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Introduction. The description of ionic movement through biological membranes is 

an old topic, nearly as old as the description of diffusion itself. For some 150 years, 

the movement of molecules through membranes has been known to depend on the 

nature of the membrane and the concentration of the molecules. For nearly as long, 

the movement of ions has been known to depend on the electrical potential across 

the membrane. The biologist has always been interested in the movement of 

molecules and ions and how that is modified by concentration, electrical potential, 

and controlled by the biological system, i.e., the tissues, cell, membrane, or channel. 

This interest has produced measurements of current and flux, under a range of 

concentrations and membrane potentials, and theories of various resolution to 

account for these, as described later in a historical section. Here we share the 

perspective (if not prejudice) of present day workers, emphasizing the resolution of 

modern biology, which is as atomic as it is molecular. 

Ions are atoms and the ultimate description of their movement through 

biological membranes should be on the atomic level, with spatial resolution of 

atomic locations (i.e., 0.1 Å) and temporal resolution of atomic motions (10–16 s). 

But most biological functions of membranes are macroscopic involving the 

electrical current on the time scale of micro- to milliseconds that is produced by the 

movement of ions through channels, each of which takes some 10–7 s to pass 

through from one side to the other. Any description of a channel relevant to 

biological phenomena must be on the biological time scale and contain the variables 

important to the function of cells; these are the variables manipulated and measured 

experimentally. The description must yield the current or flux through the 

membrane often measured in experiments and it must include the concentration of 

ions, the transmembrane potential, and the structure of the channel and membrane 

at the highest resolution possible.  
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Atomic simulations are the obvious and most appealing way to describe ion 

movement through channels and membrane but it is easy to overlook the difficulties 

of simulating the macroscopic variables (e.g., concentration, potential, and current) 

known to be important experimentally and biologically. The next pages are meant 

to demonstrate the inherent difficulties of simulations at atomic resolution, and go 

on at some length, because of the popularity and evident appeal of such 

calculations. The reader who is ready for a macroscopic treatment can jump ahead 

to the section labeled Averaging.  

Simulation of Concentration. The difficulty in achieving atomic resolution and 

biological relevance in a single description of ionic movement is illustrated clearly 

when we try to simulate a concentration. It is obvious that we must simulate 

concentration if we are to describe the movement of ions through channels because 

diffusion and permeation depend on concentration. 

Consider a typical Ringer solution surrounding a mammalian cell. An atomic 

detail computation must estimate the concentration of all the ions present, typically 

including Na+ (~150 mM, often the most concentrated cation present) and Ca++ 

(~2 mM, often the least concentrated, not counting H3O
+). Enough ions must be 

present of each so that statistical uncertainties in the concentration are reasonable. 

To keep numbers round, let us accept an uncertainty of 1%. If the ions behave 

independently, some 10,000 ions must be in the calculation, because errors (of 

independent identically distributed random variables) go as (the reciprocal of) the 

square root of the number of variables. In fact, ionic motion is highly correlated 

because the electric field generated by the charge of one ion influences the motion 

of other ions for substantial distances and times, but we shall ignore that correlation 

for the purposes of this calculation. Considering correlations would increase, 

perhaps dramatically, the estimate of the number of particles needed in simulations. 
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Ions in solution are accompanied by water, in fact, 1 liter of solution contains 

~55 moles of water, each mole of water containing 1 mole of oxygen and two moles 

of hydrogen. Thus, for each Na+ ion in a 0.15 molar solution, there are 55/0.15 

water molecules. To calculate the properties of 10,000 Na+ atoms, one must 

calculate the properties of the 3 × (55/0.15) ×104 = 1.1 × 107 atoms surrounding 

them. Similarly, to calculate the properties of 10,000 Ca++ ions in a 0.002 molar 

solution, one must also calculate the properties of 3× (55/0.002) ×104 = 8.3 × 108 

atoms. It is very difficult to perform simulations of this size and is likely to remain 

so for many more iterations of Moore’s law. (Moore’s law is the empirical 

observation that the speed and size of computations have doubled approximately 

every 1.5 years for many decades.) We include all the atoms of the water because 

the internal motions of water are calculated in present day simulations of molecular 

dynamics of proteins and solutions. There is no generally agreed upon way to avoid 

calculating the internal dynamics of the atoms of water and thereby replace the 

expensive calculation of the dynamics of water with the properties of an averaged 

molecule. 

The situation is more extreme when considering intracellular solutions. In 

these, ions are often present that have dramatic effects on channels at very low 

concentrations. These ions often cannot be left out of the solution without 

drastically changing channel properties; indeed, in some cases, if the ions are left 

out, the channel no longer functions at all. These ions might be called co-factors in 

analogy to the coenzymes so important for many other proteins (Eisenberg, 1990).  

Most notably for our purposes, intracellular Ca++ has a crucial role 

controlling many biological systems at concentrations < 10–6 M. Many channels that 

have at least one end in the intracellular solution are very sensitive to tiny 

intracellular concentrations of calcium and do not function normally if that calcium 

is omitted. Simulation of a micromolar Ca++ solution requires calculation of 
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3×(55/10–6) ×104 = 1.65×1012 atoms. Calculations of this size are difficult and are 

likely to remain so, no matter what the size of computers, given the realities of the 

finite word length and round off error inherent in any computer calculation.  

Simulations of current. The difficulty in simulating concentration arises 

fundamentally because of the gap between atomic dimensions needed to resolve 

molecules and the macroscopic dimensions needed to define concentration. The 

difficulty in the calculation of current arises because of the gap between atomic 

time scales (needed to see molecular motion) and the macroscopic time scale 

(needed to see biological function). 

The biological functions of channels occur on time scales longer than 10 

microseconds, and even the time for permeation of a single ion is some 100 nsec 

(one picoamp corresponds to one elementary charge every 160 nsec in a channel 

always occupied by one ion). Simulations of molecular dynamics are nearly always 

done with time steps of 10–16 sec so that atomic vibrations can be resolved. Thus, 

calculations take some 1099 time steps before a single ion crosses a channel, 

assuming they always move in one direction. To estimate a current with 1% 

reliability, one needs some 104 crossings of ions, if the crossings are independent of 

each other in the stochastic sense, meaning that at least 1013 calculations are needed 

to estimate the current flowing through a channel at a single transmembrane 

potential and in a particular pair of solutions. Brownian motion guarantees an 

enormous number of changes in direction, ignored in this estimate, and ions in 

multiply occupied channels are unlikely to move independently. Thus, the number 

of calculations actually needed is very much larger than 1013. Reliable calculations 

of this many time steps are difficult and are likely to remain so, for some time, 

given the realities of the finite word length and round off error inherent in any 

computer calculation. 
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Simulations of potential. Problems involved in calculating the electric field are 

similarly difficult. The electrical potential ( ); kr rφ  (units: V = J/C ) at location r 

produced by a set of charges qk (units: C) at locations rk is determined by 

Coulomb’s law, the fundamental relation between charge and potential that in 

essence sums the effect of each atomic charge.  

 ( )
0

1;
4

k
k

r k
k

q
r r

r r
φ πε ε= −∑  (1) 

rε  is the (relative) dielectric constant (no units, value approximately 80 for distilled 

water), 0ε  the permittivity of free space ( 128.85  10  F m−× ). Symbols and units are 

particularly diverse in physical chemistry and so I try to follow the suggestions of 

the official bodies of physical chemistry (Physical Chemistry Division of the 

International Union of Pure and Applied Chemistry: Mills, 1988) although this 

sometimes means using unfamiliar units (e.g., dm3 for liter) or symbols. 

 Coulomb’s law is as exact as any physical law (Feynman, Leighton and 

Sands, 1963) but using it requires a knowledge of all charges in the system, because 

in many cases even small amounts of charge create large effects.  

 The distribution of charge is often hard to determine, because it depends on 

many variables and often in complex time dependent ways. For example, in most 

materials the movement of a charge changes the distribution of other charge, just as 

the presence of a star changes the distribution of matter in a nearby star, and that 

change is often significant.  

 The charge induced by a nearby charge is customarily described by a 

dielectric constant, but it is important to understand the depth of the approximations 

involved. Most matter, and all ionic solutions, contain charge that moves 

significantly when a test charge is placed nearby. The charge movement is usually 
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significant, because the forces that hold matter are fundamentally electrical of more 

or less the same strength as the electric field produced by the test charge. 

Understanding how charge moves in a material in response to an applied electric 

field, or a test charge introduced into the material, is a central topic in material 

science. Those charge rearrangements are often responsible for technologically 

important properties of matter. In ionic solutions, there are many types of charge 

movement in response to an electric field both in the solvent and solute. The solvent 

water molecule rotates in the electric field, and can even be displaced, although the 

water molecule is net neutral, if the electric field has a nonzero second (spatial) 

derivative. The ions of the solution move as well, and there movement is in fact 

responsible for many of the macroscopic properties of ionic solutions.  

