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We simulate sodium chloride currents through the gramicidin A channel using
the spectral element method to solve the three-dimensional Poisson–Nernst–
Planck (PNP) equations. Using the spectral element method, we are able to
simulate the entire channel, plus large enough portions of the lipid bilayer and
baths to ensure that all boundary conditions are realistic. In these simulations,
we rely on the 3D charge distribution of the gramicidin molecule plus diffusion
coefficients and dielectric coefficients. Our main results, which match the exper-
imental data, are current-voltage (IV) curves for gramicidin at various concen-
trations of Na+Cl− in the surrounding baths. We give a detailed description
of the numerical algorithms used to solve the PNP equations, and we present
various sensitivity analyses which we have performed to determine which
parameters of the model most affect the IV curves.
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finite element method.

1. INTRODUCTION

This paper describes the simulation of sodium chloride currents through
the gramicidin A channel using the three-dimensional Poisson–Nernst–
Planck (PNP) equations, a self-consistent mean-field approximate descrip-
tion of ionic motion. Two forces act on an ion in this theory: the electro-
static force produced by all other charges in the system, governed by the
Poisson equation, and a diffusion ‘‘force’’ caused by variations in the
concentration of ions, governed by the Nernst–Planck equations, which are
an expression of the conservation of mass. The PNP equations are solved



using the spectral element method, which is a particular kind of finite
element method. This paper describes the spectral element method in some
detail, using the PNP description of the gramicidin channel as a worked
example. This problem has previously been studied by (Kurnikova et al.,
1999), who used a uniform grid to solve the PNP equations inside the
channel, but could not reach far into the baths, and therefore used an arti-
ficial boundary condition at the channel entrances. In contrast, with the
spectral element method it is possible to place the elements in such a way
that there is high resolution in those places where it is needed, and low
resolution elsewhere. As a consequence, it is thus possible to include realis-
tic portions of the baths in our simulations and thereby use physically more-
correct boundary conditions. In addition, (Kurnikova et al., 1999) set
DNa+=DCl − to an arbitrary value, then scaled their results to match one
experimental point, and finally compared their scaled results against all
other experimental points. In our work, there is no fitting of the 3D model
to the experimental data; indeed, the model which we describe here has
(almost) no internal non-physical parameters which might be adjusted to
improve the fit (the placement of spectral element boundaries could in
principle be used for this purpose). We rely solely on the 3D charge distri-
bution of the gramicidin molecule, three dielectric coefficients, and four
diffusion coefficients, to match the data.

Our main results are current-voltage (IV) curves for gramicidin at
various concentrations of Na+Cl− in the surrounding baths. These currents
are produced by the distribution of electrical and chemical potential in the
channel, and those profiles are shown in a few cases to illustrate the
importance of shielding. Various sensitivity analyses have also been per-
formed to determine which parameters of the model most affect the IV
curves.

2. GENERAL MATHEMATICAL METHODS AND EQUATIONS

2.1. Massaging of PNP Equations

We begin by showing all the steps that are required to convert the
PNP equations from their original forms into the versions used in solving
them numerically. The target form for the equations is the Helmholtz
equation, N · (PNU)−QU=−S, which is to be solved for U in some
domain W. The details of the solution procedure, as well as what boundary
conditions are allowed and how they are applied, are described further
down. This so-called ‘‘self-adjoint’’ target form is desirable because it has
been studied a great deal; indeed, much of the mathematical physics
(Courant and Hilbert, 1989) and finite element (Strang and Fix, 1973;
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Zienciewicz, 1971) literature deals with the analytical and numerical solu-
tion of such equations.

2.1.1. Poisson Equation

The starting point is the Poisson equation (Jackson, 1975), which
specifies the electric potential given the charge density:

N · (E0ErelNf)=−e C
species

ziCi (1)

Here E0 is the permeability of free space, Erel is the relative dielectric coeffi-
cient and varies from about 1 to 80, f is the potential in volts, zi is the
charge state of an ion (typically ±1), e is the charge of the proton, and Ci

is the concentration of an ion species, measured in meter−3.
Potentials are made non-dimensional by the thermal voltage kT/e,

lengths by d=1Å, and concentrations by Cbase — E0kT/(e2d2); then the
nondimensional Poisson equation reads

N · (ErelNfg)=− C
species

ziC
g
i (2)

where now the derivative operators are non-dimensional, fg is the non-
dimensional potential, and Cg

i is the non-dimensional concentration of
species i. The equation is already in the desired Helmholtz target form,
so no further modifications are necessary for the Poisson equation at this
stage.

2.1.2. Nernst–Planck Equations

These equations, one per ionic species, relate the current density
produced by each species to two driving forces: the electric field and the
concentration gradient of that species. Mean-field equations of this sort are
the starting point of much analysis in physics because they arise so directly
from conservation laws, as described in many texts (Nicholson, 1983;
Selberherr, 1984). Higher-resolution models are desirable, of course, par-
ticularly when dealing with systems as small as ionic channels, but ensuring
that their results actually satisfy macroscopic conservation laws and con-
stitutive relations (e.g., Ohm’s law and Fick’s law in appropriate domains,
and the Poisson equation, in general) is a non-trivial task, necessary but
not always performed.

Jcurrent=−z2emCNf−zeDNC (3)
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This is the fully-dimensional drift-diffusion equation, where m is the
mobility, D is the diffusion coefficient, and Jcurrent is the electric current
density. Note that we use the ‘‘conventional mobility,’’ defined as charge
times velocity divided by force (Selberherr, 1984) [a good discussion of
various definitions of mobility can be found in chapter 4 of (Bockris and
Reddy, 1998)]. The Einstein relation, which is D=mkT/e using this defi-
nition of mobility, is assumed to apply. The equation is then partially non-
dimensionalized by factoring the thermal voltage kT/e out of the potential.
Then

Jcurrent=−z2eDCNfg−zeDNC

=−zeD(NC+zCNfg) (4)

The above equation describes the electrical current density; by dividing out
the charge of the species (=ze), one obtains the expression for the particle
flux density Jflux, which is what is actually used in the computation. The
non-dimensionalization of the equation is completed by defining Dbase as
the unit of the diffusion coefficient, and Jbase — DbaseCbase/d as the unit of
particle flux density. Then the final, non-dimensional, form of the equation
is

Jg
flux=−Dg(NCg+zCgNfg) (5)

Since all quantities are now nondimensional, and will be kept in that form,
the superscript g will be dropped from here on.

This equation is used in the steady state, where there is no net inflow
or outflow of ions at any point; equivalently, the divergence of Jflux is
required to be zero everywhere:

N · Jflux=−N · (D(NC+zCNf))=0 (6)

This is the equation which actually gets solved for C. However, it is not
yet in the target form. This may be achieved by including the integrating
factor ezf; once this is done, the equation can be written as

N · (De−zfN(Cezf))=0 (7)

Using this integrating factor can lead to difficulties when potentials become
large because of the large dynamic range of the unknown variable Cezf.
Fortunately, potentials are usually relatively small in biological applica-
tions, so the use of the integrating factor does not usually cause problems.
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2.1.3. Boundary Conditions

The gramicidin channel is effectively a very small hole in a membrane
separating two baths. There is one electrode in each bath, and the potential
on each electrode is maintained by external electronics. In the simulation,
this setup is modeled by applying Dirichlet boundary conditions for the
Poisson equation along ‘‘electrode’’ portions of the boundary, namely in
the bath far from both the channel and the lipid bilayer. Along the
remainder of the boundary, no boundary conditions are explicitly specified,
which implicitly results in conditions corresponding to a zero normal elec-
tric field. Although the computational boundaries at which the boundary
conditions are applied are far closer to the channel than the electrodes are
in the physical system, this does not cause any significant difficulties,
because the resistance of the bath is very small compared with the resis-
tance of the channel; thus the voltage drop and concentration gradient in
the bath are tiny compared with the voltage drop and concentration gra-
dient in the channel, and the potential and concentration in the physical
system at the location of each computational electrode are very close to the
potential and concentration on the appropriate physical electrode.

For the Nernst–Planck equations, we take advantage of the relatively
huge size of the baths on either side of the membrane compared to the
current (both electrical and fluid) that flows through the channel. Because
the baths are effectively infinite reservoirs, the concentrations on either side
of the channel are unchanged by any flows through the channel; thus
Dirichlet boundary conditions are also appropriate for the Nernst–Planck
equations at the ‘‘electrode’’ portions of the computational boundary.
Along the other boundaries, we again impose zero-flux boundary condi-
tions. For the Nernst–Planck equations, the boundary also includes the
surface of the lipid bilayer, as well as the wall of the channel, because ions
do not penetrate these surfaces at appreciable rates. Thus zero-flux
boundary conditions are also applied at these surfaces.

