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#�
���!�%�' Biologists try to understand how complicated 
structures (built by evolution) use physical laws to produce their natural function. 
The primitive model of electrolyte solutions, which we have previously studied at 
length [p. 997, Section 26.5 of BRR1], provides the many of the physical laws of 
life because much of life occurs in salt solution. 

Here, we consider proteins called ionic channels embedded in the 
membranes that form the ‘walls’ of cells. Channel proteins form ‘holes in the wall’ 
lined by fixed charge that controls many of the properties of channels. The physics 
that governs ionic channels is important in all proteins. Proteins are the main 
components of most biological systems and so understanding the physical laws 
governing proteins is in a very real sense understanding the physical basis of life. 

�����
 � ����!�' Channels are probably the simplest protein structures of general 
biological importance. Channels are responsible for signaling in the nervous 
system, for co-ordination of muscle contraction, including the co-ordination that 
allows heart muscle to function as a pump. Channels are intimately involved in the 
secretion of urine and hormones and most other transport processes in cells; they 
are natural targets which viruses attack and use to enter cells.  

Each of the functions of channels has been important for so long in the 
history of life that evolution has probably produced a nearly optimal adaptation 
(within historical and physical constraints) and conserved it, i.e., used the same 
fundamental design principle again and again. The transport and gatekeeper 
functions of channels are obvious targets for drugs and disease: many, perhaps 
most, of the drugs used in clinical medicine act directly or indirectly through 
channels.  

Ultimately for these reasons—because of their medical significance—
hundreds of types of channels are studied by thousands of biologists, who discover 
and describe new properties of channels every day. This work must be described 
(and understood) in the language of physical chemistry because the words of 
channels are the words of physical chemistry. What is measured and controlled are 
ionic currents, concentrations, and electrical potentials in aqueous solutions. 

� ����!�
��
����(�#���
�)
 �(����#. Channels conduct a definite amount of current, 
once they are open, and this single channel current can be easily recorded by the 
patch clamp method introduced by Sakmann and Neher [Sakmann, 1995 #135]. 
When the solutions on either side of the channel are kept at definite 
concentrations, and the electrical potential between those two solutions is 
maintained at a fixed value, the "��� current carried by permeant ions as they 

Fig 1  
Channel in a 
membrane  
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move through the open channel is remarkably constant and reproducible. Once the 
channel is open, the instantaneous current recorded shows substantial variance, not 
all of which is instrumentation noise, but the "��� current does not drift at all, on 
the time scale relevant to biology, longer than say 10 µsec. The mean current is the 
same from opening to opening, from channel to channel, from day to day, from 
animal to animal, and from laboratory to laboratory, within the error of 
measurement, with a precision more commonly found in measurements of 
physical than biological systems. This reproducibility—along with their simplicity 
and great clinical and biological importance—make open channels an inviting 
target for physical study.  

Of course, it is not trivial to maintain the concentration of ions fixed, or the 
electrical potential fixed near a channel, when a large current flows through it. 
Complex experimental apparatus and procedures have been developed over the 
years for this purpose, and their developers of have won several Nobel Prizes. The 
‘voltage clamp’ or ‘patch clamp’ were designed to mimic properties of the 
biological cells that sustain channels, while allowing precise experimental 
measurement of current flow.  

The large currents that flow through channels guarantee that they are not 
isolated systems in any sense of the phrase; rather, the biological cell must use 
elaborate machines to supply matter and charge to control the environment around 
channels, e.g., to maintain boundary conditions of constant concentration. Indeed, 
in a sedentary human being—who is reading this textbook (for example)—a 
substantial fraction of all metabolism is used (in the nerve cells of the brain) to 
maintain these boundary conditions. If channels are to be studied as biological 
systems, they cannot be isolated from their environment. 

� ����!�
 ���
 �
 ����*(�!�$��("
 ���#�"'
 Channels only function when they are 
coupled to their environment and so currents and fluxes must be present in a 
theory (or simulation). A model of a channel as an isolated system is not likely to 
be useful. Channels carrying current must be studied in the spirit of the 
nonequilibrium systems described earlier in this book [Ch. 27-31, for example, of 
BRR1].  