 In simple cases, when electric fields are not large, time scales are longer than 

microseconds, and mobile ions are not present, the induced charge is proportional to 

the local electric field. In that case, equation (1) describes the potential, provided 

the charges on the boundary of the system are included. If ions are present, their 

movement in response to an electric field must be described as well, and later we 

shall see how we do that (eq. (6) and following pages). 

Boundary conditions. Boundaries are very important in electric field problems 

because the potential on the boundary is often controlled by an active device that 

injects charge (e.g., current) into the system, as the system changes, for example, as 

molecules move in it. One example is the voltage clamp arrangement used widely 

for studying ion channels for more than 50 years. If the boundaries are ignored in 

such a system, the injected charges are also ignored and the qualitative properties of 

the system change (e.g., it is no longer voltage clamped). Sometimes these 

boundary charges are safe to ignore, because in some circumstances the electric 

field is a short range force; but in general this is not the case. Rather, the electric 
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field can extend arbitrarily far, depending on the geometry and properties of its 

boundaries, as consideration of a 19th century telegraph should make clear.  

 When boundaries are important to a system, they are often connected to 

devices that allow the flow of current and charge. For example, systems are often 

“grounded” by a wire so that charge and current can flow into a grounded location 

in a system and keep it at a constant zero potential. No external energy source 

drives this flow; rather it is driven by the electric field created by the separation of 

charge between system and ground. In this case, it is difficult to keep track 

explicitly of the charge and current at the ground point and in the grounding wire.  

 It is often easier then to write a form of Coulomb’s law that does not depend 

explicitly on the charge at the boundaries. Coulomb’s law can be rewritten as a 

differential equation, Poisson’s equation, in which the charge on the boundary need 

not be specified. Simply specifying the potential on the boundary (e.g., setting the 

potential equal to zero at a grounded location) is enough; the charge on the 

boundary is an output of the solution of the Poisson equation. It does not have to be 

known in advance. Textbooks like Feynman, et al., 1963; Griffiths, 1981, and 

Jackson, 1975, show how to solve electric field problems with boundary conditions 

by solving Poisson’s equation. Smythe, 1950, is a classic physics reference and 

Jack, Noble, and Tsien, 1975, is the classic physiological reference. 

 In one important case, boundaries are not directly involved in determining 

the electric field, namely the case when the electric field does not reach the 

boundary, and the boundary is uncharged. If we deal with an isolated charged 

molecule of radius a, in a uniform ionic salt solution, with uncharged boundaries 

very far from the charge of interest (so therefore with boundaries that are not 

grounded, nor voltage clamped, nor connected to anything else), the electric 

potential ( )Rφ  spreads more or less exponentially on a characteristic scale of the 



Bob Eisenberg  Permeation as a Difussion 

9 

Debye length 1κ −  according to the traditional Poisson-Boltzmann-Debye-Hückel 

treatment of ionic solutions (see p. 772-777 of Berry, Rice, and Ross, 2000) 

 ( )
04 1

a R
i

r

e e eR
a R

κ κ
φ πε ε κ

−Ζ= +  (2) 

where 

 
2

22

0

k
k

r B
k

Ne
k T V

κ ε ε= Ζ∑  (3) 

R is the distance to the center of the charged molecule (units: m); e is the charge on 

a proton (units: C); 0 rε ε  is the permittivity of the solution (units: F m ); Bk T  is the 

thermal energy (units: J); with Bk  the Boltzmann constant (units: degJ ); and T  

the absolute temperature (units: deg K); kN V  is the density of a single species of 

ion k (e.g., Na+); kΖ  is the number of charges per ion; and kN V  is the (number) 

density (e.g., “concentration”) of ions; where kN  are the number of ions in volume 

V.  

 It is useful to remember the approximate equation for the Debye length in a 

uni-univalent salt (like Na+Cl–) of concentration C  

 1 1 3M
3 ;    in A,   in  = mol/L mol/dmC
C

κ κ− − =��  (4) 

where C is the concentration of monovalent ions surrounding the protein in molar 

units and 1κ −  is measured in Angstroms. Note the standard but relatively unknown 

unit “deci-cubic meter” dm3 meaning one tenth of a cubic meter, i.e., 1 L (p. 38 

footnote 12 of Mills, 1988). 

 If the concentration is 0.15 molar, as in a typical biological solution, 

1 8κ − = Å and the potential drops below 1% of its peak value 15 Å away from the 
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center of a Na+ of radius 1.54 Å, according to eq. (2). Further than this distance, the 

Na+ has no significant effect on potential in an isolated system. Further than this, 

the effect of the charge is said to be screened, or shielded from the rest of the 

system. Physically, what happens is clear. If a charge moves in an isolated system, 

neighboring charges move so they nearly compensate for the effects of the 

introduced charge in the sense that the spatial distribution of potential (> 15Å 

distance away) is hardly changed. Of course, the insertion of a new charge is 

different. It has an effect on the average potential of the entire system with respect 

to another system (e.g., with respect to ground). The system is no longer electrically 

neutral after a charge is added and that net charge changes the average potential, 

sometimes significantly (particularly when the system is small), even if its local 

effect is shielded. 

 If a charge is introduced into a system that has a boundary with defined 

properties, the situation is different, because of the charge on the boundary. For 

example, if the system were a beaker of salt solution containing an electrode 

connected to ground, or connected to a voltage clamp, there would be a long 

distance effect of the electrical field. If a charge is introduced into the salt solution, 

a ground wire, or a voltage clamp would maintain the potential at the electrode (i.e., 

boundary) by supplying an equal and opposite charge, no matter how far the electrode 

is from the charge. This example neatly illustrates how the electric field can be both 

short and long range, depending on the details of the situation. 

 If we neglect the long range components of the electric field, it seems easy to 

include enough ions to simulate an electric field. A sphere of radius 15Å of 0.15 

molar salt solution contains about 1 ion, an eminently feasible number for 

simulations, if the system is isolated and no other charges are involved. At least it 

appears so until one considers time.  
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The time course of atomic motion introduces both deterministic and random 

effects. If a charge is moved in a solution, the surrounding charges take time to 

respond and this time is long compared to the time scales of atomic motion 

simulated in molecular dynamics. Each component of charge responds on its own 

time scale. Only electron movement in atomic orbitals is ‘instantaneous’ on the time 

scale of femtoseconds. For example, the shielding phenomena described by eq. (2) 

take very long indeed to develop compared to femtoseconds; typically, shielding 

phenomena of the Debye−Hückel type take nanoseconds to develop. Before then, 

the ions are unshielded (by their ionic atmosphere) and the qualitative properties of 

the system are different. Simulations which do not extend long enough to allow the 

ionic atmosphere to reach steady state are likely to reveal phenomena not directly 

relevant to biological permeation: biological permeation occurs on a time scale 

slower (not faster) than the relaxation of the ionic atmosphere. In the world of ion 

permeation, shielding phenomena are always present and probably always close to 

steady-state. Time dependence also introduces stochastic properties of some 

importance. 

Atomic motion. Atoms are in continual motion, at thermal velocity, which is more or 

less the speed of sound in water, 1500 meters/sec, i.e., 15 Å every pico second. This 

motion ensures fluctuations in the number of ions in a region, and fluctuation in the 

number of charges produces fluctuation in potential.  

Let us consider what would happen if one ion enters or leaves a sphere of 

radius 7 Å. We can estimate the effect on the potential by a judicious application of 

Coulomb’s law (1). It tells us (see p. 27 of Smythe, 1950) the relation between 

potential and charge for two concentric spheres, one infinitely far away, which is 

called the capacitance ( )C R  of a sphere of radius R. 
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( )

( )0

1 1
4 r

R
Q R C R

φ
πε ε= =  (5) 

A single charge 1.6 ×10–19 C produces a potential energy of 1 electron-volt in 

a 7 Å radius sphere, if we use the dielectric constant appropriate for thermal 

fluctuations at a 10-14 sec time scale, namely 2ε = .  

One electron volt is a large fluctuation, compared to the baseline energy of 

ionic solutions, namely, the thermal energy at of 325 10Bk T −= × eV at room 

temperature. (A fluctuation in potential energy can  be neglected only when it is 

small compared to thermal energy, less than say 3 40.01 25 10 2.5 10− −× × = ×  eV.) 

