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Stochastic trajectories are described that underly classical diffusion between known concentrations.
The description of those experimental boundary conditions requires a phase space using the full
Langevin equation, with displacement and velocity as state variables, even if friction entirely
dominates the dynamics of diffusion, because the incoming and outgoing trajectories have to be told
apart. The conditional flux, probabilities, mean first-passage times, and contents~of the reaction
region! of the four types of trajectories—thetranstrajectoriesLR andRL and thecis trajectoriesLL
andRR—are expressed in terms of solutions of the Fokker–Planck equation in phase space and are
explicitly calculated in the Smoluchowski limit of high friction. With these results, diffusion in a
region between fixed concentrations can be described exactly as a chemical reaction for any
potential function in the region, made of any combination of high or low barriers or wells. ©1995
American Institute of Physics.
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I. INTRODUCTION

Diffusion has been analyzed by classical field theory1,2

starting with Fick, and also, at higher resolution, by th
theory of stochastic processes describing the trajectorie
diffusing particles.3,4 Classical theory is based on the canon
cal experimental setup for diffusion, where particles diffu
from a region of one concentration to another. Surprisingly
stochastic theory is not available that describes trajectorie
this situation. Theories of stochastic diffusion in the conte
of chemistry or biology often analyze a restricted case, wh
particles diffuse over a high barrier. Trajectories diffusin
over arbitrary barriers seem not to have been analyzed in
context.

This paper calculates the statistical properties of the r
dom trajectories of diffusion using stochastic differenti
equations5–7 to describe the dynamics of ionic motion. Th
Langevin model is used for the calculation of the probab
ties of the four types of trajectories—thetrans trajectories
LR andRL and thecis trajectoriesLL andRR—as well as
for the calculation of the mean first-passage times and a
age contents of the reaction region. With this analysis all
statistical properties of the four types of trajectories can
determined for any shape potential function and any frictio
In the limit of high friction, reduced problems are derived fo
each type of trajectory that yield explicit formulas for~con-
ditional! probabilities, contents~of the reaction region!, and
residence times~i.e., mean first passage times!. The trans
unidirectional components of flux, studied in biology wit
radioactive tracers for many years, correspond to the con
tional probabilities, and are also the~conditional! contents
divided by the mean first passage time.

Interestingly, in this setup the velocity distribution of th
ions is not Maxwellian, even in the limit of high friction, bu
rather contains an asymmetric term proportional to flux.
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This work started as an attempt to describe the stochas
motion of ions through single biological channels, protein
molecules that open to form a pore allowing ions to move
across cell membranes.8 Interestingly, this is the same prob-
lem that motivated Fick—who was both a physiologist and
physical chemist8,9—to invent classical diffusion theory. The
biological problem is described at the end of Sec. IX.

II. THE SETUP, FRICTION, AND DIFFUSION

We represent the experimental setup of Fick by a reac
tion region separating two baths in which concentrations an
potentials are maintained fixed. The ions inside~and outside!
the reaction region move by diffusion and transport in an
electrical field. The electrical field arises from the distribu-
tion of charge in the reaction region and at its boundaries,
distribution that must be expected to change as experimen
conditions are changed. Thus, the potential functionF(x) is
expected to vary if the species or concentrations of ions i
the baths or the electrical potential there is changed. Th
diffusion arises from the thermal collisions of the ion with
surrounding waters and protein. Motion is collision domi-
nated because the atoms move with thermal velocity~Å/ps!
in a liquid with very little empty space; in a typical experi-
ment an ion undergoes hundreds, thousands, or millions
collisions ~or more!! as it moves from one boundary at one
concentration to another.

Although friction in liquids is characterized by memory
kernels, we simplify the calculations by assuming a~position
and species dependent! effective friction coefficient,b(x)
~see Ref. 10!. This coefficient would ideally be an output of
a numerical simulation of molecular dynamics. The friction
coefficient we use is an effective parameter; it is expected
be independent of conditions under a reasonable range
concentrations, electric fields, and temperatures. That is
1767)/1767/14/$6.00 © 1995 American Institute of Physicsct¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1768 Eisenberg, Kłosek, and Schuss: Diffusion as a chemical reaction
say, the structure of the memory kernels is not expected
vary much as the flux is manipulated experimentally
changing concentration, potential, etc. over the pertin
range.

III. THE MATHEMATICAL MODEL AND THE
NERNST–PLANCK EQUATION

We present the Nernst–Planck~i.e., Smoluchowski!
model so the paper is reasonably self-contained. The reac
region is located on thex-axis betweenx50 andx51; the
bathing solutions are on either side of the reaction regi
between2`, x,0 and 1, x,`. The concentration of ions
in the reaction region,r(x), satisfies the Nernst–Planc
equation in Stratonovich form5,6 ~see Appendix A for nondi-
mensionalization!

d

dx
D~x!F ddx r~x!1

1

e

dF~x!

dx
r~x!G50 for 0, x,1,

~3.1!

whereD(x) is the diffusion coefficient ande is dimension-
less temperature~not necessarily small!. Also the concentra-
tion of ions in the baths satisfies the three-dimensio
Nernst–Planck equation in2`, x,0 and 1, x,`, with
F(x,y,z)>const. andD(x,y,z)5const. In order to avoid
solving the Nernst–Planck equation in all three domains
multaneously, we approximate the solution in both baths
constant concentrations. Therefore, the boundary conditi
for Eq. ~3.1! are

r~0!5CL , r~1!5CR . ~3.2!

Integrating Eq.~3.1! once, we obtain

D~x!Fdr~x!

dx
1
1

e

dF~x!

dx
r~x!G52J, ~3.3!

whereJ is the~spatially and temporally constant! flux. Inte-
grating again and using the boundary conditions Eq.~3.2!,
we obtain

r~x!5e2F~x!/eH @CRe
F~1!/e2CLe

F~0!/e#

3

*0
xeF~s!/e

ds

D~s!

*0
1eF~s!/e

ds

D~s!

1CLe
F~0!/eJ . ~3.4!

In particular, ifD(x)[D, Eq. ~3.4! reduces to

r~x!5
CRe

F~1!/e2CLe
F~0!/e

*0
1eF~s!/eds

e2F~x!/eE
0

x

eF~s!/eds

1CLe
@F~0!2F~x!#/e. ~3.5!

Using Eq.~3.4! in Eq. ~3.3!, we obtain

J5
CLe

F~0!/e2CRe
F~1!/e

*0
1eF~s!/e

ds

D~s!

. ~3.6!
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For constantD(x)5D, Eq. ~3.6! reduces to the well known
expression8

J5D
CLe

F~0!/e2CRe
F~1!/e

*0
1eF~s!/eds

. ~3.7!

If the concentrationsCL and CR are time dependent, Eq.
~3.7! can be easily generalized by solving the time depende
Nernst–Planck equation.

The stochastic dynamics underlying the Nernst–Planc
equation is thereducedLangevin equation4

b~x!ẋ1
dF~x!

dx
5A2b~x!eẇ, ~3.8!

wherex(t) is the position of the ion at timet, F(x) is the
electric potential,b(x) is the friction coefficient,e is nondi-
mensional temperature, andẇ is standard Gaussian white
noise~see Appendix A!. The friction and noise terms in Eq.
~3.8! are related by the Einstein fluctuation-dissipation
principle.3–6

The inhomogeneous boundary condition for the Nernst
Planck equation corresponding to the reduced Langev
equation~3.8! leads to difficulties, because it requires the
region outside the channel to bebotha source~of trajectories
entering the channel! and an absorber~of trajectories leaving
the channel!. In Eq. ~3.8!, however, all trajectories that origi-
nate at the boundary are immediately absorbed there a
never get anywhere, an undesirable, presumably unrealis
phenomenon observed directly, at considerable comput
tional cost, in the simulations of Ref. 11.