Steady-state flux can flow across boundaries of the system only if boundary 
conditions of the system are (spatially) nonuniform. If the boundary conditions 
surrounding the system are everywhere the same, then clearly no steady flux can 
flow. These simple statements have profound consequences because they rule out 
many of the traditional models of channels and biochemical systems, which use 
spatially uniform boundary conditions and so do not allow steady flux. 
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Channels can also be viewed as proteins that modify and control the flow of 
current, like devices of our electronic technology. Current is driven through 
channels by external sources; it is driven through transistors and other 
semiconductor devices by power supplies. The equations we use to describe 
channels are the same as those used to describe semiconductor devices, like 
transistors and integrated circuits[Lundstrom, 1992 #88]. These apparently 
dissimilar systems would then be expected to have some similar behaviors. 

���&��#���
�)
�&��
� ����!
�(����#�' Channel currents are constant in the sense that 
the mean current through a particular type of open channel, under a particular set 
of conditions, does not vary with time (on the biological time scale). The average 
amount of current that flows through a channel varies according to the 
concentration, electrical potential, and type of permeating ion, as well as the type 
of channel. Channels are characterized by their I-V curves, that display the 
dependence of current I on electrical potential V, usually in the range of ± 150 mV. 
Concentrations are usually changed in the physiological range around 300 mM 
(corresponding very roughly to the concentration of ions in the blood of a variety 
of animals, or in sea water); the overall concentration range is from 20 mM to 2 M. 
The change in potential and concentration are usually substantial, RT F  or larger. 

Different types of channels are different proteins, with different blueprints 
(genes), made of different sequences of amino acids, folded in different ways, with 
different primary and tertiary structures. They have different functions, and 
(usually) different locations in different cells and organs of the body. The 
amplitude of the current through a channel depends on the type of channel through 
which the ions flow. In some channel proteins, currents are carried by just one 
type of ion, say by potassium, sodium, or calcium ions. In other types of channels, 
any cation can carry the current; in still others, any anion will do. Channels are 
selectively permeable: some types of ions can carry current and some cannot. 

The selectivity of channels is of such great biological importance that many 
channels are named that way: Na–channels are types of proteins that conduct 
mostly Na+ ions; K–channels are types of proteins that conduct mostly K+ ions, 
and channels are called by those common names (to the confusion of students) 
even if they are quite different in other respects, and are in fact different proteins, 
with quite different structures and functions.  

Most investigators are rightly fascinated by the chemical basis of selectivity 
and the role of ‘binding sites’ (i.e., specific parts of the channel’s pore) in 
determining that chemistry. The selectivity of channels is immensely interesting 
but a little beyond what we can discuss here because it involves quite complex, 
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non-ideal behavior in mixed solutions of different electrolytes. Mixtures have non-
ideal behavior, difficult to understand, as we have already seen [BRR1: section 
25.4].  

Selectivity is usually studied indirectly by measuring current flow in 
different solutions. Chemical fluxes (e.g., as carried by radioactive tracers) are 
difficult to measure but even the picoamps of current that flow through one 
channel molecule can easily be captured and recorded using the techniques that 
have made channology a molecular science,  patch clamp and reconstitution 
[Sakmann, 1995 #135].  

Imagine then that we have a complete set of measurements of current 
through a potassium channel, in a wide range of solutions and over a wide range of 
potentials. How do we interpret these results? How can we analyze and then 
predict these I-V curves in terms of the structure and properties of the ionic 
channel itself? Can we develop a theory to predict the properties of the hole in the 
wall, from the structure of the protein that forms the hole? 

� ����
�)
# �
�&��
� ����!' A mature and proven theory of an open channel would 
start with the three dimensional structure of the channel protein, with the 
coordinates of all the atoms. It would combine that information with the 
concentrations of ions and the electrical potential maintained experimentally in the 
baths, and predict the current that flows through the channel perhaps using only 
the friction (i.e., diffusion coefficients) of the permeant ions as parameters.  

A theory of this sort is not available yet. The main impediments are 
technical, namely the problems involved in solving the three dimensional field and 
transport equations for given macroscopic boundary conditions. Thus, we resort to 
a common tactic of science: we average away some of the three dimensional 
detail, hoping that a one dimensional theory will retain enough of the essential 
physics to be able to predict the currents observed. We expect biology will use a 
simple one dimensional mechanism, however hard that mechanism is to discover. 