Fluctuations of potential energy of some 1 eV—some 4000× this error threshold—

occur very often in ionic solutions because it does not take very long for an ion to 

travel 7 Å: fluctuations of 1 eV occur about twice every picosecond because an ion 

moving at the speed of sound takes about 460 femtoseconds to travel 7 Å.  

If potentials are to be simulated with the precision needed to predict 

biological phenomenon, somehow these enormous fluctuations and their effects 

must be correctly averaged. This might be feasible (or anyway safely ignorable) in 

systems without charge on the boundaries if the effects of fluctuations in potential 

were linear, e.g., producing a change in concentration proportional to the change in 

potential. But the coupling between potential and concentration (and other 

parameters) is very nonlinear, and so correlations may be missed if averaging is 

only done linearly. Indeed, qualitative phenomena like coupling between 

movements of ions of different species (Taylor and Krishna, 1993) can be missed if 

correlations are ignored. 

Averaging is made much more difficult because most biological systems 

contain boundaries with charge. The effects of charge movement are then not a 

local phenomena. Electric fields in cells extend much larger distances than a Debye 
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length because the membrane of cells acts as a charged boundary. Charge changes 

potential over a very long distance in cells, unlike in the bulk solution example we 

just considered (Jack, et al., 1975). “Spherical” cells (i.e., finite cells that are not 

long like nerve axons) have more or less uniform electrical potential (p. 218 of 

Kevorkian and Cole, 1996, Barcilon, Cole, and Eisenberg, 1971) meaning that all 

the ions inside the cell interact with each other and Coulomb’s law must be summed 

over all the ions in the cell. Cells range from a few µm in diameter to say 100 µΜ. 

The volumes contain staggering numbers of ions, something like 1014 if the 

concentration of ions is 0.15 molar in a cell of 50 µm radius. The electrical potential 

spreads long distances in nerve axons, typically millimeters. A cylindrical cell 

50 µm radius, 2 mm long, contains something like 3×1015 ions if it is filled with 150 

mM salt solution. Thus, direct calculations of electrical potential in cells are 

impractical.  

It seems intuitively obvious that one should be able to separate the long 

range and short range effects of the electric field, dealing with one in the average 

and the other by direct simulation, but this is an unsolved problem, the subject of 

much on-going research because of the evident consequences of its solution (e.g., 

(Wordelman and Ravaioli, 2000; Keblinski, Eggerbrecht, Wolf, and Phillpot, 2000). 

It seems then that direct calculations of biological relevance will not be made 

with atomic resolution in the near future: neither concentration, nor current can be 

directly simulated, and electrical potential cannot be simulated when it contains 

long range components, e.g., when boundary charge is present, as it usually is in 

biology. Clearly, we must make our goals more modest. We must try to use atomic 

resolution only where needed, averaging variables everywhere else, thereby keeping 

the calculation practical and useful for understanding biological systems. Indeed, 

even if we could do the direct calculation, it would be wise to sacrifice detail and 

average whenever possible. It is not clear how one would process and understand 



Bob Eisenberg  Permeation as a Difussion 

14 

the results of a direct simulation. The results are enormous numbers of numbers, 

billions of trajectories, each consisting of billions of numbers. Approximate 

averaged representations of these trajectories would be needed to understand and 

design systems, and it seems wasteful to simulate systems directly and then average 

the results, if one could do an analysis of the averaged system some other way. 

Averaging. The question is how to do this averaging. The simple answer is that we 

do not know, nor do we even know if there is a single answer to this question. 

Different variables and different problems may have to be averaged in quite 

different ways. This is an essentially mathematical question, with a physical 

motivation and basis; that is, it is a question in numerical analysis and statistical 

mechanics. Until those professions provide answers, we must use one description 

when focussing on atomic structure, and another description when focussing on 

biologically relevant variables, with no easy way to link the two rigorously.  

This chapter presents an averaged macroscopic view of ion permeation, with 

descriptions and variables appropriate for the biological domain. In particular, we 

show how to determine the flux (of many ions) through a channel, given a 

description of its structure, and a description of the driving forces on those ions, 

namely the gradients of concentration and electrical potential across the membrane. 

In some simplified cases, we can derive this averaged description from an atomic 

description, but we certainly cannot do that in general. What is important is that an 

averaged description of this sort helps understand the behavior of open channels in 

many conditions of biological and experimental interest.  

Let us consider simplified cases first, so we can retain an atomic perspective 

as long as possible. The customary first description of the motion of atoms since the 

days of Einstein and Smoluchowski is the high friction version of the Langevin 

equation (called ‘overdamped’ in the relevant literature), which describes the 
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thermal (i.e., Brownian) motion of ions in a condensed phase like a solution or 

protein (Canales and Sese, 1998; Coffey, Kalmykov and Wladron, 1996; Gardiner, 

1985; Schuss, 1980). In these solutions, atoms cannot move without colliding with 

their neighbors: condensed phases contain almost no empty space. Acceleration 

does not occur on the time scale of interest because of the enormous number of 

collisions and resulting friction. The same collisions that produce friction inevitably 

produce noise kNoise . 

 2  ( )k
k k k

B

dx eD z E D w t
dt k T

− = =kNoise  �  (6) 

All the noise kNoise  in the velocity of each ion is assumed to come from the 

processes that produce friction. The Langevin equation describes the random 

motion of a single ion of mass mk with location xk at time t subject to an electrical 

force of ( )k kz eE z e dxφ= − ∂  where φ  is the electrical potential (in volts) and 

frictional ‘force’ with frictional coefficient (per unit mass) ,k B kk T Dγ =  where Dk 

is the diffusion coefficient (units: 2m s), zj the valence, e the elementary charge 

(units: C), E the electric field ( V m ), and kBT is the thermal energy (units: joules or 

2kg m s ), with T the absolute temperature (units: deg Kelvin) and kB the Boltzmann 

constant (units: J deg ). Equation (6) has been simplified by 1) considering the high 

friction limit 2) using the Einstein relation between friction and diffusion 

coefficients. As written, equation (6) satisfies the fluctuation-dissipation relation. 

 The Gaussian white noise process arising from the atomic interactions that 

create friction is 2  ( ).kD w t=kNoise �  Note the dot above the w, which denotes 

differentiation with respect to time. ( )w t�  is the infinitely fluctuating white noise 

familiar to electrical engineers and has dimensions of 1 2t− . The integral of the white 

noise is the Brownian motion w (without the dot) and has dimensions of 1 2t . The 
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Brownian motion w has the property that if it starts from zero, its average value 

(indicated by the expected value E) is zero, ( )( ) 0E w t =  but its average fluctuation 

increases indefinitely with time, specifically, ( )2 ( )E w t t= . In particular, the 

average value of its square is 1 second, at time 1 s.t =   

 It is useful to think of the Langevin equation as a recipe for a simulation 

because the properties of ( )w t�  are bizarre (e.g., ( )w t�  crosses and recrosses any line 

an infinite number of times in any time interval no matter how brief!). That way the 

mathematical problems involved in defining random motion, which are a real and 

inescapable consequence of its randomness, are put in a concrete realizable context. 

The Langevin equation is a considerable simplification of the molecular 

dynamics of ion motion (Hynes, 1985; Hynes, 1986). It represents all the 

interactions of molecules as the result of conservative forces (i.e., that obey 

conservation of energy, like electric forces or gravitation) and dissipative forces that 

generate heat at the expense of energy. The randomness of atomic motion is thought 

to come entirely from the atomic motion that underlies dissipative forces and in its 

simplest form the Langevin equation is written with the assumption that the electric 

field and friction are independent of time. These are dramatic simplifications of the 

real situation and can be expected to be true sometimes and not true others (Rey and 

Hynes, 1996). What matters here, of course, is whether these simplifications apply 

to the open ionic channel. 

The Langevin equation specifies the motion of one ion, but that is not what 

we measure when we study current flow through a channel. We measure the 

movement of many ions and so what we seek is the property of many Langevin 

equations; we seek to convert the atomic motion of one Langevin equation to an 

estimate of the variable we measure, current. Fortunately, it is possible to write and 

solve the equations that describe current (Eisenberg, Klosek and Schuss, 1995) and 
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to simulate them as well, getting the same results (Barcilon, et al., 1993). The result 

is pleasingly simple and can be written without approximation in the form of a 

chemical reaction, as we shall soon see. 

The flow (i.e., the flux kJ  of ion k) through the channel is described by the 

diffusion equation, the Nernst-Planck equation (see Bockris and Reddy, 1970; 

Newman, 1991). 

