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Ions move into biological cells through pores in proteins called ionic channels, driven by 
gradients of potential and concentration imposed across the channel, impeded by potential 
barriers and friction within the pore. It is tempting to apply to channels the chemical 
theory of barrier crossing, but important issues must first be solved: Concentration boundary 
conditions must be used and flux must be predicted for applied potentials of all sizes 
and for barriers of all shapes, in particular, for low barriers. We use a macroscopic analysis 
to describe the flux as a convolution integral of a mathematically defined adjoint 
function, a Green’s function. It so happens that the adjoint function also describes the first- 
passage time of a single particle moving between boundary conditions independent of 
concentration. The (experimentally observable) flux is computed from analytical formulas, 
from simulations of discrete random walks, and from simulations of the Langevin or 
reduced Langevin equations, with indistinguishable results. If the potential barrier has a single, 
large, parabolic peak, away from either boundary, an approximate expression reminiscent 
of Kramers’ formula can be used to determine the flux. The fluxes predicted can be 
compared with measurements of current through single channels under a wide range of 
experimental conditions. 

I. INTRODUCTION 

A. Overview 

How can we compute, by means of Langevin simula- 
tions, the flux of Brownian particles from one region with 
concentration cL to another with concentration c,? The 
question is disconcerting since concentration does not ap- 
pear in the Langevin equation, which describes the motion 
of a single particle. The apparent answer, “multiply by the 
concentration,” is not adequate, because it is vague: What 
function should be multiplied by what concentration? This 
paper answers the question with some degree of mathemat- 
ical rigor. It shows how to incorporate concentration 
boundary conditions into Langevin simulations. 

This question arises in the study of biological channels, 
where concentration boundary conditions are unavoidable. 
An overview of the biological system is given in the next 
subsection. As explained there, ions diffuse and drift 
through an aqueous pore in a protein (itself embedded in a 
membrane) as they move from a bath of one concentration 
to a bath with another concentration. These ionic motions 
can be viewed as a barrier crossing problem, similar to that 
of bimolecular chemical reactions in which a system point 
traverses a barrier along a reaction coordinate. 

Lately, barrier crossing has been studied by simulating 
the trajectories of individual particles with one of the tech- 
niques of molecular dynamics. Molecular dynamics is now 

a standard tool for analyzing classical processes, both in 
condensed phase and in vapor. Once interatomic potentials 
and polarization effects -are accurately specified, molecular 
dynamics is essentially an exact technique on the time scale 
in which trajectories can be accurately computed. There 
are, however, certain systems in which molecular dynamics 
has serious limitations. These include systems (such as 
ions in channels), whose evolution is studied over time 
scales very long compared to the propagation time of mo- 
lecular dynamics, and systems (such as ions in channels) 
that consist of a subsystem of primary dynamical interest, 
with the remainder of the system acting largely as a heat 
bath. For the channel problem, the extended (microsec- 
ond) biological time scale and the importance of long 
range electrostatic forces (including polarization across the 
entire length of the channel and membrane’) suggest that 
molecular dynamics is not an appropriate or useful com- 
putational scheme, by itself. An obvious remedy is to ex- 
tend molecular dynamics with Langevin simulations.2 

The barrier crossing problems of biology and chemis- 
try differ in subtle and important ways: ( 1) The barriers 
are usually low so that ions flow efficiently and thus per- 
form their biological function of carrying flux or current; 
(2) the biological output (and experimental observable) is 
usually the current, sometimes the flux through the chan- 
nel; (3) the system is essentially one dimensional, so the 
reaction coordinate is physically clear, and does not re- 
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quire redefinition (say in terms of steepest descents), rig- 
orously or metaphorically; (4) the masses are also obvious. 
Despite these differences, we want to stress here the simi- 
larity between the two systems. 

The chemical literature does not seem to contain any 
explicit discussion of concentration boundary conditions 
for Langevin simulations, except for extended quasicrystal- 
line systems, such as diffusion along surfaces or ionic mo- 
tion through solid electrolytes, where periodic boundary 
conditions are used. Clearly, such periodic boundary con- 
ditions cannot be used to describe the flux through biolog- 
ical channels, which depends on the difference in concen- 
trations between the boundaries. 

The general thrust of our analysis is as follows. First 
we switch from a reduced Langevin description of the 
problem to a Smoluchowski description for which concen- 
tration boundary conditions can be rigorously enforced. 
Next, we introduce an adjoint problem in order to derive a 
general formula for the flux; the solution of this adjoint 
problem serves as a Green’s function relating the output 
flux to the input concentrations. Then, we give a probabi- 
listic interpretation to this adjoint problem: It describes the 
distribution of the first-passage time of a single particle 
moving over the same barrier but with very specific bound- 
ary conditions, independent of concentration, namely, an 
exit absorbing boundary through which the particle es- 
capes and is counted and an entrance absorbing boundary 
through which the particles escapes uncounted. Finally, 
now that this central, well-defined stochastic problem for a 
single particle has been uncovered, we close the loop by 
performing Langevin simulations of single particle motions 
with the single-particle boundary conditions just derived. 

The previous paragraph is a brief outline of the paper, 
in particular, Sets. II, III, IV, and VII. The rest of this 
Introduction summarizes some of the biological features of 
channels. In Sets. V and VI we go from a Smoluchowski 
description back to a reduced Langevin equation. In Sec. 
IX we examine the case of an Eckart potential to test the 
accuracy of our simulation technique, while Sec. VIII con- 
siders the case of a single high barrier, and contrasts our 
results to the classical paper of Kramers ( 1940). 

B. Biological channels 

Biological membranes are punctured by proteins that 
allow the flow of ions in and out of cells. Ions moving 
through these protein channels are responsible for many 
processes of biological interest3’4 such as secretion of hor- 
mones, coordination of muscle contraction, and informa- 
tion transmission and processing in the nervous system. 
Each channel type is characterized by the amount of cur- 
rent that flows when it is open and, to a lesser extent, by 
open channel noise, namely, the fluctuations from the 
mean value of open current. Different channel types have 
open amplitudes ranging from immeasurable (say, less 
than 100 fA) to nearly 1 nA. The duration of openings 
varies almost as widely, ranging from less than 10 pus to 
seconds. Experimentally, the channel record is an electrical 
signal of the flux of charged particles (often predominantly 
cations) through the channel. The channel problem can be 

idealized as current tlow through a one-dimensional pore, 
with boundary conditions corresponding to different con- 
centrations at each end, with the pore subject to some 
electrical potential. The problem for the theorist, then, is to 
compute the flux across such a channel and compare it to 
the experimental record. 

The motion of ions in channels is likely to be governed 
by ( 1) the random collisions with the surrounding water 
molecules and channel protein; (2) the interaction with 
other nearby ions; and (3) the electric fields, induced and 
permanent, which exist in the channel. Because such mo- 
tions are too difficult to analyze directly, various simplifi- 
cations have been made. One useful approach replaces the 
fast time scale (picosecond) collision processes between 
ions and solvent by a diffusion picture. With this simplifi- 
cation, the viewpoint becomes macroscopic and determin- 
istic: Each ion species is characterized by a concentration 
Ci(X,t) (units: cmm3). Conservation of species requires that 

dci 
at+ V * Ji=O, 

where Ji is the flux of the ith ion (units: cms2 s-l). The 
physics of the problem enters in the constitutive equation 
which relates this flux to gradients of concentrations and 
electric potential, namely, 

where Di is the diffusion coefficient of the ith species (units: 
cm2 s-i), Zi its charge number, e the proton charge, k 
Boltzmann’s constant, T the absolute temperature, and fi- 
nally 4 is the electric potential. 

In certain studies, 4(x) is taken as given, its features 
being characteristic of the channel under consideration. In 
some other studies,lP5 (p(x) is determined via the electro- 
static version of Maxwell’s equations.6 In these ap- 
proaches, the potential interacts with the ion distribution 
inside and on both ends of the channel. 

The macroscopic-deterministic approach described 
above is subject to obvious criticism. A stochastic process 
is essentially made to appear deterministic by averaging 
over the long-time resolution of the measuring devices. As 
measuring devices become faster and faster, the averaging 
will become less and less justifiable. Indeed, existing mea- 
surements already display stochastic features absent from 
deterministic analyses. 

Clearly, there is a need to examine the problem of ion 
flow through channels from the microscopic, stochastic 
viewpoint. We adopt an alternate route: We shall track the 
motion of a single ion via a Langevin-type equation. Many 
issues in the standard Langevin approach7-” need to be 
clarified before it can be used to analyze flux through ionic 
channels. For instance, the crucial effect of different con- 
centrations on either side of the channel is not described by 
traditional Langevin equations. 
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FIG. 1. Sketch of an ionic channel. Note the nearly one-dimensional 
structure, and the fixed concentrations of ions on each end. 

