BioMolecular Engineering

Robert Eisenberg Bard Endowed Professor and Chairman, emeritus Molecular Biophysics and Physiology Rush University

> Adjunct Professor Bioengineering UIC

November 20, 2015

Experimental Effort needed without theory is Enormous

Bio-Molecular Engineering is the Future of Molecular Biology, whether biologists know it or not

How does it work?

How do a few atoms control (macroscopic) Biological Function?

Much Molecular Biology is <u>Reverse Engineering</u>

A few atoms make a BIG Difference

Structure determined by Raimund Dutzler in Tilman Schirmer's lab Current Voltage relation by John Tang in Bob Eisenberg's Lab Trial-and-Error Biology is very inefficient but it is (almost) All we have available, today.

Experimental Effort needed without theory is Enormous

USA: NIH \$3.1×10¹⁰ devoted almost entirely to descriptive experimental work

> Trial-and-Error Biology is very inefficient but it is (almost) All we have available, today.

Biology, Medicine. Engineering

are all about

Reduced Models

in which SOME atomic details Control Function

If Devices are to Work Engineers* must Grasp

and not just reach

Uncalibrated Devices do not Work!

"Ah, ... a man's reach should exceed his grasp, Or what's a heaven for?" Robert Browning "Andrea del Sarto", line 98

Poets hope we will never learn the difference between Dreams and Realities

*Scientists and Poets can Reach but Engineers must Grasp

Biology is made of **Devices** and they are **MULTISCALE**

Hodgkin's Action Potential is the Ultimate Multiscale model from Atoms to Axons Ångstroms to Meters

Device Approach to Biology is a Great Success

widely unknown

Alan Hodgkin friendly

Alan Hodgkin: "Bob, I would not put it that way"

Decisive Role of the Electric Field

in Semiconductors and Ionic Solutions

Everything Interacts with Everything Else

Semiconductor PNP Equations

For Point Charges

All we have to do is

Solve it / them!

Boundary conditions:

STRUCTURES of Ion Channels

STRUCTURES of semiconductor devices and integrated circuits

Integrated Circuit

Intel[®] Core[™] i7-5960X Processor Die Map 22nm Tri-Gate 3-D Transistors

Transistor count: 2.6 Billion
Die size: 17.6mm x 20.2mm

*20MB of cache is shared across all 8 cores

Тоо

small

to see!

Ions are Spheres Crowded in Channels

Nonner & Eisenberg

Ions in Channels

Ions in Bulk Solutions

are Complex Fluids like liquid crystals of LCD displays

Energetic Variational Approach

EnVarA

Chun Liu, Rolf Ryham, and Yunkyong Hyon

Mathematicians and Modelers: two <u>different</u> 'partial' variations written in <u>one framework</u>, using a 'pullback' of the action integral

PNP (Poisson Nernst Planck) for Spheres

Non-equilibrium variational field theory EnVarA

Nernst Planck Diffusion Equation

for **number density c**, of negative n ions; positive ions are analogous **Diffusion Coefficient** $\frac{\partial c_n}{\partial t} = \nabla \cdot \left[D_n \left\{ \nabla c_n + \frac{c_n}{k_B T} \left(z_n e \nabla \phi - \int \frac{12\varepsilon_{n,n} (a_n + a_n)^{12} (\overset{\mathbf{r}}{x} - \overset{\mathbf{l}}{y})}{|\overset{\mathbf{r}}{x} - \overset{\mathbf{r}}{y}|^{14}} c_n (\overset{\mathbf{r}}{y}) d\overset{\mathbf{r}}{y} \right] \right]$ $-\frac{6\varepsilon_{n,p}(a_n+a_p)^{12}(\overset{\mathbf{r}}{x}-\overset{\mathbf{r}}{y})}{|\overset{\mathbf{r}}{x}-\overset{\mathbf{r}}{y}|^{14}}c_p(\overset{\mathbf{r}}{y})d\overset{\mathbf{r}}{y}$ Thermal Energy **Coupling Parameters** Ion Radi **Number Densities Poisson Equation Dielectric Coefficient** $\nabla \cdot (\varepsilon \nabla \phi) = - \left(\begin{array}{c} \rho_0 + \sum_{i=1}^{i=1} z_i e c_i & i = n \text{ or } p \\ \uparrow & \text{valence} \end{array} \right)$ proton charge

