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I. INTRODUCTION 

Coulomb, Gauss, Ampère, Weber, Faraday, 

Kirchhoff, Maxwell—these are giants whose 

work shaped our understanding of electrical 

circuit theory and electromagnetism. Most of 

them are widely recognized for their 

contributions to the understanding of  

electromagnetic phenomena in various 

scenarios. Kirchhoff, on the other hand, is best 

known for his current and voltage laws in 

electrical circuits and for his later work on 

black-body radiation from heated objects. It is 

generally considered that he made no major 

contribution to the development of 

electromagnetic theory. 

 

In this sense, it is often overlooked that, in 1857, 

Kirchhoff published two seminal papers on the 

motion of electricity in wires [1,2], building 

upon Weber’s electrodynamic theory [3]. In that 

work, he was the first to derive what we now call 

the telegrapher’s equations, which describes the 

propagation of electromagnetic signals along a 

cable [4,5].  

 

But how was Kirchhoff able to describe 

electromagnetic propagation as early as 1857, 

when the notion of displacement current—

which is believed to be the essential ingredient 

for the propagation of electric and magnetic 

fields—was not introduced by Maxwell until 

1861 [6,9] and fully explained later in 1865 

[10]? Did Kirchhoff somehow anticipate the 

concept of displacement current before 

Maxwell? Or was his work simply incorrect 

because, at that time, he did not have the tools 

to describe the propagation of electromagnetic 

waves? 

 

A. A Wrong Consensus 

If we take Wikipedia as of November 2025 [11] 

as a rough indicator of the general consensus on 

who should be credited with developing the 

telegrapher’s equations, we see that Kirchhoff’s 

contribution is essentially ignored. The 

authorship of the telegrapher’s equations is 

commonly attributed to Heaviside [12], who in 
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1876 —this time after the discovery of the 

displacement current by Maxwell—rederived 

the same equations that Kirchhoff had already 

found in 1857 [1]. 

 

The reasoning behind the widespread dismissal 

of Kirchhoff’s contribution appears to be [13-

16]: 

 

1. Kirchhoff based his work on Weber’s 

electrodynamics [3], which, in turn, was 

based on the primitive notions of 

velocities, accelerations, and forces, 

instead of Maxwell’s modern concept of 

fields [6-10]. 

2. Thus, Kirchhoff was unable to discuss 

the displacement current because he 

missed the notion of fields. 

3. To conclude, Kirchhoff’s result cannot 

be correct, since displacement current is 

regarded as the essential ingredient for 

electromagnetic propagation. 

 

The previous argument suggests that 

Kirchhoff’s original mistake in Refs. [1,2] was 

basically adhering to Weber’s outdated ideas [3] 

for explaining electromagnetism without 

invoking the modern concepts of fields (i.e., the 

concept of displacement currents). But, there is 

nothing wrong—or at least nothing that 

invalidates the demonstration of propagation of 

electromagnetic signals—within Weber’s 

framework [17].  

 

All physical theories are valid only within a 

range of validity. The Weber theory is valid for 

classical electrons with velocities lower than the 

velocity of light, which is the typical scenario in 

metals [17]. In this paper, we show in detail that 

the previous consensus concerning Kirchhoff is 

wrong. He must be recognized as the first to 

discuss the propagation of electromagnetic 

signals in wires, even though he did not 

introduce the displacement current in his 

approach (because he did not need it). 

 

Discrediting Kirchhoff’s contribution simply 

because he did not use fields or the concept of 

displacement current is, in our view, a serious 

historical mistake [17-20]. This paper aims to 

help correct that misconception about 

Kirchhoff’s forgotten contribution to 

electromagnetism. Fig. 1 shows portraits of the 

three main relevant figures mentioned in this 

paper. 

 

 

 

 
 

Fig. 1. Pioneers of the electromagnetism mentioned in this paper. From left: Wilhelm Weber, 

Gustav Robert Kirchhoff and James Clerk Maxwell. 
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B. A New Perspective 

In this paper, we argue that a new perspective on 

the role of the continuity equation for matter in 

the development of electromagnetism is needed. 

The continuity equation is a more fundamental 

concept than that of the displacement current. 

The dynamics of charged particles can be 

formulated without invoking fields, but the 

dynamics of fields cannot be formulated without 

a continuity equation for matter [15,20-24]. In 

modern quantum theories of electrodynamics, 

where electromagnetic fields are quantized, the 

concept of displacement current is usually 

ignored (it is hidden behind tons of 

mathematical non-commuting operators 

[25,26]), while the continuity equation remains 

an essential element in the formulation of 

quantum electrodynamics (see Appendix in Ref. 

[27]). In addition, the continuity equation is 

Lorentz-invariant, ensuring its validity even in 

relativistic scenarios [28]. 

 

By centering the discussion on the continuity 

equation —rather than in the displacement 

current— we argue that, when Maxwell 

introduced the displacement current in his 

formalism of electromagnetic fields, he 

introduced the continuity equation of matter as 

a fundamental element in describing 

electromagnetic phenomena. What he 

effectively did—without explicitly realizing it 

[29-32]—was to impose a restriction on the 

types of currents and charges that generate 

electromagnetic phenomena in nature; he 

introduced the continuity equation among the 

set of  Maxwell’s equations. 

  

Kirchhoff was the first, in his 1857 paper [1], to 

introduce the continuity equation when 

discussing electromagnetic propagation. 