We are optimistic about the likely success of this simplifying approach 
because of the simple structure of channels and the (relative) simplicity of 
electrodiffusion compared to other physical processes—like hydro- or quantum 
dynamics. It should be possible to understand the physical chemistry of a tiny 
highly charged hole in the wall filled with water and ions.  

A typical channel &��#��� might be 40 Å long and perhaps even 40 Å in 
diameter. The protein is embedded in a lipid bilayer some 30Å thick. The pore of 
the channel protein is much smaller than the protein, often not more than 7 Å in 
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diameter. The most important part of the pore is the narrow portion (more or less a 
cylinder 10 Å long and 7 Å in diameter)—the ‘selectivity filter’ that controls 
current flow. The total electrical charge of the charged and polar residues of the 
protein that line the walls of the selectivity filter is of the order of 1 e. Because the 
system is approximately (but ��# exactly, as discussed later) electrically neutral, 
the number of mobile ions of opposite charge in the pore (averaged over a time of 
microseconds, for example) should be roughly 1 as well, giving a concentration of 
some 5 M, much higher indeed than biological electrolyte solutions surrounding 
the channel.  

When the density of electrical charge is very large, like this, one might 
naively expect electrical interactions with the mean field to dominate, and 
theoretical work on the electrochemistry of highly charged surfaces supports this 
view. Thus, we will try a simple mean field theory, very much in the spirit of the 
Debye-Hückel theory of ionic solutions, or the Gouy-Chapman theory of 
interfaces, or the Poisson-Boltzmann theory of proteins [p. 997, Section 26.5 of 
BRR1]. But these theories must be generalized to allow current flow. Mean field 
theories depend on approximations that are hard to evaluate a priori, and that 
cannot be true for all conditions and all systems and so it is necessary to check 
them with real data.  

The theory begins with Poisson’s equation [eq. 26.61, p. 998 BRR1] which 
describes how the average charge produces the average electrical potential ϕ  
(units: volts), where x is the location along the channel axis, or more precisely, 
along its reaction coordinate. Here, we assume that all quantities are averaged over 
time for the duration of the shortest current we can measure, namely a few µsecs. 
We consider only the dominant charges, namely the ions of species j and charge  
zjF (units: coulombs mole–1) and the permanent fixed structural charges of the 
protein P(x) (units: coulombs cm-1) that line the wall of the channel. The mobile 
species j are Na+, K+, Cl¯ , and/or Ca++ in most biological problems. ε εpore 0  is the 
product of the dielectric constant of the channel’s pore and the permittivity of free 
space (units: farads cm-1 or cou volt-1cm-1 or amp sec volt-1cm-1)  

 − = + ∑ε ε ϕ
pore j j

j

d

dx
P x z C x0

2

2 e e� � � �
 &�.��
�
����

�
�����
�
�����

��� � �� ��s

 (1) 

We assume that the Poisson equation is true on all scales, that is to say, the 
Poisson equation can be used on any length or time scale provided we average the 
potential (on the left hand side) and the charge (on the right hand side) the same 



�
��)�	������� � � �
�����
�����	�

�$'��
���*�&���	'�
�(
��'�+'����
��������	'�������������
		'�
�����	��
�� � �

���/�

way. This assumption provides a good way to start an analysis of a novel physical 
system, like an open ionic channel. How reasonable the assumption is theoretically 
can be seen by considering the alternative: what would happen if the average 
potential did not correspond to the average charge: what would sustain the extra 
forces, where would the extra energy come from to do that?  

Mobile ions in the channel (that contribute so importantly to the charge on 
the right hand side of eq. (1)) move and carry current and so we need an equation 
to describe how their mean flux Jj (units: concentration�cm–2sec–1) varies with 
potential and concentration. The simplest relation between mean flux and potential 
and concentration (units: cm–3) is the diffusion equation (see eq. 20.15-20.16, 
Table 28.1: p. 1069, and p. 1099 of BRR1), which is written here in its form as the 
Nernst-Planck equation, using the Einstein relation (BRR1 p. 1162, eq. 30.94) 
between mobility and diffusion coefficient D j  (units: cm2sec-1). The Nernst-
Planck equation is simply the diffusion equation [BRR1 p. 1099, 719] for charged 
particles. 