 

( ) ( ) ( ) ( ) ( ) ( )k k
k k k k

k k k

k k

dC x C x dJ D x A x Z F x x
dx RT dx

I I Z FJ

φ µ
  = − + +   

= =∑ ∑

ex

 (7) 

( )kD x  is the diffusion coefficient of ion k in the channel. The flux kJ  of ions is 

driven by the gradient of concentration and electrical potential, which together form 

the electrochemical potential 

 ( )
�

log ( )k e k k kRT C x Z F xµ φ µ= + +
ExcessIdeal

ex
�����������

  (8) 

Then, we see that flux is proportional to the gradient of electrochemical potential 

 
( ) ( ) ( ) ( )k k

k k

D x A x d x
J C x

RT dx
µ

= −  (9) 

kµ ex  is the excess chemical potential produced by such effects as the finite size of 

ions and charged groups of the channel protein, dehydration/resolvation, and charge 

transfer through chemical bond formation. The first two terms of equation (8) 

describe the properties of an ideal gas of charged particles that interact only through 

their mean electrical potential ( ).xφ  All other properties are called “Excess”. Some 

of these other properties may arise from physical properties, e.g., the finite size of 
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spherical ions; others might be more chemical, e.g., arising from specific 

interactions of the atomic orbitals of ion and protein. 

Excess chemical potentials can be analyzed (remembering that the excess 

chemical potential is likely to be a strong function of concentration and other 

variables) within the traditions of modern electrochemistry, e.g., with density 

functional theory (Frink and Salinger, 1999; Henderson, 1992; Rosenfeld, 1966; 

Rosenfeld and Blum, 1986) or the mean spherical approximation of statistical 

mechanics (Barthel, Krienke and Kunz, 1998; Berry, et al., 2000; Blum, 1975; 

Blum, Vericat and Degreve, 1999; Durand-Vidal, et al., 1996; Simonin, 1997; 

Simonin, Blum, and Turq, 1996). We shall show later, briefly, the simplest 

treatment of these excess chemical potentials, as arising form the finite diameter of 

ions and charged groups of the channel protein, is enough to account for a range of 

selectivity phenomena in channels without invoking more chemically specific 

interactions (although it certainly has not been proven that this simple treatment is 

complete or correct). 

The flux can be written (here for the special case where Dk is independent of 

x: the general case is given in the original paper, Eisenberg, et al., 1995). 

 ( )
�

{ } ( ) { }
             

     

k k
k kk

D DC CJ
d d

↑

   = −      

Unidirectional Efflux Unidirectional Infflux

DiffusionSource   ChannelConditional
VelocityConcentration  LengthProbability

����������� ���� �

	
� 	�
��
L R L R L RProb Prob

� �����

 (10) 

In these equations, d is the channel length and the conditional probability 

Prob R L� �  describes the probability that a trajectory starting on the Left reaches an 

absorbing boundary on the R ight, when a reflecting boundary is placed at the left, 

just behind the source of the trajectories (i.e., just to the left of the source).  
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Equation (10) can be written without approximation as a rate equation, 

namely, ‘the law’ of mass action 

 LAW OF MASS ACTION 

 ( ) ( )
                           

        

out inJ J

k f k b kJ d k C d k C= ⋅ − ⋅

Unidirectional Efflux Unidirectional Infflux

����� �����
L R  (11) 

that describes  

 PERMEATION AS A CHEMICAL REACTION 

        
f

b

k

k

→←L  R   (12) 

In these equations, the rate constants kf and kb are  

( ) { } { } ( ) { } { }2 2;     out k in k
f b

k k

J D J D
k k k k

C Cd d
≡ = = ≡ = =R L R L L R L R

L R
Prob Prob  (13) 

 It is important to keep in mind that the law of mass action is not a general 

physical law. Rather, it needs to be derived from the physical laws underlying a 

system and will in general be a good approximation in some conditions, but not in 

others. Eisenberg, et al., 1995, can be viewed as a stochastic derivation of the law of 

mass action (eq. (12)) that precisely defines the conditional probabilities of eq. (13) 

and shows how they can be computed or simulated. In this way, ‘the law of mass 

action’ is shown to be valid provided bath concentrations and transmembrane 

potential are maintained fixed, and ( )xϕ  does not vary as the concentrations Ck L� �  
or Ck R� �  or transmembrane potential are varied. Surprisingly, if the law is valid at 

all, the derivation shows it is valid for any shape of the potential barrier. In this way, the 

metaphor of channel permeation as a chemical reaction (Eisenberg, 1990) can be 
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made exact. Indeed it is exact when the transmembrane potential and bath 

concentrations are kept fixed in a voltage clamp experiment. 

The rate constants and conditional probabilities can be written particularly 

neatly when friction is large and simple in behavior, described by a single diffusion 

coefficient, a single number kD  for each species k of ion. Then, if the potential 

across the channel is applV , namely ( ) ( )φ φ−L R ) 

{ } { } ( )
( )( )

{ } { } ( )
( )( )

2 2  

 0

2 2  

 0

1

1

exp

exp

1exp

exp

k applk k
f d

k

k k
b k appl d

k

d

d

Z FV RTD D
k k

d d
Z F RT d

D D
k k Z FV RT

d d
Z F RT d

φ ζ ζ

φ ζ ζ

= = = ⋅

= = = ⋅

∫

∫

R L R L

L R L R

Prob

Prob

(14) 

and the flux and current through the channel is 

( ) ( )
( )( )

( )

( )( )
  

 0  0

exp
  ;

exp exp

k k appl k
k k kd d

k k

k k k

k k

C Z FV RT C
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Z F RT d Z F RT d

I I Z FJ

φ ζ ζ φ ζ ζ
= −

= =

∫ ∫

∑ ∑

Unidirectional Efflux Unidirectional Influx������������� �������������
L R

 (15) 

At first, it may seem redundant to derive eq. (15) because eq. (7) − (13) give the 

flux as well. Eq. (15) is different, however, because it gives the flux in terms of the 

variables controlled experimentally, the bath concentrations ( )kC L , ( )kC R  and the 

membrane potential ( ) ( )applV φ φ= −L R . In this case, we can also write explicit 

expressions for the concentration everywhere, namely 
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 (16) 

remembering that ( )kC x  describes the probability of location of an ion. These 

expressions can be easily generalized if kD  depends on location (Nonner, Chen and 

Eisenberg, 1998; Nonner and Eisenberg, 1998).  

It may seem that we have solved the problem and created a macroscopic 

description of the flux through a channel that includes some atomic detail. But this 

is not the case because we have not completely specified how the permeating ions 

interact with the channel protein. The analysis up to here describes only the friction 

ions experience as they flow through a channel as do all diffusional theories of 

permeation, starting with the constant field theory of Goldman, 1943, and Hodgkin 

and Katz, 1949. But the analysis up to here does not describe how the ion interacts 

with the electric charge on the channel protein because it does not describe how the 

electrical potential ( )xφ  is produced. An explicit expression for the potential 

cannot be written because the Poisson equation defining it (eq. (17), below) has a 

second derivative in it, whereas the diffusion equation (7) defining the flux and 

concentration only contains first derivatives.  

Charge is the source of potential. It is important to remember that the fundamental 

source of the electric field is charge; charge is the fundamental electrical property of 

matter; potential is the outcome of the charge. Potential is the outcome of net 
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charge. All matter contains charge; when its negative and positive charges are 

separated in space, a potential is created. This potential cannot be maintained at a 

constant value if charges move, unless some active process compensates for the 

effect of the charge movement. 

 When a potential is maintained at a nonzero value, for example, in the wires 

that bring electricity into our homes, or in the output of a battery or power supply, it 

is done so by a machine that separates and supplies charge, a generator, or a 

chemical reaction, or a circuit of transistors, in these examples. These machines use 

energy to separate charge. Proteins and channels have limited access to energy; if 

they do not ‘burn’ ATP, or interact with pH buffers, they cannot change their 

charge. Thus, a channel protein must be described as distribution of charge, not of 

potential. The potential profile in a protein cannot be held constant. The potential 

distribution within a channel is necessarily a variable but the potential in the baths 

can be maintained constant by a voltage clamp amplifier (that uses energy to 

separate charge). Experimental apparatus cannot maintain a profile of potential 

within a channel because it cannot supply charge and energy inside the channel. 

Even if apparatus could maintain a potential at one location in a channel, it would 

significantly disturb the potential at another location. Charge added to a location 

inside a channel (e.g., by a mutation) is nearly certain to change the potential profile 

everywhere in the channel and usually in a significant way (since the current we 

measure experimentally is an exponential function of the potential profile, speaking 

loosely). Interestingly, at one location a potential can be maintained constant at a 

zero value by a passive device, simply a wire connected to ground. In that case, the 

energy to move charge through the wire comes from the electric field itself, that is 

generated by the separation of charge between system and boundary. 