Although Kirchhoff employed Weber’s 

particle-based ideas [3], he did not describe the 

interaction between individual particles, but 

rather dealt with ensembles of them expressed 

in terms of current and charge. Therefore, he 

needed a formulation of the continuity equation 

to conserve the number of particles locally. If 

one understands Maxwell’s introduction of the 

displacement current as, in essence, the 

imposition of a continuity equation – what 

Maxwell originally called “molecular vortex” 

[31]– on the type of matter that can generate 

electromagnetic phenomena, then Kirchhoff’s 

work predates and anticipates this important 

conceptual contribution. With his continuity 

equation, Kirchhoff was able to describe the 

propagation of electromagnetic signals in wires, 

without the need to invoke the displacement 

current.  

 

II. THE TELEGRAPHER’S EQUATIONS 

The central element that we analyze in this 

paper to document Kirchhoff’s contribution to 

electromagnetism is his paper written in 1857 

and entitled “On the motion of electricity in 

wires” [1]. In that paper, he develops the so-

called telegrapher’s equations [33], showing 

that in a circuit of negligible resistivity, 

oscillating currents propagate along the wire 

with a velocity equal to the speed of light. 

A. Modern formulation 

Before discussing Kirchhoff’s work, we 

summarize the modern formulation of the 

telegrapher’s equations in terms of (lumped) 

circuit elements as can be found in many 

modern textbooks [34,35]. A small section of a 

 
 

Fig. 2. Transmission line in terms of lumped 

elements (in blue), as analyzed in textbooks 

to describe signal propagation. The cable 

(in orange), as analyzed by Kirchhoff in 

Ref. [1].  



  4 

wire, from positions 𝑎  to 𝑏 = 𝑎 + ∆𝑥, is 

modelled by a capacitor 𝐶 (per unit length),  

inductor 𝐿 (per unit length) and a resistor 𝑅 (per 

unit length) as shown in Fig. 2 [36]. 

Taking into account the current flowing into 

the plates of the capacitor, the current entering 

this section, 𝐼(𝑎, 𝑡) , and leaving it,  𝐼(𝑏, 𝑡) ,  
can be written as 

𝐼(𝑎, 𝑡) = 𝐼(𝑏, 𝑡) + 𝐶 ∆𝑥 
𝜕𝑉(𝑥,𝑡)

𝜕𝑡
.      (1) 

It is assumed that 𝑥 ∈ [𝑎, 𝑏] with ∆𝑥 → 0. 

Then, under the approximation  
𝐼(𝑏,𝑡)−𝐼(𝑎,𝑡)

∆𝑥
≈

𝜕𝐼(𝑥,𝑡)

𝜕𝑥
 , Eq. (1) becomes 

−
𝜕𝐼(𝑥,𝑡)

𝜕𝑥
= 𝐶 

𝜕𝑉(𝑥,𝑡)

𝜕𝑡
.               (2) 

The potential drop in the section ∆𝑥 in Fig. 2 

can be written as the sum of the voltage drop in 

the resistor plus in the inductor 

𝑉(𝑎, 𝑡) − 𝑉(𝑏, 𝑡) = ∆𝑥 (𝑅 𝐼(𝑥, 𝑡) + 𝐿
𝜕𝐼(𝑥,𝑡)

𝜕𝑡
).                                

(3) 

By assuming ∆𝑥 → 0 in Eq.  (3), i.e. 
𝑉(𝑏,𝑡)−𝑉(𝑎,𝑡)

∆𝑥
≈

𝜕𝑉(𝑥,𝑡)

𝜕𝑥
 one obtains 

−
𝜕𝑉(𝑥,𝑡)

𝜕𝑥
= 𝑅 𝐼(𝑥, 𝑡) + 𝐿

𝜕𝐼(𝑥,𝑡)

𝜕𝑡
 .       (4) 

Taking the time derivative of Eq.  (2) and the 

spatial derivative of Eq.  (4), and equating the 

mixed term 
𝜕2𝑉(𝑥,𝑡)

𝜕𝑥𝜕𝑡
 , one gets 

𝜕2𝐼(𝑥,𝑡)

𝜕𝑥2 = 𝑅𝐶
𝜕𝐼(𝑥,𝑡)

𝜕𝑡
+ 𝐿𝐶

𝜕2𝐼(𝑥,𝑡)

𝜕𝑡2 .         (5) 

For a wire with a low resistance, i.e., 𝑅 = 0, 

Eq. (5) describes the propagation of 𝐼(𝑥, 𝑡) at a 

velocity 1/√𝐿𝐶 determined by the 

transmission medium [34,35]. Notice that the 

electrons themselves do not move fast; it is the 

time-dependent currents that vary rapidly. 
Current is the movement of charge, but 

individual particles do not need to move at the 

same speed. The so-called Newton’s cradle 

illustrates this difference: suspended balls 

transfer energy and momentum through elastic 

interactions, while the balls remain nearly 

stationary. 