 J D
dC x

dx

z F

RT
C

d

dx

D

RT
C x

d x

dxj j
j j

j
j

j
j= − +

�
��

�
��

≡
−� � � � � �ϕ µ

 (2) 

The electrochemical potential µ j x� �  of ion species j is discussed in Ch. 26 

[BRR1], µ ϕj j jx z F x RT C x� � � �≡ + ln ( ).  The current I (amps) through a channel 

of radius r is simply I r z FJj j
j

= ⋅∑π 2 , see Section 29.6 [BRR1]. Note that in 

this simple first treatment ions behave ideally, with no excess chemical potential, 
and thus have the same activity coefficient and standard chemical potential in the 
bulk solution and in the channel (see Ch. 25, e.g., p. 906–909, of [BRR1], and Ch. 
26, e.g., eq. 26.7-12 of [BRR2]). It is extraordinary that a theory with such an 
unlikely assumption fits so much data.  

Simplified boundary conditions specify both (1) the concentrations of each 
species C Cj j� �� � � � and  in the solutions outside the channel and also (2) the 

potential difference Vapplied (inside – outside) maintained by the voltage clamp 
apparatus. The original publications [Eisenberg, 1996 #24] describe the more 
realistic (and complex) boundary condition that are needed to fit experimental 
data. 

��#�%��#��
������#��#���
�+&�������. The Nernst-Planck equations can be integrated 
(only once) analytically, using integrating factors, to give an explicit expression 
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for the concentrations C xj � �  as functions of the entire potential profile across a 
channel Φ( )x x F RT= ϕ� �  of length d and the boundary concentrations and 
potentials.  
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0

0

0

 (3) 

This expression is less helpful than it seems because the potential profile Φ x� �  is 
not known. The profile of potential can only be determined by solving the Poisson 
equation (1). But the Poisson equation contains the concentration of mobile 
charges C xj � �  and that concentration is not small. The concentration of counter 
ions (ions with charge opposite to that of the nearby fixed charge of the channel 
protein) is always of the same order as the fixed charge, because the combined 
system of channel wall and channel pore is fairly close to electrically neutral. 
Thus, the Poisson equation cannot be solved until the Nernst-Planck equation is 
solved. In other words, equations (1) and equation (2) [or equation (3)] must be 
solved simultaneously; the Poisson and Nernst-Planck equations form a coupled 
system.  

The system of Poisson and Nernst-Planck equations is called the PNP 
equations in channology or the drift-diffusion equations in solid state physics 
(where they are universally used to describe current flow in semiconductor devices 
like transistors).  

Note that neither the channel’s pore, nor the channel plus surrounding 
baths, nor a transistor for that matter, is electrically neutral. The number of 
positive charges does not precisely equal the number of negative charges in any 
region. The potential profile in the channel’s pore Φ x� �  could not exist (i.e., Φ  
would be spatially uniform) and even the transmembrane potential Vapplied  could 
not exist if the system were strictly electrically neutral. Nonetheless, electrical 
neutrality is approximately satisfied and the total fixed charge lining the channel 
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wall and the total mobile charge within the channel are within say 20% of each 
other.  

��#�%��#��
�!(+
�+&�������' Another integrated form of the Nernst-Planck equations 
is helpful, particularly in making links to work on chemical reactions, because it 
can either be derived from the Nernst-Planck equations or from the stochastic 
theory of chemical reactions[Eisenberg, 1995 #25]. In fact, the integrated 
expression for flux Jj  can be written as a form of the law of mass action, allowing 
a rigorous derivation of the forward and backwards rate constants for flux over 
any shape potential barrier Φ x� � . The integrated flux equation is  

 J D
C z V

z d
D

C

z d
j j

j j appl

j

d j
j

j

d
= −	 	

L R� � 
 �
� �

� �
� �

exp

exp expΦ Φζ ζ ζ ζ
0 0

1���������
����)����. 1���������
���������.� ���� ���� � ���� ����

   (4) 

The flux is best written as the sum of two unidirectional fluxes: as we shall see, 
each component of flux has a much simpler physical meaning and dependence on 
experimental variables than the sum.  

It is important to note that the flux depends on the integral of the potential 
profile, in the integrated Nernst-Planck equation (4) and the potential depends 
(speaking roughly) on the second integral of the fixed charge distribution, 
according to the Poisson equation (1). The fixed charge profile contains most of 
the information concerning the structure of the protein. The current through the 
channel has a highly integrated (and thus smoothed) dependence on fixed charge 
and so is expected to be rather independent of the details of charge distribution, at 
least if the charge distribution has one sign and never gets too close to zero. 