Exiting and entering trajectories differ only by the sign
of their velocities; one is positive and the other negative, bu
velocity is not a state variable in the reduced Langevin equa
tion ~3.8!. Obviously, if a stochastic theory is to separate
entering from exiting trajectories, it must analyze and de
scribe the velocity of ions as well as their displacement. Th
distinction between entering~positive velocity at the left
boundaryx50! and exiting ~negative velocity! trajectories
cannot be made in the reduced Langevin equation. In co
trast, the full Langevin equation4,6,12,13

ẍ1b~x!ẋ1
dF~x!

dx
5A2b~x!eẇ, ~3.9!

describes random ionic trajectories in a phase space with tw
state variables, displacement,x(t), and velocity,v[ ẋ(t).
Thus, the distinction between entering and exiting trajecto
ries is automatic; one hasv.0 at the left entrance and the
other hasv,0 there. The full Langevin equation describes
the underlying dynamics of these trajectories. The Fokker
Planck equation, involving both displacement and velocity, i
needed to describe the probability density function of thes
trajectories, and its evolution. Therefore, we must use the fu
Fokker–Planck equation rather than the Nernst–Planck
describe diffusion, even if friction is large.
No. 4, 22 January 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1769Eisenberg, Kłosek, and Schuss: Diffusion as a chemical reaction
IV. THE LANGEVIN AND FOKKER–PLANCK
EQUATIONS; THE NERNST–PLANCK EQUATION
RECOVERED

A concentration boundary condition does not imply an
particular physical process at the entrance and exit of t
reaction region. The ions simply move in and out of a regio
where friction and potential change from their values in th
free solution outside the reaction region. Indeed, in a re
experimental situation the concentration is not absolute
fixed at this boundary; rather it is measured and changes
held small enough so they do not matter, as shown by dire
experimentation.~In some situations, e.g., currents throug
biological Ca11 channels, significant concentration change
always accompany current flow under realistic conditions!
The trajectories of ions at an edge of the reaction region a
complex and oscillate strongly@particularly as friction domi-
nates,b→`, and trajectories approach those of Eq.~3.8!# but
they are unconstrained by specialized physical structure
experimental apparatus. Some trajectories~thecis ones! start
at the boundary and end there.~In many situations, most
trajectories are of thecis type.! Other trajectories~the trans
ones! enter the reaction region and end on the opposite sid
Both sets of trajectories flow without noticeably changin
the concentration or potential in the baths because of t
experimental apparatus and procedures used to maintain
concentration boundary condition.

A description of the random current requires separa
calculation of the properties of incoming and outgoing ion
These ions are distinguished by the different signs of the
velocity of motion and so a theory must describe both th
position and the velocity of the ion.

The velocity can be introduced into the Langevin equ
tion ~3.9! explicitly as a second state variablev(t), forming a
two-dimensional system

ẋ5v,
~4.1!

v̇52b~x!v2
dF~x!

dx
1A2b~x!eẇ~ t !.

The random trajectories, [x(t),v(t)], defined by the system
Eq. ~4.1!, describe the motion of the ion in phase space bo
inside the reaction region and outside, in the baths. T
boundaries of the reaction region in phase space are the li
x50, 2`, v,`, andx51, 2`, v,`. In the real system
of baths and reaction region, ions that reach the left end w
v .0 enter the reaction region, whereas those that reach t
end, coming from the right withv, 0, exit the reaction re-
gion and diffuse into the external solution. The other end
analogous. The concentration boundary conditions~main-
tained by experimental apparatus! enforce this behavior. In
the bath on the left, that is, forx, 0, the ionic motion is
described by the Langevin equation~4.1! with b(x)5const.
andF8(x)50, and the experimental apparatus maintains
~nearly! constant concentration of each species and a~nearly!
constant electrical potential~analogously on the right!. In-
deed, these properties are what we mean by ‘‘concentrat
boundary condition.’’

Inside the reaction region the ionic motion is describe
by the Langevin equation~4.1! with the friction coefficient
J. Chem. Phys., Vol. 102,Downloaded¬22¬May¬2003¬to¬128.8.80.187.¬Redistribution¬subjec
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b(x) and potentialF(x) of the reaction region. That poten-
tial function is determined by the spatial distribution of all
charge~fixed and mobile, in the reaction region and at the
boundaries! and must be expected to change shape if th
electrical potential in the baths or the concentrations of ion
there are changed. Bothb(x) andF(x) may undergo a dis-
continuity at the entrance to the reaction region. However
the random trajectories defined by the Langevin equatio
remain continuous. They may enter the reaction region o
either side and exit on either side with certain probabilities
Thus, no boundary conditions are imposed at the ends of th
reaction region.

The stationary joint probability density function of find-
ing a random ionic trajectory at a point (x,v) in phase space
is denoted byp(x,v). The marginal probability density of
finding an ion at the pointx with any velocity,p(x), is given
by

p~x!5E
2`

`

p~x,v !dv. ~4.2!

If given concentrations,CL andCR , are measured at the ends
of the reaction region, then

p~0!5CL , p~1!5CR . ~4.3!

These are exactly the boundary conditions~3.2! for the
Nernst–Planck equation~3.1!.

The joint pdf p(x,v) satisfies the stationary Fokker–
Planck equation4–6

Lp~x,v ![2v
]p

]x
1b~x!e

]2p

]v2

1
]

]v Fb~x!v1
dF~x!

dx Gp50 ~4.4!

in a large stripxL,x,xR , 2`, v,`, wherexL! 0 and
xR@1 are points where sources or sinks are placed in order
maintain the fixed concentrations on both sides of the reac
tion region. Note, however, that no boundary conditions are
specified or imposed at the ends of the reaction region,x50
andx51. The properties of the variables atx50 andx51 are
derived later as part of the solution to the problem.

The time dependent Fokker–Planck equation is

]p~x,v,t !
]t

5Lp~x,v,t !. ~4.5!

Equation~4.4! can also be written in the form of a conserva-
tion law

2“x,v•J~x,v !50 for ~x,v !PD , ~4.6!

where the probability flux density vectorJ(x,v) is defined as
usual for this two dimensional problem,6 by

J~x,v ![S vp~x,v !

2@b~x!v1F8~x!#p~x,v !2b~x!e
]p~x,v !

]v
D .
~4.7!

Note thatJ(x,v) describes the flux of probability; the rela-
tion of this flux to the ionic flux through the reaction region
remains to be seen.
No. 4, 22 January 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1770 Eisenberg, Kłosek, and Schuss: Diffusion as a chemical reaction
We study the standard Smoluchowski expansion of t
full time dependent Fokker–Planck equation6 to make the
paper reasonably self-contained. Denote the time depend
pdf by p(x,v,t); scaleb(x) by its maximum,B; write

b~x!5Bb0~x!; ~4.8!

and scale time byt5Bt8. For largeB the timet8 is slow, so
that the time dependent Fokker–Planck equation become

Bb~x!
]

]v S e
]

]v
1v D p~x,v,t8!1F2v

]

]x
1
dF~x!

dx

]

]vG
3p~x,v,t8!1

1

B F2
]

]t8
p~x,v,t8!G

[SBL01L11
1

B
L2D p~x,v,t8!50, ~4.9!

where

L0p~x,v,t8![b0~x!
]

]v S e
]

]v
1v D p~x,v,t8!, ~4.10!

L1p~x,v,t8![F2v
]

]x
1
dF~x!

dx

]

]vGp~x,v,t8!, ~4.11!

and

L2p~x,v,t8![2
]

]t8
p~x,v,t8!. ~4.12!

Expanding the density in an asymptotic series in negati
powers ofB,

p~x,v,t8!5p0~x,v,t8!1
1

B
p1~x,v,t8!1

1

B2 p
2~x,v,t8!

1••• , ~4.13!

we obtain the following hierarchy of equations:

L0p
0~x,v,t8!50, ~4.14!

L0p
1~x,v,t8!52L1p

0~x,v,t8!, ~4.15!