II. THE ONE DIMENSIONAL FLUX FORMULA 

In this section we consider the flux problem as a 
boundary value problem. The approach is a mathematical 
one gaining in validity what it loses in familiarity. We 
derive a flux formula for diffusion in a potential d(x), 
subject to appropriate concentration boundary conditions. 
We shall restrict our attention to one dimensional prob- 
lems because biological channels are mostly long and nar- 
row (as shown in Fig. 1) , Mathematically, the channel is 
described by partial differential equations (written here us- 
ing the subscript notation for partial derivatives) with a 
single spatial variable x, 

c,+ J,=O, 

J=-D(c,+$,) 

or to simplify the writing 
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To complete the description of the problem, we specify 
the simplest possible initial state, namely, 

c(x,O) =o. (2.5) 

The initial condition (2.5) is chosen for convenience. A 
flux formula for any arbitrary initial concentration can also 
be derived, and it contains an additional term correspond- 
ing to “washout” of the initial contents of the channel. If a 
continuing source of ions were present within a channel, or 
chemical system, still another term would appear in the 
flux formula. 

The concentration and flux in the channel at any given 
time or location can be found by solving the boundary/ 
initial value problem (2.2) with Eqs. (2.4)-(2.5). In par- 
ticular, solving this problem determines the flux J(d$) at 
the right end, and at an arbitrary time 8. 

Our goal, a Langevin computation of the flux with 
concentration boundary conditions, is reached by a cir- 
cuitous path which abandons the direct approach of simply 
solving Eqs. (2.1)-( 2.5). More specifically, we introduce a 
closely related problem, called the adjoint problem, follow- 
ing the usual practice for solution of (non-self-adjoint) 
partial differential equations with arbitrary boundary con- 
ditions.t2 J(d,0) is then written in terms of the solution of 
this adjoint problem. This circuitous approach is worth- 
while because the adjoint turns out to have a precise sto- 
chastic interpretation, easily estimated by Langevin simu- 
lations, independent of concentration boundary conditions. 

To derive the adjoint problem, we multiply the equa- 
tions in Eq. (2.2) by two functions q* and k*, respectively, 
and integrate these equations over x from 0 to d and over 
t from 0 to 13. After a few integrations by parts, these 
equations, when added, read 

c,+ J,=O, 

J= - Dc,+pc, (2.2) 

where 

Ze 
P(x)=-DkT& 

The potential #J(X) is arbitrary; it can be fixed by the de- 
tails of the problem under consideration (in particular, no 
assumption is made that-it contains a barrier large com- 
pared to kT, though that limiting case will be considered in 
Sec. VIII). Given this potential, our goal is to find the 
concentration and flux of ions. Since the single particle 
potential is specified at the outset, the different ion species 
do not interact, and hence we drop the subscripts referring 
to them, resurrecting them in expressions for the total cur- 
rent carried by all ions, the experimental, observable and 
biological function of the channel. The different concentra- 
tions in the right and left baths are expressed by the bound- 
ary conditions 

dt(q*J+ k* Dc) =O. (2.6) 

At this stage, we define the functions q* and k* so as to 
annihilate the double integrals in Eq. (2.6)) namely, 

-q;- (Dk*),-pk*=O, 

&k*=O. 
(2.7) 

With these definitions, Eq. (2.6) simplifies considerably 

s 

d 
dx q*b,Nc(x,0) + 

0 s 

e 
dtCq*bLt)J(4t) 

0 

c(W) =cL(t), 

c(&) =dt), 

where d (units: cm) is the length of the channel. 

+k*(d,t)Dc,(t)}- j-edtC4*(0,t)J(0,t) 
0 

+k*(O,t)Dc,(t)}=O. (2.8) 

To derive an expression for the flux at the right end of the 
channel, we must choose appropriate boundary and initial 
conditions for q* and k*, namely, 
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q*w> =a 

Barcilon et ab: Barrier crossing with boundary conditions 

q*(d,t) =6(&t>, 

q*w =Q 

(2.9) 

so that Eq. (2.8) yields the desired formula. 6( . ) is the 
Dirac delta “function.” With these initial/boundary con- 
ditions, .which specify q* and k” completely, we can write 
Eq. (2.8) as follows: 

0 
J(d,8) = - 

s 
dt k*(d,t) D+(t) 

0 

J(d,8) with another. The determination of the flux by Eq. 
(2.14) requires the solution of a problem, viz., the adjoint 
problem (2.12)-(2.13) for q, which appears to be just as 
difficult as the original problem (2.2)-(2.5)! However, 
both because ion concentrations enter explicitly in Eq. 
(2.15) and because the function q will turn out to describe 
the probability density of the first-passage time13 of a single 
particle moving between two absorbing boundaries, the 
above flux formula will lend itself to several methods of 
computation. 

The steady state version of the flux formula will be 
needed and is considered next. Even though we could ob- 
tain this formula by letting 8+ 00 in Eq. (2.15), it is pref- 
erable to start the derivation ab initio. In this case, the 
governing equations (2.2) reduce to 

e 

+ 
s 

dt k*(O,t)Dc,(t). (2.10) 
0 

J,=O, 

J= - Dc,+,uc, (2.16) 

Thus the flux at the right end, at an arbitrary time 8 can be 
written in terms of two integrals, which contain the con- 
centrations at either end and the adjoint function k*. 

It is customary to redefine q* and k* so they satisfy 
traditional evolution equations. New adjoint functions are with 

defined by replacing the functions tagged by asterisks with 
(not tagged) functions depending on the time 8--t; that is 
to say, from here on the time 8-t in Eq. (2.9) is replaced 
by t, 

dx,t) =q*ww, 

c(O) =cL, 

c(d)=cR . (2.17) 

Anticipating that moments of k(x,t) and q(x,t) will enter 
our formula, we define them as 

k(x,t)=k*(x,&t). 
(2.11) 

Substituting Eq. (2.11) in Eqs. (2.7) and (2.9), we obtain 
the customary adjoint problem, viz., 

qt= DU-,A 

qx=k, 
(2.12) 

with 

in = s 
m t”q(x,t)dt 

0 

s 
* t”k(x,t)dt 1 

for n=0,1,2--0. (2.18) 
X,(x) = 

0 

4Mu =o, 

go(x) is the probability that a particle starting at x is 
absorbed at the right end, regardless of the time necessary 
for this event to happen. S’i(x) is the mean time that 
elapses between the moment the particle leaves x and is 
absorbed at the right end. 

q(W) =Q 

q(d,t) =6(t). 

(2.13) 
Multiplying Eqs. (2.12)-(2.13) by t and integrating, 

we see that 

-n3’,,--l= DX~+pX, , 

The flux formula (2.10) now becomes 

s 

e with 
J( d&J) = - dt k(d,@-t) DcR(t) 

0 in =o, 
-9 

+ s 
dt k(O,&t)Dc,(t). (2.14) ~,z(d) =&o, 

0 

If a nonzero initial condition different from Eq. (2.5) is 
assumed, or a continuing source is present within the sys- 
tem, additional term(s) enter the flux formula. 

For the channel problem with which we are concerned, 
the bath concentrations cR and cL are fixed and the ditfu- 
sion coefficient D is constant. Therefore, Eq. (2.14) sim- 
plifies to 

where S, is the Kronecker delta. If we multiply the steady- 
state constitutive equation in Eq. (2.16) by X0 and inte- 
grate over the length of the channel, we get 

I 

d 

J X,(x)dx= 
0 I 

d 
(- Dc’+pc)Xo(x)dx 

0 

J(d,8) = - DcR 
s 

e e 
dt k(d,e--t) + DcL 

0 s 
dt k(O,e--t). 

0 
(2.15) 

=-DcXr,I,d+ 
s 

d 
(DX;+p~ok dx 

0 

This is our main formula. We should reiterate that so far, 
our work has merely substituted one way to determine 

= - Dc,.Y,(d) + DcLZo(0). (2.21) 

In deriving the steady-state result, we have used the equa- 
tion for X0 by setting n=O in Eq. (2.19). To stress the 
analogy with Eq. (2.15), we rewrite the above result as 
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~$F”,(x)dx+ DcL S$Y,(x)dx ’ (2*22) 

Finally, if we integrate the second n=O equation in Eq. 
(2.19), we see that 

=9,,(x) I;= j-od~obMx, 

l= 
s 

d 
(2.23) 

Xro(x)dx. 
0 

Therefore, Eq. (2.22) simplifies further and becomes 

J= - DcRXo(d) + Dc~.-%?~(O). (2.24) 

Since X,(x) can be written explicitly, viz., 

x’o(x) = 
exp[ (Ze/kT)rb(x) 1 

Sodexp[(Ze/kT)~(~)ld~’ (2.25) 

we do have an explicit expression for J, which we shall use 
in Sec. IX. However, the stochastic interpretation of 
x,(O), X0(d) will be even more important than Eq. 
(2.25) and will yield a computational method based upon 
the statistics of trajectories. 

