European Biophysics Journal, in press

Physical descriptions of experimental selectivity
measurements in ion channels

Dirk Gillespie*

Department of Physiology and Biophysics
University of Miami School of Medicine
P.O. Box 016430, Miami, FL 33101-6430

dirkg@chroma.med.miami.edu
voice: 305-243-5536 / fax: 305-243-5931

Robert S. Eisenberg
Department of Molecular Biophysics and Physiology
Rush Medical College
1750 West Harrison St., Suite 1291, Chicago, IL 60612
beisenbe@rush.edu

June 10, 2002

Abstract

Three experiments which quantify the amount of selectivity exhibited by a biological
ion channel are examined with Poisson-Nernst-Planck (PNP) theory. Conductance
ratios and the conductance mole fraction experiments are examined by considering a
simple model ion channel for which an approximate solution to the PNP equations
with Donnan boundary conditions is derived. A more general result is derived for the
Goldman-Hodgkin-Katz permeability ratio. The results show that (1) the conductance
ratio measures the ratio of the diffusion coefficients of the ions inside the channel, (2)
the mole fraction experiment measures the difference of the excess chemical potentials
of the ions inside the channel, and (3) the permeability ratio measures both diffusion
coeflicients and excess chemical potentials. The results are used to divide selectivity
into two components: partitioning, an equilibrium measure of how well the ions enter
the channel, and diffusion, a nonequilirium measure of how well the ions move through
the channel.
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1 Introduction

Ton channels are hollow proteins that span biological membranes and act as conduits, allow-
ing ions to move through otherwise impermeable membranes (Hille 2001). Most electrical
activity in living systems is produced by this kind of charge movement. In many circum-
stances it is vital that only one type of ion moves across the membrane (typically Na®™, KT,
Ca?*, or Cl7), even when other ions have a larger concentration and concentration gradient.
In neurons, for example, potassium channels ensure that sodium ions do not enter the cell
as potassium ions exit; vice versa, sodium channels let sodium in while keeping potassium
from leaking out. Following a positive displacement in electrical potential, these two channel
types open and close with different lag times to produce the transient electrical signal (the
action potential) that propagates along the nerve fiber, carrying information from one end
of the cell to the other.

Ton selectivity is defined operationally in experiments by several different protocols. How-
ever, one often finds that the selectivity estimated by one protocol is not the same as that
estimated by another. In this paper we examine three of these experimental protocols (de-
scribed in Section 2) for a model channel and show that, in fact, these protocols should not
give the same results. Our model is analyzed with the Poisson-Nernst-Planck! (PNP) theory
of the ion transport (Nonner and Eisenberg 1998, Chen, et al. 1997a, 1997b, 1999) and
is consistent with the charge/space competition model of selectivity introduced by Nonner,
et al. (2000, 2001). In this hypothetical channel, selectivity has contributions from various
physical parameters, including the charge, diffusion coefficient, and excess chemical potential
of each ion species. We find that the experimental protocols weight these contributions dif-
ferently: (1) the conductance ratio measures the ratio of the diffusion coefficients of the ions
inside the channel; (2) the mole fraction experiment measures the difference of the excess
chemical potentials of the ions inside the channel; (3) the permeability ratio defined by the
Goldman-Hodgkin-Katz equation measures both diffusion coefficients and excess chemical
potentials. This diversity of results can be used to estimate those physical parameters.

2 The selectivity experiments

The three selectivity experiments considered in this paper are described here using NaCl and
KCI as example ion species.

labbreviations: PNP: Poisson-Nernst-Planck; MMF: mid-point mole fraction; GHK: Goldman-Hodgkin-
Katz



2.1 Conductance ratios

Single channel current/voltage (I/V) relations are measured by placing the channel in a
lipid bilayer surrounded by two baths of known ionic composition and applying a voltage
across the system. If this experiment is conducted with the same concentration of NaCl (for
example) in both baths, the conductance (dI/dV') measured at zero applied potential can be
plotted as a function of bath concentration. Experiments often show that the conductance
increases from zero at zero concentration and saturates with some maximal conductance as
concentration increases more and more (Hille 2001). If gy, is this saturated conductance
for Na™ found in one experiment and if gk is the corresponding saturated conductance for
K™ found in another experiment, then one simple measure of selectivity is the ratio of these
saturated conductances:

gNa
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gK ( )

2.2 Mole fraction experiment

In the classical conductance mole fraction experiment, the two baths are identical, containing
a mixture of two salts, and the conductance at zero applied potential is measured as a
function of the mole fraction of one salt. If ions were to conduct like ions in a dilute
electrolyte solution, their contribution to the overall conductance would be additive; that is,
the total conductance as a function of mole fraction would be linear between the two limiting
conductances. For example, the total conductance would be gy, when [KCl] = 0 and the
total conductance would be gx when [NaCl] = 0. In many channels, the total conductance
is a nonlinear function of mole fraction; if the function has a minimum or maximum, the
channel is said to exhibit an anomalous mole fraction effect (AMFE).