All of these boundary conditions correspond to quantities that are
easily measured and that are physically meaningful; as will be shown, they
are also easy to apply numerically.

2.2. Gummel Iteration

Before we present the detailed description of the solution procedure
for an individual Helmholtz equation, it is worthwhile spending a moment
on the overall solution scheme, because there is an apparent paradox which
needs to be resolved: the Poisson equation solves for the electric potential f
if the concentrations Ci are known, and the Nernst–Planck equations solve
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for the concentrations if the potential is known. This would appear to be a
circular set of dependencies, making it difficult to solve for any of the
quantities. This turns out not to be the case if the Poisson equation is
rewritten slightly, by subtracting the term (; species z2

i Ci) f from both sides:

N · (ErelNf)−1 C
species

z2
i Ci
2 f=− C

species
ziCi −1 C

species
z2
i Ci
2 f (8)

This modification, which preserves the Helmholtz form of the equation, is
a crucial step in what is known in the semiconductor literature as the
Gummel iteration. The exact magnitude of the additional term is important
for convergence; for a much more detailed treatment, see (Selberherr, 1984;
Gummel, 1964; Jacoboni and Lugli, 1989; Jerome, 1996).

The actual work of the Gummel iteration then goes as follows: instead
of treating all occurrences of f equally, the f on the right side of the
Poisson equation is treated as a known quantity. The iteration begins by
assuming an arbitrary value for f—say, f=0 everywhere. (Of course, the
better the initial guess, the faster the iteration converges.) This initial value
of f is used in the Nernst–Planck equations to solve for approximate con-
centrations Ci; then the old value of f and the just-computed approximate
concentrations are used in the modified Poisson equation to solve for an
improved value for f. The loop is closed by using this improved value for
f in the Nernst–Planck equations again, and so on. This iteration scheme
proves to be quite robust. In the authors’ experience, it converges rather
reliably to a set of self-consistent solutions of the individual equations,
taking anywhere from 5 to 30 iterations to achieve a relative accuracy
of 10−9.

2.3. Solution of Helmholtz Equations

The spectral element method (Patera, 1984; Ghaddar, Karniadakis,
and Patera, 1986) is a particular type of finite element method with two
special characteristics. First, the basis functions are orthogonal polynomials;
here, Legendre polynomials were used, but other families of orthogonal
polynomials can also be utilized. Second, the philosophy for improving an
under-resolved solution is different from that used in the standard finite
element method. In the standard finite element method, if a solution is
computed which has too large an error, some or all of the elements are
subdivided and the solution is recomputed on the finer mesh. In the spec-
tral element method the order of the polynomials used inside each element
is increased instead, without changing the number or shape of elements.
This also leads to a finer mesh, but the convergence behavior is different
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for the two approaches: with the spectral element approach, it is possible to
attain an exponential convergence to the true solution as the order of the
polynomials is increased, provided that the true solution is smooth enough.
If there are discontinuities in the derivatives, convergence to the true solu-
tion is significantly improved by placing element boundaries along the
discontinuities. The standard finite element method, on the other hand, is
better if the solution is not particularly smooth.

2.3.1. Conversion of a Helmholtz Equation into an Integral Form

Consider again the general equation

N · (PNU)−QU=−S in some domain W with boundary C (9)

Here P is required to be non-negative and real; Q, S, and U may in general
be complex, although in the present work only real functions are used. The
sign of Q affects what kinds of solution procedures can be used; this point
will be discussed in more detail later. The following types of boundary
conditions are allowed: “U/“n+aU=b (here “/“n denotes the outward
normal derivative) along C1, and U=U0 along C2, where C1 and C2 are
distinct parts of the boundary C, and a, b, and U0 are known functions. An
equivalent integral form of the problem is obtained by multiplying the
differential equation by some suitable test function W and then integrating
by parts over W:

F
W

(PNW NU+QWU) dV−F
C

WPNU·dS=F
W

WS dV (10)

The natural boundary conditions “U/“n+aU=b are incorporated by
multiplying them by another test function w, integrating over C1:

F
C1

1w “U
“n

+waU−wb2 |dS|=0 (11)

and adding the result to the first integral over W. The boundary test func-
tion w is set equal to −WP on C1, so that the terms WPNU and w “U/“n
cancel each other along C1 (NU·dS=“U/“n |dS|). The second type of
boundary condition, U=U0, is imposed along C2, by restricting the solu-
tion space from which the U are drawn, and the corresponding term in the
integral equation is removed by requiring W=0 along C2. The final form
of the equation is

F
W

PNW NU+QWU dV+F
C1

WPaU dS=F
W

WS dV+F
C1

WPb dS (12)
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In this equation, only first derivatives of the unknown U appear, whereas
in the original differential formulation second derivatives appear. This
means that some solutions of the integral equation may not satisfy the dif-
ferential equation: specifically, some solutions of the integral equation may
be continuous but may not have a continuous derivative. These solutions
cause no harm in the integral equation, but in the differential equation they
would give rise to delta-functions that do not satisfy the equation in the
classical sense. For this reason the integral formulation is also called the
weak formulation of the problem.

2.3.2. Discretization of the Integral Equation

The integral equation is discretized by splitting the domain W into a
number of distorted rectangular (in 2D) or brick-shaped (in 3D) elements.
In each of these elements, the unknown U and the test function W are
represented as tensor products of high-order polynomials: specifically, any
function F(x) is approximated as

F(r, s, t)=C
Nr

i=0
C
Ns

j=0
C
Nt

k=0
Fijkhi(r) hj(s) hk(t) (13)

where Fijk is the value of F(x) at the (i, j, k)-th node and hl is the 1D
Lagrangian interpolant polynomial associated with the lth node: it has
the property that if ri is the position of the ith node, then hl(ri)=dil, the
Kronecker delta. Nl is the order of the polynomials in the l-direction. In
addition, it is necessary to specify a translation between the element-local
coordinates (r, s, t) and the global coordinates (x) in which the original
problem is specified. This translation can be performed quite conveniently
by expressing (x) itself in the above functional form:

x(r, s, t)=C
Nr

i=0
C
Ns

j=0
C
Nt

k=0
xijkhi(r) hj(s) hk(t) (14)

Derivatives are also easily evaluated:

“F(r, s, t)
“r

=C
Nr

i=0
C
Ns

j=0
C
Nt

k=0
Fijkh

−

i(r) hj(s) hk(t)

— C
Nr

i=0
C
Ns

j=0
C
Nt

k=0
F −ijkhi(r) hj(s) hk(t) (15)
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To find the values of the coefficients F −ijk, it is simply necessary to evaluate
the derivative at a particular node, say lmn:

C
Nr

i=0
C
Ns

j=0
C
Nt

k=0
F −ijkhi(rl) hj(sm) hk(tn)

=C
Nr

i=0
C
Ns

j=0
C
Nt

k=0
Fijkh

−

i(rl) hj(sm) hk(tn) (16)

Because the hl are Kronecker deltas, the sums over j and k vanish, as does
the sum over i on the left side:

F −lmn=C
Nr

i=0
Fimnh

−

i(rl) — C
Nr

i=0
FimnDil (17)

This equation defines the 1D derivative matrix Dij=h −i(rj). (There is, of
course, a separate derivative matrix for each polynomial order and thus for
each direction.)

If the above functional form for U and for W is substituted into the
integral equation, the result is a discrete set of linear equations for Uijk, the
unknown values of U at the nodal points, given a particular set of test
functions W. One simple set of test functions is the set of Lagrangian
interpolants themselves: Wijk=hi(r) hj(s) hk(t). It is now only necessary to
choose the set of basis functions and the integration method in order to be
able to compute the integrals and so find the matrix equation which will
determine the Ui, j, k. In the present work, Legendre polynomials have been
used as the underlying basis functions, and Gauss–Lobatto integration to
compute the integrals; this choice is particularly convenient because the
integration points of the Gauss–Lobatto integration are the same as the
element nodes. With this choice, this representation converges exponen-
tially (faster than any power of 1/Nl) as Nl increases, provided that the
solution to the Helmholtz equation is continuous and the elements are
chosen properly.