The relationship, if any, between the quantities X0( 0) 
and X,(d) which enter in the flux formula, and the mean 
first-passage time 9 I (0) is not clear to us (but see Ref. 
14)) particularly given Eq. (2.20). This is in marked con- 
trast to what would be obtained, had we used a different 
underlying stochastic process, namely, a random walk with 
a reflecting boundary on the left and an absorbing bound- 
ary on the right, in which case (see the Appendix) the 
relationship is simple, well known, and widely used.‘5-18 

Although the expression for the steady-state concen- 
tration c(x) will not be used here, we record it for the sake 
of completeness, 

c(x) =cR exp -& {9(x> -d(d)}] 
1 

. J~exp[CWkTMWld~ 
J,” exp[ (Ze/kT)M) I@ 

[ 

Ze 
+cL exp -E C+(x) -4(O)) 1 
. S,” exp[(ZdWM) 14 

Jtexp[ (Ze/kT)4(g)]dg’ 

III. STOCHASTIC INTERPRETATION OF THE 
ADJOINT PROBLEM: THE DISCRETE CASE 

Qa,o=O, for a=O,l,..., N. (3.4) 

This initial condition states the obvious, namely, that a 
particle starting at a=O,l,...,N cannot reach the right end 
in “no time.” 

Diffusion problems can generally be viewed as limits of 
random walks.‘g’20 In this section, we interpret the adjoint 
function q of Eqs. (2.12)-( 2.13) as a limit of a probability 
Q associated with the excursion of a random walker. 

Let us consider an interval of length d later identified 
with the channel. We divide this interval into N+ 1 equal 
sub-intervals of length Ax. Clearly, 

We choose the boundary condition at the left end to be 
absorbing so that Q will be related to the solution q of the 
adjoint problem (2.13). As a result, once the particle 
reaches this left boundary, the random walk stops. In other 
words, 

(N+ l)Ax=d. 

r,=O. (3.5) 

Of course, regardless of the boundary condition at the left 
end, we have 

(3.1) ZOGO. (3.6) 
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Similarly, we discretize the time interval (0,0), by intro- 
ducing M+ 1 time intervals of length At. Again we record 
the fact that 

(M+ l)At=8. (3.2) 

We shall be concerned in this section with one aspect of the 
classical random walk of a particle on the spatial lattice 
O,Ax,lAx,..., (N+ 1) Ax. The rules governing the random 
walk are the usual ones, namely, at every generic time 
interval mht, the particle which is, say, at the generic lo- 
cation nhx has a probability r, of moving to the right 
lattice point, a probability I,, of moving to the left lattice 
point, or a probability ( 1 -r,-Z,) of staying where it is. 
The “stay put” probability must be included, if the random 
walk is to describe a diffusion process in which the diffu- 
sion coefficient D is a function of coordinate21’22 (compare 
with pp. 208-209 and pp. 213-215 of Ref. 19). 

In this section we evaluate the distribution of arrival 
times. More specifically, we determine the time a particle 
takes to reach the right end point where it contributes to 
the measured flux. Let Q,,i denote the probability that the 
particle reaches the right end x=d at time t= jAt for the 
f;rst time, when executing the random walk defined above. 
The index ar indicates that the particle started its journey 
from E=aAx. One way to tackle the problem would be to 
enumerate23 all the possible trajectories which start at { at 
t=O, and end at x=d at t= jht, and compute in this way 
Q,,i; indeed, that is one possible strategy for a simulation. 
However, analytically it is simpler to derive a difference 
equation for Q ab initio. 

Consider a “good” trajectory starting at {=aAx and 
ending at d. After the initial time interval has elapsed, the 
particle is to be found in one of three locations: CL- 1, (Y, 
and (r + 1, with probability I,, ( 1 -I, - r,) , and r,, respec- 
tively. From whatever location it is in, the particle has j- 1 
time intervals left to reach the right end point, with respec- 
tive probabilities Q,-,,+ 1, Q,,+ 1, and Q,, rJ- t. There- 
fore, 

Q,,j=Q,--I,+1 *L+Qa+l,j.-~ *ra+Q,,j-l* Cl--la--rJ. 
(3.3) 

To this equation we must add boundary and initial condi- 
tions. The initial condition is 
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As a result, Eq. (3.3) evaluated at a=0 implies that 

Qo,~= Qo,+ 1 3 
and consequently 

Qo,j=O, for j=O, 1, * . * . (3.7) 

Finally, from the very definition of Q, we can write 

Q N+l,)=$l - -. (3.8) 
To stress the analogy with the adjoint problem, let us 

rewrite the above problem for Q as a set of two coupled 
difference equations: we first introduce, as suggested by Eq. 
(2.12), Ka+i/I,j such that 

K Qai- l,j- Qa,j 
a+ l/2, j= -z Ax 

oy.l-- :~- 2 (3.9a) 

By introducing this new sequence into the original differ- 
ence equation (3.3) for Q, we see that 

Qa,j-Qa+l,j=ra.* A-Xz+-l/2,j-l-L* A&-l/2,j-l . 
(3.9b) 

To pursue the analogy between ~Eqs. (3.9a), (3.9b), 
and (2.12>, we must digress a little and discuss the funda- 
mental quantities {r&J which governthe random walk. 
To emphasize the distinction between the deterministic 
and the random components of the walk we write {r,,l,} 
as 

s, Ax 
ra=T+a pa9 

la+?&. 
(3.10) 

At this stage, we should view Eq. (3.10) simply as defini- 
tions of the quantities s, and pCla. Finally, the constant D is 
just that, namely, a constant. Of course, whenever r,#Z,, 
there is a preference for motion to one side rather than the 
other. This preferential motion is the “drift” and its 
strength is related to ,J.L~, which we shall later identify with 
the potential gradient. The above formula also implies that 
as Ax& 0 this drift term tends to zero at the same rate as 
Ax, lest the original hopping rules (3.3) be violated. 

Substituting the above expressions in Eqs. (3.9a) and 
(3.9b), we deduce that 

?,j- Qa+ 1,j (AxI2 K,+l/2,j-l-K,-1/2,j-l 
At = sa -5r * AX 

(hx)2 
+I&~. 

Ka+ 1/2,j- I+&- l/2+ 1 
2 -9 

Q a+l,j-QyiK 
Ax cr+l/2,j * (3.11) 

To pursue the analogy with the adjoint problems, we first 
rewrite the initial condition (3.4) omitting the value a=O, 
VlZ., 

Qa,o=O, for IX= l,..., N 

and boundary conditions (3.7)-(3.8) as 

(3.12) 

Qo,j=Q 
QN+IJ-- Jo --s 

..‘for j=O,l;... (3.13) 

Of course, to really make the analogy complete we 
must pass to the continuous limit. This limiting procedure 
is outlined briefly in the next section. 

IV. THE DIFFUSION LIMIT 

In passing to the continuum, several obvious limiting 
processes must be considered. For instance, we must re- 
quire that A.XJ 0 and At JO. Of course, this implies that the 
subintervals are getting smaller and smaller, ,and conse- 
quently, N,M+ 0~). These limiting processes are tied in 
such a way that the products NAx and MAt remain finite, 
i.e., that Eqs. (3.1)-(3.2) remain in force. 

There is, however, a more subtle relation between the 
above limiting processes. If the random walk is to result in 
a diffusion process (rather than, say, a wave propaga- 
tion24), then the time step At and the spatial step AX must 
decrease in such a way that the ratio 

ET+D 
2At ’ (4.1) 

where the constant D is the diffusion constant. We shall 
require this to be the case. 

Two other limits must be considered: ( 1) that of the 
fundamental sequences r,,l, and (2) that of sequences 
Qa,,&+ m,j Returning to Eq. (3.10), we write 

sn-+ 1, 

/42-+(x), 
(4.2) 

where ,u(x) is just a function of x at this stage. 
Finally, the probability distribution Qa,j tends to zero 

in such a way that 

(4.3) 

In other words, Q describes a temporal probability density. 
Similarly 

(4.4) 

In these formulas, crAx+x and jht-t. 
With these conditions, the random walk becomes our 

diffusion process. Indeed, the limit of Eq. (3.11) is 

qt= Dkx+pk, .-_I q,=k, - :. .- 
(4.5) 

whereas the limits of Eqs. (3.12)-(3.14) are 

4(&O) =o, 
q(O,t) =o, 

q(d,t)=S(t). 