The average of the limiting conductances gy, and gx can help define a measure of se-
lectivity: the mole fraction of NaCl that produces the average of the limiting conductances
shows the ion that is preferred by the channel. If this midpoint mole fraction (MMF) is
below %, then the channel prefers Na™ over K because a smaller amount of Nat has the
same effect as a larger amount of K.

2.3 Permeability ratios and the GHK equation

Introduced by Hodgkin and Katz more than fifty years ago (Hodgkin and Katz 1949), the
permeability coefficient relates the reversal potential to the concentrations of the ion species
in the baths through the Goldman-Hodgkin-Katz (GHK) equation (Hodgkin and Katz 1949,
Goldman 1943, Hille 2001). For the specific case of NaCl and KCI in the baths, the GHK

equation is

Voo — k_T In (PNaCNa (R) + PKCK (R) + P(ncCl (L)) (2)
T ze Pyacna (L) + Pxek (L) + Pocar (R)

where V., is the reversal potential (the applied potential at which no net current is mea-
sured), k is the Boltzmann constant, 7' is the absolute temperature, e is the elementary



charge, and z is the valence of the cations and the absolute value of the valence of the
anions. For ion species j, P; is the permeability, ¢; (L) is the bulk bath concentration on
the left (or inside or cis) side of the membrane, and ¢; (R) is the bulk bath concentration
on the right (or outside or trans) side of the membrane. The potential is measured as the
potential difference between the left side and right side. The anion current is negligible in
many cation-selective channels and P, is zero.

In the original derivations of the GHK equation, each permeability has three components
(Hodgkin and Katz 1949, Hille 2001):

~ D;p;
Pp=— (3)

where D; is the diffusion coefficient of species j inside the channel, 8; is the water/channel
partition coefficient for j, and d is the length of the channel. The partition coefficient 3;
relates c;, the bath concentration of j, to C}, the concentration just inside the channel:
C,
By =—*. (4)

Cj

It is assumed that (3; is the same on each side of the channel and independent of the bath
concentrations (Hodgkin and Katz 1949, Hille 2001).

Permeability ratios in the literature are nearly always measured under symmetric bi-ionic
conditions (for example, 150 mM of KCI on the left side and 150 mM of NaCl on the right)
and calculated from Eq. (2) with P set to zero. If KT is on the left and Na™ on the right,

then P
Na ze
o (). ;
P P (47 ©)
If 1;}“—; > 1, then Na™ is more permeable than K*.
The GHK equation (2) is derived by a straight-forward integration of a Nernst-Planck
equation for each species [Eq. (9) below with p$* set to zero] if several assumptions are made
(Hodgkin and Katz 1949, Hille 2001):

1. Tons do not interact with each other as they cross the channel.
2. Ions do not interact with the channel protein as they cross the channel.

3. The electric field inside the channel is constant. Specifically, the electric field is assumed
to be spatially uniform and does not change when properties of the channel protein
are changed by mutation (for example, the charge on the protein), when the partition
coefficient is changed, or when bath concentrations or transmembrane potential are
changed.

4. For each ion species the partition coeflicient 3; defined in Eq. (4) is the same on both
sides of the channel and independent of the bath composition.



Each of these assumptions, however, is not physically plausible:

1. Ions are charged particles. On very general principles, they must strongly interact
through Coulomb’s Law (an inverse square law) when traveling through a channel tens
of Angstroms in length.

2. Ignoring the interaction between the protein and the ions implies that the channel
has little effect on permeation. However, biological reasoning and mutation studies
suggest that the role of the channel is to control ion movement. In general, the physical
location of the protein ensures that its charges interact electrostatically with ions in the
pore. Chemical interactions are also quite likely because many atoms of the channel
wall collide with ions. Thus channels interact with ions and the equations describing
permeation should include such interactions.

3. The electric field is created by the charges in the system and the locations of the
charges in the system are changed by the electric field; these quantities are strongly
and nonlinearly coupled (Selberherr 1984, Jacoboni and Lugli 1989, Henisch 1984).
Both of these quantities are manipulated in most experiments, changing the properties
of the channel, and so it seems unwise to make an assumption about the structure of
the resulting electric field.

4. If the channel has differently charged groups on each end, then the partition coefficient
cannot be the same on both sides. (Chen, et al. (1997a) give an example of such a
channel.) In any case, the partition coefficient is never independent of the surrounding
bath concentrations (see below).