Permanent Charge of Protein

All we have to do is

Solve the Partial Differential Equations with Boundary Conditions

Largest Effect of Crowded lons is Saturation

Saturation cannot be described at all by classical Poisson Boltzmann approach and is described in a uncalibrated way by **present day** Molecular Dynamics when Mixtures and Divalents are Biologically Important in Concentrations of 10⁻⁸ to 10¹ <u>M</u>

Fermi Description

is designed to deal with

Saturation of Concentration

Simulating saturation by interatomic repulsion (Lennard Jones) is a significant mathematical challenge

to be side-stepped if possible Eisenberg, Hyon and Liu (2010). JChemPhys 133: 104104

Gramicidin A Unusual SMALL Bacterial Channel

often simulated and studied

Margaret Thatcher, student of Nobelist Dorothy Hodgkin Bonnie Wallace leading worker

Validation of PNP Solvers with Exact Solution

following the lead of **Zheng, Chen & Wei** J. Comp. Phys. (2011) **230**: 5239

PNPF

Poisson-Nernst-Planck-Fermi

Implemented fully in 3D Code to accommodate 3D Protein Structures

 $\varepsilon_{water} \left(l_c \nabla^2 - 1 \right)$ approximates dielectric of entire bulk solution including correlated motions of ions, following **Santangelo** 2006¹ used by Kornyshev 2011² with Liu's corrected and consistent Fermi treatment of spheres

We introduce^{3,4} two second order equations and boundary conditions

That give the polarization charge density $-\mathcal{E}_{water}\Psi=\rho_{pol}$

3D computation is facilitated by using 2nd order equations

¹PhysRev E (2006) 73:041512 ²PhysRev Ltrs (2011) 106:046102 ³JCompPhys (2013) 247:88 ⁴J PhysChem B (2013) 117:12051

Steric Effect is Large in (crowded) Gramicidin PNPF spheres VS PNP points

Three Dimensional Calculation Starting with Actual Structure

Cardiac Calcium Channel Ca_v.n

Lipkind-Fozzard Model

Ca²⁺ are shown in **violet**, 8 O^{0.5-} in **red**, H₂O in white and **red** Lipkind & Fozzard, Biochem (2001) **40** 6786

Liu & Eisenberg J Chem Phys 141(22): 22D532

Cardiac Calcium Channel Cav1.*n*

Experimental Signature Anomalous* Mole Fraction

*Anomalous because CALCIUM CHANNEL IS A SODIUM CHANNEL at [CaCl₂] ≅ 10^{-3.4} Ca²⁺ is conducted for [Ca²⁺] > 10^{-3.4}, but Na⁺ is conducted for [Ca²⁺] <10^{-3.} Liu & Eisenberg (2015) Physical Review E 92: 012711

Poisson Fermi Approach to **Bulk Solutions**

Same Fermi Poisson Equations, different model of nearby atoms in hydration shells

Activity Coefficients Na⁺ Cl⁻

'normalized' free energy per mole

Activity Coefficients $Ca^{2+}Cl_2^{-}$

'normalized' free energy per mole

The End

Any Questions?

Three Dimensional Theory Comparison with Experiments Gramicidin A

Theory from *Liu* & *Eisenberg J ChemPhys* 141: 22D532 with one adjustable parameter never changed

Debye-Hückel Fails Disastrously Poisson Boltzmann is quite inaccurate **Poisson Fermi does Surprisingly Well**

Parameters, NOT further adjusted

$l_c = 2a_i$	correlation length	$i = \mathrm{Na}^+, \mathrm{Ca}^{2+}, \mathrm{Cl}^-$	Å
$a_{\rm Na^+},a_{\rm Ca^{2+}}$	radii	0.95, 0.99	Å
$a_{\rm Cl^{-}}, a_{\rm H_{2}O}$	radii	1.81, 1.4	Å
$R^0_{\rm Na^+},\ R^0_{\rm Ca^{2+}},\ R^0_{\rm Cl^-}$	Born radii in Eq. (12)	1.617, 1.706, 2.263	Ä
$\delta_{\rm Na^+},\delta_{\rm Ca^{2+}},\delta_{\rm Cl^-}$	in Eq. (11)	4.2, 5.1, 3.8	
O_i^{w}	in Eq. (10)	18	

Best Evidence is from the

RyR Receptor

Dirk Gillespie

Dirk_Gillespie@rush.edu

Gerhard Meissner, Le Xu, et al, not Bob Eisenberg

- More than 120 combinations of solutions & mutants
- 7 mutants with significant effects fit successfully

1. Gillespie, D., Energetics of divalent selectivity in a calcium channel: the ryanodine receptor case study. *Biophys J, 2008.* 94(4): p. 1169-1184.