(4.6) 

Since Eqs. (4.5M4.6) is identical to the adjoint problem 
(2.11)-(2.12), we can interpret the quantity q(x,t)u!t as 
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the probability that a walker, starting at x, will reach the 
right end for the first time in the time interval (t,t+dt). 

We have reached our goal: We can determine the flux 
from a bath of one concentration to a bath of another from 
simulations of the motion of a single particle, in which the 
concentrations do not enter. The distribution of the first 
passage time q of the single particle can be found by track- 
ing the motion of an ensemble of random waikers and 
generating statistics about the trajectories. 

The stochastic interpretation of q not only relates the 
problem to the distribution of first-passage times, but also 
suggests a counting scheme to compute the flux. Indeed, if 
we focus on the second term in Eq. (2.14), describing the 
dependence on cL, we can say that 

The identification of Eq. (4.11), with the flux formula 
(2.14) and (2.24), provides a trajectory interpretation of 
the flux formula-particulary of the function k(x,t) 
=q,(x,t)-and gives a computational, trajectory-based 
method to find the flux. The trajectories are just random 
walks as described in Sec. III, and the statistical measure of 
importance can, on the basis of Eq. (4.8b), be either k(O,e 
- t) or q( Ax/2,8 - t) . The latter is easier both to compute 
and to understand, and will form the basis for the calcu- 
lations of Sec. VII. 

cl;(t)A.x=number of ions in (0,hx) at t. (4.7) 

Only a small fraction of these ions reach the right end in 
the time interval (8- t,8- t+ A(3). The number of such 
ions is, approximately, 

A final remark: by definition, k is the x derivative of 
the probability function q. Hence, it can either be positive 
or negative. Therefore, even though k enters into the flux 
formula, k is not a probability density function. However, 
because of the absorbing boundary conditions, the positive 
function q essentially vanishes on both end boundaries and 
therefore 

qx(W =k(W ‘0, 

d&e> =cLc(t)hx* 4 2 , 
( 1 
f? e-t he. (4.8) 

This number is small because the ions are starting their 
journey very close to an absorbing boundary (but fortu- 
nately each of their journeys takes little time to execute or 
compute). As a result, the probability function q( Ax/2,e 
-t) is very small. A Taylor series expansion about x =0 
yields 

qx(d,t) =k(d,t) <o. 
(4.12) 

In that sense, the quantities k(O,t) and - k(d,t) can be 
thought of as probability densities. 

V. THE REDUCED LANGEVIN EQUATION 

q(hx/2,6-t)=q(o,e-t)+q,(o,e-t) g+... (4.8a) 

or, in view of the boundary condition (4.6) 

q(hx/2,8-t)=q,(o,e-t) $+... (4.8b) 

which, on account of Eq. (4.5), can be written as 

q(Ax/2,e-t)=k(o,e-t) $+***. (4.8~) 

Substituting Eq. (4.8~) into Eq. (4.8), we have 

Ax 

In this section, we relate the random walk formulation 
of Sec. III to the Langevin approach, based on a stochastic 
differential equation2s-21 widely used in the chemistry lit- 
erature. This has twin advantages: it yields another com- 
putational method for arbitrary potentials and it ties us to 
the extensive chemistry literature on barrier crossing prob- 
lems. 

The simplest, and most traditional way, of describing 
the random walk introduced previously, is by means of the 
probability distribution P, m of the particle being at nhx at 
time t= mht. By considering how a walker can reach lo- 
cation n at time step m+ 1, having started at time step m, 
we deduce the following difference equation for Pn,,,: 

P -P n,m+ 1- n+ 1,m .I,+l+P,-~,;r,-l+P,,; Cl--r,-4). 
(5.1) 

v(t,e) =CL(t)hX. 2 k(o,e-t)Ae. (4.9) 

But, since we are in the diffusion limit of the random walk, 
we can take advantage of Eq. (4.1) and write the above 
formula as 

We complete the formulation of the problem for P,,,, by 
specifying what happens when the particle reaches the ex- 
tremities of the interval, as well as the initial starting point 
of the particle. In the diffusion limit, this formulation leads 
to the Smoluchowski equation 

v(t,e)=DcL(t)k(O,e-t)AtAe. (4.10) 

Integrating over all possible time subintervals likely to con- 
tribute, we deduce 

s 

e 

s 

0 
Y( t,e)dt= Ae Dc,(t)k(O,e-t)dt. (4.11) 

0 0 

Dividing by A8, we get the contribution to the flux formula 
(2.14) from the left concentration. A similar derivation 
would also yield the contribution from the right end con- 
centration. 

Pt= - (w)x+ DP,, . (5.2) 
The above description is reminiscent of the Eulerian de- 
scription used in fluid dynamics2* which relies on observa- 
tions about flow fields made with a fixed spatial coordinate 
system. Fluid dynamics also uses another description of 
flow, namely the Lagrangian description, in which the ob- 
server is, so to speak, riding with the fluid particle. The 
Lagrangian approach to the random walk yields the 
Langevin equation, as we shall see. 

Let 

X( jht) EX/ 
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represent the location of the particle at the jth time step. or better still 
Then 

Xj+ 1 =Xj+ WjAX (5.4) 

represents the location of the particle at the next time step, 
where 

In the diffusion limit, the above expression becomes 

s 
m (R(t)R(t’))dt=2. De 1=20. (5.15) 

0 
wj= 0 

i 

1 with probability rj 
with probability 1 - rj- lj (5.5) 

- 1 with probability ZP 

Actually, it is preferable to split the motion into the drift 
and random parts. To that effect, we return to Eq. (3.10) 
and rewrite Eq. (5.4) as 

where 
(5.6) 

As a result, the reduced continuous Langevin equation is 
given by 

dX(t) 
-=y[XWl +R(t), dt 

where 

1 with probability Sj/2 
RjE 0 

i 

with probability 1 -Sj (5.7) 
- 1 with probability Sj/2 

is a random variable. Since we shall continue to work in 
the diffusion limit, we can rewrite Eq. (5.6) as 

Xj+t=Xj+p(Xj)At+K+. (5.8) 

Note that the mean value of the random variable ~~ is 
zero. We record this by writing 

<.Ej> =O* (5.9) 

On the other hand, Eq. (5.7) implies that the mean square 
value of this random variable is 

(~~) =Sj . (5.10) 

Since the random walk is a process in which each step is 
independent of the preceding one, we generalize this for- 
mula by writing 

(iij#Fk) "Sjjk e (5.11) 

The stocha$ic difference equation (5.8), with a ran- 
dom variable Rj which satisfies the two properties (5.9) 
and (5.11)) constitutes the “reduced” discrete Langevin 
equation. 

We examine next, in a formal way, the diffusion limit 
of the above difference equation. First, we introduce an- 
other random variable 

Rj=~j~. (5.12) 

From Eqs. (5.9) and (5.1 l), we immediately deduce that 

(Rj) ~0, 

m being the mass of the particle undergoing the random 
walk. The time necessary for the particle to acquire a Max- 
wellian velocity distribution, namely, the so-called “relax- 
ation time” of velocity, is of O(p-‘). When the relaxation 
time is short compared to the evolution time, say d( m/ 
E) 1’2, where E is a barrier height, that is to say, when (h>2 (5.13) 

CR$d =(ht)2 spjk - 

We note in passing that 

; (Rpk) =!$$ x s)jk=$$Sj 
k 
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l d(;;;) l,z<1, 

D( mE) 1’2 
(6.3) e= dkT <I, 

(5.14) 

(R(t)) =O, 

(R(t)R(t’))=2Da(t-t’). 
(5.17) 

In closing this section, we state that no matter how 
weird an ordinary differential equation the reduced Lange- 
vin equation is, it provides a clear definition of a simula- 
tion. It certainly is easier to deal with numerically than the 
Smoluchowski equation (5.2), if only because the latter is 
a partial differential equation. Of course, an ordinary dif- 
ferential equation describing the steady state or mean flux 
would not be so hard to deal with as Eq. (5.2)) nor so time 
consuming to compute as a Langevin simulation. 

VI. THE FULL LANGEVIN EQUATION 

dX 
x= V(t), 

The reduced Langevin equation (5.16) arises from a 
random walk, hopping-type model. The more commonly 
studied Langevin situation occurs when the Smoluchowski 
limit may not hold, and momentum must be consid- 
ered.2g’30 Then the full Langevin equation is 

dV 
x=PC- V+p[X(t)l +R(t)l, 

where 

(6.1) 

(6.2) 
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then for tfl& 1 the trajectory of the particle can be obtained 
via the reduced Langevin equation, though this is difficult 
to prove mathematically.31 

Without attempting to prove this statement, we can 
make it plausible by proceeding formally with the begin- 
ning of a two-time asymptotic analysis of the problem.32 
Glossing over the details, we consider the limiting process, 
t fixed /3- 03 and look for a solution of the form 
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rely on the stochastic interpretation of these quantities for 
their computation. Such an interpretation was given in Sec. 
IV, where we showed that X,(O) is the limit, as Ax+O, of 
the probability of a particle which starts at Ax to be ab- 
sorbed at the right end. We shall therefore release particles 
very near the left boundary, follow their evolution via one 
of the three schemes, viz., the discrete random walk of Eq. 
(5.8), the reduced (continuous) Langevin equation of Eq. 
(5.16), or the ordinary Langevin equation of Eq. (6.1), 
and keep track of whether these particles reach the right 
boundary, and, if so, record the elapsed times. Of course, 
we can also evaluate X,(d) and x,(O) exactly for any 
given potential and we shall do so to check the accuracy of 
our trajectory methods. 