Each unidirectional flux is carried by ions from a source concentration on 
the ��	 side (say on the left side of the channel) to the ����	 side (here the right 
side), when the ����	 side is held to zero concentration (even in the presence of 
flux) by experimental apparatus or by the metabolism of a biological cell. The 
����	 side is then made into an absorbing boundary, by the apparatus or cell, if we 
use the words of stochastic processes and probability theory. 

Each unidirectional flux can be written neatly, without further 
approximation, as the product of a ‘source’ concentration; ‘diffusion velocity’ 

D dj
 � , sometimes called ‘the permeability’ in the channology literature; and the 

appropriate conditional probability.  
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Prob Prob

 (5) 

The same system can be written ("�
��	����������!�	!�����
�"���) as a chemical reaction 
linking ions on the %eft and on the &ight side of the channel, without making any 
further approximations. 

  

      

 

L R

R L R L
L R L R
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f j

b j

k k D d

k k D d

←  →

≡ =
≡ =
� � 
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� � 
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2

2

Prob

Prob

 (6) 

Prob R L� �  is the conditional probability that an ion starting a trajectory on the 

Left side of the channel (with right-going velocity) eventually appears on the 
Right, when a reflecting boundary condition is imposed at the left boundary and 
an absorbing boundary condition is imposed on the right boundary.  

The trajectories can be described by other statistics besides conditional 
probabilities. The time an ion takes to go from L to R is a statistic called T R L� �,  

the (conditional) first passage time; the number of R L� �  trajectories within the 

channel is the conditional contents of the channel [[ ]]R L , the unidirectional flux 

J R L� � is the flux carried by the R L� �  trajectories, and, not surprisingly 

 J
T

R L
R L
R L

� � � �=
[[ ]]

 (7) 

Equations for unconditional probabilities, passage times, or total fluxes are 
awkward to write, at best, because they often contain infinite quantities (that are 
difficult to compute) even in systems that are entirely finite. For example, no 
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simple relation exists between the (total) contents of the channel, the net flux, and 
the mean first passage time of all ions. Simple relations exist between these 
variables only if the trajectories are first separated (i.e., ‘conditioned’) into the 
subsets R L� �  or L R� � . 

The conditional probabilities, and other statistics of equations (5)—(7) can 
be determined numerically [Barcilon, 1993 #13][Elber, 1993 #27] at various 
resolutions. For example, they can be determined by computing a random walk, or 
by simulating a full or reduced Langevin equation (see Section 29.3, p. 1101-1105 
of BRR1) or from simulations of molecular and atomic dynamics. 

When friction is large (as in channels on the biological time scale) and 
simple (characterized by a single number Dj for each ionic species j), the statistics 
can be determined analytically. The probabilistic analysis reduces then to studying 
the Langevin equation of Section 29.3 of BRR1 and the conditional probabilities 
satisfy a Fokker-Planck partial differential equation. In that case, the rate constant 
k R L� �  and conditional probability Prob R L� �  (of the integrated Nernst-Planck 

equation (4) and chemical reaction (6)) can be written exactly �"�
��	����������!�	!����
��

��
�ϕ x� �. [Barcilon, 1993 #13] 

 k
D

d

D

d z x RT

j j

j

z V RT

d dx

j appl

d
R L R L� � � � � �

� �
≡ = ⋅ �2 2 1

0

Prob
exp

exp

F

ϕ
 (8) 

In this way, permeation can be described �$�
!���both as a chemical reaction 
and as stochastic transport over a potential barrier of any shape. Permeation 
through a channel can be described as a reaction along a coordinate (as discussed 
on p. 1127, BRR1) more precisely, less metaphorically, than chemical changes can 
be in many more traditional situations.  
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The integrated Nernst-Planck equation (4)—(8) can also be used to derive 
the exponential expressions of activated-complex theory (p. 1147-1164 of BRR1), 
i.e., the transition state theory widely used to describe rate constants if the 
potential profile Φ x� �  is dominated by a single large isolated barrier. For example, 
the standard expression of the Kramers’ formulation of rate theory [reference to 
new section of BRR1] is recovered.  

 k f j j j

D
d

j z x z V z x���
��
����
���

���������

     → −
2π Φ Φ" expmax max max� � � �

� ���� ����
 (9) 