2.3.3. Computation of Matrix Elements and Source Terms

Once the basis functions and integration method have been chosen,
the integrals must be evaluated in order to find explicit formulas for all
matrix elements. These will first be computed for individual elements;
putting the elements together into a global set of equations will be
addressed later.
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2.3.4. Matrix Elements due to N · (PNU)

Consider first the evaluation of the term > PNW NU dV:

NU=R
“U/“x

“U/“y

“U/“z

S=R
“r/“x “s/“x “t/“x

“r/“y “s/“y “t/“y

“r/“z “s/“z “t/“z

SR“U/“r

“U/“s

“U/“t

S (18)

The evaluation of the derivatives “U/“(r, s, t) was described above; the
‘‘inverse’’ derivatives “(r, s, t)/“(x, y, z) may be computed in the following
manner from the geometry transformation between local and global coor-
dinates: (x, y, z) is known as a function of (r, s, t), so that “(x, y, z)/
“(r, s, t) is easily evaluated; then, because they are inverse transformations
of each other:

R“r/“x “r/“y “r/“z

“s/“x “s/“y “s/“z

“t/“x “t/“y “t/“z

S=R
“x/“r “x/“s “x/“t

“y/“r “y/“s “y/“t

“z/“r “z/“s “z/“t

S
−1

(19)

At this point, NW and NU can be evaluated using only quantities known at
the element nodes, and it is now necessary to integrate over the volume of
the element. Because the problem is specified in terms of the global coor-
dinates (x, y, z), but the integral is most conveniently evaluated in terms of
the local coordinates (r, s, t), the Jacobian of the transformation must be
included in the integral. The Jacobian is just the determinant of the matrix
“(x, y, z)/“(r, s, t). By using Gaussian quadratures to evaluate integrals,
the integral can be approximated as a weighted sum:

F PNW NU dV= C
Nr

i, l, o=0
C
Ns

j, m, p=0
C
Nt

k, n, q=0
WT

lmn
RD

T
lodmpdnq

dloD
T
mpdnq

dlodmpD
T
nq

S

·R
G1, 1

opq G1, 2
opq G1, 3

opq

G2, 1
opq G2, 2

opq G2, 3
opq

G3, 1
opq G3, 2

opq G3, 3
opq

SRDiodjpdkq

dioDjpdkq

diodjpDkq

S Uijk (20)

where

Gmnopq=Gnmopq=PopqJopqrorprq 1
“rm
“x
“rn
“x

+
“rm
“y
“rn
“y

+
“rm
“z
“rn
“z
2 (21)
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The derivative matrices on the left are transposed because they act on the
WT

lmn. Jijk is the Jacobian evaluated at node ijk; rl is the 1D weight for the
Gaussian integration. The individual matrix elements are just the coeffi-
cients of Wlmn and of Uijk:

Aijklmn=C
Nr

o=0
C
Ns

p=0
C
Nt

q=0

RD
T
lodmpdnq

dloD
T
mpdnq

dlodmpD
T
nq

SRG
1, 1
opq G1, 2

opq G1, 3
opq

G2, 1
opq G2, 2

opq G2, 3
opq

G3, 1
opq G3, 2

opq G3, 3
opq

SRDiodjpdkq

dioDjpdkq

diodjpDkq

S (22)

Because the W have been chosen to be Lagrangian interpolants, it is not
necessary to do any summations over the indices of W when writing the
final matrix equation, as the coefficients Wlmn are all 0, except for one
which is 1. Thus the indices of W serve only to specify which equation is
under consideration. In addition, this choice for the W means that these
matrix elements, and the others considered below, do not change when the
indices ijk and lmn are exchanged, which means that the resulting matrix
will be symmetric. This symmetry can be used to speed up the numerical
solution of the matrix equation.

2.3.5. Matrix Elements due to QU

The next integral which must be evaluated is > QWU dV. This is
simpler than the previous term: it is just

F QWU dV=C
Nr

o=0
C
Ns

p=0
C
Nt

q=0
WopqUopq QopqJopqrorprq (23)

The matrix elements which come from this integral are again just the coef-
ficients of Wlmn and Uijk; because in this integral the indices of W and of U
are the same, this matrix is diagonal:

Bijklmn=QijkJijkrirjrk dildjmdkn (24)

2.3.6. Source Terms due to S

The first integral on the right side of the equation, > WS dV, has a
very similar form as the previous term:

F WS dV=C
Nr

o=0
C
Ns

p=0
C
Nt

q=0
WopqSopqJopqrorprq (25)

This integral determines the source term of the matrix equation: for equa-
tion lmn, the source term is

slmn=SlmnJlmnrlrmrn (26)
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2.3.7. Terms due to Natural Boundary Conditions

The last two integrals which must be considered are the two boundary
integrals which determine the natural boundary condition “U/“n+aU=b
along C1: >C1 WPaU dS and >C1 WPb dS. These are surface integrals, which
are again most conveniently evaluated in terms of the local coordinates
(r, s); accordingly, if x(r, s) is the parametric representation of a surface S,
the integral must include the Jacobian of the surface transformation, which
is (Apostol, 1967)

J(r, s)=:“x
“r

×
“x
“s
: (27)

so that the integral of a function F over the surface is

F
S

F(x) dS=FF F(x(r, s)) :“x
“r

×
“x
“s
: dr ds (28)

Thus the first boundary integral over, for example, the top surface
(t index=Nt) of a spectral element is

F
C1

WPaU dS=C
Nr

o=0
C
Ns

p=0
WopNt

PopNt
aopNt

UopNt
:“x
“r

×
“x
“s
:
opNt

rorp (29)

and the second boundary integral over the same surface is

F
C1

WPb dS=C
Nr

o=0
C
Ns

p=0
WopNt

PopNt
bopNt
:“x
“r

×
“x
“s
:
opNt

rorp (30)

In a similar manner as for the volume integrals, Wlmn determines which
equation is under consideration. Thus, to specify natural boundary condi-
tions at (for example) the top surface of an element, a term

aijNtlmNt
=PijNt

aijNt
:“x
“r

×
“x
“s
:
ijNt

rirjdildjm (31)

is added to the matrix equation, and a term

bijNt
=PijNt

bijNt
:“x
“r

×
“x
“s
:
ijNt

rirj (32)
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is added to the source vector. Similar terms are added for the other
boundary surfaces of each element, with care being taken to keep the
vector “x/“r×“x/“s always pointing out of the element.

2.3.8. Matrix Equation Including Essential Boundary Conditions

To find the complete matrix equation for Uijk, all the pieces derived
above must be assembled, just as the corresponding integrals are added
together in the integral equation. The complete equation is

C
Nr

i=0
C
Ns

j=0
C
Nt

k=0
(Aijklmn+Bijklmn+aijklmn) Uijk=slmn+blmn (33)

If essential boundary conditions (U=U0) are specified along some portion
of the boundary, the solution space from which the U are drawn is
restricted. In writing down the matrix equation, this restriction is achieved
by setting Uijk to the known values U0 along the given parts of the bound-
ary and moving the appropriate columns of the matrix to the right side of
the equation where they modify the source terms. In addition, the corre-
sponding rows of the matrix are dropped from consideration, so that the
number of equations remains equal to the number of unknowns.

2.3.9. Specification of Continuity Along Element Boundaries

The derivation of the matrix equation which was described above has
ignored the question of what to do about continuity of the solution along
the boundary between two elements. In the above presentation, there was
no communication between corresponding nodes on two adjacent element
faces; thus, a solution to the matrix equation could be discontinuous across
the interface. Such a discontinuity is undesirable, because the solutions to
the integral equation are expected to be continuous in general. This diffi-
culty is resolved in the following way: at each interface node, only one
degree of freedom is allowed. That means, in effect, that the basis functions
of those nodes are modified. The basis functions are no longer those
described above (the Lagrangian interpolants inside each element); instead,
each basis function belonging to an interface node is the sum of the ele-
mental basis functions of the two (or more in the case of a corner) adjoin-
ing elements, so that the interface basis function is nonzero in more than
one element. All integrals are still performed over individual elements; for
the interface nodes, the integrals are nonzero if the integration is over any
element adjoining the interface. The effect of this is that all the integrations
are done exactly as described above, but the matrix elements and source
terms for a given interface node are the sums of the matrix elements and
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source terms from the individual elemental equations. This procedure is
called direct stiffness summation.