Rate constants that determine flow through a channel (or chemical reaction) 

depend on the potential profile; they do not depend directly on the charge in the 
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channel protein or surrounding baths as eq. (14) makes clear. The rate constant of 

the law of mass action necessarily depends on the potential profile that limits and 

creates the rate of a chemical reaction. The potential is determined indirectly by the 

charge and the structure of the system and thus so is the rate constant. The rate 

constant cannot be expected to be constant, because changes in the potential in the 

bath, changes in the composition of the bath, changes in the charge or structure of 

the channel protein (produced by mutations, for example), will change the potential 

profile and thus the rate constant. We must determine the potential profile before we 

can determine the flux through a channel.  

From charge to potential. In the real channel, charges are moving rapidly and 

incessantly, and so the potential is changing on the time scale of atomic motion, 

namely 10––1166 sec. The  currents of biological and experimental interest are on the 

10––55 to 10––33 sec time scale. Clearly, averaging is needed to determine the potential 

profile relevant to permeation. The question is how to do that averaging.  

In general, theories must average in a way that does not mix disparate 

quantities. For example, when studying the respiratory system it is reasonable to 

study breathing in the average lungs of all humans. But when studying the 

reproductive system, it is not reasonable to average over all human beings; rather, 

one must separate humans into two groups, the functionally relevant classes, and 

then average over each of those. Similarly, when studying single filing, one must 

study ions that flow left to right, that flow right to left, that flow left to left, and that 

flow right to right. Each must be averaged separately; the potential profile must be 

computed for each; and the size of each class of trajectories must be determined 

(e.g., what fraction of trajectories are cis LL and so on). This task has only begun 

(Barkai, Eisenberg and Schuss, 1996). Here we use the simplest possible mean field 

approximation, saying that the charge averaged over the time of biological interest 

creates the potential of biological interest. Interactions in charge movement (e.g., 
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single filing phenomena) are ignored. The resulting theory must not be used to 

describe single file phenomena, but it can be used to describe net fluxes, and the 

electrical currents they produce. We present the one dimensional form of the theory 

here since that is most applicable to the great majority of channels, where structure 

is not known. When structure is known in atomic detail, a three dimensional version 

of the theory should be used (Hollerbach, et al., 2000; Kurnikova, et al., 1999). The 

validity and utility of the theory is shown by the range of conditions in which it can 

fit experimental data using parameters of definite meaning and reasonable value, 

and hopefully not too many of them. 

Once averaging has been defined, the potential must be determined by 

Coulomb’s law or the Poisson differential equation, which is its exact equivalent: 

those are the laws of electrostatics. If other forces are involved, they will contribute 

to the potential energy as well, but again how they contribute must be determined 

from the fundamental properties of those forces, usually described by a set of 

differential equations that need to be satisfied along with those already stated, e.g., 

Chen, et al., 1995. 

Here we start with the radical working hypothesis that only electrostatic 

forces are involved in permeation. We suppose that all interactions of the channel 

protein and permeating ion are described by Poisson’s equation, along with the 

frictional constant of the Nernst Planck equations. Obviously, this is just a starting 

place, adopted for the sake of simplicity. Chemical forces will be added later, as 

needed, but the philosophy of this approach is to do the electrostatics carefully and 

add additional chemical forces only where experiments show they are needed.  

Electrostatics dominate the problem because of the large charge densities and 

tiny volume of channels. The tiny volume of a channel (a 10 Å long channel of 4Å 

diameter has a volume of 5×10––2288  m33) implies that even one ion produces a large 
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concentration. If the 1 nm long channel considered above had a total permanent 

charge of –1 (e.g., it had one acidic amino acid residue), it would contain about one 

mobile charge of opposite sign to maintain approximate electrical neutrality, and the 

concentration of mobile charge would be around 13 Molar! This is an extremely 

highly concentrated solution, nearly a solid, with about 25% of the molecules being 

ions and a roughly similar fraction of the volume being occupied by ions. The 

properties of such solutions are dominated by their electrostatics, along with 

chemical contributions produced by the finite volume of the ions. 

Now, we treat just the electrostatics, using the one dimensional version of 

Poisson’s equation for the sake of simplicity, but clearly the three dimensional 

version should be used wherever it can be (Kurnikova, et al., 1999; Hollerbach, et 

al., 2000). We define the mean electrostatic potential for all ions as the solution 

( )xφ  of the differential equation  

( ) ( ) ( ) ( ) ( )
2

0 2 logr r e

d xd ddx x A x x
dx dx dxdx

εφ φε ε ε ρ
  

+ + = −    
  

 (17) 

where the average charge ( )xρ  does not include the induced charge. ( )0 r xε ε  is the 

permittivity 0ε of free space times the relative (dimensionless) dielectric coefficient 

( )r xε ; ( )A x  is the cross sectional area of the channel. The charges that create the 

potential are  

 ( ) ( ) ( )A k k

k

x eN P x Z C xρ
 
 ≡ +
  

∑  (18) 
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The charge ( )xρ  consists of  

(1) the charge ( )A k k

k

eN Z C x∑  of the ions (that can diffuse) in the channel, of 

species k of charge Zk, and mean concentration ( )kC x ; AN  is Avogadro’s 

number; typically k = Na+, K+, Ca++, or Cl− and  

(2) the permanent charge of the protein ( )P x (mol≅m-1), which is a permanent part 

of the atoms of the channel protein (i.e., independent of the strength of the 

electric field at x) and does not depend on the concentration of ions, etc, and 

so is often called the fixed charge. ( )P x  is really quite large (~0.1 to 1e per 

atom) for many of the atoms of a protein and wall of a channel. 

(3) The dielectric charge (i.e., the induced charge which is strictly proportional to 

the local electric field) is not included in ( )xρ  because it is described by 

( )xε . It is generally small compared to the structural charge and is neglected 

in our discussion (but not in our software). In this primitive model of ion 

permeation, hydration and solvation forces are only represented by their 

dielectric effects. 

We are now nearly finished with the physical description of our problem at 

its simplest level. The transport equation (7) and the Poisson equation (17) together 

specify the potential and concentration of ions everywhere in the channel, when 

they are supplemented by boundary conditions that describe how potential and 

concentration are controlled in the baths outside the channel. Once these Poisson-

Nernst-Planck equations are solved, substitution into equation (15) & (7) yields the 

current observed. These equations are sometimes called PNP for short and for my 

amusement because they are nearly identical to the drift diffusion equations of 
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semiconductors, including PNP transistors, see (Lundstrom, 1992; Selberherr, 1984; 

Sze, 1981).  

It is important to realize that the PNP system of equations is a complete 

theory. Once the properties of the channel and permeating ions are specified, once 

the transmembrane potential and concentrations in the baths are specified, all 

currents of all ions are predicted at every potential, simply by solving the equations. 

In particular, the channel is specified by its geometry and its distribution of fixed 

charge. Its interactions with the permeating ions come from the friction experienced 

by the ion (described here by a diffusion coefficient for each ion in the channel, 

which is of course different from the diffusion coefficient for the ion in the baths, 

since the local environment of the ion is so different in the channel and bath); from 

the excess chemical potential ex
kµ  if it is present; and from the electrostatic and 

diffusional forces. Those forces are outputs of the theory and are not adjustable 

independently of each other. That is why the theory is called self-consistent: all the 

variables together must satisfy the PNP equations and boundary conditions. Of 

course, the predictions may be wrong, the channel may do more to the ions than 

implied by the equations, but that is the point of experimentation, and if the 

experimentation proves the theory wrong, then one adds more physics and 

chemistry to the theory, or chooses a different approach altogether. 

Solving the PNP equations. Before we can use the PNP equations, we must solve 

them. The equations (17) & (7) are rewritten here in their simplest form for a 

channel of constant diameter, with no excess chemical potential, and dielectric and 

diffusion coefficient independent of location 

 ( ) ( )
2

0 2r A k k

k

d
eN P x Z C x

dx
φε ε

 
 = − +
  

∑  (19) 
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We must solve these equations for the concentration ( )kC x  and potential profiles 

( )xφ  within the channel, given the concentration of ions ( ) ( ) & k kC CL R in the 

baths, the transmembrane potential Vappl, the distribution of fixed charge ( )P x  

along the channel protein, and the value of the diffusion coefficient and dielectric 

coefficient within the channel (Fig. 1). Then, we take those profiles and use them to 

compute the current through the channel, from eq. (15) & (7). Solving these 

equations in one dimension is an easy task because software is available to do it. A 

program is available by anonymous FTP from ftp.rush.edu (in 

/user/Eisenberg/Hollerbach) that implements a back and forth iteration scheme that 

is very fast and accurate (to more than 15 significant figures in some 20 iterations 

that typically take less than 0.1 sec to compute). Extensive experience and 

mathematical and numerical analysis in the semiconductor community shows that 

only the back and forth scheme originally introduced by Gummel yields solutions of 

tolerable accuracy (Jerome, 1995; Selberherr, 1984). Typical integration schemes 

depending on discretization and matrix inversion will not work for equations of this 

sort. 

