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I. INTRODUCTION

Coulomb, Gauss, Ampere, Weber, Faraday,
Kirchhoff, Maxwell—these are giants whose
work shaped our understanding of electrical
circuit theory and electromagnetism. Most of
them are widely recognized for their
contributions to the understanding of
electromagnetic ~ phenomena in  various
scenarios. Kirchhoff, on the other hand, is best
known for his current and voltage laws in
electrical circuits and for his later work on
black-body radiation from heated objects. It is
generally considered that he made no major
contribution to the development of
electromagnetic theory.

In this sense, it is often overlooked that, in 1857,
Kirchhoff published two seminal papers on the
motion of electricity in wires [1,2], building
upon Weber’s electrodynamic theory [3]. In that
work, he was the first to derive what we now call
the telegrapher’s equations, which describes the
propagation of electromagnetic signals along a
cable [4,5].

But how was Kirchhoff able to describe
electromagnetic propagation as early as 1857,
when the notion of displacement current—
which is believed to be the essential ingredient
for the propagation of electric and magnetic
fields—was not introduced by Maxwell until
1861 [6,9] and fully explained later in 1865
[10]? Did Kirchhoff somehow anticipate the
concept of displacement current before
Maxwell? Or was his work simply incorrect
because, at that time, he did not have the tools
to describe the propagation of electromagnetic
waves?

A. A Wrong Consensus

If we take Wikipedia as of November 2025 [11]
as a rough indicator of the general consensus on
who should be credited with developing the
telegrapher’s equations, we see that Kirchhoff’s
contribution is essentially ignored. The
authorship of the telegrapher’s equations is
commonly attributed to Heaviside [12], who in



1876 —this time after the discovery of the
displacement current by Maxwell—rederived
the same equations that Kirchhoff had already
found in 1857 [1].

The reasoning behind the widespread dismissal
of Kirchhoff’s contribution appears to be [13-
16]:

1. Kirchhoff based his work on Weber’s
electrodynamics [3], which, in turn, was
based on the primitive notions of
velocities, accelerations, and forces,
instead of Maxwell’s modern concept of
fields [6-10].

2. Thus, Kirchhoff was unable to discuss
the displacement current because he
missed the notion of fields.

3. To conclude, Kirchhoff’s result cannot
be correct, since displacement current is
regarded as the essential ingredient for
electromagnetic propagation.

The previous argument suggests that
Kirchhoff’s original mistake in Refs. [1,2] was
basically adhering to Weber’s outdated ideas [3]
for explaining electromagnetism  without
invoking the modern concepts of fields (i.e., the
concept of displacement currents). But, there is

nothing wrong—or at least nothing that
invalidates the demonstration of propagation of
electromagnetic  signals—within ~ Weber’s
framework [17].

All physical theories are valid only within a
range of validity. The Weber theory is valid for
classical electrons with velocities lower than the
velocity of light, which is the typical scenario in
metals [17]. In this paper, we show in detail that
the previous consensus concerning Kirchhoff is
wrong. He must be recognized as the first to
discuss the propagation of electromagnetic
signals in wires, even though he did not
introduce the displacement current in his
approach (because he did not need it).

Discrediting Kirchhoff’s contribution simply
because he did not use fields or the concept of
displacement current is, in our view, a serious
historical mistake [17-20]. This paper aims to
help correct that misconception about
Kirchhoff’s  forgotten  contribution  to
electromagnetism. Fig. 1 shows portraits of the
three main relevant figures mentioned in this

paper.

Fig. 1. Pioneers of the electromagnetism mentioned in this paper. From left: Wilhelm Weber,
Gustav Robert Kirchhoff and James Clerk Maxwell.



B. A New Perspective

In this paper, we argue that a new perspective on
the role of the continuity equation for matter in
the development of electromagnetism is needed.
The continuity equation is a more fundamental
concept than that of the displacement current.
The dynamics of charged particles can be
formulated without invoking fields, but the
dynamics of fields cannot be formulated without
a continuity equation for matter [15,20-24]. In
modern quantum theories of electrodynamics,
where electromagnetic fields are quantized, the
concept of displacement current is usually
ignored (it 1is hidden behind tons of
mathematical ~ non-commuting operators
[25,26]), while the continuity equation remains
an essential element in the formulation of
quantum electrodynamics (see Appendix in Ref.
[27]). In addition, the continuity equation is
Lorentz-invariant, ensuring its validity even in
relativistic scenarios [28].