L0p
2~x,v,t8!52L1p

1~x,v,t8!2L2p
0~x,v,t8!,

~4.16!

and so on. From Eq.~4.14! we obtain

p0~x,v,t8!5
e2v2/2e

A2pe
P0~x,t8!, ~4.17!

whereP0(x,t8) is yet an undetermined function. The inte
grable solution of Eq.~4.15! is given by

p1~x,v,t8!5
e2v2/2e

A2pe
H 2

1

b0
F]P0~x,t8!

]x

1
1

e

dF~x!

dx
P0~x,t8!Gv1P1~x,t8!J ,

~4.18!

where P1(x,t8) is another undetermined function. Using
Eqs. ~4.17! and ~4.18! in Eq. ~4.16! and integrating with
respect tov, we obtain
J. Chem. Phys., Vol. 102,Downloaded¬22¬May¬2003¬to¬128.8.80.187.¬Redistribution¬subjec
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]P0~x,t8!

]t8
5

]

]x H 1

b0~x! Fe ]P0~x,t8!

]x

1
dF~x!

dx
P0~x,t8!G J . ~4.19!

ScalingB back into Eq.~4.20! and settingp(x,t)[P0(x,t8),
we obtain the Smoluchowski model

]p~x,t !

]t
5

]

]x H 1

b~x! Fe ]p~x,t !

]x
1
dF~x!

dx
p~x,t !G J .

~4.20!
Note that Eq.~4.20! has the Stratonovich form.5,6 In the
steady state, we obtain

]

]x H 1

b~x! Fe ]p~x!

]x
1
dF~x!

dx
p~x!G J 50, ~4.21!

wherep(x)[limt→`p(x,t).
Proceeding as above, we find thatP1(x,t8)50. Note that

the Smoluchowski equation~4.21! is identical to the station-
ary Nernst–Planck equation~3.1!. Returning to the expan-
sion ~4.13!, we find that the expansion of the pdf is given by

p~x,v,t !;
e2v2/2e

A2pe
H p~x,t !2

1

b~x!
F]p~x,t !

]x

1
1

e

dF~x!

dx
p~x,t !Gv1OF 1

b2~x!
G J . ~4.22!

The total probability flux in thex direction is calculated
from Eq. ~4.7! @see, e.g., Eq.~5.7!# as

T ~x,t ![E
2`

`

vp~x,v,t !dv

;2
1

b~x! Fe ]p~x,t !

]x
1
dF~x!

dx
p~x,t !G

1OF 1

b2~x!G . ~4.23!

It follows that away from equilibrium the pdf depends
on flux, no matter what the friction,so that we obtain an
expansion in the Smoluchowski limit~previously derived in
another context14!

p~x,v,t !;
e2v2/2e

A2pe
Fp~x,t !1

T ~x,t !v

e
1OF 1

b2~x!
G J .
~4.24!

Formula ~4.24! differs from the usual high friction
~Smoluchowski! approximation to the joint pdfp(x,v,t) ~see,
e.g., Refs. 4, 6, 12, 13!. The usual high friction expansion
neglects the flux termT (x,t)v/e inside the braces of Eq.
~4.24!. It stops after the first termp(x,t). When the usual
approximation to the joint pdf is substituted into the integra
in the flux formula~4.23!, the resulting flux in thex direction
vanishes, no matter what the potential or values of oth
parameters. Therefore, the usual high friction approximatio
is valid only when fluxes vanish or are vanishingly small
e.g., at equilibrium or when barriers are sufficiently high tha
the system is essentially at equilibrium. If, however, a finit
No. 4, 22 January 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1771Eisenberg, Kłosek, and Schuss: Diffusion as a chemical reaction
flux is imposed experimentally,and thus always present no
matter what the friction,as in most laboratory situations
then both terms, viz.,

p~x,t !1
T ~x,t !v

e
,

must be retained in Eq.~4.24!. The presence of both term
insures that Eq.~4.24! is valid for all values of flux, thus for
all barrier shapes. The termT (x,t)v/e is responsible for the
difference between our analysis, e.g., of chemical reacti
and most earlier work.

Note that Eqs.~4.23! and ~4.24! recover the one-
dimensional flux of the Nernst–Planck equation~3.1! from
the two-dimensional Fokker–Planck equation. The fix
concentration boundary conditions~4.3! give in a straightfor-
ward manner the boundary conditions~3.2! for the Smolu-
chowski equation~4.21!.

V. EXIT PROBABILITIES AND EXIT TIMES

One of the goals of this paper is to calculate the statis
cal properties of each of the four kinds of trajectories,LL,
LR, RL, andRR. These trajectories are described by~con-
ditional! probability density functions, their residence time
in the reaction region~also called first passage times!, and
the fluxes of each of the four kinds of trajectories. The re
tion of these partial fluxes of probability to the flux of ions i
the Nernst–Planck equation cannot be assumed; it is on
the outputs of this paper.

In order to calculate the conditional probabilityP(LuL)
of trajectories to exit on the left, given that they entered
the left, we have to isolate the influx of probability from th
left from that on the right. Each of these unidirectional pro
ability fluxes~to use the physiologists’ words! is further split
into its cis and transcomponents, into conditional fluxes~to
use the probabilists’ words!, e.g.,

T ~L !5T ~LuL !1T ~RuL !. ~5.1!

Here T ~•! describes the flux of probability, not ions. Th
conditional probability of thecis trajectoriesLL is

P~LuL !5
T ~LuL !

T ~L !
, P~RuL !512P~LuL !5

T ~RuL !

T ~L !
,

~5.2!

as is obvious by simply counting trajectories. Using simil
notation, we obtain

P~RuR!5
T ~RuR!

T ~R!
, P~LuR!512P~RuR!5

T ~LuR!

T ~R!
.

~5.3!

Thus, the calculation of the exit probabilities of ions th
entered on the left consists in splitting the probability influ
T (L) into thecis flux T (LuL) and thetrans flux T (RuL),
and applying Eqs.~5.2!. Next, we must expressT (LuL) and
T (RuL) in terms of the solution of an appropriate bounda
value problem. In order to isolate the probability flux ente
ing on the left, we have to eliminate the flux entering on t
right. Therefore, we impose a zero-influx condition on th
right but we do not impose any boundary condition on t
left. Instead, we solve the problem in the intervalxL,x,1,
J. Chem. Phys., Vol. 102,Downloaded¬22¬May¬2003¬to¬128.8.80.187.¬Redistribution¬subjec
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assuming that far away in the solution on the left there is
mechanism that maintains the given concentration th
~e.g., a source!.

Interestingly, in experiments radioactive tracer is ofte
placed onjust one side of a reaction region or the other
estimate the ionic fluxesJ(RuL) and J(LuR), really the
steady state and mean value of the fluxes. In this particu
experimental situation, the probability flux and the ion
fluxes coincide, if the incoming flux in both cases is norma
ized to 1.

We denote byp(x,vuL) the pdf of trajectories that ente
the reaction region on the left while the right end is blocke
for entering trajectories. The total influx on the left is then

T ~L !5E
0

`

vp~0,vuL !dv. ~5.4!

The functionp(x,vuL) is the solution of the Fokker–Planck
equation~4.4! in the strip xL,x,1, 2`, v,` with the
boundary condition

T ~1,vuL !•n50 for v,0, ~5.5!

wheren is the unit outer normal to the boundary. The boun
ary condition~5.5! can be written as a condition for the pd
p(x,vuL) as

p~1,vuL !50 for v,0. ~5.6!

Thecis flux T (LuL) and thetransflux T (RuL) are the con-
ditional effluxes of probability defined in terms of the flu
vectorJ(x,v) of Eq. ~4.7! by

T ~LuL ![E
2`

0

J~0,vuL !•ndv52E
2`

0

vp~0,vuL !dv,

~5.7!

T ~RuL ![E
0

`

J~1,vuL !•ndv5E
0

`

vp~1,vuL !dv. ~5.8!

Similarly, T (RuR) is calculated from the pdfp(x,vuR) that
satisfies the Fokker–Planck equation~4.4! in the strip
0, x,xR , 2`, v,` with the boundary condition

p~0,vuR!50 for v.0. ~5.9!