B. Physical interpretation 

Using the relation between the voltage and the 

charge 𝑄(𝑥, 𝑡) in a capacitor 

  𝑄(𝑥, 𝑡) = 𝐶∆𝑥 𝑉(𝑥, 𝑡),  (6) 

and defining the charge density as 𝜌(𝑥, 𝑡) =
𝑄(𝑥, 𝑡)/(𝑆 ∆𝑥) and the current density 

𝐽(𝑥, 𝑡) = 𝐼(𝑥, 𝑡)/𝑆 with 𝑆 the cross sectional 

area of the wire in Fig. 2, Eq. (2) can be 

rewritten as  

𝜕𝐽(𝑥,𝑡)

𝜕𝑥
= −

𝐶

𝑆 

𝜕𝑉(𝑥,𝑡)

𝜕𝑡
= −

𝜕𝜌(𝑥,𝑡)

𝜕𝑡
,        (7) 

which can be interpreted as a charge 

conservation law in the region ∆𝑥 = 𝜕𝑥 and 

time 𝜕𝑡: The electrons leaving the section ∆𝑥 

in Fig. 2, 𝐼(𝑏, 𝑡), equal those entering, 𝐼(𝑎, 𝑡), 

minus those accumulated within that region 

during 𝜕𝑡. 

The term 𝑅 𝐼(𝑥, 𝑡) in Eq. (3) captures the idea 

that any instantaneous net charge different 

from zero at a given position in the cable, as 

discussed in Eq. (7), creates a Coulomb force 

[37] between electrons, causing them to move. 

Any acceleration of an electron due to 

Coulomb forces increases its kinetic energy, 

which is rapidly dissipated through energy 

exchange with phonons, i.e., via Joule heating 

[38], keeping a constant velocity [16].   

The term 𝐿
𝜕𝐼(𝑥,𝑡)

𝜕𝑡
 in (3) represents the 

combined effect of Ampère’s law [39] (a 

current flowing through the cable generates a 

magnetic field around it) and Faraday’s law 

[40] (a time-varying magnetic flux induces a 

voltage—the electromotive force—along the 

cable).   

 By isolating the current, Eq. (4) can be 

rewritten as  

𝐼(𝑥, 𝑡) =
1

𝑅

𝜕𝑉(𝑥,𝑡)

𝜕𝑥
−

𝐿

𝑅

𝜕𝐼(𝑥,𝑡)

𝜕𝑡
,          (8) 

which corresponds to the generalized Ohm’s 

law.  



  5 

𝐽 = 𝜎𝐸     with  𝐸 = −
𝜕𝑉(𝑥,𝑡)

𝜕𝑥
+

𝜕𝐴(𝑥,𝑡)

𝜕𝑡
,    (9) 

with the vector potential 𝐴(𝑥, 𝑡) proportional to 

the current 𝐼(𝑥, 𝑡), as happens in an inductor. 

In Eq. (3), we have identified two physical 

mechanisms that decelerate electrons: the 

interaction with phonons,  and the inductive 

effects, modeled by Ampère’s and Faraday’s 

laws. The relative importance of these two 

acceleration/deceleration mechanisms depends 

on the condition 

𝐿
∂𝐼(𝑥,𝑡)

∂𝑡
≫ 𝑅𝐼(𝑥, 𝑡).            (10) 

The faster the time derivative of the current, the 

more important the inductive effects.  

 

C. Kirchhoff’s formulation in 1857 

Kirchhoff describes the transport of current in 

the section ∆𝑥 of the cable depicted in Fig. 2 

[41]. In his paper [1], there are only four 

numbered equations, which are the basic 

results, whose combination leads him to his 

final telegrapher’s equations. We summarize 

below each of these four equations.     

First equation: The equation labelled as (1) in 

Ref. [1] is the “electrostatic law of  Coulomb”, 

where Kirchhoff establishes a relation between 

the charge and the potential.   

𝑉 = 2𝑒 𝑙𝑛 (
2𝜀

𝛼
) + ∫

𝑒′

𝑟
𝑑𝑠′ 

= 2𝑒 𝑙𝑛 (
𝑙

𝛼
).   (11) 

He uses the variable 𝑠 as our variable 𝑥 and 𝑟  

as the distance between the point 𝑥 and any 

other point 𝑥′ in the cable. The integration is 

extended over the whole section of the cable of 

length 𝑙. Here, 𝛼 is the radius of the wire and 𝜀 

is a small (intermediate) length used in the 

calculations. Finally, 𝑒 is the “quantity of 

electricity” which is the historical term to refer  

what today we define as charge density 𝜌(𝑥, 𝑡). 

Expression (11) can easily be recovered from 

the Coulomb law assuming  𝑙 ≫ 𝛼 and that only 

the charge near the position 𝑥 is relevant for the 

potential there [36]. Of course, Eq. (11) plays 

the role of a capacitance shown in Fig. 2 and 

mentioned in Eq. (6).  

 

Second equation: The equation labelled as (2) 

in Ref. [1] is the most relevant equation in 

Kirchhoff’s paper 

𝑖 = −2𝜋𝑘𝛼2 (
𝜕𝑉

𝜕𝑠
+

4

𝑐′2

𝜕𝑤

𝜕𝑡
).  (12) 

Here, 𝑖 is the current density (that we have 

named 𝐽 = 𝐼/𝑆), 𝑘 is the conductivity constant 

and  
𝜕𝑉

𝜕𝑠
= −𝐸 is the electric field. We write 𝑐′ as 

Weber’s constant, linked to what today is 

defined as the speed of light, 𝑐 = 3 · 108 m/s, 

through 𝑐 = 𝑐′/√2.  