By centering the discussion on the continuity
equation —rather than in the displacement
current— we argue that, when Maxwell
introduced the displacement current in his
formalism of electromagnetic fields, he
introduced the continuity equation of matter as
a fundamental element in describing
electromagnetic =~ phenomena. = What  he
effectively did—without explicitly realizing it
[29-32]—was to impose a restriction on the
types of currents and charges that generate
electromagnetic phenomena in nature; he
introduced the continuity equation among the
set of Maxwell’s equations.

Kirchhoff was the first, in his 1857 paper [1], to
introduce the continuity equation when
discussing  electromagnetic ~ propagation.
Although  Kirchhoff employed Weber’s
particle-based ideas [3], he did not describe the
interaction between individual particles, but
rather dealt with ensembles of them expressed
in terms of current and charge. Therefore, he

needed a formulation of the continuity equation
to conserve the number of particles locally. If
one understands Maxwell’s introduction of the
displacement current as, in essence, the
imposition of a continuity equation — what
Maxwell originally called “molecular vortex”
[31]- on the type of matter that can generate
electromagnetic phenomena, then Kirchhoff’s
work predates and anticipates this important
conceptual contribution. With his continuity
equation, Kirchhoff was able to describe the
propagation of electromagnetic signals in wires,
without the need to invoke the displacement
current.

II. THE TELEGRAPHER’S EQUATIONS

The central element that we analyze in this
paper to document Kirchhoff’s contribution to
electromagnetism is his paper written in 1857
and entitled “On the motion of electricity in
wires” [1]. In that paper, he develops the so-
called telegrapher’s equations [33], showing
that in a circuit of negligible resistivity,
oscillating currents propagate along the wire
with a velocity equal to the speed of light.

A. Modern formulation

Before discussing Kirchhoff’s work, we
summarize the modern formulation of the
telegrapher’s equations in terms of (lumped)
circuit elements as can be found in many
modern textbooks [34,35]. A small section of a
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Fig. 2. Transmission line in terms of lumped
elements (in blue), as analyzed in textbooks
to describe signal propagation. The cable
(in orange), as analyzed by Kirchhoff in
Ref. [1].



wire, from positions a to b =a + Ax, is
modelled by a capacitor C (per unit length),
inductor L (per unit length) and a resistor R (per
unit length) as shown in Fig. 2 [36].

Taking into account the current flowing into
the plates of the capacitor, the current entering
this section, I(a,t), and leaving it, I(b,t),
can be written as

av(x 2

I(a,t) =1(b,t) + C Ax (1)
It is assumed that x € [a,b] with Ax — 0.
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The potential drop in the section Ax in Fig. 2
can be written as the sum of the voltage drop in
the resistor plus in the inductor

V(at) —V(b,t) = Ax (R I(x,t) + 120 ”).
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Taking the time derivative of Eq. (2) and the
spatial derivative of Eq. (4), and equating the

. %V (x,t)
mixed term Sror » One gets
92%1(x,t) 61(x t) %1 (x,t)
P = RC + LC——= P (5)

For a wire with a low resistance, i.e., R = 0,
Eq. (5) describes the propagation of I(x, t) at a
velocity 1/v/LC  determined by the
transmission medium [34,35]. Notice that the
electrons themselves do not move fast; it is the
time-dependent currents that vary rapidly.
Current is the movement of charge, but
individual particles do not need to move at the
same speed. The so-called Newton’s cradle
illustrates this difference: suspended balls
transfer energy and momentum through elastic

interactions, while the balls remain nearly
stationary.

B. Physical interpretation

Using the relation between the voltage and the
charge Q(x, t) in a capacitor

Q(x,t) = CAx V(x,t), (6)

and defining the charge density as p(x,t) =
Q(x,t)/(SAx) and the current density
J(x,t) = I1(x,t)/S with S the cross sectional
area of the wire in Fig. 2, Eq. (2) can be
rewritten as

aJ(x,t) C oV (x,t) ap(x,t)

T s e e D
which can be interpreted as a charge
conservation law in the region Ax = dx and
time dt: The electrons leaving the section Ax
in Fig. 2, I(b, t), equal those entering, I(a, t),
minus those accumulated within that region
during dt.