Substituting the representations (6.4) into the Langevin 
equation (6.1), we deduce that, to zeroth order 

dX(‘) 
7= v(O)(t), 

0=- fi”‘+p[X(o)(t)] +R(t), 
or equivalently 

dX(‘) 
-=p[X’“‘(t>] +R(t) dt 7 

which is the reduced equation (5.16) previously deduced 
from the random walk. 

We have thus connected the Smoluchowski equation 
(5.2) first to the reduced Langevin equation, and then to 
the full Langevin equation in order to extend the validity of 
our flux formula. Strictly speaking, this extension is only 
valid for the case EQ 1. A more rigorous approach would 
require us to start from the full Fokker-Planck equation33 
with concentration boundary conditions, and then derive a 
more general flux formula via the appropriate adjoint prob- 
lem. This adjoint problem, viewed as an Eulerian descrip- 
tion of a stochastic process would then be phrased in terms 
of a Lagrangian description, which hopefully would be 
identical to the full Langevin equation. 

The full Langevin equation of Fq. (6.1) is, of course, 
an inadequate representation of the full dynamics of ion 
motion. For barrier crossings, both in ion channels and in 
chemical reactions, generalized Langevin equations, with a 
nonlocal friction kernel, are used to deal both with the 
inertial behavior at short times, and with the coupled-mode 
behavior at longer times.7-g710f11734s35 Though a generaliza- 
tion of the techniques used here might well be employed in 
conjunction with a generalized Langevin description, that 
is really quite aside from the focus of our work, which is 
the proper formulation of the barrier crossing problem 
with concentration boundary conditions. 

VII. COMPUTATION OF FLUX FROM PARTICLE 
TRAJECTORIES 

The aim of our work is to develop appropriate particle 
trajectory methods to calculate the steady state flux of ions 
at the right-hand boundary subject to the concentration 
boundary conditions. To do so, we have first derived the 
steady state flux formula (2.24) in terms of Z,(O) and 
X0(d). To obtain the flux by a trajectory method we shall 

To track particle trajectories, we discretize space and 
time and introduce the integers M,N once again. Recall 
that 

(N+l)Ax=d, 
(7.1) 

With this discretization 

M+l 
2Yo(o) = Joe k(O,t)dt=: c k(O,jAt)At 

j=l 

M 

z C K1/2,i 
i=o 

=& iio (Ql,i-Qo,i) 

=A i$ Ql,i * (7.2) 

The three last equations follow, respectively, from Eqs. 
(4.4), (3.9a), and (3.13). Now Ql,, from Sec. III, is the 
probability that a particle starting from Ax reaches d for 
the first time in the interval [(i- 1) At,iAt]. Then, clearly, 
z~oQl,i is the cumulative probability that a particle start- 
ing its walk at Ax reaches d in the time interval (0,e). 

We now define @ as the number of successful trajec- 
tories, obtained by simulation from random walk, reduced 
Langevin or Langevin propagation. Similarly, pf is the 
number of unsuccessful walks (absorbed at x = 0) starting 
from that same point. Then clearly 

i!. Ql,i=&. (7.3) 
f 

These same arguments can be applied to the second term in 
Eq. (2.24). We have 
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z,,(d) =: j-‘k(d,t)dts 
A-f+1 

c k[W+l)Ax,jAtlAt 
0 j=l 

M 

= z. KN+ 1/2,i 

=& igo (QN+ l,i- QN,i) 

(7.4) 

Here we have defined Nf as the number of trajectories that 
start from (d-Ax) and reach d in the interval (0,0). Sim- 
ilarly, N; is the number of trajectories that start at (d 
-Ax) and disappear at x=0. Incidentally, the time 13 in 
these simulations must be long enough that essentially all 
the random walkers suffer one of these fates; no one is still 
walking on the lattice at t=& 

Then the solution for the steady-state flux is just 

J=& [ -Dc&~N$)+Dc&i$&i# (7*5) 

This is the simulation version of the steady-state flux for- 
mula (2.24) 

The flux is obtained by starting independent particles 
from position Ax and following them by one of the three 
schemes, viz. Eq. (5.8), (5.16), or (6.1). By running many 
successive random trajectories, we evaluate the numbers 
g and N’$ simply by counting how many of these trajec- 
tories end on the right or left side. Similarly, we follow a 
number of trajectories starting at x = d - AX, and thus eval- 
uate Nf and N$ From the values of CR, cL, @, N$ Nf, N$, 
D, and Ax, we fmd the flux from Eq. (7.5). 

VIII. ACTIVATION BEHAVIOR: THE HIGH BARRIER 
CASE 

The formulation given thus far is entirely general, and 
derives the continuum flux subject to concentration bound- 
ary conditions. To make contact with standard chemical 
rate formulations, we will consider the case of a steady- 
state flow, when a single high barrier is found along the x 
coordinate, which corresponds to the channel length in the 
ion transport case, and, more generally, to the reaction 
coordinate in bimolecular reactions. 

We start by rewriting the flux formula (2.24)) in which 
X,(O) and X,(d) are replaced by their explicit forms as 
given by Eq. (2.25)) namely, 

,=Dc~exp[(Ze/kT)~(0)l--cRexp[(Ze/kT)~(d)l 
1: expl (ZehW4G) I@ * 

(8.1) 
We next evaluate the integral entering into this expression 
approximately. Just as in the classical Kramers analysis,36 
we suppose now that the potential 4 has a high, narrow 

peak at the position x= h, far from the boundary. In par- 
ticular, we assume that 

(8.2) 

W)%W), 4(O). (8.3) 
Assuming furthermore that the potential is smooth, we 
write 

~(x>=~(h)+~~~(h)(x-h)2+.... (8.4) 

Substituting this parabolic approximation of I$ in the inte- 
gral, we write 

JI exp[ j& 4(C)]dC 
z J:m dljexp[g$(h)] 

-& (&h)21Z$n(h) 1 1 
(8.5) 

As a result 

-cRexP[g$(d)]]dTexp[ -g+(h)]. 

(8.6) 

Equation (8.6) is highly reminiscent of activated complex 
theory, and the Kramers36 formulation of bimolecular rate 
theory. Rewritten, it states that the rate constant, defined 
as the flux divided by the diffusion coefficient times the 
concentration gradient, is equal to a prefactor times the 
exponential of an activation energy. The prefactor is sim- 
ply proportional to the frequency (square root of curvature 
of the potential) at the barrier top. 

We may interpret Eq. (8.6) in terms, as usual, of a 
quasiequilibrium at steady state between a small number of 
“particles” at the barrier peak and the concentration in the 
right and left boundaries. If the simulation were begun 
either from the left or the right, very few of the simulation 
particles would reach the barrier top. As in Kramers’ the- 
ory, the flux depends sensitively on the local features of the 
potential at the barrier top. It is worth noting that the 
results of Eq. (8.6) are derived solely from a continuum 
picture in steady state. It does not make the specific as- 

sumption of pre-equilibrium between activated complex 
and reactant, which is usually stated as the basis of acti- 
vated complex rate theory. 

The expression for the concentration at the top of the 
barrier, mentioned above, can be written as part of the 
same approximation 
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c(h) =ew[ --&WI] 
CL expl: (Ze/kW(O) 1 +cR exp[ (Ze/kT)$(d) 1 

2 

1203 

(8.7) 

This important, intuitively reasonable result says that the 
concentration at the barrier height depends only on the 
Boltzmann factor at the barrier height, and on the average 
concentrations on the right and the left of the barrier. 

In addition to providing a link with standard chemical 
rate processes,7-g94~35’37-42 Eq. (8.6) helps to interpret the 
numerical simulations of ion flow in the case of a potential 
barrier; the population factor exp[ -Ze4 (h) /kT] is a mea- 
sure of the likelihood of the particle climbing over the 
potential, and should be compared with the results of sim- 
ulations. This comparison, and a general simulation for 
particular barrier shapes, can now be presented. 