The first term, 𝑖 = −2𝜋𝑘𝛼2 𝜕𝑉

𝜕𝑠
,  in Eq. (12) is 

clearly Ohm’s law, which plays the role of the 

resistance R in the circuit of Fig. 2. In the bottom 

of page 397 Kirchhoff writes [1]: “In the case of 

a stationary electric current, the density of the 

current is equal to the product of the 

electromotive force, referred to the unit of 

quantity of electricity, and the conductivity; I 

will assume that the same also holds good when 

the current is not stationary. This assumption 

will be fulfilled when the forces acting upon the 

electricity, and which constitute the resistance, 

are so powerful that the time during which a 

particle of electricity remains in motion after the 

cessation of the accelerating forces, and in 

virtue of its inertia, may be regarded as 

infinitely small, even in comparison with the 

small space of time which comes into 

consideration in the case of a non-stationary 

electric” Kirchhoff is acknowledging here that 

the transport in the wires is diffusive, not 

ballistic.  

 

The second term in Eq. (12), involving 𝑤, 

requires Kirchhoff’s third equation, where he 

defines it.  
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Third equation: The equation labelled as (3) in 

Ref. [1] is written as 

𝑤 = 2𝑖 𝑙𝑛 (
2𝜀

𝛼
) + ∫

𝑖′

𝑟
𝑑𝑠′ cos(𝜃) cos(𝜃′)   

= 2𝑖 𝑙𝑛 (
𝑙

𝛼
).  (13) 

Thus, 𝑤 in the modern formulation is just the 

axial component of the vector potential 𝐴(𝑥, 𝑡) 

which is proportional to  𝑖(𝑥, 𝑡) in a cable.   

Then, the second term 
4

𝑐2

𝜕𝑤

𝜕𝑡
 in Eq. (12) is just 

the time derivative of the vector potential, 

defined in Eq. (9), which gives an induced 

electric field due to time-dependent variation of 

the current [42].  

 

The contribution of the second term of Eq.  (12) 

can be easily recovered from Ampere’s law, 

assuming  𝑙 ≫ 𝛼 so that only the current near the 

position 𝑥 is relevant [42]. Of course, the role of 

this second term is just the inductor placed in 

Fig. 2. 

  

Kirchhoff wrote in page 396 in the second 

paragraph [1]: “We have now to form the 

expression for the electromotive force induced 

in the point under consideration, by the 

alteration of the intensity of the current in all 

portions of the wire”. Kirchhoff acknowledged 

here that there are forces at a point 𝑥 created by 

the accelerations of electrons (what he named 

“alteration of the intensity of the current”) at 

another point 𝑥′. He is applying here Weber’s 

force between charges by knowing that current 

is proportional to the velocity of charge and the 

time-derivative of the current is proportional to 

the acceleration of charges. He wrote [1] in page 

396, “When in the element of a conductor…the 

intensity of the current denoted by I’ changes, 

an electromotive force will be induced by this 

change in a second element of the conductor.“  

 

Now, it is evident that the second equation in 

Kirchhoff’s paper, numbered here as Eq. (12), is 

just the modern Eqs. (8) and (9). Let us give 

some details on how Kirchhoff was inspired by 

Weber's previous work in developing Eq. (12). 

 

Weber’s Electrodynamics theory [3,17] aimed 

to generalize Coulomb’s [37] and Ampere’s 

[39] laws to account for the motion of charges, 

proposing a force law that depends not only on 

distance but also on relative velocity and 

acceleration. Two particles 𝑞1 and  𝑞2  at 

positions 𝒓𝟏 and  𝒓𝟐 suffer a force given by 

 

𝑭 =
𝑞1𝑞2

4𝜋𝜖𝜖0𝑟2 (1 −
𝑟̇2

2𝑐′2 −
𝑟𝑟̈

2𝑐′2) 𝒖𝒓,  (14) 

 

with 𝑟 = |𝒓𝟏 − 𝒓𝟐| and 𝒖𝒓 = (𝒓𝟏 − 𝒓𝟐)/𝑟.  For 

the cable considered here, the current 𝐼(𝑥, 𝑡) is 

proportional to the electrons’ drift velocity. 

Thus, its time derivative ∂𝐼(𝑥, 𝑡)/ ∂𝑡 can be 

associated with the time derivative of the 

velocity, i.e., the acceleration of electrons given 

by 𝑟̈ in Eq. (14). Thus, Eq. (14) establishes a 

force between electrons due to the time 

derivative of the current. This new induced 

electromotive force contributes to the net 

current of the electrons in the wire as shown in 

Eq. (12), or in its modern version in Eq. (8). This 

induced electromotive force opposes the 

original electrons’ acceleration [43]. See Ref.  

[42] for a more detailed explanation.    

 

Up to here, Kirchhoff has three equations, but 

four unknowns: “To the equations (1), (2), (3), 

between four quantities i, e, V, w, a fourth may 

be added.”[1]  

  

Fourth equation: His fourth equation is the 

continuity equation written in Ref. [1] as 

 2
𝜕𝑖

𝜕𝑠
= −

𝜕𝑒

𝜕𝑡
. (15) 

From Fig. 2, Eq. (15) means that the output 

current 𝐼(𝑏) at 𝑥 = 𝑏 can be related to the input 

current 𝐼(𝑎) through a Taylor expansion, i.e.,  

𝐼(𝑏) = 𝐼(𝑎) +
𝜕𝑖

𝜕𝑠
𝑆∆𝑥 with 𝜕𝑠 = 𝜕𝑥 and 𝐼 = 𝑖 𝑆 

to take into account the cross sectional area. 