It would be most helpful at this stage to give analytical formulas for simple 

cases. Unfortunately, these are not known, although much effort is being made to 

derive them. We must depend then on numerical solutions. 

What do we do with these equations? The numerical solution of the PNP equations 

give a complete description of the channel in a certain sense; but how do we use 

that solution to understand biology? 
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What we do depends on our knowledge of structure. If we do not know the 

structure, we must do the inverse problem shown in Fig. 2 and discussed later to 

determine the profile of effective fixed charge ( )P x . That profile can then be used 

to predict ( )I V  curves in conditions different from those used to determine ( )P x  

curves. Comparison with reality is then a check on the theory. 

If we do know the structure of the channel, we can convert the structure  

into a prediction of current voltage relations ( ( )I V  curves) as shown in Fig. 1.  

We take the known structure, and assign charges to each of the atoms  

of the protein, using one of the well distributed programs of  

molecular dynamics. MOIL is one such program and is available free from web site 

www.tc.cornell.edu/reports/NIH/resource/CompBiologyTools/ maintained by its 

author Ron Elber. While there are ambiguities and uncertainties in the choice of 

charges, these have only second order effects on predictions of ( )I V  relations. In 

these calculations, the protein has a shape as well as a distribution of fixed charge. 

This is represented by a ‘diameter’ in a one dimensional calculation. The diameter 

varies with location in the protein and that variation is included in the theory. The 

shape of the protein is rarely known at all because of the difficulties of 

crystallization and crystallography. It is almost never known in a range of solutions, 

so the assumption is made that the structure of the protein does not change as 

transmembrane potential changes or the type and concentration of salt is changed in 

the baths. This assumption is certainly violated in some cases, and represents a 

serious restriction on the validity of any theory.  

Similar structural assumptions are commonly made when a protein’s 

function is studied by making mutations. Here the assumption of no structural 

change is particularly troublesome because crystallography of porin (e.g., Jeanteur, 

et al., 1994; Saint, et al., 1996; Schirmer, 1998) shows that most mutations produce 
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significant structural changes. Studying mutations without knowing structure is 

likely to be frustrating for this reason. In the worst case, each mutation has to be 

treated as (nearly) a new protein of unknown structure. 

The calculations of function from structure are really calculations of 

averaged function (over the biological time scale) from average structure. The 

thermal fluctuations in structure are dealt with implicitly, as are the fluctuations 

correlated with ion movement in the channel. The effects of fluctuations are 

included in the diffusion coefficient and dielectric constant (and fixed charge 

density and diameter) of the theory, although how well they are included is an open 

question. 

Diffusion coefficient. One effect of the protein on the ion is represented by the 

diffusion coefficient of each ion within the channel. The diffusion coefficient 

represents the friction on the ion, that is to say, the force opposing ionic motion 

proportional to the velocity of motion of the ion. This friction arises from collisions 

between the ion and adjacent atoms of water and the protein. Movement in 

condensed phases always involves collisions becomes condensed phases like 

proteins and water contain essentially no empty space.  

Friction also arises from electrostatic interactions of the ion with surrounding 

charges. These are forced to move when the permeating ion moves, because the 

electric field is so strong. When these neighboring charges move, they collide, 

dissipating mechanical and electrical energy into heat. (To be precise, collisions 

change a translational component of the distribution of velocities into a component 

with no preferred direction; that is to say they convert translational motion into the 

random motion we call heat: Brush, 1986.) The permeating ion in the channel 

provides the energy that is converted into heat and so experiences what is called 
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dielectric friction. Dielectric friction (as it is called) is thought to be responsible for 

most of the friction in a bulk solution or channel.  

Both collisional and dielectric friction should in principle be different at 

different locations in the channel. In our formulas, the diffusion coefficient is 

allowed to depend on location, but we do not have any good way to know this 

dependence and thus often assign it a value independent of location. Of course, each 

ion in each type of channel has a different diffusion coefficient (in general), but the 

diffusion coefficient assigned to an ion in a particular type of channel is not 

adjusted as concentration or membrane potential changes. The fits of PNP are 

achieved with single values of the diffusion coefficient for each ion in each channel 

type at all potentials and concentrations. It is remarkable that a single value of the 

diffusion constant is able to fit I(V) relations measured in a wide range of solutions. 

While this result might be coincidence, reflecting the limited number of channels 

and solutions studied to date, it seems to me more likely to be meaningful, perhaps 

a result of the nearly solid environment in the highly concentrated interior of the 

selectivity filter of channels. 

The channel’s interaction with the ion is also governed by the dielectric 

constant. The dielectric constant measures the amount of charge induced by the 

presence of a fixed charge. Because matter is held together by electrical forces 

produced by only a handful of charges in a given molecule, it is not possible to 

introduce a charge into a channel without distorting the charge distribution of the 

channel protein. A helpful analogy is with the gravitational interaction of two 

nearby binary stars. In that case, the shape of each star (i.e., its distribution of 

matter) is affected by the other star; one cannot neglect the effect of one on the 

other, as one can neglect the effect of your body mass on the shape of the earth, 

when measuring your own weight.  
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The distortion in charge in the protein is produced by many complex 

processes that take a long time to develop after an ion is moved; a few nanoseconds 

is a reasonable estimate. All these processes are crudely lumped into a dielectric 

constant in PNP; indeed, the dielectric constant also describes the process of 

solvation, namely the interaction of the ion with the channel wall and water. This 

crudity is a serious limitation to PNP, but not as serious as it seems: direct 

calculations show that varying the dielectric constant has surprisingly little effect on 

predicted ( )I V  relations, presumably because of the effects of fixed charge.  

The high density of fixed charge in channels seems to be a key to 

understanding permeation. As we have discussed, the fixed charge on the wall of a 

channel requires the presence of nearby mobile charges. These ions are found 

(mostly) in the pore of the channel, which is tiny, and so the resulting ionic 

concentrations are many molar. In solutions of this concentration, with this much 

fixed charge present, one is in a very special domain, evidently designed by biology 

for its purposes. In this domain, direct calculation shows the dielectric constant has 

only second order effects on predictions of ( )I V  relations. General considerations 

(Henderson, Blum and Lebowitz, 1979) show that correlation terms (like induced 

charge) are much smaller than mean field terms when fixed charge density is high. 

Later we shall see how the dehydration resolvation energies accompanying ion 

movement can be included in PNP by introducing an excess chemical potential. 

Driving Force for ion movement. The movement of ions through the channel are also 

determined by the driving forces on the ion, namely the concentration and electrical 

potential which determine the electrochemical potential of the ion, its free energy 

per mole. These are inputs to the PNP calculation, and are known and determined by 

the experimenter. Of course, setting the electrical potential is hardly a trivial matter. 

In experiments, an elaborate apparatus, the voltage clamp, is used to separate the 

charge (between the baths on either side of the channel) and thereby keep the 
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potential difference between them constant. The transmembrane potential can be 

maintained constant only over a limited bandwidth, typically some 10 kHz, because 

at higher frequencies more and more charge must be supplied per unit time (i.e., 

more current) to maintain the electric field. In the language of engineering, a large 

amount of current is needed to charge the capacitances of the system and the 

voltage clamp amplifier has limited ability to supply charge. Even if potential is 

maintained at zero by a direct connection to ground, a simple calculation shows that 

potentials cannot be maintained constant on atomic time scales. The currents needed 

are enormous and cannot be supported by wires and ordinary apparatus (indeed, the 

currents necessary to control potential on a femtosecond time scale, or even a 

picosecond time scale, would fall far outside the domain of electrostatics and would 

in fact radiate substantial energy as radio waves). Fortunately, these problems are 

solvable and solved on the biological and experimental time scale >0.1 msec by 

apparatus that is commercially available. Voltage clamping is a practical even 

routine procedure on the biological but not atomic time scale. 

In the animal, a voltage clamp is not available, and cells fall broadly into two 

classes, those in which the voltage is maintained more or less constant (called 

‘inexcitable’ cells) and those in which it changes quickly and are called ‘excitable’ 

cells. We will not discuss how to deal with the latter situation, which was the main 

topic of physiological investigation from Volta and Galvani to Hodgkin (who 

essentially solved the problem). The book by Weiss (Weiss, 1996) provides 

excellent introductions to this classical work. 