IX. EXAMPLES: DIFFUSION OVER ECKART BARRIERS 

The formulation of the barrier-crossing flux problem 
that is presented in Sets. II-VII holds for arbitrary one- 
dimensional potentials $(x) , subject to concentration 
boundary conditions. In Sec. VIII, the special case of a 
single dominant peak in the barrier, of potential energy 
well in excess of kT, is presented. The steady-state flux can 
be computed from Eq. (7.5) in five different ways: by 
means of the the exact formula (8.1 ), by the approxima- 
tion for high barriers as given analytically by (8.6), and by 
three possible schemes for simulation (Langevin dynamics, 
reduced Langevin dynamics and random walk), all of 
which can be used to calculate the numbers of successful 
and unsuccessful trajectories from the right and left sides 
of the barrier. In this section we present numerical results 
for typical potentials, showing how well the trajectory 
methods and high-barrier approximation reproduce the ex- 
act results. 

For computational purposes, we write the reduced 
Langevin equation (5.16) as 

A-X=,4X(t) I+ @%W”2, (9.1) 

where c is a random variable with a distribution f( 6) such 
that 

s 1, LfGMiT=O> 
c O” C2fG-)dC= 1. 

J--m 

We have used various forms 
particular, we have used 
(a) the lattice distribution 

I 
l/2 for c=l 

(9.2) 

of f in our calculations. In 

fl(&-)= l/2 for 6=-l 

I 0 otherwise; 

(b) the Gaussian distribution 

(9.3) 

I 

f2CD =& =p( -g); (9.4) 

(c) the uniform random distribution between finite limits 

(9.5) 

(d) the two-Gaussian distribution 

1 
f4(5) =2 & -{exp[-~~-l)21+exp[-~~+l)21~. 

(9.6) 
The potential barriers used in this paper are of the 

Eckart form43 often used to describe energy profiles in 
chemical reactions. While the energy (or free energy) bar- 
rier for ion passage through biological channels is less well 
characterized, the Eckart profiles of Fig. 2 are intuitively 
reasonable for ion flow, and similar forms are often used in 
the channel problem. The difference in potential between 
x=0 and x= 100 A is the transmembrane potential mea- 
sured or controlled in physiological experiments. 

Figure 2 shows the different Eckart potentials with 
different barrier heights, namely, small, medium, large, and 
largest. Figure 2(a) shows barriers that are small, less than 
kT, for forward movement. Figure 2(c) shows a barrier 
small for forward movement and reasonably large for 
backward movement. Figure 2 (d) shows a barrier that is 
high for both the forward and backward movements. 

Distance is specified in the Eckart potentials by the 
reduced distance variable < 

(9.7) 

The potential functions are then 

-4 Bc -_ ze9=-l-g (lqjf’ : : ‘- _ (9.8) 

with L a typical barrier width, corresponding say to a 
channel width d. The parameter A gives the exoergicity 
(potential energy difference) for the barrier crossing, with 
the barrier height from the left being (A + B) 2/4 B. 

Integrals of exponentials occur -widely in our analysis 
and have a simple dependence on the length d of the chan- 
nel, if the potential depends only on x/d, as do the Eckart 
potentials, where 4(x) =<p(y), with y=x/d 

s,” exp[w]dx=dld exp[F]dyad. (9.9) 

Thus trajectories are computed in a shortened channel, 
namely from 0 to S cd, taking less computer time than 
computations reaching from 0 all the way to d. Estimates 
of the truncated integrals, computed from 0 to 6, are then 
multiplied by d/S to estimate the original integrals, extend- 
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Small Eckart potential: 
A=1 kT. B/A=2 , L=50 

Large Eckort potential: 
A=4 kT. B/A=2 , L-50 

(a) 
x in Angstrom 

Medium Eckort potential: 
A=1 kT. B/A=6 , L=50 

0.3 x in Angstrom (d) x in Angstrom 

6- 6- 

((3 
x in Angstrom 

Largest Eckart potential: 
A=4 kT. WA=6 , L=50 

0 

FIG. 2. Asymmetrical Eckart potentials. Variations on the uarameters A and B produce four different characteristic shapes, with barrier heights smaller 
than, compaxable to, or larger-than kT. 

ing from 0 to d, of course, the shorter distance 6 must 
remain large compared to the discretization Ax used in 
computing the trajectories. 

We turn now to the numerical estimates of both the 
forward and backward flux. These were made using all five 
methods and are presented in Tables I and II. The accom- 
panying figures show corresponding trajectories, in both 
directions, usually with different time scales on the top and 
bottom horizontal scales. Histograms are also shown of the 
first-passage times from left to right Q( AXJ) or from right 
to left Q(d-Axt); see Eqs. (3.3), (4.8c), (7.2), (7.4), and 
captions for precise definitions. Calculations were per- 
formed with parameters that might describe biological 
channels, namely, 

D= 1.0~ 10s5 cm2/s; 

d=lOO A; 

duced Langevin equation: the dimensionless ratio E of Eq. 
(6.3), i.e., the ratio of the relaxation time of velocity to the 
characteristic evolution time, is less than 0.01 for all four 
Eckart barriers considered here. 

Several conclusions follow from these data: 
( 1) The random walk, Langevin, and reduced Lange- 

vin methods give essentially identical results for this set of 
model potentials. For less strongly damped situations (i.e., 
larger E), the reduced Langevin and random walk repre- 
sentations will be inadequate, as has been suggested for one 
biological channel.& 

m = 23 Dalton; 

T=298”K. 

(2) Estimates made from simulations of trajectories 
are quite close to the exact results, for both forward and 
backward fluxes, with errors less that 10% in all cases. For 
small barriers, numerical estimates are less subject to er- 
rors because the sums in Eq. (7.5) converge more quickly; 
the errors are then negligible. Thus calculations of trajec- 
tories are an accurate way to determine fluxes, although 
they are more sparing of intellectual than computer re- 
sources. 

Table III suggests that biological channels are in the high (3) The effective velocity of ion movement through 
friction domain, heavily damped, allowing use of the re- channels is quite small compared to thermal velocities, 
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TABLE I. The calculation of flux over the Bckart potential by random walk scheme. Note: Ax is the 
distance away from the absorbing boundaries at which the trajectories start. The errors in the Ya’s are the 
normalized standard deviations of the estimate of jtTo’s. The jrexaet is given by SYo(x),,,t=exp[e~(x)/ 
kWJ%xp@W~Wl4 d an is evaluated numerically by the Gauss-Kronrod method. Other parameters 
are d=lOO A, m=23 amu, D= 1.0X lo-’ cm*/s. The xsi,,, 
Ax) I#/Wt+@)I; do,,= (I/Ax) [@U’:+‘+N$l. 

are defined as follows: Pa(O)+,= (l/ 

Bckart 
parameters 

~0(0)cxac, 
xO(")An 
Error in Fe(O) 
jY0WLct 
xo(d)sirn 
Error in Z&f) 
x 
N”f 
Nd 
N2 
d:(A) 

Small barrier 
A=l, B/A=2 

1.288x lo-* 
1.285x lo-* 

2% 
4.753x 1o-3 
4.759x 10-J 

1% 
5cCHl 

3 835 342 
10 511 633 

5000 
0.1 

Medium barrier Large barrier Largest barrier 
A=l, B/A=6 A=4, B/A=2 A=4, B/A=6 

8.464x 1O-3 1.476X 10-2 1.156x 1O-3 
8.557x lo-’ 1.496x IO-* 1.262x lo-’ 

5% 2% 2% 
3.125x 1O-3 2.744x 1O-4 2.150X lo-’ 
3.118x10-’ 2.780~ 1O-4 1.997x 10-s 

0.5% 2% 2% 
5cQo 5000 --. 5ooo 

5 837728 3 373 950 40 463 540 
15 982 700 17 561 150 997 910 170 

5ooo 5ooo 2ooo 
0.1 0.1 0.1 

even for relatively small barriers, if we define effective ve- 
locity as flux divided by concentration. Therefore, even 
small barriers in channels will serve to impede ion flow 
substantially compared to free diffusion; evolutionarily, 
this can lead to selectivity if potential barriers differ 
slightly for different ions because, for example, different 
ions (and their adjoining waters) fit slightly differently into 
the potential wells of the biological45 or crystalline46 chan- 
nel. 

(4) Table IV shows that the high barrier approximate 
expression is in error by at least 15% for all eight of the 
computed fluxes even though a number of these fluxes 
cross quite high barriers. Figure 3 shows why: The approx- 
imation assumes a symmetrical quadratic form of the po- 
tential, while our Eckart potentials are quite asymmetrical. 
(Needless to say, the approximation is best when the bar- 
rier is highest, other things being equal.) Interestingly, the 
error appears in the prefactor, not the barrier height, when 
the fluxes or rates are written in Arrhenius form (8.6). 