Thus, this difference between input and output 

currents, multiplied by a small time interval 𝜕𝑡,  
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implies an increment of charge during this time 

given by 
𝜕𝑖

𝜕𝑠
 𝑆 ∆𝑥 𝜕𝑡 = 𝜕𝑒 𝑆 ∆𝑥 where 𝜕𝑒 is 

defined as the increment of charge density in the 

volume 𝑆 ∆𝑥 of the cable of Fig. 2. This last 

relation can be written as 
𝜕𝑖

𝜕𝑠
= −

𝜕𝑒

𝜕𝑡
, meaning 

that nonuniformity of currents is linked to the 

temporal variation of charges. The factor of 2 in 

Eq. (15) arises from considering the positive and 

negative quantities of electricity at that time 

[44].  

It seems quite reasonable to suppose that 

Kirchhoff's reasoning on the continuity equation 

in Eq. (15) was based on Weber's picture of 

interacting particles. The number of particles 

entering a region must equal the number of 

particles leaving it, plus those accumulating in 

that region, regardless of how small the region 

or the time interval involved.  

 

Final telegrapher’s equations: Once the 

previous four equations were established, 

Kirchhoff provided a rather long and tedious 

derivation to solve this system of 4 equations. In 

fact, to obtain our modern Eq. (5), one simply 

needs to introduce the relations between 𝑉 and 

𝑒 given by Eqs. (11) into (12), introduce the 

relations between 𝑤 and 𝑖 given by Eqs. (13) 

into Eq. (12), and then take its time derivative. 

Finally, applying the continuity equation in Eq. 

(15) to express the result solely in terms of the 

current 𝑖, one obtains   

𝜕𝑖

𝜕𝑡
= −4𝜋𝑘𝛼2𝑙𝑛 (

𝑙

𝛼
) (−2

𝜕2𝑖

𝜕𝑠2
+

4

𝑐2

𝜕2𝑖

𝜕𝑡2
), (16) 

which reproduces Eq. (5) with 𝐼 = 𝑖 𝑆.  

In summary, this last equation (16) is equal to 

Eq. (5)—which appears in almost all electrical 

engineering textbooks dealing with 

electromagnetic transmission in cables [33,34]. 

Both equations are based on the same physics. 

In fact, taking the time and spatial derivatives of 

Eq. (1) in Heaviside’s original work in Ref. [12] 

and substituting them into the time derivative of 

Eq. (2) in Ref. [12] yields Kirchhoff’s original 

equation (16) once again. How can one claim 

that Kirchhoff’s equation is wrong while 

Heaviside’s equation is correct if they are in fact 

the same? The argument that Kirchhoff did not 

include the displacement current is meaningless, 

since he described particle electrodynamics 

without invoking electromagnetic fields, relying 

solely on Weber forces.  

 

III. IS WEBER’S THEORY RIGHT? 

 

Historically, the first descriptions of 

electrodynamics were formulated as mechanical 

forces between particles, acting instantaneously 

at a distance. For example, Coulomb [37] 

described electrostatic interactions through 

direct forces between charges, while Ampère 

[39] extended this view to moving charges, 

revealing forces between electric currents. 

Weber [3] generalized Coulomb’s law to 

include Ampère’s formalism, thus providing the 

first unified instantaneous action-at-a-distance 

formalism for electricity and magnetism [3,17]. 

Faraday [40] then transformed this picture by 

introducing the idea of continuous “lines of 

force”, suggesting that space itself mediates 

electrical and magnetic actions. Maxwell [6-10] 

finally formalized this vision mathematically, 

defining the electric and magnetic fields as local 

physical quantities whose variations propagate 

as electromagnetic waves. Through his four 

papers [6-9] leading up to the Treatise [45], 

Maxwell showed that interactions among 

particles can be also understood as locally 

transmitted through fields [21,45,46]. Later, 

Hertz used Maxwell’s results to measure 

electromagnetic-wave propagation over large 

distances [47].  

 

But is Weber’s theory correct? The answer is not 

straightforward—just as it is not easy to 

determine whether Newton’s gravitational 

theory for planetary motion or the Schrödinger 

equation for quantum systems are correct. One 

may say that all physical theories (classical or 

quantum) are approximations, valid only within 

certain experimental scenarios. Of course, the 
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instantaneous action at a distance predicted by 

Weber’s formulation is incompatible with 

relativity (as is also the case for Newton’s law 

and the Schrödinger equation). Is this relativistic 

limitation enough to classify Weber’s 

framework as an incorrect theory? Would we 

reach the same conclusion for Newton’s law? Or 

for the original Coulomb and Gauss laws? 

Weber’s theory is valid whenever the finite 

propagation speed of interactions among 

particles does not play a significative role. For 

two electrons in a metal separated by a distance 

of, say, 10 nm, the retardation time is less than 

femtoseconds. Thus, in metals—where typical 

electron velocities are much lower than 𝑐—

Weber’s formalism provides a fully consistent 

framework for describing resistive, capacitive, 

and inductive effects [17,19] 

 

Contrary to what might be assumed, the 

formulation of physical phenomena in terms of 

interactions among particles is not outdated. 

Through the works of Schwarzschild [22], 

Tetrode [23] and Fokker [24], Weber’s original 

ideas evolved from his instantaneous action-at-

a-distance [3] toward a retarded action-at-a-

distance [15], allowing the description of any 

electromagnetic phenomena for any length and 

time scales. In modern times, under the 

assumption that both particles and fields are real 

elements of the theory (i.e., physical, not merely 

mathematical), the concept of the field 

introduced by Faraday and Maxwell has been 

quantized, giving rise to quantum field theory 

[25,26]. Despite its great empirical success, 

some mathematical inconsistencies remain in 

quantum field theory, which has led some 

physicists to revisit field-free formulations 

started by Weber of electromagnetic phenomena 

in the quantum regime [20]. For example, in 

1941, Wheeler and Feynman [48] proposed 

quantum electrodynamics in which charged 

particles interact directly—through retarded 

times—without mediating fields. Feynman’s 

later Nobel-winning work on the path-integral 

formulation of quantum electrodynamics was in 

part inspired by this earlier research, and still 

considers the concept of particle paths. 