2.3.10. Solution of the Matrix Equation

Once the matrix equation has been set up according to the above pro-
cedure, it must be solved. In the most general case, LU-decomposition of
the matrix, followed by back-substitution, will work; however, because the
matrix quickly gets very large as the Nl are increased (especially in 3D), it is
desirable to take advantage of any special properties of the matrix. One
rather simple property is the fact that the matrix is symmetric; this allows
the use of Cholesky decomposition rather than general LU-decomposition
(Golub and Van Loan, 1989).

2.3.11. Static Condensation

Another, somewhat more specific, property of the matrix is the orga-
nization of the nonzero entries that is imposed by the spectral element
scheme: because the basis functions of the internal nodes are nonzero over
only a single element, the internal nodes of any element are coupled only to
the boundary nodes of that element. The boundary nodes of all the ele-
ments are all more or less coupled to each other. (The boundary coupling
of course depends on the detailed structure of the mesh.) Because of this
structure of the matrix, it is possible to usefully perform static condensa-
tion on it. This is essentially block Gaussian elimination (Golub and Van
Loan, 1989), but is described in some detail here because it may be
somewhat less familiar than the standard version of Gaussian elimination.

Consider the general (symmetric) matrix equation

R[a] [b]T

[b] [c]
SR[fb]

[fi]
S=R[fb]

[fi]
S (34)

where [a], [b], and [c] are matrices. The [a] matrix represents the coupl-
ing among boundary nodes, the [b] matrix represents the coupling between
internal and boundary nodes, and the [c] matrix represents the coupling
among internal nodes; subscript b indicates a boundary term and i denotes
an interior term. The second set of equations in the above matrix equation
can formally be solved for the values of the interior nodes:

[fi]=[c]−1 ([fi]−[b] [fb]) (35)

This formal solution for the interior nodes can then be substituted back
into the first set of equations for the boundary nodes:

([a]−[b]T [c]−1 [b]) [fb]=[fb]−[b]T [c]−1 [fi] (36)
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This equation now contains only the fb. Once it is solved, the previous
equation may be used to find the fi. The advantage of this procedure for
the particular matrices encountered with spectral elements comes from the
organization of the matrices [b] and [c]: because of the structure of the
coupling described above, [b] and [c] consist of many small blocks which
may be manipulated independently of each other. The inversion of [c] thus
consists of the independent inversion of many small blocks, and the mul-
tiplication [c]−1 [b] consists of the independent multiplication of these
small blocks with other small blocks. This matrix structure is clearly illus-
trated in Fig. 1: (a) shows a small three-element mesh, and (b) shows the
corresponding structure of the matrix. By applying static condensation, it is
thus possible to replace the inversion of one large matrix by the inversion
of several smaller matrices, plus additional operations; this change speeds
up the overall solution process considerably.

Fig. 1. (a) A small L-shaped sample mesh showing all nodes. Each element has 8×8=64
internal nodes. Elements 1 and 3 each have 26 boundary nodes which are not shared with any
other element, while element 2 has 17 unshared boundary nodes. Elements 1 and 2 share 10
boundary nodes, as do elements 2 and 3; one boundary node is common to all three elements.
There are thus 280 degrees of freedom. (b) A schematic representation of the full matrix of the
sample mesh. The dotted lines show the main separation into internal and boundary nodes.
The square blocks in the upper left correspond to the coupling between internal nodes of the
same element: each gray level is one element. The rectangular blocks on the upper right and
the lower left correspond to the coupling between internal nodes of a given element and the
corresponding boundary nodes of that same element. Again, each distinct gray level represents
one element. Note that some boundary nodes (i.e., rows or columns of the matrix) are shared
by more than one element. Finally, the lower right corner corresponds to the coupling
between different boundary nodes. (There is still structure in this portion of the matrix, but
our present code does not take advantage of that remaining structure.)
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In addition, it is desirable to number the elements in such a way that
the bandwidth of the global boundary matrix is as small as possible. This
numbering can also provide dramatic speedups, which depend on the
extent to which the bandwidth is reduced. (As is evident in Fig. 1b, the
boundary matrix also has a special structure like that of the overall matrix;
at the present time our code does not take advantage of that additional
structure.)

2.3.12. Iterative Solution of Linear Equations: Conjugate-Gradient Method

In the previous sections, we described various ways to speed up the
solution of the matrix equation by direct inversion of the matrix. Another
way to solve the matrix equation is by using an iterative method. Various
iterative methods (Barrett et al., 1994) can be used, but the matrices
encountered in the present work share two properties that make the
conjugate-gradient method in particular quite suitable. The first, which has
already been described, is that the matrices are symmetric. The second
is that they are positive-definite. In terms of the general Helmholtz equa-
tion shown in Sec. 2.3.1, this property of the matrices is implied by the
sign of the coefficient Q: it is not negative anywhere in any of the PNP
equations.

Detailed descriptions of the conjugate-gradient method can be found
in many places (Barrett et al., 1994; Hestenes and Stiefel, 1952; Press et al.,
1986). Generally, the most computationally-intensive step in the conjugate-
gradient method is the calculation of a matrix-vector product Ax, where A
is the matrix to be inverted, and x is a vector generated by other parts of
the conjugate-gradient method. When using the spectral-element method,
the best way to compute this product is to apply the operators described
above to each spectral element; then, after all the element-local operations
are completed, the necessary summations are performed to account for
nodes on the boundary between multiple elements.

The Aijklmn matrix elements described in Eq. (22) in Sec. 2.3.4 (recall
that inside each spectral element, each node is addressed locally by three
indices, one for each dimension) possess the most complex operator struc-
ture. They are processed by applying sub-operators, from right to left: first
we apply the local derivative operators D in order to compute the matrix
products Diodjpdkqxijk, dioDjpdkqxijk, and diodjpDkqxijk; next we multiply these
intermediate results by the appropriate Ga, b

opq; and finally we apply the
transposed derivative operators DT in a similar fashion as for the first step.
Because of the presence of the Kronecker deltas in the first and third
stages, the operations count for these stages is O((Nr+Ns+Nt) NrNsNt).
The operations count for the middle stage is O(NrNsNt). The auxiliary
storage required is relatively modest: the derivative operators D occupy
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N2
r+N2

s+N2
t storage locations, and the Ga, b

opq each occupy NrNsNt storage
locations.

In contrast, if the full Aijklmn matrix were to be precomputed, even for
each element individually, the operations count and storage requirements
would both be O(N2

rN
2
sN

2
t ), significantly worse than the above method.

(Storage of, and multiplication by, the full global matrix are so horrific that
we will not even consider them.)

The Bijklmn matrix elements are simpler, since that portion of the matrix
is diagonal. Thus the operations count and storage requirements for this
portion of the operation are both O(NrNsNt).

Remaining are the operations required to include the boundary condi-
tions, as well as the summations necessary to enforce continuity across
element boundaries. Both the operations count and the storage require-
ments depend more specifically on the exact geometry being used, so it is
more difficult to give expressions for these; but in general both the opera-
tions counts and storage requirements are small compared with the pre-
vious element-wise operations.

It is also worth pointing out that (most of ) the above operations can
be performed in parallel: it is quite feasible to perform all of the element-
wise operations on different processors. However, we have not yet imple-
mented such a parallelization, so we cannot comment on the degree of
speedup that might be achieved.

The other issue which must be considered in the solution of the PNP
equations is the choice of a suitable preconditioner. Because the diffusion
coefficients for each ion vary quite widely between different elements, the
‘‘plain’’ un-preconditioned conjugate-gradient method does not converge
very well, if at all. In effect, the matrix is too nearly singular. In the present
work, we have used the simplest non-trivial preconditioner: the main
diagonal of the global matrix, but without application of the pieces due to
the boundary conditions. This preconditioner is easily computed from the
expressions given above for the various matrix elements, and it is very
easily applied. Use of this preconditioner makes the conjugate-gradient
method converge rather reliably when applied to the PNP equations.

2.4. Numerical Checks; Conservation Laws

There are several levels at which the numerical methods can and must
be checked for accuracy. First, the basic Helmholtz solver must be checked.
This is done by the standard method of substituting known functions P, Q,
and U into the left side of Eq. (9) and thus computing the function S. P, Q,
and S are then specified as inputs to the Helmholtz solver, along with the
appropriate boundary conditions. The result should then be (very close to)
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the function U. For the spectral element method, it should be possible to
get exponential convergence to the true solution, provided it is analytic, as
the polynomial order inside each element is increased. In our experience, it
is easily possible to reach an accuracy of a few hundred units of least pre-
cision; for standard IEEE 64-bit floating-point arithmetic, this corresponds
to a relative error of no more than a few times 10−14. The details of such a
test are shown in an appendix.