Despite these arguments, the permeabilities defined by the GHK equation are widely
used to determine what ions a channel prefers to pass through its pore. Permeabilities have
proven to be durable, if heuristic, measures of selectivity. This paper tries to clarify their
physical interpretation.

3 Theory

3.1 The PNP equations

The Poisson-Nernst-Planck (PNP) model we will use to analyze the experiments outlined
above has fit data of several channels (Nonner and Eisenberg 1998, Chen, et al. 1997a,
1997b, 1999, Kurnikova, et al. 1999, 1996, Cardenas, et al. 2000, Im, et al. 2000) and can be
derived as an approximate description of the Brownian motion of a charged particle (Schuss,
et al. 2001).

The PNP theory describes the flux of the ions with Nernst-Planck equations:

1 dp,
—Ji =170 (z) A(x)c; (x) T (z) (6)
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where A (x) is an area function equal to the area of the channel inside the channel (Gillespie
(1999) gives a detailed explanation); J; is the (constant) particle flux; D, (z) is the local
diffusion coefficient; ¢; (x) is the local concentration; p; (x) is the local electrochemical po-
tential of species j. The electrochemical potential consists of an ideal component [Lijd () and
an excess component (5* ():

pj () = pit () + 5 (x) (7)
with _
it (z) = zjed (z) + kT In [c; (z)] (8)

where ¢ (z) is the local electrostatic potential. With these definitions, Eq. (6) can be
rewritten:

% %j€ do 1 dﬂix (x)) . (9)

0y = Dy () AGw) (2 )+ s (0) o (0 + s (o)

The ideal chemical potential ,uijd is the free energy per mole of a dilute solution of point
particles that interact only through the mean electric field. This ideal solution is the ionic
analog of an ideal dilute gaseous plasma. The excess chemical potential is the difference in
the chemical potentials of the real solution and the ideal solution. It includes, for example,
entropic effects of the finite size of the ions, electrostatic effects of interacting charged hard
spheres (Nonner, et al. 2000), and effects of the solvent (Nonner, et al. 2001). For each ion
species j, p§* (z) is a function of the concentrations of all the particles near z; that is, it
depends on all the variables of the system. However, a theory to compute y§* in the presence
of flux does not currently exist; here, we assume that each u5* is a given function of z.

To make the notation simpler, we will usually describe the excess chemical potential ju5*

by the activity coefficient
0%
2 =en (). (10)

The activity coefficient v; measures the ion-specific properties of a real solution which depend
on the properties of all ions in the solution. In particular, the activity coefficient of Na*
depends significantly on the concentration of K in concentrated salt solutions. In contrast
to the activity coefficient, the concentration c; measures the nonspecific properties of an
ideal solution. The activity of a solution

sie; = exp (£4) (11)

is the effective concentration of the solution and is a measure of the free energy per mole of
the ion j in the solution (Berry, et al. 2001).

Lastly, the PNP theory uses the Poisson equation to compute the electrostatic potential
from the charges:

_ {% <€ (z) % (w)> +e(x) Azx)% (x) % (x)] - eg% (¢) +eq(z)  (12)
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where € (x) is the local dielectric coefficient and ¢ (z) is the local fixed charge due to the
channel protein (¢ = 0 in the baths).

To calculate the transport of ions, the PNP equations are solved simultaneously (self-
consistently); that is, all the Nernst-Planck equations and the Poisson equation must be
satisfied at the same time. This even-handed treatment of the electric field and concentration
profiles is not present the derivation of the GHK equation [Eq. (2)] where assumptions about
the electric field were made in order to simplify the equations so they could be integrated
analytically. As shown in Appendix A and noted by early workers in the field (Goldman
1943, MaclInnes 1939, Helfferich 1962), a simple substitution into the Poisson equation shows
that a constant field is generally not consistent with the concentration profiles of the GHK
equation. More quantitative analysis shows that the inconsistency has large effects on the
predicted profiles of both concentrations and electrostatic potential, as well as the predicted
currents (Chen, et al. 1992).

3.2 Boundary conditions

Boundary conditions are needed that connect the concentration and potential at the edge
of the channel to those far away in the baths, where they are measured and controlled by
auxiliary systems. These systems do not maintain the concentrations and potential at the
edge of the channel.

When solving the PNP equations numerically, one must either include enough of the
bath in the analysis so that the concentrations and electrostatic potential are approximately
equal to their bulk values (Nonner and Eisenberg 1998, Hollerbach, et al. 2001, Kurnikova,
et al. 1996, 1999, Cardenas, et al. 2000) or one must derive an analytic approximation to
their values just inside the channel. In earlier numerical solutions of the PNP equations
(Chen, et al. 1997a, 1997b, 1999), the boundary conditions were those used to describe
the contact between semiconductors and wires (Selberherr 1984, Jacoboni and Lugli 1989,
Henisch 1984).