 

By vindicating the ideas of action-at-distance 

between particles  to explain electromagnetism, 

the reader might get the wrong impression that 

we are simultaneously diminishing Maxwell’s 

explanation with fields. This is not the case. In 

our opinion, Maxwell’s field’s formulation 

great merit over  (retarded time) particle 

formulation lies not in correctness, but in 

usefulness. It is evident that computing  

interparticle interactions for an Avogadro 

number of particles is entirely impractical in 

many scenarios, whereas handling such many-

particle scenarios becomes relatively 

straightforward within Maxwell’s concepts of 

electric and magnetic fields generated by 

charge and current distribution (rather than by 

an Avogadro number of particles). In other 

words, in the dichotomy between explaining 

electrodynamics with or without fields, the 

utility criterion favors the field-based approach 

developed by Maxwell. We are simply 

emphasizing that the criterion of correctness 

 
Fig. 3. In old and modern physics, there are 

attempts to describe nature using either 

particles or fields. Both approaches have 

their advantages and limitations, but the 

need for a continuity equation is always 

present. In contrast, the displacement 

current can be understood as a byproduct of 

the field-based description needed to satisfy 

the continuity equation.  
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does not favor the idea of fields over particles. 

Fig. 3 explains this viewpoint.  

 

In any case, in the limit of low-velocity (non-

relativistic) classical electrons, Weber’s theory 

is formally equivalent to Maxwell’s equations 

at the conceptual level in most practical 

scenarios [17,19]. 

 

 

IV. CONTINUITY EQUATION VERSUS 

DISPLACEMENT CURRENT 

 

It is clear that Kirchhoff, when discussing 

electromagnetic propagation in wires, could not 

have developed Maxwell’s displacement 

current because he did not employ the concepts 

of electric and magnetic fields. The central point 

emphasized throughout this paper is that he also 

did not need to use such concept to provide a 

correct explanation of signal propagation in 

wires. As we have seen, he was able to explain 

resistive, capacitive and inductive phenomena 

without mentioning the displacement current.  

On the contrary, without the displacement 

current, Maxwell’s set of equations is incorrect. 

We argue in this paper that the fundamental 

reason for this failure is not merely the absence 

of the displacement current itself, but the fact 

that without this term, the set of Maxwell’s 

equations does not guarantee that charge and 

current satisfy a conservation law for small 

spatial and time intervals. When the 

displacement current term is added, the 

continuity equation—and thus charge 

conservation—is automatically recovered 

within Maxwell’s equations. 

The new perspective advocated in this paper is 

that the continuity equation is a more 

fundamental concept than the displacement 

current. The displacement current is just a 

byproduct of a formulation of electrodynamics 

with fields including the continuity equation. In 

this regard, Maxwell’s real achievement was not 

the introduction of the displacement current, but 

the correction of a flaw in his original field-

based formulation which, without this term, did 

not ensure the validity of the continuity equation 

for charge and current. 

We argue in this paper that the continuity 

equation is a mandatory requirement when 

discussing electromagnetic phenomena. Let us 

examine whether Gauss’ law [49] can be 

considered a correct law in the absence of the 

continuity equation. Gauss’s law, written in 

terms of the electric field, is 

∇ ⋅ 𝑬(𝒓, 𝑡) =
𝜌(𝒓, 𝑡)

𝜀0
, (17) 

where 𝜀0 is the vacuum permittivity 𝒓 is any 

point in three-dimensional space. This law 

alone, without the continuity equation, can lead 

to incorrect results. For example, consider a 

charge density that disappears instantaneously 

at one point and reappears far away; the electric 

fields derived from Gauss’ law for such a charge 

distribution would be unphysical. However, 

within the full structure of Maxwell’s equations, 

Gauss’ law is consistent, because together with 

the so-called Ampere-Maxwell law ensures that 

matter will satisfy a continuity equation.  

In a similar discussion, Assis has shown that the 

original Ampère’s law is indeed correct if one 

enforces the continuity equation for charge and 

current. In other words, Ampère’s law, together 

with the continuity equation, naturally leads to 

the discovery of the displacement current (see 

pp. 103–107 in Ref. [17]). Here, we summarize 

the mathematical demonstration. In modern 

notation, Ampere’s law expresses the force 𝑑𝑭 

experienced by an element of circuit 𝑑𝒍𝟏 at 

position 𝒓,  carrying a current 𝐼1, due to other 

currents circulating nearby 

𝑑𝑭 = 𝐼1𝑑𝒍𝟏 × 𝑩(𝒓, 𝑡),              (18) 

where the influence of these other currents, 

represented by the current density 𝑱(𝒓′, 𝑡) at 

position 𝒓′  is encompassed in a magnetic field 

at 𝒓, defined as 

𝑩(𝒓, 𝑡) =
𝜇0

4𝜋
∫ 𝑱(𝒓′, 𝑡) ×

𝒓′ − 𝒓

|𝒓′ − 𝒓|3
𝑑3𝑟′ (19) 
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with 𝜇0 the permeability of free space. If 

retardation effects are significant (e.g. at high 

velocities), the correct expression must instead 

be derived from the Liénard–Wiechert 

potentials [15,46]. For non-relativistic 

scenarios, a straightforward computation of the 

curl of the magnetic field in Eq (19) (see pages 

178 and 179 in Ref. [46]) yields 

𝛁 × 𝑩(𝒓, 𝑡) = 𝜇0𝑱(𝒓, 𝑡) +
𝜇0

4𝜋
𝛁 ∫

𝛁′·𝑱(𝒓′,𝑡)

|𝒓′−𝒓|
𝑑3𝑟′. (20) 