The numerical value of the prefactor of eq. (9) can be estimated easily if the 
potential profile Φ x� �  is a symmetrical parabolic barrier spanning the whole 

length d of the channel, with maximum size ϕ max maxx� � , much larger than the 

applied (i.e., transmembrane) potential V = FV RTappl . Then, for example,  

k
D

df j j
j z F x RT z F x RT�

�
�������
��
���������

�
���������

     → −
2

2 π ϕ ϕmax max max maxexp� � � �
� ������ ������

 (10) 

The prefactor depends on many variables and has a numerical value very different 
from the expression kT h  used in simpler situations (p. 1147-1164 of BRR1).  

Equations (9) & (10) are useful approximations and can be used when 
systems satisfy the conditions under which they were derived, namely, when 
barriers are known to be large and of a definite size that does not change in the 
experiments of interest. These conditions are ��� satisfied in most systems 
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involving condensed phases, for example proteins and channels. They are certainly 
not satisfied when I-V relations are measured from channels in many solutions, 
because changes in salt concentration do in fact change ϕ max maxx� � . No matter 

what the historical precedent, it is not logical to use transition state theories to 
describe systems with small barriers or barriers that do not have constant size in  
the experiments of interest. 

PNP�� ���
���� The �5��equations are deceptively simple both in their physics and 
in their form. Physically, they are mean–field equations like those of other mean 
field theories and they depend on the same assumptions. But the �5�� equations 
differ from many mean field theories because they explicitly and self-consistently 
allow flux. This is very different from theories that are confined to equilibrium, 
where no flux flows.  

Systems at equilibrium have much simpler behavior than nonequilibrium 
systems; in particular, systems at equilibrium do not have the behaviors 
characteristic of (what engineers call) devices, the motors of our technology that 
we use every day to help us with our lives. For example, an automobile engine 
without gasoline is not a motor; it cannot move. A transistor at equilibrium 
(without current flowing into its terminals) is not a device; it cannot switch, 
amplify, or perform logic functions. In fact, one could measure and understand 
every physical property of a transistor at equilibrium, and still be unaware that 
away from equilibrium it can be a switch, amplifier, memory element, or indeed a 
part of an integrated circuit that remembers a number or name. 

The �5� equations describe the rich behavior of semiconductor devices, 
such as switches, amplifiers, and memory elements, for example, even though they 
look like (linear) differential equations that yield only much more ordinary 
behavior. The equations are not linear, however, and in fact describe much richer 
behavior. Only the potentials at the terminals of a transistor need to be changed to 
convert the device from a linear amplifier to a logarithmic amplifier or even a 
nonlinear switch. The theory has the same properties as the physical system. Only 
the boundary values have to be adjusted to give this richness of behavior. 5��!��
�
!�����""�
�	!�����. �!��	�	�
��!����
���!�
����,��!�����
��	�����	��	��*��� 

The �5� equations are deceptive in this way, giving a rich repertoire of well 
determined behavior from a simple pair of equations. They are deceptive in other 
ways as well, because they cannot be integrated by the normal numerical recipes 
widely available in packaged programs. Those integration schemes do not work on 
these equations, even approximately, for fundamental reasons that are well 
understood mathematically.  
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!��"
��������#� � ���
���$�����%�&&���
�����
��� Integration of the �5� equations is 
difficult if recipes for standard systems of equations are used, but integration is 
easy if a particular method called the Gummel iteration, or its equivalent, is used. . 
The Gummel iteration was discovered some decades ago by the semiconductor 
community and is a general method for producing a self-consistent solution of 
coupled equations closely related to the self-consistent field methods used in 
quantum chemistry to compute molecular orbitals (which we have discussed 
previously, BRR1, p. 176: this is not a particularly apt reference. I hope you 
can find a better one.). 