It is also possible to solve various electrostatics problems for which
analytic solutions are known: for example, the problem of a point charge
located some distance from a plane at which a jump in dielectric coefficient
occurs (Jackson, 1975). Here, too, it is possible to reproduce essentially
exactly the known solution, including the surface charge induced at the
plane of discontinuity.

The next level which needs to be checked is the overall PNP solver,
including the Gummel iteration. It is possible to ‘‘bootstrap’’ the multi-
dimensional solver by comparing it against a 1D PNP solver. We have
implemented two independent 1D solvers, which agree quite well with each
other. In the 1D case, it is also possible to do much more analytical inte-
gration of the differential equations than in the multi-dimensional case, so
that a 1D solver is somewhat less dependent on complex numerics. Our 2D
solver agrees very well with the 1D solvers when it is used to solve a 1D
problem, and our 3D solver agrees with both the 1D and the 2D solvers
when it is used to solve 1D and 2D problems, respectively. (Of course,
when solving a 1D problem, the efficiency of the multi-dimensional solvers
is quite abysmal compared with the efficiency of the 1D solvers, but as
these are all quite small test problems, this is not a concern.)

The last verification which needs to be done is to check that the
underlying physical laws (conservation of mass, divergence of electric field)
are properly satisfied by the final solutions. In one sense, this is trivial,
because the differential equations, which are being solved correctly, are a
direct expression of the physical laws; however, it is always reassuring to
check that the actual solutions in each simulation are correct. In the 2D
and 3D PNP solvers, the divergence of the electric field is almost exactly
equal to the local charge density: their difference (i.e., the error in the
Poisson equation) is about 10−12 in nondimensional units almost every-
where. The only points at which the error is large are the corners where
regions with different dielectric coefficients meet. The potential is con-
tinuous, but the electric field does become singular at such points, so it is
not surprising that the error becomes large there. Although this does
prevent the uniform exponential convergence described above, it is not a
problem in these simulations because the error is so localized. Thus it
is still quite possible to observe exponential convergence in integrated
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quantities such as the current. The situation for the Nernst–Planck equa-
tion is quite similar.

3. SPECIFIC MODELS FOR GRAMICIDIN A

In the previous sections, we presented the derivation and solution of
a set of linear equations arising from the spectral element method, but
without reference to any particular spectral element mesh or geometry.
Because proper specification of the computational domain, and in particu-
lar the placement of individual spectral elements, is quite important for the
success of these simulations, a detailed description of the construction of
the gramicidin mesh is presented here.

The basic guiding principle is that spectral elements perform well if the
boundaries of the individual elements are placed to coincide with any dis-
continuities in material properties that may be present. In the case of the
PNP channel simulations described here, there are several discontinuities.
First, there are jumps in the dielectric coefficient between water-filled
regions (where a dielectric coefficient in the neighborhood of 80 is used)
and protein- and lipid-filled regions (where the dielectric coefficient is
nearer 2). There may also be jumps between different water-filled regions:
for example, it is quite possible that the effective dielectric coefficient that
best describes the channel region is different from the coefficient that
applies in the bulk of the baths. Second, there are jumps in the diffusion
coefficients of the various ionic species: most importantly, the diffusion
coefficient inside the protein and lipid regions is zero, since the ions do not
penetrate into these regions at appreciable rates.

In the construction of a mesh that would honor these constraints, our
starting point was a version of the gramicidin molecule that was provided
by Ron Elber (private communication, 1998). This is a slight modification
of the published structure of gramicidin (1MAG in the Brookhaven Protein
Data Bank), refined with contributions from the CHARMM force-field, as
well as charge assignments on the individual atoms as computed by
AMBER; as a result of the CHARMM refinement, the dimer is not
entirely symmetric. The molecule was sliced into 2-Å pieces along the
channel axis, which had been rotated so that it coincided with the Z axis.
In each of those slices, all the atoms in that slice were then plotted in their
proper X-Y position. Each of these plots served to locate the opening of
the channel in that slice, and so they locate the boundaries of some of the
spectral elements in that slice (the most important boundaries, since these
are the main discontinuities in the simulation). In placing the spectral
element boundaries, our main concern was not with making them conform
exactly to every single atom of the molecule. Instead, the opening of the
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channel was approximated as a somewhat irregular hexagonal tube, with
some atoms actually inside the nominal channel, and with some open areas
outside the nominal channel. The hexagonal cross-sections were con-
structed by hand and eye, and there is thus some arbitrariness in their pla-
cement—arbitrariness which could, in principle, be used to improve the fit
between simulations and experiments. In fact, however, no such fits were
performed: all the results which are reported below were done with the
same mesh, which was completely constructed before any simulations were
run. To the extent possible within the framework of PNP theory, these
simulations attempt to predict the IV curves of gramicidin, rather than to
fit the theory to experiments. At the same time that the channel cross-sec-
tions were being built, the outer boundaries of the gramicidin molecule, as
well as further internal boundaries inside the lipid layer, were placed. These
boundaries are much less critical than the channel boundaries, since only
the channel boundaries mark a discontinuity in the dielectric coefficient as
well as in the various ionic diffusion coefficients. Once the 2D grid for each
slice was constructed, all the cross-sections were assembled into 3D spectral
elements.

The upper and lower interfaces between the lipid bilayer and the bath,
as well as the mouths of the channel, were treated simply as flat planes,
again with an abrupt jump in both the dielectric coefficient and the diffu-
sion coefficients. Taller spectral element layers were then added to include
parts of the bath regions. A partial view of the final spectral element mesh
is shown in Fig. 2. In total, there are 336 3D elements.

Next, the charge distribution of the gramicidin molecule was
computed. Each atom was assumed to have a Gaussian charge distribution
centered on the known position of the atom and with the proper amplitude
such that the integrated charge equaled the known charge of the atom;
a nominal ‘‘radius’’ of each Gaussian cloud of 1.5 Å was also assumed (but
see also the discussion in Sec. 4.1.2). All the Gaussian clouds were then
evaluated and summed at each point of the mesh, thus producing the
overall continuous fixed charge distribution. In this procedure, any fixed
charge in or on the lipid bilayer was ignored, and the bilayer was treated
simply as an uncharged barrier to the ions. Such a treatment is clearly
incomplete, and the effects of lipid charge and bilayer thickness on the IV
curves of gramicidin will be reported elsewhere.

Finally, it was also necessary to have good values for the diffusion
coefficients of the various ions inside the channel. The diffusion coefficient
of Na+ was found by a least-squares fit of 1D PNP to the experimental
gramicidin data. The details of this fitting procedure have been reported
elsewhere (Chen, Lear, and Eisenberg, 1997), so it will not be described here.
The experimental IV curves were measured in five symmetrical solutions of
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Na+Cl− and K+Cl− with salt concentrations ranging from 0.1 up to 2.0 M.
Measurements were conducted with both wild-type gramicidin and a speci-
fically modified gramicidin. The least-squares-fitted 1D PNP gave a good
fit to the twenty measured IV curves (five each of Na+Cl− and K+Cl− in
two kinds of gramicidin) simultaneously, with a single diffusion coefficient
for Na+ ions and one for Cl− ions. Only these Na+ and Cl− diffusion coef-
ficients are considered in the 3D calculations presented here; the 1D fitting
procedure also produces a 1D effective charge distribution which is not
used in the present paper. The baseline diffusion coefficients used in this
work are, in cm2/sec:

channel bath

Na+ 4.67×10−7 2.0×10−5

Cl− 1.0×10−10 1.9×10−5

The diffusion coefficients in the baths are taken from standard tables
(Robinson and Stokes, 1959). The channel value of DNa+ is that determined
from the 1D fit, and is likely to be close to the true value. However, the 1D
fit yielded a value for DCl − of 1.82×10−99. This exceedingly small number is
most likely unphysical, and would in any case have caused significant
numerical difficulties; therefore, the value shown in the table was chosen
somewhat arbitrarily. The estimate of DCl − from the 1D fit is unreliable
because Cl− carries so little current in the gramicidin channel. Indeed,
virtually no Cl− can be found inside the gramicidin channel because it has
such a negative electrical potential under nearly all conditions. The partial
charges of the gramicidin molecule are so arranged that the potential inside
the pore is negative, even though the molecule is overall neutral. This is not
the first case where the shape of the electric field is more important than its
average value. The Cl− current is thus very small, and so the total current
is very insensitive to DCl − . Therefore it is very difficult to estimate DCl −

from measurements of total current alone. In effect, the only conclusion
about DCl − that can be drawn from the 1D fit is that it can be any value
less than some upper bound, which is approximately DNa+. The effects of
the value chosen for DCl − are discussed below.