As above, we have

T ~RuR![E
0

`

J~1,vuR!•ndv5E
0

`

vp~1,vuR!dv,

~5.10!

T ~LuR![E
2`

0

J~1,vuR!•ndv52E
2`

0

vp~1,vuL !dv.

~5.11!

Next, we calculate the conditional residence times, a
called mean first passage times~MFPTs!, t̄( j u i ), ~i5L,R,
j5L,R!, taken by an ion that enters at endi of the reaction
region ~with velocity pointing into the reaction region! to
reach endj of the reaction region~with velocity pointing out
of the reaction region!, given that it exits there. Note that in
general the~unconditional! mean first passage time fromi to
j is infinite, because there is a finite probability that ions w
exit on the other side and so never get toj ; that is, the time
No. 4, 22 January 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1772 Eisenberg, Kłosek, and Schuss: Diffusion as a chemical reaction
they take to get toj is infinite. The contribution of those
trajectories to the mean first passage time to reachj is infi-
nite and thus so is the MFPT. Theconditional MFPT is,
however, finite because conditioning selects only those
jectories that do get toj . The infinite MFPT’s found in the
analytical treatment of the mean flux11 showed clearly the
need for an explicit stochastic analysis of the problem.

Consider the conditional mean time,t̄(LuL), taken by an
ion that enters the reaction region on the left to exit t
reaction region, given that it exits on the left. Note that t
trajectories of such ions are conditioned on both end poi
of their path rather than on just the initial point. Now, t
distinguish the two cases, we define the general diffus
~i.e., random! process [x(t),v(t)] and its subset the~doubly!
conditioned random process [x* (t),v* (t)], with trajectories
that begin in the bath on the left with positive velocitie
having the steady state~but not equilibrium! distribution of
that bath, and reach the left end of the reaction region w
negative velocities~and therefore leave the reaction region!,
before they reach the right end. If the random first pass
time of any trajectory to the left is calledtL , and that to the
right is called tR , the terminal condition is the even
$tL,tR%.

The singly conditioned pdfp(x,v,tuL) is the probability
density of finding a trajectory of the~general! process
[x(t),v(t)] at the point (x,v) at time t, given that it started
on the left. The trajectory can exit either on the left or on t
right. On the other hand, the doubly conditioned p
p* (x,v,tuL,L) represents the probability density of finding
trajectory of the general process [x(t),v(t)], given that it
starts on the left and also ends on the left, that is to say, gi
that the trajectory is a member of the doubly condition
class of trajectories, the process [x* (t),v* (t)]. Note that the
trajectories [x* (t),v* (t)] form but one of the several classe
of trajectories of the unconditional process [x(t),v(t)].

The pdfp(x,v,tuL) is the solution of the time dependen
Fokker–Planck equation~4.5! with the boundary condition
~5.5!. It is shown in Ref. 7, p. 195, pp. 261–263, Eq.~9.1! in
particular, that the pdfs of the doubly and singly condition
processes are related by

p* ~x,v,tuL,L !5p~x,v,tuL !
Pr~tL,tRux,v !

Pr~tL,tRuL !
. ~5.12!

The conditional MFPT is given by7,14,15

t̄~LuL !5E
0

`E
D
E p* ~x,v,tuL,L !dx dv dt ~5.13!

5E
0

`E
D
E p~x,v,tuL !

Pr~tL,tRux,v !

Pr~tL,tRuL !
dx dv dt.

(5.14)

Denoting P(Lux,v)[Pr(tL,tRux,v) and P(LuL)
5Pr(tL,tRuL) @see Eq.~5.2!#, we can write Eq.~5.14! as

t̄~LuL !5
1

P~LuL !
E
D
E p~x,vuL !P~Lux,v !dx dv.

~5.15!

We now have to calculate the two probability function
in the double integral. The functionp(x,vuL) is the solution
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of the boundary value problem~4.4!, ~5.6! with a line of
sources atx5xL . The functionP(Lux,v) is the probability
that a trajectory starting at (x,v) exits on the left. It follows5

thatP(Lux,v) is the solution of the backward equation

v
]P~Lux,v !

]x
1b~x!e

]2P~Lux,v !

]v2

2Fb~x!v1
dF~x!

dx G ]P~Lux,v !

]v
50 ~5.16!

with the boundary conditions

P~Lu0,v !51 for v,0,
~5.17!

P~Lu1,v !50 for v.0.

The function P(Rux,v)512P(Lux,v) satisfies the same
backward equation,

v
]P~Rux,v !

]x
1b~x!e

]2P~Rux,v !

]v2

2Fb~x!v1
dF~x!

dx G ]P~Rux,v !

]v
50 ~5.18!

with the boundary conditions

P~Ru0,v !50 for v,0,
~5.19!

P~Ru1,v !51 for v.0.

Assuming T (L)51, the double integral
*D*p(x,vuL)dxdv is the contents of the reaction region, be-
cause nothing enters on the right. The double integral

N~LuL ![E
D
E p~x,vuL !P~Lux,v !dx dv ~5.20!

is therefore the conditional contents ofLL trajectories in the
reaction region.

It can be shown~see Appendix B! that rather than cal-
culating the double integral in Eq.~5.15!, the conditional
MFPT, t̄(LuL), can be calculated from the solution of the
following boundary value problems. First, calculate
p(x,vuL) from the boundary value problem~4.4!, ~5.6!, as
described above, then calculate the solution to anoth
boundary value problem, now withp(x,vuL) as asource
density, for an unknown quantityq(x,vuL),

Lq~x,vuL !52p~x,vuL ! for ~x,v !PD ~5.21!

with the boundary conditions

q~0,vuL !50 for v.0,
~5.22!

q~1,vuL !50 for v,0.

Then, according to Eqs.~5.15! and ~5.7! we have the nearly
symmetrical equation

t̄~LuL !5
*2`
0 vq~0,vuL !dv

*2`
0 vp~0,vuL !dv

5
2*2`

0 vq~0,vuL !dv

T ~LuL !
.

~5.23!

In view of Eq. ~5.7!, Eqs.~5.15! and~5.23! can be writ-
ten as
No. 4, 22 January 1995¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1773Eisenberg, Kłosek, and Schuss: Diffusion as a chemical reaction
T ~LuL !5
N~LuL !

t̄~LuL !
, ~5.24!

in analogy with the unconditional formula given in Refs. 4
13, and 15.

The other conditional mean first passage times can
calculated from

t̄~RuL !5
1

P~RuL !
E
D
E p~x,vuL !P~Rux,v !dx dv,

~5.25!

whereP(Rux,v) is the probability that a trajectory starting a
(x,v) exits on the right,

t̄~RuR!5
1

P~RuR!
E
D
E p~x,vuR!P~Rux,v !dx dv,

~5.26!

and

t̄~LuR!5
1

P~LuR!
E
D
E p~x,vuR!P~Lux,v !dx dv.

~5.27!

VI. CIS AND TRANS PROBABILITIES AND FLUXES

We turn now to the large friction expansion of the pd
p(x,vuL) considered in Sec. V. The large friction expansio
of the pdf p(x,vuL) is not as obvious as that ofp(x,v) in
Sec. IV. The difference between the expansions arise fro
the boundary conditions and their interpretation. Since n
restrictions were imposed at the boundary on entering a
exiting trajectories in the treatment of Sec. IV, no bounda
layers arise in the Smoluchowski expansion~4.13!–~4.22!. In
contrast, in Sec. V a boundary condition~5.6! is used to
separate unidirectional probability fluxes, and so a bounda
layer is present atx51. A similar situation was considered in
Refs. 16, 14, and 17.