Under the steady-state assumption, 𝛁′ ·
𝑱(𝒓′, 𝑡) = 0, the familiar magnetostatic relation 

is recovered 

 𝛁 × 𝑩(𝒓, 𝑡) = 𝜇0  𝑱(𝒓, 𝑡).                (21)  

It is important to emphasize that this last 

equation was never written by Ampère himself, 

since he did not work with fields but rather with 

forces between currents. In other words, Eq. 

(21) is a version formulated by Maxwell when 

rewriting Ampère’s law in terms of fields. The 

original formulation of Ampère is simply the 

compact expression of the force, without 

reference to fields, obtained by inserting the 

magnetic field defined in Eq. (19) into Eq. (18).  

The important point is that, without the steady-

state assumption, the current density in Eq. (20) 

is not arbitrary; it must satisfy the three-

dimensional form of the continuity equation 

(15), here written as 

∂𝜌(𝒓, 𝑡)

∂𝑡
+ ∇ ⋅ 𝑱(𝒓, 𝑡) = 0. (22) 

Finally, using Gauss’ law in Eq. (17) to relate 

the charge density to the electrical field in Eq. 

(22), one can rewrite Eq. (20) as 

𝛁 × 𝑩(𝒓, 𝑡) = 𝜇0𝑱(𝒓, 𝑡) + 𝜇0𝜀0
𝜕𝑬(𝒓,𝑡)

𝜕𝑡
.     (23) 

This is commonly referred to in the literature as 

the Ampère–Maxwell law. However, it is 

important to emphasize that there was nothing 

incorrect in Ampère’s original formulation in 

Eqs. (18) and (19). Noticed that we do not need 

to “invent” the displacement current 𝜀0
𝜕𝑬(𝒓,𝑡)

𝜕𝑡
 to 

arrive to (23); it arises naturally from combining 

Ampère’s law with the continuity equation. The 

only point to note is that, without the continuity 

equation in (22), Eqs. (18) and (19) could yield 

unphysical results if one allows arbitrary 

(“crazy”) current densities. This conclusion 

mirrors what we found previously for Gauss’ 

law. In any case, unphysical charge or current 

densities are not allowed when using Eqs. (17) 

and (23) together, because it is straightforward 

to show that these equations together imply the 

continuity equation (22). 

The argument that the displacement current in 

Eq. (23) is merely a byproduct of the continuity 

equation is reinforced by the fact that this 

displacement current can be obtained directly 

from Gauss’ law together with the continuity 

equation, without invoking Ampère’s law. In 

fact, Gauss [49] in 1835—or even Coulomb [37] 

in 1785—could have “discovered” the 

displacement current themselves, had they 

employed the concept of the electric field. 

Let us see how simple such a discovery could 

have been. By combining Gauss’ law in Eq. (17) 

with the continuity equation in Eq. (22), one 

obtains the expression for the total current—the 

sum of particle (i.e., conduction) and 

displacement currents—whose divergence 

vanishes 

∇ ⋅ (𝑱(𝒓, 𝑡) + 𝜀0

∂𝑬(𝒓, 𝑡)

∂𝑡
) = 0. (24) 

And that’s all.   

The elimination of particles in Maxwell’s 

formulation of electromagnetism was not a 

necessary feature of nature, but rather a choice 

made by Maxwell to simplify the assumptions 

required to explain electrodynamics, reducing 

the reliance on the molecular vortices of his 

original model [29–32]. However, once 

particles are removed from the discussion, the 

continuity equation relating charge and 

current—which is automatically satisfied when 

particles are present—is no longer guaranteed 

and must be explicitly reintroduced. 

Electromagnetism can be formulated without 

fields (that is, without invoking the 
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displacement current), but it cannot be 

formulated without the continuity equation for 

matter [50].   

At this point, it should be noticed that, although 

the displacement current is not a fundamental 

concept, it remains extremely useful in many 

practical applications. It allows one to define a 

total current—the sum of conduction and 

displacement currents—whose divergence is 

zero everywhere, at all times and under all 

conditions. See Eq. (24). This implies that the 

total current entering any region of a circuit 

equals the total current leaving it (a property not 

true for conduction current alone) [51,52]. This 

feature has enormous practical value: in 

electronic devices, for example, the current 

predicted in the active region must equal the 

current measured by an ammeter located 

elsewhere on any time scale where the equations 

of electrodynamics describe experiments, 

certainly including the time scale of gamma 

rays, much faster than electron transitions in 

chemical reactions. This equality holds 

precisely because the total current includes both 

conduction and displacement contributions. 

 

Another strong argument strongly supporting 

the perspective defended in this paper is that, in 

quantum electrodynamics, displacement current 

does not require explicit treatment. On the 

contrary, the continuity equation must be dealt 

with explicitly in quantum electrodynamics 

because it is a mandatory requirement that 

ensures gauge independent equations of motion 

of classical or quantum systems. See the 

discussion in the Appendix in Ref [27]. 