The term R I(x,t) in Eq. (3) captures the idea
that any instantaneous net charge different
from zero at a given position in the cable, as
discussed in Eq. (7), creates a Coulomb force
[37] between electrons, causing them to move.
Any acceleration of an electron due to
Coulomb forces increases its kinetic energy,
which is rapidly dissipated through energy
exchange with phonons, i.e., via Joule heating
[38], keeping a constant velocity [16].

The term LM

combined effect of Ampere’s law [39] (a
current flowing through the cable generates a
magnetic field around it) and Faraday’s law
[40] (a time-varying magnetic flux induces a
voltage—the electromotive force—along the
cable).

By isolating the current, Eq. (4) can be
rewritten as

in (3) represents the

_ laV(x,t) _ £6I(x,t)
I(x, t) - R Ax R ot s (8)

which corresponds to the generalized Ohm’s
law.
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with the vector potential A(x, t) proportional to
the current I(x, t), as happens in an inductor.

J =0E with E =

In Eq. (3), we have identified two physical
mechanisms that decelerate electrons: the
interaction with phonons, and the inductive
effects, modeled by Ampere’s and Faraday’s
laws. The relative importance of these two
acceleration/deceleration mechanisms depends
on the condition

aI(x,t)
Cat

L » RI(x,t). (10)

The faster the time derivative of the current, the
more important the inductive effects.

C. Kirchhoff’s formulation in 1857

Kirchhoff describes the transport of current in
the section Ax of the cable depicted in Fig. 2
[41]. In his paper [1], there are only four
numbered equations, which are the basic
results, whose combination leads him to his
final telegrapher’s equations. We summarize
below each of these four equations.

First equation: The equation labelled as (1) in
Ref. [1] is the “electrostatic law of Coulomb”,
where Kirchhoff establishes a relation between
the charge and the potential.

2¢& e’
V = 2e ln(—) + J—ds'
a r
= 2eln (é) (11)

He uses the variable s as our variable x and r
as the distance between the point x and any
other point x’ in the cable. The integration is
extended over the whole section of the cable of
length l. Here, « is the radius of the wire and ¢
is a small (intermediate) length used in the
calculations. Finally, e is the “quantity of
electricity” which is the historical term to refer
what today we define as charge density p(x, t).

Expression (11) can easily be recovered from
the Coulomb law assuming [ > «a and that only
the charge near the position x is relevant for the
potential there [36]. Of course, Eq. (11) plays
the role of a capacitance shown in Fig. 2 and
mentioned in Eq. (6).

Second equation: The equation labelled as (2)
in Ref. [1] is the most relevant equation in
Kirchhoff’s paper

. av 4 0
i = —2mka? (5 C—Za—”t”) (12)

Here, i is the current density (that we have
named J = I/S), k is the conductivity constant

v . ) )
and P —FE is the electric field. We write ¢’ as

Weber’s constant, linked to what today is
defined as the speed of light, ¢ = 3 - 108 m/s,

through ¢ = ¢’ /V/2.
The first term, i = —2mka? Z—:, in Eq. (12) is

clearly Ohm’s law, which plays the role of the
resistance R in the circuit of Fig. 2. In the bottom
of page 397 Kirchhoff writes [1]: “In the case of
a stationary electric current, the density of the
current is equal to the product of the
electromotive force, referred to the unit of
quantity of electricity, and the conductivity; |
will assume that the same also holds good when
the current is not stationary. This assumption
will be fulfilled when the forces acting upon the
electricity, and which constitute the resistance,
are so powerful that the time during which a
particle of electricity remains in motion after the
cessation of the accelerating forces, and in
virtue of its inertia, may be regarded as
infinitely small, even in comparison with the
small space of time which comes into
consideration in the case of a non-stationary
electric” Kirchhoff is acknowledging here that
the transport in the wires is diffusive, not
ballistic.

The second term in Eq. (12), involving w,
requires Kirchhoff’s third equation, where he
defines it.



Third equation: The equation labelled as (3) in
Ref. [1] is written as

2¢ i’
w=2In (;) + f?ds’ cos(8) cos(0")

=2iln (é) (13)

Thus, w in the modern formulation is just the
axial component of the vector potential A(x, t)
which is proportional to i(x,t) in a cable.

Then, the second term :_2(23_‘2/ in Eq. (12) is just
the time derivative of the vector potential,
defined in Eq. (9), which gives an induced

electric field due to time-dependent variation of
the current [42].