2. Gillespie, D. and D. Boda, Anomalous Mole Fraction Effect in Calcium Channels: A Measure of Preferential Selectivity. *Biophys. J., 2008.* 95(6): p. 2658-2672.

3. Gillespie, D. and M. Fill, Intracellular Calcium Release Channels Mediate Their Own Countercurrent: Ryanodine Receptor. *Biophys. J., 2008.* 95(8): p. 3706-3714.

4. Gillespie, D., W. Nonner, and R.S. Eisenberg, Coupling Poisson-Nernst-Planck and Density Functional Theory to Calculate Ion Flux. *Journal of Physics (Condensed Matter), 2002. 14: p. 12129-12145.*

5. Gillespie, D., W. Nonner, and R.S. Eisenberg, Density functional theory of charged, hard-sphere fluids. Physical Review E, 2003. 68: p. 0313503.

6. Gillespie, D., Valisko, and Boda, Density functional theory of electrical double layer: the RFD functional. *Journal of Physics: Condensed Matter, 2005.* 17: p. 6609-6626.

7. Gillespie, D., J. Giri, and M. Fill, Reinterpreting the Anomalous Mole Fraction Effect. The ryanodine receptor case study. Biophysical Journal, 2009. 97: p. pp. 2212 - 2221

8. Gillespie, D., L. Xu, Y. Wang, and G. Meissner, (De)constructing the Ryanodine Receptor: modeling ion permeation and selectivity of the calcium release channel. *Journal of Physical Chemistry*, 2005. 109: p. 15598-15610.

9. Gillespie, D., D. Boda, Y. He, P. Apel, and Z.S. Siwy, Synthetic Nanopores as a Test Case for Ion Channel Theories: The Anomalous Mole Fraction Effect without Single Filing. *Biophys. J.,* 2008. 95(2): p. 609-619.

10. Malasics, A., D. Boda, M. Valisko, D. Henderson, and D. Gillespie, Simulations of calcium channel block by trivalent cations: Gd(3+) competes with permeant ions for the selectivity filter. *Biochim Biophys Acta, 2010. 1798(11): p. 2013-2021.*

11. Roth, R. and D. Gillespie, Physics of Size Selectivity. *Physical Review Letters, 2005. 95: p.* 247801.

12. Valisko, M., D. Boda, and D. Gillespie, Selective Adsorption of Ions with Different Diameter and Valence at Highly Charged Interfaces. *Journal of Physical Chemistry C, 2007. 111: p. 15575-15585.*

13. Wang, Y., L. Xu, D. Pasek, D. Gillespie, and G. Meissner, Probing the Role of Negatively Charged Amino Acid Residues in Ion Permeation of Skeletal Muscle Ryanodine Receptor. *Biophysical Journal, 2005.* 89: p. 256-265.

14. Xu, L., Y. Wang, D. Gillespie, and G. Meissner, Two Rings of Negative Charges in the Cytosolic Vestibule of T Ryanodine Receptor Modulate Ion Fluxes. *Biophysical Journal, 2006. 90: p. 443-453.*

Divalents

The model <u>predicted</u> an AMFE for Na⁺/Cs⁺ mixtures <u>before</u> it had been measured

All Spheres Models work well for Calcium and Sodium Channels

Skeletal muscle

Heart Muscle Cell

Fermi (like) Distribution

$$C_i(\mathbf{r}) = C_i^{bath} \exp\left(-\beta_i \phi(\mathbf{r}) + S^{teric}(\mathbf{r})\right)$$

 $S^{teric}(\mathbf{r}) = \ln(\Gamma(\mathbf{r}) / \Gamma(bath))$

 $\Gamma(bath) = bulk void concentration; \Gamma(\mathbf{r}) = channel void concentration$

also gives Gibbs Fermi Functional

J Comp Phys, 2013 247:88; J Phys Chem B, 2013 117:12051 so the Fermi approach Can be embedded in the *E*nergy *V*ariational *F*ormulation *EnVarA* developed by *Chun Liu*, more than anyone *Eisenberg, Hyon and Liu (2010). JChemPhys* 133: 104104