Control of concentration is both easier and harder than control of potential. It 

is easier in the case of most ions, because they are present in substantial 

concentrations on both sides of the channel. In that case, the number of ions that 

flow through one channel does not significantly perturb the concentration of ions 

near the channel, and the concentration is naturally controlled. Of course, this 
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situation is not absolute: the flow of ions is accompanied by a resistive potential 

drop (called an IR drop in electrical engineering, in celebration of Ohm’s law) that 

is not always negligible. Furthermore, when ion concentrations are tiny, as they are 

inside cells for Ca++++, concentrations are not necessarily constant and the variation of 

concentration must be included in the theoretical description. One way to do that, 

which is mathematically convenient, is simply to extend PNP into the baths, since it 

describes changes in concentration in response to current flow, but this is not 

enough if specialized binding systems or structures significantly modify Ca++++ 

concentration, as is usually the case. Here we only treat the simpler situation. 

This ends the catalog of variables of the PNP equations. Given the 

parameters shown in the left side of Fig. 1, or determined by the inverse process 

shown in Fig. 2, the PNP equations predict the current through the channel. Rather, 

they predict the profile of potential and concentration in the channel eq. (17)  &  

(16), from which the current can be predicted by simple integration, as we have 

seen eq. (15). The theory can be checked by varying potential and concentration in 

the bath and seeing if the current varies as predicted. Usually the diffusion 

coefficient and dielectric constants are not known, even if the structure is, so an 

absolutely direct or forward calculation is not possible. Usually, one assigns a 

diffusion coefficient and dielectric constant so one ( )I V  relation is fit and then sees 

how well those parameters explain the properties of the channel in general, that is to 

say, one sees how well a single value of diffusion and dielectric coefficient can 

explain the ( )I V  relations measured in a range of solutions. 

Biology of permeation. If the theory fits a reasonable range of data, one can begin to 

do the more usual biology of permeation. One can then ask how the ( )I V  relation 

is produced? How does it change as ion types change? How does a change in the 

protein’s charge or shape change the biological function of the molecule?  
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These questions are answered by directly calculating the profile of electrical 

potential in the channel and the profile of concentration of each ion. Looking at 

these, one can develop insight into how the ( )I V  relation is produced by the shape 

and charge of the protein, and the concentration and potentials of the bath. 

A general understanding of the role of these variables is not yet available, 

although it is being worked on. Certain principles have already emerged. If the 

channel has more or less uniform fixed charge (i.e., it has no regions where the 

charge changes sign or reaches zero), the action of the fixed charge is to buffer the 

concentration of ions in the channel. Electroneutrality guarantees that the number of 

ions in the channel nearly balances (‘neutralizes’) the fixed charge on the wall of 

the channel, over a wide range of applied potentials and concentrations of ions. The 

occupancy of the channel is determined by the charge on the walls of the channel, to a 

large extent. Thus, the contents of the channel are quite constant, and the 

resistance/conductance of those contents are quite constant as well. What variation 

that does occur is at the edges of the channel, where boundary layers do vary with 

concentration and potential. Such boundary layers are not without importance, 

because they are in series with the channel, and they in fact regulate the properties 

of analogous systems in semiconductors (Streetman, 1972) and make them into 

useful devices like transistors. Nonetheless, it is customary to ignore the boundary 

layers in a first order qualitative analysis of channels. (Boundary layer potentials are 

enough to explain many of the anomalous properties of ion channels, e.g., Nonner, 

et al., 1998; Nonner and Eisenberg, 1998.) 

Linearity of I(V) relations. In general PNP predicts single channel ( )I V  relations that 

are fairly linear, even when the concentrations of ions are very different on the two 

sides of the channel because of the buffering effect just discussed (see Fig. 6 & 7). 

Or to put it more precisely, PNP predicts that ( )I V  relations will not change much, 
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as solutions are changed on one side or the other of the channel. This behavior of 

PNP is strikingly different from the behavior of constant field or barrier models, 

which invariably (in the first case) or usually (in the second case) show large 

changes in ( )I V  relations in asymmetrical solutions, with different concentration of 

ions on both sides. While little data of this sort has been published, what has been 

published is quantitatively in agreement with PNP. Anecdotally reported 

experiments suggest that many other channels have ( )I V  relations that are 

surprisingly insensitive to asymmetry in bath concentrations. If asymmetry in bath 

concentrations is found to change ( )I V  relations, PNP may, or may not be able to 

fit the data, depending on the many factors, particularly the properties of boundary 

layers and anomalous properties produced by localized excess potentials (Nonner, 

et al., 1998). 

What if we do not know the structure? In most cases, the structure of the channel is 

not known, and we must proceed with an inverse problem, as shown in Fig. 2. Here 

we must determine the profile of fixed charge ( )P x  that produces the observed 

( )I V  relations, along with the diffusion coefficient of each ion, and the dielectric 

constant. Once ( )P x  is determined from data in one set of solutions, it can be used 

to predict ( )I V  relations in other solutions. Comparison with reality serves to 

check the theory. 

This inverse problem can be solved with reasonable reliability if one works 

hard and is clever. If experiments are available in many solutions, it has been 

possible to determine the effective fixed charge density. If mutations in the channel 

are available—that change the charge, for example—it is possible to see if they fit 

as well, assuming that the protein structure is not changed by the mutation. In all 
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these calculations, it is best to treat the diffusion coefficient as a constant, 

independent of location, with a different (but constant) value for each type of ion.  

Much can be learned about permeation this way, because the profile of 

potential and concentration in the channel can be calculated for each applied 

potential, concentration, and mutation of interest. One develops molecular and 

atomic insight by varying the charge on the protein (or permeating ion), by varying 

its diffusion coefficient, for example, and seeing how that changes the profiles of 

potential and concentration of each ion, and thereby the ( )I V  relation of the 

channel. 

The fixed charge profile ( )P x determined this way is an effective profile and 

its relation to the charge density of the actual protein is not yet known. This is a 

complex and subtle problem even without the ambiguities of curve fitting (i.e., we 

do not know how to derive the effective one dimensional profile from a known 

three dimensional profile) and requires much more attention. 

What are the general conclusions? PNP is a young enough theory that many general 

conclusions are yet to be discovered. One conclusion is overwhelmingly clear, 

however, and that is the importance of the potential profile (Eisenberg, 1996). PNP 

shows what is clear on very general grounds: the profile of potential in a channel is 

a sensitive function of ionic concentration in the bath, and of the applied potential, 

the charge on the protein, and most other parameters of the system. 

The potential profile is not constant in any sense. It varies in space and it 

varies with experimental conditions. The potential profile is produced by the fixed 

charge on the protein and the charges applied to the boundaries to maintain the 

applied potential; the charges in the bath rearrange themselves to balance the fixed 

charge of the protein and the applied charge on the electrodes. The rearrangement of 
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charge reduces the effects of the charge of the protein and the electrodes; the bath 

ions are said to shield those charges. 

Shielding phenomena of this sort play a dominant role in many electrical 

phenomena, for example, the effects of a Faraday cage of metal on the potential 

inside, and it should not be surprising that they are dominant in channels. 

We now look at the size of these effects for a particular channel gramicidin. 

Here Uwe Hollerbach has calculated the potential distribution inside a gramicidin 

with the charge distribution shown in Fig. 3. (The calculation was done in three 

dimensions but the averaged charge is shown for reasons of visual clarity. The 

distribution of permanent charge is not symmetrical because an energy optimized 

structure was used that happened not to be symmetrical, see Elber, et al., 1995). Fig. 

4  & 5 show that the potential profile is a sensitive function of concentration. Note 

the scale of the ordinate. We have commented that potential energy changes must 

be small compared to kBT ~ 25 meV if they are to be negligible. The shielding 

effects seen here are not small. Fig. 6  &  7 show the corresponding ( )I V  curves 

and Fig. 8 shows the occupancy. Note that the occupancy is not particularly well 

buffered in gramicidin because gramicidin has zero net charge. In channels with net 

charge on their wall, occupancy is buffered more strongly. 

The existence of shielding has profound effects on our qualitative 

understanding of channels. Eq. (12) through (15) show that the flux and current 

through a channel depend exponentially on the potential profile. In particular, the 

rate constant depends exponentially on the potential profile. Fig. 4 & 5 show that the 

potential profile is a sensitive function of concentration and we have argued (with 

some rhetorical excess) that the potential profile is a sensitive function of 

everything, hardly ever constant in space or with changes in conditions. Thus, rate 

constants must depend a great deal on concentration and other conditions. Since rate 
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constants are almost always assumed independent of concentration in ‘Eyring style’ 

models, there is evident difficulty here. This difficulty extends to the study of 

proteins and active sites in general (Eisenberg, 1990), where rate constants are 

nearly always assumed independent of concentration and other parameters that are 

certain to change shielding and potential profiles, in the majority of cases. 