4. RESULTS AND DISCUSSION

The first thing that must be checked is the accuracy of the solution as
a function of the polynomial order: since we do not have an analytic solu-
tion against which to check the simulation results, we must rely on the
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solver to eventually yield an answer which has enough significant figures
to be useful. We therefore chose symmetric 1 M solutions, with 200 mV
applied across the channel, as the nominal test case, and varied the poly-
nomial order from 5 to 12. The results are shown in the table below. The
last column shows the absolute value of the difference between the current
at that order and the current at the previous order.

Order Na+ flux Cl− flux current D current
atoms/sec atoms/sec pA pA

5 +1.646765×107 −3.829617×102 +2.638470
6 +1.602774×107 −3.857658×102 +2.567991 0.070479
7 +1.630153×107 −3.843817×102 +2.611856 0.043865
8 +1.622969×107 −3.844139×102 +2.600346 0.011510
9 +1.625230×107 −3.841401×102 +2.603967 0.003622

10 +1.623766×107 −3.843262×102 +2.601622 0.002345
11 +1.624218×107 −3.842449×102 +2.602347 0.000725
12 +1.624309×107 −3.842266×102 +2.602493 0.000146

Fig. 2. (Opposite top) The geometry used to solve the Poisson–Nernst–Planck equations
for the Gramicidin A channel. The turquoise regions at the bottom of the picture represent the
bath; some elements have been cut away in order to show the geometry more clearly. There is
a corresponding bath region at the top, shown here only as a wire mesh. The beige regions at
the top and bottom mouths of the channel represent ‘‘atrium’’ regions, which in this compu-
tation have the same properties as the bath proper. Again, some elements at the bottom
mouth of the channel have been cut away. The central yellow regions represent the channel
proper. The entire channel is shown. The lighter green regions toward the rear of the compu-
tational domain represent a portion of the lipid and protein. Most of the elements represent-
ing the bilayer have been cut away in order to make the channel visible; in the computation,
the entire region between the baths is filled by such elements. The backbone and charged
atoms of the Gramicidin A dimer are shown as well: carbon atoms are black, nitrogen atoms
are blue, oxygen atoms are yellow, and hydrogen atoms are off-white. The electrodes are
located at the top and the bottom of the mesh. In total, there are 336 elements, arranged in 16
layers of 21 elements each.

Fig. 4. (Opposite bottom) A cross-section of the electrical potential of the 3D simulation,
showing the strong variation both along and across the axis. This is not very axisymmetric on
an atomic scale, and in fact internal potential differences exceed the voltage applied at the
electrodes by an order of magnitude: the internal potentials range from −870 to+930 mV,
whereas the applied voltage is only 200 mV. The black line shows the boundary between the
protein+lipid region and the bath+channel region.
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It is clear that the simulation converges quite well; however, the runtime
per IV point increases quickly as the polynomial order is increased. For
polynomial order 8, there are about 180000 total degrees of freedom, and
the above simulation takes about 5 hours of CPU time to compute on a
450 MHz Pentium-III. In contrast, for order 12, there are about 600000
total degrees of freedom, and the simulation takes about 26 hours of CPU
time on the same machine. For a full IV curve, the calculations are slighly
more efficient, since each successive point can use the previous solution as
a starting point, so that somewhat fewer Gummel iterations are required,
but total runtimes are still of the order of days for order 8, and (would
be) weeks for order 12. Since the order-8 simulation appears to have a
relative error of about 0.1%, we decided to select polynomial order 8 as the
standard setting for these simulations, in order to keep this study compu-
tationally feasible. Thus all of the cases reported below use 8th-order spec-
tral elements, except in Sec. 4.1.2, where 9th-order elements were used.

4.1. Experimental Data versus Simulations

In Fig. 3, we show the first major result of this work: a comparison
between the experimentally measured IV curves of gramicidin at several
symmetric concentrations and the curves predicted by the 3D PNP simu-
lation. (A short note describing this result, but without any details of the
solution procedure or any of the other results described below, has been
published elsewhere (Hollerbach et al., 2000).) In generating these IV
curves, we scaled the concentrations in each bath by the appropriate
activity coefficients. As is evident in the figure, the agreement between
experiment and simulation is quite good, especially given that the 3D runs
were made without fits of any kind.

In order to test the quality of the agreement between these simulations
and the experimental data, a series of sensitivity analyses of the simulations
were done: different parameters in the input specification were varied and
the changes in the IV and flux curves were observed. The results for the
different parameters are discussed below.

4.1.1. Diffusion Coefficient of Cl−

The first parameter that we examined was DCl − . As was previously
described, the 1D fitting procedure yielded a value of 1.8×10−99 cm2/sec,
which would have made the Nernst–Planck equation for Cl− numerically
singular. Therefore, an arbitrarily chosen value of 10−10 cm2/sec was used
instead. In order to assess the effect of this choice, a series of runs was
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Fig. 3. A comparison between the simulated IV curves and the corresponding experimen-
tally measured IV curves. The points represent the experimental data, and the lines represent
the simulated IV curves. Note that the concentrations were scaled by the activity coefficients
inside the simulations. The data shown here has been published elsewhere (Hollerbach et al.,
2000).

made with DCl − ranging from 10−11 to 10−6 cm2/sec. 10−6 cm2/sec is larger
than DNa+, and it is unlikely that the true DCl − will be as high as that. All
other parameters were kept fixed at settings duplicating those of the
nominal symmetric 1 M case shown in Fig. 3, with an applied voltage of
200 mV. The results are shown in the following table:

DCl − Na+ flux Cl− flux current
cm2/sec atoms/sec atoms/sec pA

10−11 +1.623×107 −3.882×101 +2.600
10−10 +1.623×107 −3.844×102 +2.600
10−9 +1.623×107 −3.844×103 +2.601
10−8 +1.623×107 −3.844×104 +2.606
10−7 +1.623×107 −3.839×105 +2.662
10−6 +1.622×107 −3.793×106 +3.206

It is clear that the Na+ flux carries the majority of the current. Even at the
largest value of DCl − , the Cl− flux carries only about a quarter of the
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current. If the true value of DCl − is smaller than 10−7, any error incurred
will be less than about 2%, which starts to become difficult to distinguish
from both numerical errors of other kinds and experimental errors. Thus it
seems safe to conclude that the arbitrarily selected value of 10−10 for DCl −

will not affect the IV curves presented here by very much.

4.1.2. Size of Gaussian Atom ‘‘Clouds’’

The next parameter that was examined was the size of the Gaussian
clouds that represent the charge of the fixed atoms. In the main series of
runs, the Gaussians were given a ‘‘radius’’ s of 1.5 Å. This is slightly larger
than the usual radius of an atom, which is somewhere between 0.5 and 1 Å.
On the other hand, it probably does capture at least some of the effects of
thermal motions of the gramicidin molecule. In order to assess the impor-
tance of this parameter, a series of runs with varying s ranging from 0.5 to
1.5 was made. Again, all other parameters were kept fixed at settings
duplicating those of the nominal symmetric 1 M case shown in Fig. 3, with
an applied voltage of 200 mV, with one exception: the polynomial orders of
the spectral elements were increased to 9 for this series of runs, because at
the smaller values of s the higher polynomial orders were needed to pro-
perly resolve the more point-like charges. The results are as follows:

s Na+ flux Cl− flux current
Å atoms/sec atoms/sec pA

0.5 +1.453×107 −3.369×102 +2.328
0.7 +1.515×107 −3.353×102 +2.427
0.9 +1.553×107 −3.380×102 +2.488
1.1 +1.584×107 −3.470×102 +2.537
1.3 +1.608×107 −3.628×102 +2.576
1.5 +1.623×107 −3.844×102 +2.600

It is clear that the radius of the ions does affect the fluxes, but the effect is
not so dramatic that it would make comparisons between simulation and
experiment impossible: our choice of s introduces an error that is less than
about 12% in the worst case. If the true value of s is greater than 1 Å, the
error incurred will be less than about 4%, which again is difficult to dis-
tinguish from both numerical errors of other kinds and experimental
errors. Thus, here too it seems safe to conclude that the value of 1.5 Å for
s will not affect the IV curves by very much.