Now, we further split the unidirectional probability
fluxes into theircis and trans components. In particular, to
split the incoming flux from the left into its components, we
simply take the flux of the Fokker–Planck equation, with th
boundary condition~5.6! at x50 that the Smoluchowski ex-
pansion~4.22! produces, and split it into itscis and trans
components. Specifically, the solution is given in the str
0, x,1, 2`, v,` by the expansion

p~x,vuL !5
e2v2/2e

A2pe
Fp~xuL !1b.l.~x,v !1

T v

e
1h.o.t.G ,

~6.1!

with the following notation: b.l.(x,v) means the value at the
point (x,v) of the boundary layer formed atx51, h.o.t.
means ‘‘higher order terms in powers of 1/B.’’ The reduced
density,p(xuL), is the solution of the Smoluchowski equa
tion

d

dx S 1

b~x!
$@F8~x!p~xuL !#81ep9~xuL !% D50

for 0,x,1 ~6.2!
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with an absorbing condition at the right end point.@The right
end point for p(xuL) is actually located atxR*51
1 O(1/b).14,16,17# The boundary layer, b.l.(x,v) that arises
from the boundary condition atx51, is transcendentally
small atx50,14,17 because the reaction region@0,1# is much
longer than the boundary layer on the right. Nearx50 the
boundary layer function~from the other side! b.l.(x,v), is a
smooth function. The probability current~i.e., the probability
flux! of p(xuL), denotedT , is constant in the interval 0, x
,1. This gives

p~xuL !5
T

e
e2F~x!/eE

x

1

b~s!eF~s!/eds, ~6.3!

so that

p~0uL !5
T

e
e2F~0!/eE

0

1

b~x!eF~x!/edx. ~6.4!

Now, the incoming probability current on the left~none flows
on the right!! is given by

T ~L !5E
0

`

vp~x,vuL !dv5A e

2p
p~0uL !

1E
0

`

b.l.~0,v !vdv1
T

2
, ~6.5!

and the outgoing flux on the left is given by

T ~LuL !52E
2`

0

vp~x,vuL !dv

5A e

2p
p~0uL !2E

2`

0

b.l.~0,v !vdv2
T

2
.

~6.6!

Neglecting the contribution of the remote boundary layer,
we may, and using Eqs.~6.1! and ~6.4!, we obtain

T ~L !5
T

A2pe
e2F~0!/eE

0

1

b~x!eF~x!/edx1
T

2
. ~6.7!

The trans flux is given by

T ~RuL !5T ~L !2T ~LuL !5T . ~6.8!

Now, by Eq.~5.2!,

P~RuL !5
T ~RuL !

T ~L !

5
T

T

A2pe
e2F~0!/e*0

1b~x!eF~x!/edx1
T

2

5
1

1

A2pe
e2F~0!/e*0

1b~x!eF~x!/edx1
1

2

. ~6.9!

If the incoming probability fluxT (L) is normalized to 1,
thenT 5P(RuL). This gives
No. 4, 22 January 1995¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1774 Eisenberg, Kłosek, and Schuss: Diffusion as a chemical reaction
T 5
1

1

A2pe
e2F~0!/e*0

1b~x!eF~x!/edx1
1

2

. ~6.10!

It should be noted thatT does not necessarily represe
the physical ionic current, because in the physical probl
there are no boundary conditions at the ends of the reac
region that correspond to the no flux conditions introduced
the mathematics to define and separate the unidirectio
probability fluxes.

In the limit of largeb, we obtain

P~RuL !5A2pe
eF~0!/e

*0
1b~x!eF~x!/edx

. ~6.11!

Similarly,

P~LuR!5A2pe
eF~1!/e

*0
1b~x!eF~x!/edx

. ~6.12!

Trajectories must go either to the left or right—they are n
stored in the channel—and so the probabilities ofcis trajec-
tories are simply the complement of thetrans probabilities,
as mentioned previously in Eqs.~5.2! and ~5.3!,

P~LuL !512P~RuL ! ~6.13!

and

P~RuR!512P~LuR!. ~6.14!

Nernst–Planck flux in terms of conditional exit
probabilities

It has always been intuitively clear that a relation shou
exist between the unidirectional fluxes of the flux formu
~3.6! and the conditional probabilities of the trajectories th
carry that flux. However, the proper stochastic definition
those unidirectional fluxes and conditional probabilities w
not clear ~see Ref. 11! and so the implementation of the
intuition was not known.

Our analysis shows that the conditional fluxes~i.e., the
unidirectional fluxes of ions! are proportional to the condi-
tional exit probabilities~6.11! and~6.12!, the proportionality
constant being the concentration at the source of the tra
tories. In particular, the Nernst–Planck flux formula Eq.~3.6!
can be written as

J5a@CLP~RuL !2CRP~LuR!#, ~6.15!

where the numerical factora is given by

a5A 1

2pe
. ~6.16!

The net ionic flux from left to right, Eq.~3.6!, is therefore the
difference between the probability fluxes, normalized by t
concentrations on both sides of the reaction region.@If
CL , CR are time dependent, Eq.~6.15! can be generalized
by solving the time dependent Smoluchowski equatio
~4.20! and ~3.7!.#

Simulations show@Ref. 11, Eq.~7.5!# that the flux for-
mula Eq.~3.6! can be expressed in terms of the relative nu
bers of random trajectories that start inside the reaction
J. Chem. Phys., Vol. 102,Downloaded¬22¬May¬2003¬to¬128.8.80.187.¬Redistribution¬subjec
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gion at a distanceDx from an absorbing boundary and make
it across the reaction region to the other boundary. Thes
numbers were related to an analytical expression@Ref. 11,
Eq. ~2.24!# that was derived from the Nernst–Planck model
Equation~6.15! provides a probabilistic derivation of both
the analytical and statistical results of Ref. 11.

Physiologists have estimated the components~‘‘unidirec-
tional fluxes’’! of the ~mean steady-state! net flux by placing
radioactive tracer on one side of a system or the other sin
radioactive isotopes became available in the 1940s. Thus, t
physiologists’ unidirectional fluxes correspond precisely to
one set of trajectories, described by one set of condition
probabilities, or the other, as they should if the probabilistic
and tracer analysis consider the same trajectories, albeit
quite different experimental and theoretical traditions. Note
however, that physiologists have usually ignored the exis
ence of cis fluxes and their contribution to open-channel
noise~see Sec. IX!, perhaps because their mean value is zer
in the steady-state measured in traditional experiments.

VII. RESIDENCE TIMES (MFPTs)

The conditional mean first passage timest̄( i u j ), ~i
5L,R, j5L,R! can also be calculated in the large friction
limit. We use the approximation Eq.~6.1! with Eq. ~6.3! for
p(x,vuL) in the double integral in Eq.~5.15!. The large fric-
tion approximation toP(Rux,v) is found directly from the
backward equation~5.18!. Using the expansion

P~Rux,v !5P0~Rux,v !1
1

B
P1~Rux,v !1••• , ~7.1!

we find thatP0(Rux,v) is independent ofv @we denote it by
P0(Rux)# and that it satisfies the reduced backward equatio

e
d2P0~Rux!

dx2
2F8~x!

dP0~Rux!

dx
50 ~7.2!

with the boundary conditions

P0~Ru0!50, P0~Ru1!51. ~7.3!

Thus,

P0~Rux!5
*0
xeF~s!/eds

*0
1eF~s!/eds

. ~7.4!

Next, we combine the expression~5.25! for t̄(RuL) and the
expression~6.11! for P(RuL); the expressions~6.1! and~6.3!
for p(x,vuL); and the expressions~7.1! and~7.4! for P(Rux),
and write

t̄~RuL !5
1

e*0
1eF~s!/eds

E
0

1

e2F~x!/e

3F E
x

1

b~s!eF~s!/edsE
0

x

eF~s!/edsGdx ~7.5!

after normalizing the entrance probability flux density
vp(x,vuL) by T (L)51. Similarly, we obtain

t̄~LuL !5
T

e~12T !*0
1ef~x!/edx

E
0

1

e2F~x!/eds
No. 4, 22 January 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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3F E
x

1

b~s!eF~s!/edsE
x

1

eF~s!/edsGdx, ~7.6!

where T is given by Eq.~6.10!. In particular, for a free
particle ~no external field! with large constant friction@b(x)
5 const.@1# we obtain

t̄~LuL !5
1

3
A2p

e
. ~7.7!