The dependence of potential profiles on concentration and shielding shown 

in Fig. 4 & 5 is clear, but what is not clear are the general implications. These are 

best seen in a related field of science, computational electronics, where equations 

very much like PNP are used to describe the current flow through diodes, 

transistors, and other semiconductor devices. Here the qualitative properties of 

devices are determined by the shape of the electric field (Streetman, 1972; Sze, 

1981).   

This idea needs expansion because it may serve as a productive analogy to 

motivate future research on channels as practical devices. When the electric field 

has one shape, a transistor will behave like a resistor with linear ( )I V  relations; for 

another shape of field, it will behave like a diode, with exponential ( )I V  relations. 

For other, shapes of field, the transistor does more interesting things, acting as a 

linear amplifier, as a nonlinear logarithmic amplifier, as a multiplier, a limiter, and 

so on and so forth. A transistor can be many different devices without any physical 

change inside the transistor. The distribution of its fixed charge is not changed. All 

that is changed is the shape of the electric field and that is simply changed by 

applying different steady potentials (and currents) to the terminals of the devices. A 

great deal of our technology (and standard of living) arises because of the ease with 

which definite reproducible functions can be performed by transistors.   

It is possible that proteins and channels exploit the PNP equations in the 

same way, although that is certainly only speculation at this time. What is clear is 
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that assuming constant profiles of potential, and rate constants independent of 

concentration and shielding phenomena, makes it difficult to study that possibility. 

What has been done? Channel permeation has historically been studied in two 

different traditions. Diffusion models of permeation started a long time ago, and 

reached many workers through the papers of Goldman, 1943, and Hodgkin and 

Katz, 1949, producing the widely used GHK equation. These papers use the 

diffusion equation to describe ion motion much as PNP does, but they allow the 

permeating ion to interact through the protein only through the diffusion coefficient, 

the permeability. The potential profile is assumed constant in space and with 

conditions, and the protein is assumed to have no role in creating this profile. Despite the 

evident historical importance of these papers, and the great advance they 

represented, they clearly are inadequate to describe how the charge and structure of 

a protein produces permeation. The relevant variables do not appear in the theory 

and so can have no effect on its outputs. 

If the constant field theory is abandoned, we have the painful necessity of 

abandoning its consequences. Quantitative estimates of selectivity built on the 

permeability equation of constant field theory cannot be made using an equation 

without basis. Otherwise, we abandon the most fundamental of principles of 

science, namely to derive theories from principles and physical models and then test 

those theories against experiments. If there is no sensible physical model that gives 

an equation, checking that equation against experiments has only limited use, and 

no physical meaning.  

Unfortunately, a qualitative theory of permeability is not yet available to 

replace that of constant field theory. It is being worked on, but is not finished. Until 

then, we must work without the crutch of the GHK equation, in my opinion, since a 
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broken crutch is likely to give way at the most awkward moment, casting its user 

into the maelstrom and turning a cripple into a dead man. 

Permeation has also been studied in the tradition of barrier models, in the 

spirit of Eyring models of chemical reactions. This subject has been extensively 

reviewed and that need not be repeated here (Cooper, Jakobsson, and Wolynes, 

1985; Cooper, Gates and Eisenberg, 1988a; Cooper, Gates and Eisenberg, 1988b; 

Nonner and Eisenberg, 1998). Suffice it to say that such models have certain 

difficulties: 

1) The models assume large barriers. They do not apply if barriers are small. 

2) The models assume barriers that do not change with concentration or 

applied potential. 

3) The models do not involve a physical description of the channel protein. 

They do not specify how the potential barrier arises from the charge 

and/or chemical properties of the protein. 

4) The models use a form of barrier theory applicable to gas phase chemical 

reactions even though ion permeation occurs in a condensed phase. That 

is to say, they describe the rate constant by ( ) ( )expB Bk k T h e k T= Φ . If 

the correct expression (14) is used (Fleming, Courtney and Balk, 1986; 

Hänggi, Talkner and Borokovec, 1990; Pollak, 1996), barrier models 

cannot predict currents of the same order of magnitude as observed in most 

channels. 

5) In many cases, barrier models have been used arbitrarily, with any 

prefactor the scientist wishes, even with prefactors that change from 

condition to condition. In this case, barrier models do not form a physical 

theory and so cannot be used to relate structure to function. 
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For these reasons, I believe that barrier models of the type widely used in the 

literature of permeation must be abandoned. What to replace them with is an open 

question. I believe PNP is a decent first replacement. But it is obviously only a 

crude approximation to the real physics of permeation and needs to be extended and 

replaced with high resolution models. 

What needs to be done? Much must be done to create a new model of permeation. 

Clearly, the model must be selfconsistent, computing the electric field from all the 

charges present; clearly it must have high resolution and predict the actual 

parameters measured and controlled in experiments. PNP does much of this, but 

with evident difficulties. 

PNP in the simple form presented here does not deal with selectivity between 

ions. PNP can extended to do this by considering the excluded volume of ions, by 

describing the chemical potential of solutions of spheres. This work has just begun 

(Nonner, Catacuzzeno, and Eisenberg, 2000), but the beginning is hopeful (Boda, et 

al., 2000). Many mean field theories exist of concentrated salt solutions; many 

experimental measurements of the excess chemical potential of these solutions have 

been made. It is already clear that simply including these excess chemical potentials 

is enough to give selectivity of the type found in L-type calcium channels. Much 

work is needed to see how far this approach can be extended. 

PNP does not deal with unidirectional fluxes in its simplest form, although it 

can be extended to do so. But unidirectional fluxes are important in defining single 

file properties of channels. A selfconsistent theory of unidirectional fluxes is clearly 

needed. 

Finally, PNP is a mean field theory, ready from its conception to be replaced 

by a trajectory based theory, in which individual atoms and trajectories are 

computed and analyzed. The difficulties of such a theory should not be minimized. 



Bob Eisenberg  Permeation as a Difussion 

43 

For example, the experience of hundreds or thousands of physicists show how easy 

it is to make subtle errors in the calculations. The general rule is that a trajectory 

based calculation must be shown explicitly to give Ohm’s law on the one hand and 

on the other hand, to calculate the electrostatic energy of a simple geometry (i.e., its 

electric field or capacitance) before it can be accepted as correctly formulated and 

programmed. 

There is no doubt that such a theory will reveal inadequacies in PNP, because 

there is no doubt that a single mean field theory cannot describe the full domain of 

behavior of channels, e.g., when discreteness of charge matters. This has been 

evident to the authors of PNP since before its conception. Indeed, these difficulties 

nearly blocked the romance needed to make conception possible. What is surprising 

is not the inadequacies of PNP but rather its successes. As in the world of 

semiconductors, a mean field theory has helped considerably in understanding the 

transport of charge, the permeation of ions through channels.  

As we move to higher resolution selfconsistent models, let us hope we can 

retain the virtues of simplicity and not be forced to swim in a sea of trajectories, in 

which we can drown unknowing of the buoyancy simple physics can provide us, 

when properly used.  
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Captions 

 

Fig. 1. Forward Problem. The inputs and theory needed to predict the current 

through the channel. 

Fig. 2. Inverse Problem. The assumptions and experimental results which are inputs 

to the theory, used to determine the properties of the channel protein. Once the 

protein properties are determined, they can be used in the Forward Problem of Fig. 

1 to predict properties of channels in other situations. 

Fig. 3. The averaged charge density along gramicidin. Calculations were done in 

three dimensions but the averaged charge is shown for reasons of visual clarity. The 

distribution of permanent charge is not symmetrical because an energy optimized 

structure was used that happened not to be symmetrical, see Elber, et al., 1995. 

Fig. 4. Averaged potential along the channel at different bath concentrations. Note 

the large effect of salt concentration on the potential profile. Such effects are caused 

by the different amounts of screening (i.e., shielding) of the fixed charge on the 

channel protein. 

Fig. 5. Averaged potential along the channel at different bath concentrations. Note 

the large effect of salt concentration on the potential profile. Such effects are caused 

by the different amounts of screening (i.e., shielding) of the fixed charge on the 

channel protein. 

Fig. 6. Current voltage relations in the solutions shown in Fig. 4 and 5. 
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Fig. 7. Current voltage relations in the solutions shown in Fig. 4 and 5. 

Fig. 8. The occupancy (i.e., integral of concentration) of the channel in different 

solutions when the transmembrane potential is zero.   

 

 

 

 

 

 

 

 