4.1.3. Dielectric Coefficients of Bath, Channel, and Lipid

Next, we examined the effects of the dielectric coefficients of the bath,
the channel, and the lipid, respectively, on the channel current. The bath
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dielectric coefficient was set to either 60 or 80; the channel coefficient was
set to one of 40, 60, or 80; and the lipid coefficient was set to one of 2, 4,
or 6. All other parameters were kept fixed at settings duplicating those of
the nominal symmetric 1 M case, with an applied voltage of either 25 or
150 mV. Below, we show the matrix of currents (in pA) for the 150-mV
case; the trends for the 25-mV case are essentially the same. In each sub-
matrix, the column specifies the lipid dielectric coefficient (shown at the
top), and the row specifies the channel dielectric coefficient (shown at the
far left).

bath dielectric=60 bath dielectric=80

2 4 6 2 4 6
40 1.469 1.524 1.562 1.459 1.513 1.549
60 1.741 1.739 1.734 1.720 1.718 1.713
80 1.908 1.874 1.845 1.876 1.842 1.814

It is clear that the bath dielectric coefficient does not significantly affect the
currents: in going from 60 to 80, there is a consistent decrease in current of
about 1%; as stated above, such a small variation is hard to distinguish
from other sources of error. Because the dielectric coefficient of water is
well known, it is safe to assume that 80 is the correct value to use. The lipid
dielectric coefficient affects the currents slightly more: in going from 2 to 6,
the current varies between −3 and+6%, depending on the channel dielec-
tric coefficient. Finally, the channel dielectric coefficient affects the currents
most: in going from 40 to 80, the current increases by between 17 and 30%.
It is not surprising that this parameter has the most effect, because the
channel is the most critical region in determining the current. Overall, the
best fit to the experimental values is found when the bath and channel
dielectric coefficients are both 80, and the lipid dielectric coefficient is 2.
These values are reasonable.

4.1.4. Position of Atoms

Another parameter class that may be varied is the position of the
individual atoms. Multidimensional PNP simulations are not yet advanced
enough to extract structural information such as number and position of
charges from functional information such as IV curves. Nonetheless, some
simple structural information can be inferred—i.e., the given structure does
or does not produce the given IV curve. To make such judgments, it is
useful to know how sensitive the IV curves are to the placement of the
individual charges, and so we made a series of runs with the positions of all
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atoms perturbed by a random amount. Each cartesian coordinate was per-
turbed by a uniform random amount between −0.25 and +0.25 Å. The
fractional charge on each atom was kept constant, as was the shape and
location of the spectral elements making up the permeable channel. While
such perturbations are certainly unphysical in the sense that they do not
preserve chemical bond lengths or angles, they do offer a starting point for
a rough check of the sensitivity of the IV curves with respect to charge dis-
tribution; it is in this spirit only that they are presented here. 26 perturbed
sets of atom positions were generated, and all were run with the same
boundary conditions of the nominal symmetric 1 M case with 200 mV
applied. The current for the unperturbed case is 2.602 pA. The currents
for the perturbed cases ranged from 1.113 to 4.042 pA. The average was
2.321 pA, and the median was 2.227 pA. These results do indicate that the
current is fairly sensitive to the placement of the charges, and that therefore
it may be possible to make at least simple judgments about whether or not
a given structure can produce a particular IV curve.

4.2. Variation of Internal Potentials with External Conditions

After performing the various sensitivity analyses described above, we
examined in greater detail the potentials, both inside the channel and
throughout the gramicidin molecule. Figure 4 shows a color contour map
of the potential on a plane that passes through the central axis of the
channel. It is clear that the potential distribution inside the molecule very
much follows the spiral structure of the molecule itself, and it is important
to note that the potential differences inside the molecule reach nearly 2
volts. In contrast, the voltage applied across the electrodes is never greater
than about 200 mV, an order of magnitude lower. Thus the potential
variations in the vicinity of the channel are dominated by the internal
potential of the molecule itself, and the applied electrode voltage adds only
a relatively small perturbation. Inside the channel proper, the potential is
closer to the electrode potentials, because the internal electric fields of the
molecule are damped by the transition to the higher dielectric coefficient of
the channel, but there are still areas where the gradient is across the
channel rather than along it, and near the top of the channel there is a
region where the potential is more negative than in the bath above the
channel. In Fig. 5, we plot the average potential as a function of position
along the channel for two applied voltages, 0 and 100 mV, and two external
bath concentrations, 0.1 and 1.0 M. The averaging was done by multi-
plying the three-dimensional potential field by a three-dimensional gaussian
of half-width 1 Å, then integrating the result over the entire computational
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Fig. 5. The averaged potential along the channel axis as a function of the external concen-
tration and the externally-applied voltage. The solid lines show the potential with symmetric
bath concentrations of 0.1 M, and the dotted lines show the potential with bath concentra-
tions of 1.0 M. The applied voltage may be read off the left edge of the graph.

domain. The gaussian was moved along the central axis of the channel in
steps of 0.1 Å. Thus each point on the curve represents the average poten-
tial in a small sphere centered on that point along the channel axis. From
the figure, it is clear that the mobile ions significantly affect the internal
potential variation: as the concentration of ions increases, they shield and
attenuate the fixed charge of the gramicidin molecule. This effect has not to
our knowledge been taken into account in previous work. The figure also
shows that, at least for fixed bath concentration, the overall potential may
be approximately decomposed into an internally-generated component and
an externally-applied component (Roux, 1997; Roux, 1999). This decom-
position will be further described in a future publication.

4.3. Construction of and Results for a Reduced (2D Circularly-Symmetric)
Model

Another question of interest is finding the extent to which the 3D
model of gramicidin presented in the previous sections can be simplified.
The 3D model is rather complicated even though gramicidin is much
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simpler than other channels. A significant amount of work was required
both to construct the model (human work) and to compute each point on
the IV curves (computer work). Since the gramicidin channel is a roughly
axisymmetric structure (leaving aside details of atomic position and of the
spiral structure of the backbone of the molecule), it seemed not entirely
unreasonable to ask what the effect might be of creating an axisymmetric
model of gramicidin, in which each charge would be smeared out in a ring
around the axis of the channel. If this could be done, the amount of com-
puter time at least could be very significantly reduced, because the model
would then be two-dimensional: r and z. With our present codes, it would
be impossible to do any fitting of 3D simulations to experimental data in
order to do any kind of parameter extractions: because of the number of
runs required, it would take too long. However, such a reduced 2D model
is simple enough to allow extraction of some parameters, and a reduced 2D
model is far more realistic than a 1D model.

A priori it is not clear that such an axisymmetric model of gramicidin
should work very well. The spiral structure shown in Fig. 4 would not
be preserved in such a reduced 2D model. It was possible, however, to
assess the likely success of such an axisymmetric model. We performed a
‘‘pseudo’’-2D simulation using the 3D model by making 360 copies of
each atom, each copy displaced from the previous one by a 1° rotation
about the channel axis, and then dividing the resulting charge distribution
by 360. The 1° spacing is small enough that the charge distribution is
essentially constant as a function of the angle. The results of this
‘‘pseudo’’-2D calculation were almost indistinguishable from the real 3D
calculation, and showed that proper construction of the reduced 2D
model would certainly be worthwhile. In Fig. 6, the IV curves computed
from the full 3D model are compared with the IV curves from the reduced
2D model. It is clear that the two models are in excellent agreement, even
though there is a slight systematic variation which depends on the con-
centrations of the baths. Certainly it will be possible to use the reduced
model for parameter fitting. The reason for the agreement is not clear: it
may be a consequence of the particular design of the gramicidin molecule
(which after all has been shaped by evolution to function as an ion pipe)
and not a consequence of a more general physical or mathematical
property.