The mean time an ion spends in the reaction regio
given that it entered on the left, is given by

t̄~L !5 t̄~LuL !P~LuL !1 t̄~RuL !P~RuL !

5E
D
E p~x,vuL !@P~Lux,v !1P~Lux,v !#dx dv

5E
D
E p~x,vuL !dx dv. ~7.8!

Using the same approximations as above, we find that

t̄~L !5A2p

e

*0
1e@F~0!2F~x!#/e*x

1b~s!eF~s!/eds dx

*0
1b~x!eF~x!/edx

. ~7.9!

In particular, for a free particle,

t̄~L !5
1

2
A2p

e
. ~7.10!

We observe that as the frictionb(x)→` @see Eq.~4.8!#,
the trans probability P(RuL) vanishes and thetrans time
t̄(RuL) becomes infinite. Obviously,P(LuL)→1, but t̄(LuL)
remains finite, namely,

lim
b~x!→`

t̄~LuL !5T `E
0

1

e2F~x!/eds

3F E
x

1

b0~s!eF~s!/edsE
x

1

eF~s!/edsGdx,
~7.11!

where

T `5A2p

e

eF~0!/e

*0
1b0~ t !e

F~x!/edx*0
1eF~x!/edx

. ~7.12!

In the large friction limit, the mean time that an ion enterin
on the left spends in the reaction region is given by

lim
b~x!→`

t̄~L !5A2p

e

*0
1e@F~0!2F~x!#/e*x

1b0~s!eF~s!/edsdx

*0
1b0~x!eF~x!/edx

.

~7.13!

The ~apparently paradoxical! finite value oft̄(LuL) and
of t̄(L) even in the large friction limit can be understood a
follows. Consider the simplest example of an overdamp
free particle, with constant frictionb, that enters the reaction
region on the left with positive velocityv0. On the average,
it will penetrate into the reaction region a distanc
x05v0/b.

18 The mean time for a Brownian particle with
diffusion coefficientD to exit the interval@0,1# from an ini-
J. Chem. Phys., Vol. 102,Downloaded¬22¬May¬2003¬to¬128.8.80.187.¬Redistribution¬subject
n,

s
d

tial point x0 is x0(12x0)/D.
5 SinceD is inversely propor-

tional to b,18 we find that the mean exit time remains finite
even asb→ `.

VIII. HIGH BARRIERS

The traditional analysis of chemical kinetics~Ref. 4!
uses rates to describe flux over large barriers, and so we
should specialize our results to that case. We consider, with-
out loss of generality, the unidirectional flux intoCR50, for
the overdamped~Smoluchowski! case of high friction, put-
ting a source atx5xL and an absorbing boundary atx51.
The Smoluchowski equation is given by

d

dx S 1

b~x!
$@F8~x!p~xuL !#81ep9~xuL !% D52d~x2xL!,

~8.1!

with the boundary condition

p~1uL !50. ~8.2!

The solution of Eqs.~8.1!, ~8.2! is

p~xuL !5
T

e
e2F~x!/eE

x

1

b~s!eF~s!/eH~s2xL!ds, ~8.3!

whereH(x) is the Heaviside step function. Now, we assume
that the potentialF(x) forms a well with its bottom atx50,
say, and with a top at a pointx5xC , where 0, xC,1. Small
e represents a high barrier.

Assuming a constant concentration,CL , at x50, we get
from Eq. ~8.3! in the limit of smalle

T 5
CLvC

b~0!A2pe
e2DF/e, ~8.4!

where the barrier height is given by

DF[F~xC!2F~0!

and

vC[A2F9~xC!,

see Ref. 11.
This equation isnot identical to Kramers’ formula4 be-

cause that traditional result expresses the flux in terms of the
total population of reactant molecules rather than their con-
centration. The reactant population is the integral ofp(xuL)
in the reactant well, that is,

NL[E
xL

xC
p~xuL !dx.

Using Eq.~8.3!, we obtain Kramers’ result,4

T 5
NLv0vC

2pb~0!
e2DF/e, ~8.5!

where

v0[AF9~0!.

It is interesting to calculate the conditional MFPTs in the
limit of a high barrier. Assuming for simplicity thatb(x)5b
5const., we obtain fore !1 ~see Appendix C!,
No. 4, 22 January 1995¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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t̄~RuL !;
p

2A 8

2p
21

b

vC
2

~8.6!

and

t̄~LuL !;
2p

v0
. ~8.7!

It is remarkable that the conditional MFPTs are independe
of the barrier height in this limit. But the conditional mean
first-passage timet̄(RuL) @of Eq. ~8.6!# is a property of just
those trajectories that cross the barrier and make it to t
other side. The other trajectories—theLL ones—do not
cross the barrier at all; they exit at the absorbing bounda
after their~conditional mean! first-passage timet̄(LuL), cf.
Eq. ~8.7!.

IX. SUMMARY AND DISCUSSION

A. Flux and high friction

In this paper, we show that the full Langevin equation
rather than the reduced Smoluchowski equation, is needed
describe ions diffusing from one concentration to anothe
whatever the friction. Even if ionic motion along the trajec
tories of the Langevin equation~3.9! is grossly overdamped,
the system is not in equilibrium because flux is present. T
velocity distribution is not Maxwellian@see Eq.~4.24!#, but
rather contains an asymmetric term, proportional to the flu
of ions. In addition, the displacement and velocity of ove
damped ions are not independent, as is the case in equi
rium or nearly equilibrium systems~e.g., systems with high
barriers!, but rather significantly correlated.@Indeed, that is
why flux flows in the consistent treatment of high friction
given in Eqs.~4.23! and ~4.24!.# It follows that the joint
probability density function of displacement and velocit
does not factor into a solution of the Smoluchowski~Nernst–
Planck! equation multiplied by a Maxwellian density of ve-
locities ~that has zero net flux!, as is usually stated.4,6,13

Obviously, a theory that implies zero flux should not b
used to predict flux. The traditional Smoluchowski limit im
plies a Maxwellian distribution of velocities and zero flux. I
cannot consistently describe a finite flux. It should not b
used to describe experiments performed away from equil
rium, in which flux is present.

B. Chemical reaction as a diffusion

Our analysis shows that diffusion between concentrati
boundary conditions can be described as a chemical react
without approximation, no matter what the shape of the p
tential barrier between reactant and product, because e
unidirectional flux in Eq.~6.15! and Eq.~3.6! is strictly pro-
portional to the concentration at its source, for a potenti
barrier of any shape. Thus, each unidirectional flux—an
their difference the net flux—follow the law of mass actio
~if barriers are independent of concentration! no matter what
the shape of the potential barrier that limits conversion~i.e.,
diffusion! from reactant to product, if they flow between re
gions of fixed concentrations.
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t

e

y

,
to
r,

e

x
-
ib-

-

n
n,
-
ch

l
d

Chemistry is built upon the idea of a reaction, in the
simplest caseA
B, where a boldface uppercase letter, e.g.
A, represents the concentration of speciesA, B likewise, and

 represents the process convertingA to B. In the simplest
case, the process is described by the law of mass actio
giving a rate of reaction~i.e., rate of change of concentration
of productB! described by a rate constant, independent o
time and concentration ofA andB. The simplest case is the
paradigm of a chemical reaction; it is the archetype that i
taught in elementary courses, and it is the mold into whic
other more complex cases are cast.

The idea of a chemical reaction is generalized in phys
cal chemistry into a process in a multidimensional phas
space, in which the movement of a particle along the reactio
path, over barriers and through wells of potential, describe
the conversion ofA to B, and the concentrations ofA andB
generally appear as boundary conditions. In most cases, th
generalization has been studied in the limit of high barriers
because the speciesA andB are well defined in that case,
and the analysis of the conversion process is dramatical
simplified if flux is determined only at one location, the top
of a barrier ~see Sec. VIII!. One difficulty with the high
barrier approximation, however, is that it implies a near equ
librium, nearly no flux system. Another is that it tends to
obscure the role of boundary conditions, namely the conce
trations of reactantA and productB. If of interest, the effect
of boundary conditions and flux must be reinstated later, a
ter they have been approximated away, and that is difficult t
do without introducing inconsistencies.