(5) The histograms Qi,i> QN,i, displayed in Fig. 4, sum- 
marize the simulations and estimate the likelihood that 
particles starting at x= Ax or x=d- Ax, respectively, 
reach the opposite boundary after i time intervals. These 
histograms all have roughly the same form: At very short 
times, Ql,i and QN,i both vanish, because the particles have 
not had sufficient time to cross the barrier in either direc- 
tion. As time increases, the value of these Q’s grows until 
they reach a maximal value, the most probable time for 
crossing the channel. The values shown here are reasonable 
estimates for the first-passage time of an ion crossing a 
biological channe1.47-49 For longer times, the Q’s fall off 
slowly because the probability for the particle of surviving 
in the channel decreases monotonically with time. As 
pointed out in Sec. VII, the duration of our simulations 
must be long enough to allow all particles to exit the chan- 
nel. The required time is clearly much larger for high bar- 
riers than for low ones. 

(6) The values for the current through the open chan- 

TABLE II. The calculation of flux over the Eckart potential by reduced Langeuin scheme. Note: Ax is the 
distance away from the absorbing boundaries at which the trajectories start; At is the time step. The errors 
in the ;To’s are the normalized standard deviations of the estimate of Zo’s. The x,,,,, is given by 
9ITow ,,,,,=exp[e~(x)/k~l//,dexp[e~(~)/kTld~ and is evaluated numerically by the Gauss-Kronrod 
method. Other parameters are d= 100 A, m=23 amu, D= 1.0x lo-’ cm2/s. The Ysi,,, are defined by 
~c,(O),;,= (l/h) [@/(@+@,)I; ~o(d),i,,,= (l/Ax) [N;/(N:‘+N$]. 

Eckart 
parameters 

HOW,,,, 
zO(“)sim 
Error in x0(O) 
~o(d)exa, 
xo(d)sim 
Error in X,,(d) 

$ 

2 Ax/ 
(A, 

At (PS) 

Small barrier 
A=l, B/A=2 

1.288x lo-* 
1.284x lo-* 

5% 
4.753 x 10-s 
4.915x 1o-3 

4% 

777 5ooo 300 

2 026 5WlO 900 0.5 

5.0x 1o-4 

Medium barrier Large barrier Largest barrier 
A=l, B/A=6 A=4, B/A=2 A=4, B/A=6 

8.464x lo-’ 1.476x lo-* 1.156x lo-’ 
8.410X 1O-3 1.477x 10-2 1.175x10-3 

5% 1% 2% 
3.125~ 1O-3 2.744~ 1O-4 2.150~ lo--’ 
3.225x 1O-3 2.976x 1O-4 2.061 x lo-’ 

2% 3% 4% 

1 184210 5000 668 5000 310 8 488 5000 590 

3 109 5000 550 33 5000 584 260 498 952 585 5000 0.5 0.5 
0.5 

5.0x 1o-4 5.0x 1o-4 5.0x 10-4 
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TABLE III. The validity of the Smoluchowski limit. Note: E is defined by 
Eq. (6.3), where E is the value of the barrier height and T is room 
temperature. 

Eckart 
parameters 

Small 
barrier 
A=l, 

B/A=2 

Medium 
barrier 
A=l, 

B/A=6 

Large 
barrier 
A=4, 

B/A=2 

Largest 
barrier 
A=4, 

B/A=6 

E 2.005X10-’ 2.701X lo-’ 4.OO9X1O-3 5.4O1X1O-3 

nel in our calculations are given in Table V. These cur- 
rents, roughly 1 pA, are physiologically very reasonable, 
particularly given our generous estimate of the length of 
the channel. Constant field theory is a traditional descrip- 
tion of open channels,3 recently derived in a fairly general 
way for certain special cases.’ 

(7) The behavior of some typical trajectories [as com- 
puted from Eq. (3.3)] is shown in Fig. 5. Note that the two 
different trajectories in each panel are usually shown at 
different time scales, one defined on the upper abcissa and 
the other on the lower. For both forward and backward 
crossing, the most probable trajectories are those that start 
and end on the same side of the barrier: these are the solid 
lines in Fig. 5. The time for barrier crossing (dotted tra- 
jectories) is aZwuys larger than for barrier reflection (solid 
trajectories); the latter trajectories are more probable be- 
cause more random walkers are reflected by the barrier 
than pass over it. Barrier recrossing35*m is quite common- 
especially for low, flat barriers-as is clear from the dotted 
trajectories in Figs. 5(al), 5(a2), and 5(b2). An incom- 
plete search showed no cases in which a particle recrossed 
a high barrier after passing the maximum of the potential. 

(8) The numbers N$ N$ #, and pf shown in Table 
I, clearly reflect comments (6) and (7) above. For high 
barriers, the rate constants and probabilities for passage 
over the barrier are small, as shown by the ratios @‘/pf 
and Nf/N$ Note that the latter ratio, characterizing the 
reverse motion, is always smaller than the former, charac- 
terizing the forward motion, as would be expected for the 
asymmetric Eckart barriers of Fig. 2. 

(9) When the particle starts close to the boundary, the 
Gaussian distribution had to be handled with care, since 
many of the displacements 6 moved the particle beyond 
(i.e., to the left of) the boundary at x=0. Two strategies 
were used. First, the particle was started far enough away 

TABLE IV. The comparison of the high barrier approximation formula 
with the exact numerical integration. Note: /1 is defined by 
I.=J$exp[m$(x)/kT]dx. The subscripts exact and approx refer to the 
direct numerical integration and the high barrier approximation formula 
respectively. The error is defined by Error= 1 &pprox-&xact 1 /a,,,,. 

Small Medium Large - Largest 
barrier barrier barrier barrier 

Eckart A=l, A=l, A=4, A=4, 
Parameters B/A=2 B/A=6 B/A=2 B/A=6 

a exact 2.116x lo2 3.242x lo2 3.726x lo3 4.901 x 104 
a apprax 1.638~ lo* 1.825 X lo2 2.394x 10) 4.171x104 
Error 23% 44% 36% 15% 

The error ‘n quadratic approximation of 
Iti largest Eckart potentiil A-4 kl. WA-6 

3600- Quodrotic fit --- .I Eckart polsntiol - 
Error is shaded OW(IQ 

2700 - 
5; 
. 
.; 

s 
1800 - 

. -~ 
0 

‘?E 
Is 9w- 

0 25 50 75 100 

x in &gstrom 

FIG. 3. The error involved in approximating the Eckart barrier by a 
quadratic approximation. The shaded area shows the difference between 
the exponential of the true potential and the exponential of ‘the quadratic 
approximation. For asymmetric potentials, such areas are present, no 
matter how large the barrier. 

from the boundary that it had only a small probability of 
moving beyond the boundary at x=0 in the first time step. 
Second, if the particle were started at x= Ax, a correction 
for the number of particles found between - 00 and 0 was 
computed from the the analytical form of the Gaussian. 
There were no appreciable differences in the numerical re- 
sults among these methods or the distributions (9.3)- 
(9.6), although there were substantial differences in how 
long they took to compute. 

The calculations were performed with an IBM RS/ 
6000 Model 550 computer. The exact evaluation of the flux 
took only 2.0 x low3 s, whereas simulation of the flux with 
the reduced and full Langevin simulations required 30 h of 
CPU time for the low barrier and 180 h for the high bar- 
rier, when they were started at x=3A~ or x=d-3Ax. 
Simulations of the flux as a random walk on the lattice, 
starting at x = AX, took a factor of 10 less time to compute. 

X. COMMENTS 

Our interest in biological problemsforced us to analyze 
barrier crossing in channels as an explicit boundary value 
problem. In the Kramers formulation7Y9’36’41 of the chemi- 
cal reaction problem, the differential equation is accompa- 
nied (and the solution made unique) by physical state- 
ments, rather than by explicit boundary conditions. In 
particular, the equilibrium concentration of reactant is 
specified in a well of potential and particles are required to 
disappear once they cross the top of the potential barrier. 
Despite these differences, the boundary value and Kramers 

-treatments give similar results, when barriers are high:50 
the flux is proportional to the diffusion constant and is of 
Arrhenius form (8.6). 