The closeness of the fit is perhaps somewhat counter-intuitive, and so
we present here a detailed description of how the 2D model was con-
structed, and how the 2D charge distribution was computed. In building
the 2D model, the starting point was the 3D geometry whose construction
was described in Sec. 3. The cross-sectional area of the hexagonal channel
was calculated at each point along the channel axis, and from that area an
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Fig. 6. A comparison between the IV curves of the 2D axisymmetric model and of the full
3D model. Note the rather close agreement, for both symmetric and asymmetric bath solu-
tions, with larger relative errors at lower concentrations.

equivalent radius was computed. (The 2D model, which has radial symmetry,
of course imposes a circular cross-section.) The result was a somewhat
complicated dependence of radius as a function of position along the axis,
approximated fairly well by five parabolic arcs chosen such that the tan-
gents were continuous at the connection points. As in the 3D model, this
curve is the most important part of the 2D model, because it marks the
boundary between high-dielectric permeable channel and low-dielectric
impermeable protein. Five spectral elements representing the channel were
therefore placed such that the outer boundary of each element coincided
with one of the five parabolic arcs. The remaining elements were then
placed to appropriately match up with the channel elements. The central
portion of the resulting mesh is shown in Fig. 7; the total number of ele-
ments is 55. The total number of degrees of freedom is far smaller than for
the full 3D model, ranging from about 3650 for 8th-order spectral elements
to about 11000 for 14th-order elements. For the runs shown here, we used
8th-order elements, which had about the same accuracy as for the 3D runs,
but ran in around 15 seconds of CPU time per Gummel iteration.
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Fig. 7. The central portion of the 2D radially-symmetric model for the gramicidin A
channel. The five elements that are shaded represent the channel proper. The crosses show the
positions of the atoms in (r, z) space. The total number of elements is 55.

After building the mesh, it was necessary to compute the appropriate
fixed charge distribution. It is not sufficient to simply compute (r, z) for
each atom, then place a 2D Gaussian charge cloud at that location in (r, z)
space. Because each atom of a given type has a fixed size regardless of its
position, an atom that is farther from the axis occupies a smaller arc than a
similar atom closer to the axis. In order to properly capture this effect, it is
necessary to place each atom in 3D (r, h, z) space, then integrate over h to
get the proper effective charge in 2D (r, z) space. Fortunately, if the atoms
are treated as 3D Gaussian clouds, it is possible to do this integration
analytically, with a reasonably simple result. If the original 3D charge dis-
tribution is written as

Q(x, y, z; x0, y0, z0)=
Qtotal

s3p3/2 e−((x−x0)
2+(y−y0)

2+(z−z0)
2)/s2 (37)

then the effective charge in 2D (r, z) space becomes, after some manipu-
lations,

Qeff(r, z; r0, z0)=
Qtotal

s3p3/2 e−((r−r0)
2+(z−z0)

2)/s2 2pM(2rr0/s2) (38)
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where M(z) is related to the modified Bessel function (Abramowitz and
Stegun, 1972) of the first kind, of order 0, by M(z)=I0(z) e−z. Here x, y, z,
r denotes the position at which the amplitude of the charge cloud is being
evaluated, while x0, y0, z0, r0 denotes the position of the atom. Thus 2D
Gaussian clouds do effectively reappear, but with an additional factor
which takes into account the distance of the atom from the axis.

5. CONCLUSIONS

In summary, we find that the PNP model of gramicidin seems to fit
the available data quite well. The model is not very sensitive to the size of
the atomic charge clouds; but it is quite sensitive to the positions of those
charge clouds. This sensitivity confirms the importance of correctly com-
puting electrostatic interactions in performing studies of current flow
through channels. Interestingly, the model is quite insensitive to rotational
averaging of the atomic charge clouds around the axis of the channel; thus
it would appear that only the distance from the axis (r) and the position
along the axis (z) are important, at least for gramicidin. This insensitivity
allows construction of a satisfactory 2D reduced model of gramicidin. The
model is also quite insensitive to variations in the diffusion coefficient
of Cl−, which is just as well since that coefficient is not well determined
experimentally.

The 2D reduced model of gramicidin is quite helpful, because it
enables parameter extraction from experimental data with much more
realism than a 1D model, yet much less computational effort than a full
3D model. Indeed, parameter extraction with a 3D model is likely to be
difficult even after several more iterations of Moore’s law. Finally, we find
that when varying the dielectric coefficients, the channel coefficient has the
largest effect on the current, followed by the lipid/protein coefficient, and
the bath coefficient has the least effect. This ordering is not surprising. The
best fit is found when the channel has the same dielectric coefficient as the
bulk of the baths; however, the PNP equations do not contain enough
atomic detail to be able to infer that the interior of the channel is therefore
‘‘watery’’ in the same way that the baths are ‘‘watery.’’

APPENDIX: DETAILED TEST OF CONVERGENCE OF SOLVER

In this Appendix we describe the details of one two-dimensional
synthetic test case which we use to check our spectral-element Helmholtz
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solver. We begin with the specified functions U=e−xy, P=1+0.1 sin(2x)
+0.15 cos(y), and Q=e−2 · (x−y)−1. These are substituted into the differen-
tial equation N · (PNU)−QU=−S to determine S. However, we do not do
this substitution entirely by hand, and then evaluate the resulting mathe-
matical expression; rather, we write code fragments that evaluate the
required (analytical) derivatives of P and U, then combine these according
to the (analytical) expression for the PDE. The following is a fragment of C
code from the inner portion of one loop in the setup phase of the program:

ufunc(x, y, &u, &ux, &uy, &uxx, &uyy);
qfld[k]=exp(−2.0*(x−y))−1.0;
pfld[k]=1.0+0.1*sin(2.0*x)+0.15*cos(y);
px=0.2*cos(2.0*x);
py=−0.15*sin(y);
sfld[k]=−(pfld[k]*(uxx+uyy)+px*ux+py*uy−qfld[k]*u);

Here ufunc() is a routine which evaluates the specified function U and its
first and second partial derivatives. Note that the value u is not saved in
any array, whereas P, Q, and S are saved. The reason for this arrangement
is that it has too often been our experience that, as the test program gets
changed, the computation of S gets out of sync with the computations of P
and Q, so that the test program converges exceedingly accurately to the
wrong solution. This makes debugging difficult.

Figure 8 shows the domain on which the differential equation is
solved. X varies from 0 to 2, and Y varies from 0 to 1.4. Note that both the
orientation and the ordering of the elements are randomized in this mesh;
such randomization is useful because it tests more parts of the code.
Essential boundary conditions are applied along the left and right sides of
the domain; i.e., the function U=e−xy is evaluated at the locations of the
nodes along the left and right vertical edges, and those values are applied at
the nodal locations. Along the top and bottom edges, natural boundary
conditions “U/“n+aU=b are applied, with a=sin(xy)+cos(x), and b
calculated from the values of U, a, and the outward normal vector n̂.

The results are shown in the following table: the first column is the
polynomial order (the same in both directions inside each element), the
second column is the total number of degrees of freedom, and the third and
fourth columns show the maximum pointwise error, i.e., the maximum
value of |Ucomputed −e−xy|, for the direct and the conjugate-gradient solvers,
respectively.
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Fig. 8. A test mesh for the 2D spectral-element Helmholtz solver. The domain extends from
0 to 2 in x, and from 0 to 1.4 in y. The order and orientation of the elements are random.
Essential boundary conditions are applied on the left and right vertical edges, and natural
boundary conditions are applied on the top and bottom edges.

1 20 2.796×10−2 2.796×10−2

2 63 4.269×10−3 4.269×10−3

3 130 1.689×10−4 1.689×10−4

4 221 1.872×10−5 1.872×10−5

5 336 1.372×10−6 1.372×10−6

6 475 6.679×10−8 6.679×10−8

7 638 1.557×10−8 1.557×10−8

8 825 1.711×10−9 1.711×10−9

9 1036 2.400×10−10 2.400×10−10

10 1271 3.991×10−11 3.991×10−11

11 1530 3.710×10−12 3.767×10−12

12 1813 8.668×10−13 9.022×10−13

13 2120 1.309×10−13 1.404×10−13

14 2451 3.932×10−14 8.187×10−14

15 2806 2.706×10−14 1.000×10−13

16 3185 5.859×10−14 1.146×10−13

17 3588 6.007×10−14 1.008×10−13

It is evident that there is exponential convergence to the true answer for
both the direct and the conjugate-gradient solvers. The errors are identical
up to order 10; for higher orders, there are slight differences between the
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two solvers, and the maximum accuracy that can be reached by the conju-
gate-gradient solver is just a bit less than that of the direct solver. However,
the difference is not very significant, and both solvers can compute nearly-
exact solutions.

The three-dimensional solver has been tested in a very similar manner,
with similar results.
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