The analysis presented here gives boundary condition
and partial differential equations equal weight, thereby in
creasing the reality and complexity of the mathematica
analysis. Nonetheless, analytical expressions for the flux a
derived with simple physical and stochastic meaning; th
approximation of high barriers can still be invoked, but now
after the problem has been solved and the role of bounda
conditions and flux has been displayed explicitly and consis
tently.

To our surprise, this approach, that starts by making
simple problem complex~because it does not assume large
barriers!, leads eventually to a simple result, valid under a
range of conditions including large barriers. In fact, the flux
formula Eq.~6.15!, true for all shapes and sizes of potentia
barriers, is so simple that further approximation seems un
necessary, and unwise. For example,aP(BuA)CA is the
~unidirectional! flux of A⇀B andaP(AuB)CB is the flux of
B⇀A, with the obvious change of notation from location to
species. Indeed, the chemical reaction

A

kb

kf
B, ~9.1!

provides an irresistible generalization of the idea of rat
‘‘constant’’ to chemical reactions with concentration bound-
ary conditions and arbitrary potential barriers, using the ob
vious definitionskf5aP(BuA) andkb5aP(AuB).

With this generalization, the law of mass action~with
rate constant independent of concentration! will be trueeven
if barriers are low, if concentrations at the boundaries are
maintained and the barriers are independent of concentratio
o. 4, 22 January 1995to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1777Eisenberg, Kłosek, and Schuss: Diffusion as a chemical reaction
Of course, the same chemical reaction doesnot follow
simple rate laws if other boundary conditions are impos
For example, if the same chemical reaction~i.e., a stochastic
process with the same dynamics, with the same profile
potential barriers, same diffusion coefficients and so on, d
fering only in its behavior at the boundaries of the system! is
studied after a sudden change of concentration of specieA,
the time course of the relaxation of concentration ofA or B
will not in general be exponential~if barriers are low for
example! and simple rate laws do not apply. The law of ma
action does not apply in its simplest formulation. We see th
that the experimental imposition of concentration bounda
conditions may lead to significant simplification in analys
e.g., in the case of small barriers.

Our version of the law of mass action may be useful in
number of other cases as well as in the case of small barr
~1! when the other approximations of high barrier theo
~e.g., location away from the boundary! are not appropriate;
~2! when the dependence on boundary conditions is itself
practical interest~as in the biological application!; ~3! when
species are not well determined, for example, when an in
mediate species lying ‘‘between’’A andB is observed ex-
perimentally and that species does not lie between two h
barriers.

C. Numerical simulations

The explicit formulas for the conditional probabilities
fluxes, contents, and residence times given in this paper
valid when friction is large. In many applications, howeve
closed form expressions for the solution of the Fokke
Planck equation, or its approximation, are not available,
example, if the system is not overdamped, if ions intera
directly with each other, or if the Fokker–Planck equation
coupled to other differential equations, e.g., to the Poiss
equation determining the electrostatic potential. In the
cases, numerical simulations of trajectories or numerical
lutions of the partial differential equations are needed.

Even in the most general case, the conditional probab
ties, fluxes, contents, and residence times given in this pa
~and the relations among them! remain well defined. The
probability measures can be estimated from numerical sim
lations of ion dynamics if analysis is not practicable. Th
formulation presented here allows much more efficient sim
lations of trajectories than used previously11 because all tra-
jectories are used to estimate parameters.

When simulating the Langevin equation, trajectori
have to be started atx5 0 andv. 0, and atx51 andv, 0.
The velocitiesv should be chosen at random, from the no
equilibrium distribution Eq.~6.1!, cf. Eq.~4.24!. Whenever a
trajectory exits the strip domain, it should be terminated.

The following data should be recorded and process
according to the formulas of Sec. V:

~1! The number ofRL, LR, LL, andRR trajectories.
~2! The duration of the trajectory.
~3! The exit point of the trajectory, that is,L or R, andv at

the exit point.

Even in the general case, where dynamics are complex
do not follow the Langevin equation, diffusion can still b
J. Chem. Phys., Vol. 102,Downloaded¬22¬May¬2003¬to¬128.8.80.187.¬Redistribution¬subjec
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treated as a chemical reaction with no approximation, pro
vided that the potential functions and diffusion coefficients
are not significant functions of the concentration of reactan
or product. If they are significant functions, the representa
tion of the system as a chemical reaction will probably mis
lead more than inform and so should be replaced by dire
consideration of the experimental observables, e.g., conce
trations and fluxes in traditional experiments.

D. Biological applications

This work was motivated by the biological problem that
interested Fick, the motion of ions across biological mem
branes. In the biological context~of, for example, ion perme-
ation through channels in membranes8!, barriers cannot be
assumed large because many channels are selected by ev
tion to pass large currents and fluxes;19 concentration bound-
ary conditions are unavoidable~in contrast to chemical prob-
lems, where concentration boundary conditions are ofte
obscured by high barriers!; and stochastic properties are rou-
tinely measured. Thus, we are forced to a stochastic theory
ionic permeation, the first installment of which is presente
here; the stochastic analysis of diffusion between concentr
tion boundary conditions.

Ionic channels determine the diffusive flows in the bio-
logical systems that originally interested Fick. Before chan
nels were studied individually, macroscopic currents wer
usually interpreted as flows through a fixed area of homoge
neous membrane. We now know that ions flow through ind
vidual protein molecules—ion channels—that can open an
close. The number of open channels is anything but fixed
the phenomenon of gating, and thus the time dependent ph
nomena of channels, arise from changes in the number
open channels and thereby in the area of membrane throu
which current flows. Traditional interpretations of macro-
scopic currents must be discarded, because the macrosco
currents come from a varying number of channels; trad
tional theories can be retained, but now as descriptions
flow through one protein molecule, a single open channel.

A single open channel is a unique object for investiga
tion. It is a single protein molecule performing a natura
function of great biological and medical significance, fully as
important for the life of cells as the catalytic functions of
most proteins~i.e., enzymes!. The mechanism of channel
function is much simpler than of enzymes, because covale
bonds do not change as ions permeate channels. For mille
~at least since Aristotle!, a goal of biological research has
been the prediction of function, given structure. For nearly
century and a half, ever since molecules were discovered a
kinetic theory was invented, biologists have dreamed of pre
dicting function from atomic structure, using physical theory
Channels are a more promising subject for such resear
than any class of proteins of comparable biological an
medical importance, in the opinion of at least one of us.19

E. Open channel noise and the counter model

Current flow through a single open channel is noisy, s
characteristically noisy that it begs for a stochastic descrip
tion and identification, if not analysis. A stochastic theory o
No. 4, 22 January 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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1778 Eisenberg, Kłosek, and Schuss: Diffusion as a chemical reaction
open channel noise has been presented by Frehland
co-workers20 and has been used to interpret experimen
results21–23in normal conditions and when ‘‘slow ions’’~i.e.,
blockers! are present. This theory, however, describes
movement of ions in solution by Eyring’s rate theory, orig
nally derived to describe the flux of atoms in gas pha
chemical reactions, occurring without friction or interatom
collisions. Rate theory can be reworked into a transition st
theory useful in condensed phases, like liquids or prote
where friction and interatomic collisions dominate kinetics24

but the theory, reworked or not, requires potential barriers
be large and far removed from the ends of the channel@see,
e.g., Eq.~8.4!#; in either case the role of concentration gr
dients is obscured, even though concentrations have pro
nent effect in diffusion and biological phenomena.

The traditional description of ionic flow by the Nernst
Planck equation with prescribed concentration bound
conditions gives an expression for the net ionic flux as
function of the concentrations and the potential in the cha
nel @see Eq.~3.6!#. This function depends linearly on th
concentrations and depends exponentially on the value
the potential at the endpoints~and on its exponential inte-
gral!. Thus, for example, if the values of the potential at t
endpoints are equal, exchanging the concentrations reve
the flux.