~ Important generalizations of the Kramers analysis oc- 
cur in the chemical literature involving such issues as mul- 
tidimensionality, *35F51,52 frequency-dependent friction; 11,53,54 

constrained or anisotropic diffusion;35,55-57 and dielectric 
and mechanical contributions to the friction.” Experimen- 
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tal tats and applications of the Kramers’ results and their 
generalizations have appeared,8’58 and the case of interme- 
diate friction, which Kramers36 did not tyeat, has been 
analyzed.g913~42’5g 

Most of these contributions have considered the stan- 
dard problem of escape over a single high barrier. Some 
analysis has been made of more general barrier shapes, 
particularly those with several intervening minima,60 such 
as would occur in a chain of reactions like AT=~~C that 
proceed through an intermediate or with essentially no bar- 
rier, as are appropriate for photoisomerization reac- 
tions.61962 Concentration boundary conditions on [A], [B], 
and [Cl might then be appropriate. The analysis given here 
treats this problem directly, since the overall flux formula 
(2.14) and its steady-state limit (2.24) hold for arbitrary 
potentials $(x>; indeed, the reactants can be specified any- 
where along the potential, not just at minima. Thus both 
the analytic and trajectory counting methods given here 
can be used to analyze flux through intermediate states, as 
long as the concentration boundary conditions are appro- 
priate. 

Histogram of the function a(Ax.t) Histogram of the function 1 - O(d-Ax.t) 
for the small Eckort potential for the small Eckort potential 

A-l kT , B/A=2 A=1 kT . B/A=2 

7.5 
‘, 120 

* 
3 
E 5 

5 

% 
8 

t s 60 

2.5 

0 , , . . 
0 ;0 

. . . 
;0 

. . . 
$0 

0 

b1) Time in nS 

Histogram of. the function O&t) 
for the rydlun& Ec&oAaa” 6wtentlol 

= . - 

W 

0 25 50 0 25 50 

Time in nS W’) Time in nS 

Concentration boundary conditions have been finessed 
in the literature of biological channel crossing. In channel 
literature using activated complex theory, boundary con- 
ditions of any type rarely appear;3 however, the analysis 
and justification in the chemical literature”’ applies quite 
directly to the channel situation. In diffusion based theories 
of channels, different boundary conditions have been 
proposed-after a combination of physical, probabilistic, 
and mathematical arguments-to describe the same phys- 
ical situation, a channel connecting two solutions of 
known, and constant, concentratiori.2J47P48’55’63”5 The 
present analysis uses only mathematics (with no additional 
physical argument or assumption) to analyze the conse- 
quences of these concentration boundary conditions, but it 
only treats the high friction limit. We derive a flux formula, 
(2.14) or (7.5), in terms of a specific stochastic problem 
(2.12) or (4.6) and show that the steady-state flux is a 
simple function (2.24) of moments-Eqs. (2.25), (2.18), 
(7.2)) and (7.4)-of the stochastic problem. The stochas- 
tic problem can be solved analytically or by simulation of 
its trajectories, with indistinguishable results (Tables I, II, 

8 160 

6 120 

: 
0 

x 

3 
:z 4 

80 2 
s 

x 
e 

a 
2 40 

0 0 

(a2) ’ 
Time in nS 

Histogram of the function 1 - O(d-Ax,t) 
for the medium Eckort potsntiol 

A-l kT , WA-6 

‘p 0 4 120 

x 
,x 5 
:z 8 
x 
z 2 60 

FIG. 4. Histograms of the function Q(Ax,t), that determines the flux as described by Eqs. (7.2), (7.4), and (2.24). (al), (bl), (cl), and (dl) show 
histograms of the forward trajectories and (a2), (b2), (c2), and (d2) show histograms of the backward trajectories. 
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Histogram of the function 0(&t) 
for tha~~k~&orp;tentlol 
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Histogram of the function 1 - Cl(d-Ax,t) 
for the large Eckort potential 
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FIG. 4. (Continued.) 
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and VI), but those results appear to differ from previous 
results in the channel literature. 
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Xi. CONCLUSIONS 

The results presented here are perhaps most useful 
when applied to problems without analytical solutions, or 
in which Nernst-Planck equations are difficult to derive. If 
particles interact, it is easy to write, and not too hard to 
compute, Langevin equations, as has been done extensively 
in the literature of crystalline channels46*66367 in solid elec- 
trolytes. A generalization of the methods described here, 
particularly Eq. (2.14), may be useful in these cases, even 
if the associated Fokker-Nernst-Planck equations are not 
well known. 

In actual single ion channel measurements, substantial 
noise arises from random statistics of channel entrance. In 
the chemical reaction problem, the trajectories are not 
paths of single real particles; rather they describe flux on a 
complicated potential surface with many degrees of free- 
dom. The simple picture presented in the current paper is 
not appropriate for either of these phenomena. It does per- 

mit, however, an unambiguous computation of the ion flux 
in biological channels, with concentration boundary con- 
ditions. 
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Eckart 
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APPENDIX: FLUX, CONCENTRATION, AND FIRST- 
PASSAGE TIME 

Consider the first-passage time of an auxiliary problem 
d$Grent from the stochastic process of the text, Eq. (2.19) 
et seq., a problem with the same potential, diffusion con- 
stant, and absorbing boundary on the right (at x = d) , as in 
the text, but now with a reflecting boundary condition on 
the left (at x=0). If we denote the auxiliary functions (for 
the process between reflecting and absorbing boundaries) 
and their moments by tildes to distinguish them from the 
ones used up to now, then clearly 

Sample Irajectories of 0 particle $ffusing 
ova- th~.Y;O~~Ec~*~2potant,oi 

- . - 

0 1 2 3 . 
loo”““““““““” 

0 t 2 3 4 0 6 12 

lime in nS 

WI 

Lower time xole _-- 
Uppar time xole - 
&row indicates barrier peak location 

since the diffusion process is the same. However, the 
boundary conditions now read 

A?QO) =o, 

so(d) =&, . 
(A21 

Repeating the same steps as previously, we multiply the 
second equation in Eq. (2.16) by G?,(x) and integrate 
over x, namely, 

5 s d%b)dx=-X~,(x) I;+ j-d+~p; 
0 0 

+p~,Wx (A3) 

which, on account of Eq. (Al ) can be written as 

Sample trajectories of a particle diffusing 
bvec the~s~~~Ec~12potantiol 

- . - 

0 01 0.2 0.3 0.4 

25 

ol,,,l,l,,,,,,,,, 
0 .2 4 6 

lime in nS 

Sample lmjsctcrt+ of 0 paticle ditfusing 
0”~ the r\“e,d’$ &tx,~ potentlat 

- . - 
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FIG. 5. Characteristic trajectories for diffusing pariiCles, performing random walks, moving over the various choices of Eckart potential. Notice that for 
relatively small barriers, such as those in (al), (a2), and (c2), trajectories recross the barrier top fairly commonly; conversely, for very high barriers, 
such as Fig. (dl), trajectories flow in one direction over the barrier top, although to and fro motions are common in the flat regions of potential. 
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FIG. 5. (Continued.) 

-~~~l(o)=-~c,~l(d)- 
s 

d 

F(x) i?o(x)dx. 
0 

(A51 
Select the value n = 1, then, after making use of the bound- This expression can be simplified further after establishing 
ary conditions, we deduce that that 

TABLE VI. The calculation of flux over the Eckart potential by full Langeuin scheme. 

Eckart 
Parameters 

~0(0),,,,, 

~owsinl 
Error in 9%,(O) 
~o(dLact 
~o(d)sim 
Error in X0(d) 

s 
Ni 
N> 
*xf 
At (ps) 

Small barrier Medium barrier Large barrier Largest barrier 
A=l, B/A=2 A=l, B/A=6 A=4, B/A=2 A=4, B/A=6 

1.288~ lo-* 8.464~ 1O-3 1.476x lo-’ 1.156x lo-’ 
1.269x 10-s 8.559x 1O-3 1.484~ 1O-2 1.281 x lo-’ 

3% .- 2% 2% 10% 
4.753X 1o-3 3.125X lo-’ 2.744x 1O-4 2.150X 1o-5 
4.890x lo-’ 3.ooox 10-3 2.818X 1O-4 2.417 x lo-’ 

2% 4% 4% 12% 

784 5000 180 1 163 5000 570 6 728 5ooo 801 78.03 5coo 1250 
1441430 3 331090 35 403 040 264 734 490 

3500 5000 5000 3 200 
0.5 0.5 O-5 0.5 

1.0x 10-3 1.0X 1o-3 5.0x10-3 2.0X 1o-2 
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3Fo(x) =o, 
(A63 

i&(x) = 1. 

Substituting in Eq. (2.30), we get 

-7.*(0)=-DCR‘5?&+ s d 
F(x)dx. 

0 

The term s$(x)dx is referred to as the “contents” of the 
channel; 2 I (0) is of course the mean first-passage time for 
a walker starting at x=0 and being absorbed at x=d with 
a refecting boundary at the left. Therefore, for the special 
case cR=O, the above formula reads 

- j-&)dx 
J=31(o)’ (A81 

i.e., “flux equals contents over mean first-passage time.” 
This relation between steady state flux and mean first pas- 
sage time has been widely used in the literature. However, 
the analysis in the text of flux between two absorbing 
boundaries yields quite different results, see Eqs. (2.24) 
and (2.20). 
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