The Gummel iteration starts with an initial guess of the potential profile, 
often as just a linear function of position connecting the boundary values of 
potential. That initial profile is substituted into the right hand side of the integrated 
concentration equation (3). This substitution determines the congruent initial guess 
of the concentration profile C xj ; �	�!����� ���� � . That guess is substituted into the 

right hand side of Poisson’s equation (1), which is then trivially solved. The 
resulting estimate of potential ϕ x; "�
�! �!�
�!� � �  identically satisfies the boundary 
conditions, as do all other estimates of the potential profile. The potential profile 
ϕ x; "�
�! �!�
�!� � �  is substituted into the integrated �� equation (3) and so determines 

a first-iterate of concentration profiles C xj ;"�
�!��!�
�!�� � . These two iterates are 

consistent with each other and the boundary conditions. The two first-iterates 
ϕ x; "�
�! �!�
�!� � �  and C xj ; "�
�!��!�
�!�� �  are then substituted into the right hand side 

of Poisson’s equation (1), which is again solved, now to determine the second-
iterate ϕ x; ��
�	���!�
�!�� � , an updated, hopefully better approximation to the 
potential profile. The second-iterate of potential determines a second-iterate of 
concentration by equation (3); together, the two second-iterates determine the 
third-iterate of potential, and so on for ten iterations, (which is more than enough 
for good convergence in almost all cases), that take only milliseconds on a typical 
personal computer.  

The �5� equations form a map between the structure of the channel protein, 
represented crudely by the function P(x) and the I-V curves measured 
experimentally. Different types of channels have different pores made with linings 
of different charge. A useful and productive working hypothesis assumes that the 
only difference between different types of open channels is their different 
distributions of fixed charge Pk(x), where the subscript k identifies the type of 
channel protein, e.g., a voltage activated Na–channel, a stretch–activated channel 
and so on. Of course, this working hypothesis cannot always be true: specific 
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chemical interactions, not captured in this simple mean field theory, will no doubt 
be important in ways we do not yet understand. Nonetheless, as we write these 
words, the I-V relations of some 7 types of channels in a wide range of solutions 
can be predicted by simple distributions of fixed charge Pk(x). In one particular 
kind of channel (from cardiac muscle), a fixed charge P x Pcardiac � � = 0  independent 
of position, with P0 equal to ~1e, predicts the currents measured in pure solutions, 
and most mixtures, of all the monovalent cations (i.e., Li+, Na+, K+, Rb+, Cs+) from 
20 mM to 2 M, and potentials of ±150 mV, assuming each ion has a different 
diffusion coefficient. The value of the diffusion coefficients are estimated by 
fitting theoretical predictions to the experimental data. Typically, the diffusion 
coefficients are some 10 ×  less than in free solution.  

The graphs below show a few I-V relations from four types of channels 
with quite different characteristics. We see the %� channel[Chen, 1997 #16] is 
highly rectifying, that the 5�9� channel rectifies in the other direction[Chen, 1995 
#87], the �&� channel is nearly linear[Chen, 1997 #128] and the porin channels 
[Tang, 1997 #41; Tang, 1997 #228] have still different curves. The data from the 
porin channels are of particular interest because the locations of the atoms of that 
protein are known by x-ray crystallography[Cowan, 1992 #138; Jeanteur, 1994 
#140; Schirmer, 1995 #53] 

#��� �
�
��
�&� ����	��. Nonequilibrium effects in channels are profound. These 
arise in at least two different ways. First, the flow of current and the flux of ions is 
accompanied by a significant change in electrochemical potential, a change in both 
the profiles of electrical potential and concentration. This is the voltage drop or 
change in concentration gradient given by either Ohm’s or Fick’s law in simple 
uncoupled systems (p. 1112-1115 and p. 721-725 of BRR1).  

The other effect of moving away from equilibrium states is more subtle, but 
at least as important. A non-equilibrium system can exist for a very wide range of 
boundary conditions but equilibrium systems can exist (i.e., make sense, and 
satisfy the equations that define themselves) only under very special 
circumstances, e.g., when boundary conditions are spatially uniform so no flux 
flows in the system. For example, a channel and its mathematical model are 
nonequilibrium systems that can function (biologically) and exist (mathematically) 
���&���������������	��	������
��������������������	��
	���'�����
����
�����������, or in 
the boundary conditions used to describe the baths. But an equilibrium theory of a 
channel (e.g., Poisson-Boltzmann models, or most simulations of the molecular 
dynamics of a channel) can only describe situations in which no flux of any 
species flows anywhere. If the concentrations and electrical potentials present in 
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the baths (and boundary conditions) do in fact produce flux, (say) because they are 
not spatially uniform, an equilibrium model or simulation cannot be computed, if 
it is programmed correctly, because the equations in fact have no solution in that 
case. If an equilibrium simulation or computation gives a result, that result must 
have zero flux everywhere, because that is what equilibrium means. If an 
equilibrium simulation or computation seems to give a result, when bath and 
boundary conditions are non-uniform, the simulation must not have converged to a 
solution to the equations defining the system, because no solution to the equations 
exists, and thus no numerical procedure can find one, in that case.  