The contribution of the second term of Eq. (12)
can be easily recovered from Ampere’s law,
assuming [ > a so that only the current near the
position x is relevant [42]. Of course, the role of
this second term is just the inductor placed in
Fig. 2.

Kirchhoff wrote in page 396 in the second
paragraph [1]: “We have now to form the
expression for the electromotive force induced
in the point under consideration, by the
alteration of the intensity of the current in all
portions of the wire”. Kirchhoff acknowledged
here that there are forces at a point x created by
the accelerations of electrons (what he named
“alteration of the intensity of the current”) at
another point x’. He is applying here Weber’s
force between charges by knowing that current
is proportional to the velocity of charge and the
time-derivative of the current is proportional to
the acceleration of charges. He wrote [1] in page
396, “When in the element of a conductor...the
intensity of the current denoted by I’ changes,
an electromotive force will be induced by this
change in a second element of the conductor.*

Now, it is evident that the second equation in
Kirchhoff’s paper, numbered here as Eq. (12), is
just the modern Egs. (8) and (9). Let us give

some details on how Kirchhoff was inspired by
Weber's previous work in developing Eq. (12).

Weber’s Electrodynamics theory [3,17] aimed
to generalize Coulomb’s [37] and Ampere’s
[39] laws to account for the motion of charges,
proposing a force law that depends not only on
distance but also on relative velocity and
acceleration. Two particles q; and ¢, at
positions ry and 7, suffer a force given by

-2

F = _ 01 (1_T__i)ur’ (14)
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withr = |ry —ry| and w,. = (rq{ — 13)/r. For
the cable considered here, the current I(x, t) is
proportional to the electrons’ drift velocity.
Thus, its time derivative dI(x,t)/ dt can be
associated with the time derivative of the
velocity, i.e., the acceleration of electrons given
by # in Eq. (14). Thus, Eq. (14) establishes a
force between electrons due to the time
derivative of the current. This new induced
electromotive force contributes to the net
current of the electrons in the wire as shown in
Eq. (12), or in its modern version in Eq. (8). This
induced electromotive force opposes the
original electrons’ acceleration [43]. See Ref.
[42] for a more detailed explanation.

Up to here, Kirchhoff has three equations, but
four unknowns: “To the equations (1), (2), (3),
between four quantities i, e, V, w, a fourth may
be added. [ 1]

Fourth equation: His fourth equation is the
continuity equation written in Ref. [1] as

ai de
2-=——. (15)
From Fig. 2, Eq. (15) means that the output
current /(b) at x = b can be related to the input
current I(a) through a Taylor expansion, i.e.,

I(b) =1(a) +%5Axwith ds =0xandI =iS
to take into account the cross sectional area.

Thus, this difference between input and output
currents, multiplied by a small time interval dt,



implies an increment of charge during this time
given by % S Ax 0t = de S Ax where de is

defined as the increment of charge density in the
volume S Ax of the cable of Fig. 2. This last

. . ai de .
relation can be written as 35— p meaning

that nonuniformity of currents is linked to the
temporal variation of charges. The factor of 2 in
Eq. (15) arises from considering the positive and
negative quantities of electricity at that time
[44].

It seems quite reasonable to suppose that
Kirchhoff's reasoning on the continuity equation
in Eq. (15) was based on Weber's picture of
interacting particles. The number of particles
entering a region must equal the number of
particles leaving it, plus those accumulating in
that region, regardless of how small the region
or the time interval involved.

Final telegrapher’s equations: Once the
previous four equations were established,
Kirchhoff provided a rather long and tedious
derivation to solve this system of 4 equations. In
fact, to obtain our modern Eq. (5), one simply
needs to introduce the relations between V' and
e given by Egs. (11) into (12), introduce the
relations between w and i given by Egs. (13)
into Eq. (12), and then take its time derivative.
Finally, applying the continuity equation in Eq.
(15) to express the result solely in terms of the
current i, one obtains
di 0% | 4 9%

== —4rka?in (é) (—2 =t c_zﬁ)’ (16)

which reproduces Eq. (5) with I =i S.