There are several properties of the ionic current me
sured in real single channels that are hard to accommoda
Nernst–Planck theories. These include current fluctuatio
nonlinear dependence of the flux on concentration~satura-
tion!, blocking of the channel by slow ions, properties
ratios of unidirectional fluxes, asymmetry of channel ph
nomena, and so on~Ref. 8, pp. 374–389!. In addition,
Nernst–Planck models exclude the notion of a channel t
admits one ion at a time~a single ion channel!.

In order to account for these phenomena in single i
channels, we are analyzing a stochastic model, in which
channel is viewed as a paralyzable counter, similar to
Geiger counter of radioactive decays. In this model a sin
ion channel is ‘‘paralyzed’’ for the time it is occupied by a
ion. The randomness of the model arises because the mo
of an ion inside the channel is diffusive and therefore ra
dom, so are the time spent in the channel and the time to
arrival of the next ion to the channel; and also ions can en
and exit the channel on either side with certain probabiliti

The random times the channel is occupied or empty
count for the fluctuations in open channel current seen
perimentally, as they do in theories of shot noise. The fin
time that an ion has to spend inside the channel before e
ing accounts for the saturation in flux as concentration
increased. It also accounts for blocking of the channel
slow ions.

The stochastic model of the ionic current requires t
stochastic description of the ionic trajectories presented h
The stochastic analysis of an ionic channel as a counte
ions will be given in a separate publication.25
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APPENDIX A: NONDIMENSIONALIZATION

We introduce the following notation. The two sources
are placed at the origin and atd. We assume that the motion
of an ion of massm and total chargeze, where z is the
valence of the ion, diffusing in a liquid bath, can be de-
scribed by the Langevin equation

m
d2x̃

dt̃ 2
1mb̃~ x̃!

dx̃

dt̃
1ze

dF̃~ x̃!

dx̃
5A2mkTb̃~ x̃!

dw̃

dt̃
,

~A1!

where b̃( x̃) is the state dependent friction coefficient~per
unit mass!, k Boltzmann’s constant,T is absolute tempera-
ture, andw̃ is standard Brownian motion. The functionF̃( x̃)
represents the electric potential in the reaction region. We
introduce dimensionless variables according to Table I. Note
that the dimensionless length of the reaction region is 1. The
scaling factor for the potential,DF, was chosen to represent
the barrier height, if one is well defined. Otherwise it is the
thermal energy. This scaling is necessary to keep track of th
various orders of magnitude in the Fokker–Planck equation
when we use the high friction expansion in Secs. VI and VII.
Following earlier practice,5,15 we usee to describe nondi-
mensional temperature; it need not be small.

APPENDIX B: CALCULATION OF THE CONDITIONAL
MFPT FROM BOUNDARY VALUE PROBLEMS

The conditional contents,N(LuL), of LL trajectories in
the channel is given by the double integral Eq.~5.20! if
T (L)51, as mentioned in Sec. V. We show below that

N~LuL !52E
2`

0

vq~0,vuL !dv, ~B1!

whereq(x,vuL) is the solution of the boundary value prob-
lem Eqs.~5.21! and ~5.22!.

First, we observe that according to Ref. 15, the probabil-
ity of exit at x50, given the initial point (x,v) in D , is the
total efflux of probability on the left in a stationary problem
with a source at (x,v) and no influx atx50 andx51. That
is,

Pr~tL,tRux,v ![P~Lux,v !52E
2`

0

hp~0,hux,v !dh,

~B2!

whereP(Lux,v) is as defined in Sec. V, andp(j,hux,v) is
the solution of the boundary value problem

Lj,h p~j,hux,v !52d~j2x!d~h2v !

for ~j,h!PD and ~x,v !PD ~B3!

with the no influx boundary conditions

p~0,hux,v !50 for h.0 ~B4!

p~1,hux,v !50 for h,0. ~B5!
, No. 4, 22 January 1995ct¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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From the definition Eqs.~5.20! and ~B2!, it follows that

N~LuL !52E
D
E Fp~x,vuL !E

2`

0

hp~0,hux,v !dhGdx dv

52E
2`

0

hq~0,huL !dh,

where we define

q~j,huL ![E
D
E p~x,vuL !p~j,hux,v !dx dv.

Applying the forward operatorL @in the variables~j,h!# to
q(j,huL) and noting that it can be exchanged with the
double integral because it acts on nonintegrated variables,
obtain from Eq.~B3!,

Lj,hq~j,huL !52E
D
E p~x,vuL !d~j2x!

3d~h2v !dx dv

52p~j,huL !, ~B6!

which is Eq.~5.21!. The boundary conditions Eq.~5.22! fol-
low from Eqs.~B4! and ~B5!.

APPENDIX C: THE CONDITIONAL MFPT FOR HIGH
BARRIERS

With the assumptions of Sec. IX, we have to evaluat
t̄(RuL) from Eq. ~7.5! in the limit e !1. First, we note that
in this limit

TABLE I. Symbols and nondimensionalization.

Name Dimensional Dimensionless

Proton charge e ~Coulombs!
Position x̃ ~m! x̃5xd
Length of reaction
region

d ~m! 1

Scaling factor DF ~J/kg! see belowa

Electric potential F̃( x̃) ~J/Coulomb!
ez

m
F̃~ x̃!5F~x!•DF

Time t˜ ~s! t˜5
d

ADF
t

Absolute temperature kT ~J! e5
kT

mDF

Friction coefficient b̃( x̃) ~1/s! b̃~ x̃!5
b~x!

d
ADF

Diffusion coefficient D̃~ x̃!5
kT

m
b̃~ x̃! ~m/s! D~x!5

e

b~x!
Concentration in bath C̃L(R) ~#/m3! C̃L(R)5pa2dCL(R)

Concentration in
reaction region

r̃( x̃) ~#/m3! r̃( x̃)5C̃Lr(x)

Source strength c̃L(R) ~#/s! cL~R!5
d

AF
c̃L~R!

Flux J̃ ~#/m2 s!
J5

pa2d

ADF
J̃

aScaling factor for electric potentialDF5max$kT/m,ez/m@maxF(x)
2minF(x)#%.
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I[E
0

1

eF~s!/eds;
A2pe

vC
eF~xC!/e. ~C1!

Next, we define

C~x![E
0

x

eF~s!/eds

and note thatC~1!5I . For b(x)5b5const.,

t̄~RuL !5
b

eI E0
1

e2F~x!/e@ I2C~x!#C~x!dx. ~C2!

Asymptotically, C(xC);
1
2I and so, for simplicity, we as-

sume the exact equality

C~xC!5 1
2 I . ~C3!

Then, the integrand in Eq.~C2! peaks atxC . Indeed, writing
the exponent of the integrand in the form

U~x![
2F~x!

e
1 log@ I2C~x!#1 log C~x!, ~C4!

we find that

U8~x!5
2F8~x!

e
1

C8~x!

C~x!
2

C8~x!

I2C~x!
,

U9~x!5
2F9~x!

e
1

C9~x!

C~x!
2

C82~x!

C2~x!
2

C9~x!

I2C~x!

2
C82

@ I2C~x!#2
.

Settingx5xC in Eq. ~C5!, noting thatF8(xC)50, and using
Eq. ~C3!, we find thatU8(xC)50. Furthermore, using Eq.
~C1!, we find that

U9~xC!5
vC
2

e S 12
8

2p D[2
v82

e
, ~C5!

where

v8[vCA 8

2p
21. ~C6!

It follows that the integral in Eq.~C2! can be calculated by
the Laplace method,26 yielding Eq.~8.6!.

The asymptotic calculation oft̄(LuL) is simpler, because
the integrand in Eq.~7.6! is maximal atx50. Assuming that
F(x) has a local minimum atx50, using the Laplace expan-
sion, and Eq.~C1!, we obtain Eq.~8.7!.
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