It is possible, of course, that an equilibrium model may be a decent 
approximation to a nonequilibrium model, or that it may give important physical 
insight into the properties of the nonequilibrium system. But this must be shown to 
be so, it cannot be assumed, and indeed is unlikely to be the case very often in 
systems like channels that function nearly always away from equilibrium, with 
potential and concentration gradients larger than RT F .  

These abstract words have consequences for nearly all channels, because 
most channels carry flux under all conditions. Only a perfectly selective channel 
can be placed in solutions and at electrical potentials in which there is no flux of 
any species. Only a perfectly selective channel has gradients of potential and 
concentration across it that satisfy the Nernst equation of electrochemistry (p. 978 
of BRR1; the Nernst equation is an algebraic equation defining a potential, not to 
be confused with the Nernst-Planck differential equation (2) that describes 
diffusion) for the permeable ion. Most channels are not so selective and allow 
biologically and experimentally significant flux of several types of ions at all 
potentials and concentration gradients. Even when the potential and concentration 
gradients are arranged so that one ion is at equilibrium, (i.e., the potential and 
concentration gradients across the channel satisfy the Nernst equation for that one 
ion), and so the flux of that ion is zero, other ions are away from equilibrium, and 
do ��� satisfy their own Nernst equation, and do carry flux that cannot be ignored. 
Thus, most channels cannot be analyzed ������ ��
� �('��
&������ 	���
�
���� by an 
equilibrium theory. They cannot be simulated by a molecular dynamics calculation 
that has spatially uniform boundary conditions. 

The importance of nonequilibrium effects is illustrated in figures … 
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	��
���. Most biological systems have much more complicated 
structure than channels, and often the structure is not well known, and even the 
physical principles involved may be in dispute. The reader must not be misled that 
the kind of physical analysis appropriate for open channels is immediately 
appropriate for other biological systems. 

In particular, this kind of analysis cannot yet be applied to the processes 
that open and close (i.e., ‘gate’) channels, because the structural basis and mode of 
operation of those processes are not understood[p. 479–481 of Hille, 1992 #37]. 
Most channologists think channels open and close by changing their shape. It is 
also possible that they become permeable and impermeable by raising and 
lowering barriers of electrical or chemical potential. When studying gating, we 
neither understand the structures involved, nor the physical principles? 
Fortunately, experiments allow us to separate the properties of the open channel 
from the properties of gating, when currents are measured from one channel 
protein at a time. Those experiments, plus the simple structure and natural function 
of the open channel, allows our analysis of open channels as holes in the wall.  
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The contrast between the study of the open channel, and the gating of 
channels illustrates a general point. Physical analysis of a living system is not very 
useful until its structure and basic mode of operation has been described. 
Adaptations used by evolution to solve its problems are often fanciful, not 
obviously logical, or easy to guess, and so the structure and physical principles 
used to solve evolution’s problem must be known ��"�
� much physical analysis is 
useful.  

The study of the open channel is relatively easy for another reason. The 
natural function of the channel can be directly measured and is produced by one 
physical mechanism that is fairly easy to describe. It is usually much easier 
physically, and always much more rewarding biologically, to study the natural 
function of a protein, than other properties of a protein, for example, the location 
or interactions with light of atoms not directly involved in the function of the 
protein. The natural function of a protein is likely to be more robust, and easier to 
describe by a simple model under a range of experimental conditions than the 
location of a specific atom having no key role in the work of the molecule. 

�&'�
	��
���. Open channels provide a link among the communities of scientists 
who study electrochemical systems, who study enzymes, and who study 
transistors. It will be interesting to see if the physical insights of the semiconductor 
community—used to study charge transport in macroscopic systems with complex 
structure and (spatially nonuniform) boundary conditions, far from equilibrium, in 
atomic detail, on femtosecond time scales[Hess, 1991 #301; Hess, 1991 #302]—
can be applied to the study of the atomic and molecular dynamics of electrolyte 
solutions, proteins, and channels. 
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