In summary, this last equation (16) is equal to
Eq. (5)—which appears in almost all electrical
engineering textbooks dealing with
electromagnetic transmission in cables [33,34].
Both equations are based on the same physics.
In fact, taking the time and spatial derivatives of
Eq. (1) in Heaviside’s original work in Ref. [12]
and substituting them into the time derivative of
Eq. (2) in Ref. [12] yields Kirchhoff’s original
equation (16) once again. How can one claim

that Kirchhoff’s equation is wrong while
Heaviside’s equation is correct if they are in fact
the same? The argument that Kirchhoff did not
include the displacement current is meaningless,
since he described particle electrodynamics
without invoking electromagnetic fields, relying
solely on Weber forces.

I11. IS WEBER’S THEORY RIGHT?

Historically, the first descriptions of
electrodynamics were formulated as mechanical
forces between particles, acting instantaneously
at a distance. For example, Coulomb [37]
described electrostatic interactions through
direct forces between charges, while Ampere
[39] extended this view to moving charges,
revealing forces between electric currents.
Weber [3] generalized Coulomb’s law to
include Ampere’s formalism, thus providing the
first unified instantaneous action-at-a-distance
formalism for electricity and magnetism [3,17].
Faraday [40] then transformed this picture by
introducing the idea of continuous “lines of
force”, suggesting that space itself mediates
electrical and magnetic actions. Maxwell [6-10]
finally formalized this vision mathematically,
defining the electric and magnetic fields as local
physical quantities whose variations propagate
as electromagnetic waves. Through his four
papers [6-9] leading up to the Treatise [45],
Maxwell showed that interactions among
particles can be also understood as locally
transmitted through fields [21,45,46]. Later,
Hertz used Maxwell’s results to measure
electromagnetic-wave propagation over large
distances [47].

But is Weber’s theory correct? The answer is not
straightforward—just as it is not easy to
determine whether Newton’s gravitational
theory for planetary motion or the Schrodinger
equation for quantum systems are correct. One
may say that all physical theories (classical or
quantum) are approximations, valid only within
certain experimental scenarios. Of course, the



instantaneous action at a distance predicted by
Weber’s formulation is incompatible with
relativity (as is also the case for Newton’s law
and the Schrodinger equation). Is this relativistic
limitation enough to classify Weber’s
framework as an incorrect theory? Would we
reach the same conclusion for Newton’s law? Or
for the original Coulomb and Gauss laws?
Weber’s theory is valid whenever the finite
propagation speed of interactions among
particles does not play a significative role. For
two electrons in a metal separated by a distance
of, say, 10 nm, the retardation time is less than
femtoseconds. Thus, in metals—where typical
electron velocities are much lower than c—
Weber’s formalism provides a fully consistent
framework for describing resistive, capacitive,
and inductive effects [17,19]

Contrary to what might be assumed, the
formulation of physical phenomena in terms of
interactions among particles is not outdated.
Through the works of Schwarzschild [22],
Tetrode [23] and Fokker [24], Weber’s original
ideas evolved from his instantaneous action-at-
a-distance [3] toward a retarded action-at-a-
distance [15], allowing the description of any
electromagnetic phenomena for any length and
time scales. In modern times, under the
assumption that both particles and fields are real
elements of the theory (i.e., physical, not merely
mathematical), the concept of the field
introduced by Faraday and Maxwell has been
quantized, giving rise to quantum field theory
[25,26]. Despite its great empirical success,
some mathematical inconsistencies remain in
quantum field theory, which has led some
physicists to revisit field-free formulations
started by Weber of electromagnetic phenomena
in the quantum regime [20]. For example, in
1941, Wheeler and Feynman [48] proposed
quantum electrodynamics in which charged
particles interact directly—through retarded
times—without mediating fields. Feynman’s
later Nobel-winning work on the path-integral
formulation of quantum electrodynamics was in

part inspired by this earlier research, and still
considers the concept of particle paths.
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Fig. 3. In old and modern physics, there are
attempts to describe nature using either
particles or fields. Both approaches have
their advantages and limitations, but the
need for a continuity equation is always
present. In contrast, the displacement
current can be understood as a byproduct of
the field-based description needed to satisfy
the continuity equation.

