓

𝑡0
𝐿𝐼                     

= ∫ 𝑑𝑡
𝑡𝑓

𝑡0
∫ 𝑑𝒓𝟑[𝜌(𝒓, 𝑡)𝜑(𝒓, 𝑡)

∞

−∞

−𝑱(𝒓, 𝑡) · 𝐀(𝒓, 𝑡)]

  (A4) 

that has to lead to gauge invariant Euler–Lagrange equations. As mentioned in Equation 

(21) of the paper, the electromagnetic potentials 𝜑(𝒓, 𝑡)  and 𝐀(𝒓, 𝑡)  inside (A4) are 

gauge-dependent, but the Euler–Lagrange equation generated from (A4) must be gauge-

invariant. In order to see how this happens, one defines 𝑆𝐼
Λ  as the expression of the 

interacting Langrangian (A4) in another gauge Λ as 

  𝑆𝐼
Λ = − ∫ 𝑑𝑡

𝑡𝑓

𝑡0
∫ 𝑑𝒓𝟑[𝜌(𝒓, 𝑡)    

∞

−∞

     
× (𝜑(𝒓, 𝑡) −

𝜕Λ(𝒓,𝑡)

𝜕𝑡
)   

−𝑱(𝒓, 𝑡) · (𝐀(𝒓, 𝑡) + 𝛁Λ(𝒓, 𝑡))]

  (A5) 

which leads to 

𝑆𝐼
Λ = 𝑆𝐼                           

 + ∫ 𝑑𝑡
𝑡𝑓

𝑡0
∫ 𝑑𝒓𝟑 [𝜌(𝒓, 𝑡)

𝜕Λ(𝒓,𝑡)

𝜕𝑡

∞

−∞

+𝑱(𝒓, 𝑡) · 𝛁Λ(𝒓, 𝑡)].         

  (A6) 

The integration by parts of the last terms in this equation leads to 

𝑆𝐼
Λ = 𝑆𝐼 + ∫ 𝑑𝑡

𝑡𝑓

𝑡0
∫ 𝑑𝒓𝟑Λ(𝒓, 𝑡)

∞

−∞

× (
𝜕𝜌(𝒓,𝑡)

𝜕𝑡
+ 𝛁 · 𝑱(𝒓, 𝑡)) .

  (A7) 

where we have used the fact that 

∫ 𝑑𝒓𝟑𝛁(𝑱(𝒓, 𝑡)Λ(𝒓, 𝑡)) = 0
∞

−∞
  (A8) 

because 𝑱(𝒓, 𝑡) = 0 at |𝒓| → ∞, and it can be shown that 

 ∫ 𝑑𝑡
𝑡𝑓

𝑡0

𝜕

𝜕𝑡
(𝜌(𝒓, 𝑡)Λ(𝒓, 𝑡))  (A9) 

does not alter the Euler–Lagrange equation because this term only depends on the initial 

and final times (not on the path). 

Throughout the paper, the natural connection between the continuity equation and 

the displacement current has been discussed (see (6) or (60)). Here, we have shown that a 

general physical theory that is gauge-invariant must satisfy the continuity Equation (A7). 
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The overall conclusion is that the displacement current may be thought of as being at the 

origin of gauge theories. 
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