Moreover, the continuity equation remains valid 

in relativistic contexts, as it is consistent with 

Lorentz transformations [28]. 

In summary, from a fundamental standpoint, the 

explicit display and use of the displacement 

current is not strictly necessary if one avoids the 

field formalism altogether. What cannot be 

avoided—regardless of the formulation—is the 

continuity equation linking charge and current. 

This requirement is universal in any theory that 

includes charged particles. The main argument 

regarding the distinct roles played by the 

continuity equation and displacement current in 

physical theories is illustrated in Fig. 3. 

 

VI. SUMMARY 

 

In this paper, we have shown that Kirchhoff 

deserves recognition as the first to formulate the 

telegrapher’s equations for signal propagation in 

wires [1,4]. Nothing in Weber’s formulation 

diminishes Kirchhoff’s contribution to his 

pioneering studies of charge transport in wires 

[3,17,19]. In other words, Weber’s work 

provides a valid physical theory for describing 

electromagnetic phenomena such as resistivity, 

capacitance, and induction for classical 

electrons moving at velocities much smaller 

than the speed of light, as occurs in metals. 

Kirchhoff’s achievement is eloquently 

summarized in Ref. [53]: “With these papers 

[our Refs. 1,2], he carried through the task he 

had envisioned in 1849: to derive the laws of 

current in closed circuits from Weber’s 

fundamental law of electric action.”  

 

The apparent paradox of how electromagnetic 

propagation can be deduced without the 

displacement current is resolved in this paper by 

showing that the displacement current is a less 

fundamental concept than the continuity 

equation: electrodynamics can be formulated 

without invoking the displacement current (i.e., 

without fields), but electrical and magnetic 

phenomena cannot be correctly described 

without the continuity equation. We explicitly 

note that the instantaneous action-at-a-distance 

developed by Weber in the 19th century, was 

later extended by Schwarzschild [22], Tetrode 

[23], Fokker [24], Wheeler, Feynman [15], and 

others, in the 20th century, into the so-called 

retarded action-at-a-distance, which is valid for 

describing electromagnetism across all time and 

length scales. 
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As a byproduct of the present perspective, one 

can clarify the specific nature of Maxwell’s 

achievement. Inspired by Faraday and his lines 

of force, Maxwell chose to develop 

electrodynamics in terms of electric and 

magnetic fields, thereby avoiding the need to 

discuss particle dynamics. When replacing the 

forces between particles with the more abstract 

concepts of fields, the inherent continuity 

equation provided by particle dynamics was 

invisible in the process. When Maxwell 

introduced the displacement current in his field-

based formalism, what he effectively did—

without explicitly realizing it [29-32]—was to 

impose a restriction on the kinds of currents and 

charges that nature considers capable of 

generating electromagnetic phenomena, that is, 

to restore the continuity equation that particle 

formalisms inherently satisfy. 

From this new perspective, when it is said that 

Ampère’s law is “incorrect” because it lacks the 

displacement current term, what should actually 

be stated is that Ampère’s law, when written in 

field form, does not automatically satisfy the 

continuity equation, and thus there is no 

guarantee that it yields correct results. However, 

when Ampère’s law is combined with the 

continuity equation, it becomes a correct law. 

Thus, Ampère’s law itself is not wrong; rather, 

it is its field-only formulation, without the 

continuity equation, that is incomplete. We have 

seen that the same happens to Gauss’ law with 

and without the continuity equation. 

  

We also emphasize that, in our view, Maxwell’s 

great merit in formulating electromagnetic 

phenomena in terms of fields—rather than 

through (instantaneous or retarded) action-at-a-

distance—lies not in correctness but in 

usefulness. Maxwell’s field-based formalism, 

which relates fields to charges and currents, is 

far more practical and broadly applicable than 

the particle-based force formalism. This 

explains why Maxwell’s approach has become 

far more popular. There is significant merit in 

formulating physical theories that are not only 

correct but also useful.  

 

A profound lesson emerges from the historical 

discussion of the continuity equation in the 

development of electromagnetism. Kirchhoff 

was inspired by Weber’s formalism, but he did 

not model the full dynamics of particles. 

Instead, he was the first to impose a continuity 

equation for charge and current. Kirchhoff’s 

formulation of the continuity equation might 

appear simple—it merely states that particles do 

not vanish at one point and reappear 

instantaneously elsewhere. However, the true 

significance of the continuity equation is 

revealed by modern formulations of 

electrodynamics. All of them rely on it, even 

those dealing with quantum matter and quantum 

light. In our opinion, this is a second, often 

overlooked, major contribution of Kirchhoff to 

the development of electromagnetic theory: 

charge and current cannot be chosen arbitrarily; 

they must satisfy the continuity equation given 

in Eq. (22). In other words, in any physical 

formalism developed by humans, the continuity 

equation must be enforced as a reminder of the 

fundamentally atomic nature of matter [54,55]. 

 

Why does this 19th-century ‘dinosaur’—the 

continuity equation introduced by Kirchhoff—

persist in modern quantum theories? What does 

this persistence indicate? One possible 

explanation, though not the only one, is that 

even in the quantum regime the notion of 

particles with well-defined positions—which 

naturally satisfy the continuity equation— 

remains a useful framework for discussing  

quantum electromagnetic phenomena [56–64]. 
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