By vindicating the ideas of action-at-distance
between particles to explain electromagnetism,
the reader might get the wrong impression that
we are simultaneously diminishing Maxwell’s
explanation with fields. This is not the case. In
our opinion, Maxwell’s field’s formulation
great merit over (retarded time) particle
formulation lies not in correctness, but in
usefulness. It is evident that computing
interparticle interactions for an Avogadro
number of particles is entirely impractical in
many scenarios, whereas handling such many-
particle  scenarios  becomes  relatively
straightforward within Maxwell’s concepts of
electric and magnetic fields generated by
charge and current distribution (rather than by
an Avogadro number of particles). In other
words, in the dichotomy between explaining
electrodynamics with or without fields, the
utility criterion favors the field-based approach
developed by Maxwell. We are simply
emphasizing that the criterion of correctness



does not favor the idea of fields over particles.
Fig. 3 explains this viewpoint.

In any case, in the limit of low-velocity (non-
relativistic) classical electrons, Weber’s theory
is formally equivalent to Maxwell’s equations
at the conceptual level in most practical
scenarios [17,19].

IV. CONTINUITY EQUATION VERSUS
DISPLACEMENT CURRENT

It is clear that Kirchhoff, when discussing
electromagnetic propagation in wires, could not
have developed Maxwell’s displacement
current because he did not employ the concepts
of electric and magnetic fields. The central point
emphasized throughout this paper is that he also
did not need to use such concept to provide a
correct explanation of signal propagation in
wires. As we have seen, he was able to explain
resistive, capacitive and inductive phenomena
without mentioning the displacement current.

On the contrary, without the displacement
current, Maxwell’s set of equations is incorrect.
We argue in this paper that the fundamental
reason for this failure is not merely the absence
of the displacement current itself, but the fact
that without this term, the set of Maxwell’s
equations does not guarantee that charge and
current satisfy a conservation law for small
spatial and time intervals. When the
displacement current term is added, the
continuity  equation—and  thus  charge
conservation—is  automatically  recovered
within Maxwell’s equations.

The new perspective advocated in this paper is
that the continuity equation is a more
fundamental concept than the displacement
current. The displacement current is just a
byproduct of a formulation of electrodynamics
with fields including the continuity equation. In
this regard, Maxwell’s real achievement was not
the introduction of the displacement current, but
the correction of a flaw in his original field-

based formulation which, without this term, did
not ensure the validity of the continuity equation
for charge and current.

We argue in this paper that the continuity
equation is a mandatory requirement when
discussing electromagnetic phenomena. Let us
examine whether Gauss’ law [49] can be
considered a correct law in the absence of the
continuity equation. Gauss’s law, written in
terms of the electric field, is
p(r,t)

V-E(ro) = (17)
0

where ¢, is the vacuum permittivity r is any
point in three-dimensional space. This law
alone, without the continuity equation, can lead
to incorrect results. For example, consider a
charge density that disappears instantaneously
at one point and reappears far away; the electric
fields derived from Gauss’ law for such a charge
distribution would be unphysical. However,
within the full structure of Maxwell’s equations,
Gauss’ law is consistent, because together with
the so-called Ampere-Maxwell law ensures that
matter will satisfy a continuity equation.

In a similar discussion, Assis has shown that the
original Ampere’s law is indeed correct if one
enforces the continuity equation for charge and
current. In other words, Ampere’s law, together
with the continuity equation, naturally leads to
the discovery of the displacement current (see
pp. 103—107 in Ref. [17]). Here, we summarize
the mathematical demonstration. In modern
notation, Ampere’s law expresses the force dF
experienced by an element of circuit dl; at
position r, carrying a current I;, due to other
currents circulating nearby

dF = I,dl; x B(r,t), (18)

where the influence of these other currents,
represented by the current density J(r',t) at
position " is encompassed in a magnetic field
at r, defined as

———=d*" (19)

B(rt)——J](r t)x |



with pu, the permeability of free space. If
retardation effects are significant (e.g. at high
velocities), the correct expression must instead
be derived from the Liénard—Wiechert
potentials  [15,46]. For  non-relativistic
scenarios, a straightforward computation of the
curl of the magnetic field in Eq (19) (see pages
178 and 179 in Ref. [46]) yields

U Vij(rt) '
VX B(r,t) = uoJ(r,t) + ﬁvar'd% . (20)

|r

Under the steady-state assumption, V'-
J(@',t) = 0, the familiar magnetostatic relation
is recovered

VX B(r,t) =y, J(r,t). (21)

It is important to emphasize that this last
equation was never written by Ampere himself,
since he did not work with fields but rather with
forces between currents. In other words, Eq.
(21) is a version formulated by Maxwell when
rewriting Ampere’s law in terms of fields. The
original formulation of Ampére is simply the
compact expression of the force, without
reference to fields, obtained by inserting the
magnetic field defined in Eq. (19) into Eq. (18).

The important point is that, without the steady-
state assumption, the current density in Eq. (20)
is not arbitrary; it must satisfy the three-
dimensional form of the continuity equation
(15), here written as

dp(r,t)
ot

Finally, using Gauss’ law in Eq. (17) to relate
the charge density to the electrical field in Eq.
(22), one can rewrite Eq. (20) as

+V-J(rt) = 0. (22)

JE(r,t)
at

V X B(r, t) = ‘U,()](r, t) + Ho€o (23)

This is commonly referred to in the literature as
the Ampere-Maxwell law. However, it is
important to emphasize that there was nothing
incorrect in Ampere’s original formulation in

Egs. (18) and (19). Noticed that we do not need
0E(r,t)

Y to
arrive to (23); it arises naturally from combining

to “invent” the displacement current &,
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Ampere’s law with the continuity equation. The
only point to note is that, without the continuity
equation in (22), Egs. (18) and (19) could yield
unphysical results if one allows arbitrary
(“crazy”) current densities. This conclusion
mirrors what we found previously for Gauss’
law. In any case, unphysical charge or current
densities are not allowed when using Egs. (17)
and (23) together, because it is straightforward
to show that these equations together imply the
continuity equation (22).

The argument that the displacement current in
Eq. (23) is merely a byproduct of the continuity
equation is reinforced by the fact that this
displacement current can be obtained directly
from Gauss’ law together with the continuity
equation, without invoking Ampére’s law. In
fact, Gauss [49] in 1835—or even Coulomb [37]
in 1785——could have “discovered” the
displacement current themselves, had they
employed the concept of the electric field.

Let us see how simple such a discovery could
have been. By combining Gauss’ law in Eq. (17)
with the continuity equation in Eq. (22), one
obtains the expression for the total current—the

sum of particle (i.e., conduction) and
displacement  currents—whose  divergence
vanishes
O0E(r,t
V- <](r, t) + & %) = 0. (24)
And that’s all.

The elimination of particles in Maxwell’s
formulation of electromagnetism was not a
necessary feature of nature, but rather a choice
made by Maxwell to simplify the assumptions
required to explain electrodynamics, reducing
the reliance on the molecular vortices of his
original model [29-32]. However, once
particles are removed from the discussion, the
continuity equation relating charge and
current—which is automatically satisfied when
particles are present—is no longer guaranteed

and must be explicitly reintroduced.
Electromagnetism can be formulated without
fields (that 1is, without invoking the



displacement current), but it cannot be
formulated without the continuity equation for
matter [50].

At this point, it should be noticed that, although
the displacement current is not a fundamental
concept, it remains extremely useful in many
practical applications. It allows one to define a
total current—the sum of conduction and
displacement currents—whose divergence 1is
zero everywhere, at all times and under all
conditions. See Eq. (24). This implies that the
total current entering any region of a circuit
equals the total current leaving it (a property not
true for conduction current alone) [51,52]. This
feature has enormous practical value: in
electronic devices, for example, the current
predicted in the active region must equal the
current measured by an ammeter located
elsewhere on any time scale where the equations
of electrodynamics describe experiments,
certainly including the time scale of gamma
rays, much faster than electron transitions in
chemical reactions. This equality holds
precisely because the total current includes both
conduction and displacement contributions.

Another strong argument strongly supporting
the perspective defended in this paper is that, in
quantum electrodynamics, displacement current
does not require explicit treatment. On the
contrary, the continuity equation must be dealt
with explicitly in quantum electrodynamics
because it is a mandatory requirement that
ensures gauge independent equations of motion
of classical or quantum systems. See the
discussion in the Appendix in Ref [27].
Moreover, the continuity equation remains valid
in relativistic contexts, as it is consistent with
Lorentz transformations [28].

In summary, from a fundamental standpoint, the
explicit display and use of the displacement
current is not strictly necessary if one avoids the
field formalism altogether. What cannot be
avoided—regardless of the formulation—is the
continuity equation linking charge and current.
This requirement is universal in any theory that
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includes charged particles. The main argument
regarding the distinct roles played by the
continuity equation and displacement current in
physical theories is illustrated in Fig. 3.

VI. SUMMARY

In this paper, we have shown that Kirchhoff
deserves recognition as the first to formulate the
telegrapher’s equations for signal propagation in
wires [1,4]. Nothing in Weber’s formulation
diminishes Kirchhoff’s contribution to his
pioneering studies of charge transport in wires
[3,17,19]. In other words, Weber’s work
provides a valid physical theory for describing
electromagnetic phenomena such as resistivity,
capacitance, and induction for classical
electrons moving at velocities much smaller
than the speed of light, as occurs in metals.
Kirchhoff’s  achievement is  eloquently
summarized in Ref. [53]: “With these papers
[our Refs. 1,2], he carried through the task he
had envisioned in 1849: to derive the laws of
current in closed circuits from Weber'’s
fundamental law of electric action.”

The apparent paradox of how electromagnetic
propagation can be deduced without the
displacement current is resolved in this paper by
showing that the displacement current is a less
fundamental concept than the continuity
equation: electrodynamics can be formulated
without invoking the displacement current (i.e.,
without fields), but electrical and magnetic
phenomena cannot be correctly described
without the continuity equation. We explicitly
note that the instantaneous action-at-a-distance
developed by Weber in the 19th century, was
later extended by Schwarzschild [22], Tetrode
[23], Fokker [24], Wheeler, Feynman [15], and
others, in the 20th century, into the so-called
retarded action-at-a-distance, which is valid for
describing electromagnetism across all time and
length scales.



As a byproduct of the present perspective, one
can clarify the specific nature of Maxwell’s
achievement. Inspired by Faraday and his lines
of force, Maxwell chose to develop
electrodynamics in terms of electric and
magnetic fields, thereby avoiding the need to
discuss particle dynamics. When replacing the
forces between particles with the more abstract
concepts of fields, the inherent continuity
equation provided by particle dynamics was
invisible in the process. When Maxwell
introduced the displacement current in his field-
based formalism, what he effectively did—
without explicitly realizing it [29-32]—was to
impose a restriction on the kinds of currents and
charges that nature considers capable of
generating electromagnetic phenomena, that is,
to restore the continuity equation that particle
formalisms inherently satisfy.

From this new perspective, when it is said that
Ampere’s law is “incorrect” because it lacks the
displacement current term, what should actually
be stated is that Ampére’s law, when written in
field form, does not automatically satisfy the
continuity equation, and thus there is no
guarantee that it yields correct results. However,
when Ampere’s law is combined with the
continuity equation, it becomes a correct law.
Thus, Ampere’s law itself is not wrong; rather,
it is its field-only formulation, without the
continuity equation, that is incomplete. We have
seen that the same happens to Gauss’ law with
and without the continuity equation.

We also emphasize that, in our view, Maxwell’s
great merit in formulating electromagnetic
phenomena in terms of fields—rather than
through (instantaneous or retarded) action-at-a-
distance—lies not in correctness but in
usefulness. Maxwell’s field-based formalism,
which relates fields to charges and currents, is
far more practical and broadly applicable than
the particle-based force formalism. This
explains why Maxwell’s approach has become
far more popular. There is significant merit in
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formulating physical theories that are not only
correct but also useful.

A profound lesson emerges from the historical
discussion of the continuity equation in the
development of electromagnetism. Kirchhoff
was inspired by Weber’s formalism, but he did
not model the full dynamics of particles.
Instead, he was the first to impose a continuity
equation for charge and current. Kirchhoff’s
formulation of the continuity equation might
appear simple—it merely states that particles do
not vanish at one point and reappear
instantaneously elsewhere. However, the true
significance of the continuity equation is
revealed by modern formulations of
electrodynamics. All of them rely on it, even
those dealing with quantum matter and quantum
light. In our opinion, this is a second, often
overlooked, major contribution of Kirchhoff to
the development of electromagnetic theory:
charge and current cannot be chosen arbitrarily;
they must satisfy the continuity equation given
in Eq. (22). In other words, in any physical
formalism developed by humans, the continuity
equation must be enforced as a reminder of the
fundamentally atomic nature of matter [54,55].

Why does this 19th-century ‘dinosaur’—the
continuity equation introduced by Kirchhoff—
persist in modern quantum theories? What does
this persistence indicate? One possible
explanation, though not the only one, is that
even in the quantum regime the notion of
particles with well-defined positions—which
naturally satisfy the continuity equation—
remains a useful framework for discussing
quantum electromagnetic phenomena [56—64].
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