These “built-in” boundary conditions give the Donnan potential of classical physiology
(MacInnes 1939, Helfferich 1962). Because the channel has a high fixed charge density, a
potential difference exists between the bulk bath and the end of the channel; this is the
Donnan potential (Gillespie and Eisenberg 2001). If the channel is located in the interval
(0, d), the approximation of the potential ¢ (0) and concentration ¢; (0) at the channel’s left
edge are given by

$(0)=V + 1, (13)
bath L }
¢; (0) = %Tm(n)cj (L) exp (—%\PL) (14)

where the classic Donnan potential ¥;, on the left side of the channel is given by solving

bath
7' (L) —Zj
0= 5L "0 (L)Y, 7 +q (15)
J

chan
Vi



for

Y, =exp (kiT\I/L> : (16)
bath

Here ;™" (L) is the activity coefficient of species j in the left bath and q/;ha“ its activity
coefficient just inside the channel. ¢ is the fixed charge just inside the left side of the
channel. At the right edge [with an equation similar to Eq. (15)]

¢ (d) =g (17)

bath
7" (R) zje
5 ) = e (R)exp (-Zrvs). (18)
J

(V' is the applied voltage and we assume the potential at the right electrode is 0.)

Corrections to the Donnan boundary conditions that give more accurate approxima-
tions to the potentials and concentrations at the channel edges have recently been derived
(Gillespie and Eisenberg 2001). That paper also shows that the classic Donnan boundary
conditions (13) — (18) give the same current/voltage relations as the modified Donnan po-
tentials (with the assumptions listed in Section 3.3). Thus, when deriving current/voltage
relations, classic Donnan potentials can be used, but the modified Donnan potentials must
be used if accurate values of the potentials and concentrations at the edges of the channel
are required.

In this paper, our choice of boundary conditions is guided by this distinction. Specifically,
the conductance and mole fraction experiments (Sections 4.1 and 4.2, Appendix A) involve
finding current/voltage relations and therefore we will use the classic Donnan boundary
conditions for those cases. The GHK permeability result (Section 4.3) and the analysis in
the Discussion (Section 5), on the other hand, require accurate values of the potentials and
concentrations, necessitating the use of modified Donnan boundary conditions.

3.3 Assumptions

In order to derive analytic results we make several assumption.
For the GHK permeability result we assume:

1. Inside the channel, the diffusion coefficients D; and the activity coefficients ~y; are
scaled by a multiplicative constant and they have the same functional form:

D;(z) = Dj""D (z) (19)

and
i (x) = 45"y () (20)

for all z inside the channel where D;h““ and 7;11"‘“ are species-dependent constants and
D (z) and 7 (z) are species-independent functions of z. Furthermore, 7;-’113“ can be
different for each experimental protocol; that is, 7?1“‘“ depends on the applied voltage

and the bath concentrations:

Wt =™ (Ve (D), e (L), e (R)e2 (R),..). (21)



d.
6.

. The area A is constant inside the channel.

The dielectric coefficient € is constant throughout the system. The details of a contin-
uous € (z) have only a small impact on the solution of the PNP equations (Gillespie
1999, Gillespie and Eisenberg 2001). The discontinuous case can be solved by using an
auxiliary Poisson equation (Schuss, et al. 2001).

The relative resistance of the channel is so great compared to the resistance of the
bath that the current does not significantly change the concentrations or electrostatic
potential across the baths. Gillespie (1999) shows that this assumption is satisfied if
the bulk concentrations are sufficiently large (2 50 mM) and if the diffusion coefficients
in the baths are much larger than those in the channel.

The anion current and concentration inside the channel are negligible.

All cations have the same valence z..

When deriving the conductance and mole fraction results, we also use the following
assumptions:

1.

4

The channel is assumed to have a spatially uniform fixed charge density ¢ < 0 due to
the permanent charges of the channel protein. This is the simplest charge structure
that can be imposed on the PNP system to produce a cation-selective channel (Nonner
and Eisenberg 1998, Chen, et al. 1997b, 1999). More complex charge structures are of
considerable biological importance (Chen 1997a), but need to be analyzed separately.

The diffusion coefficients D, and the activity coefficients ; (excess chemical potentials
(15%) are piecewise constant, taking values DP*' (L), Pt (L), DY (R), 42" (R) in
the left and right baths and D™ and ~5*" inside the channel. Eq. (21) is assumed
to hold.

. The potential at the edges of the channel are given by the Donnan boundary conditions.

Gillespie and Eisenberg (2001) discusse the consequences of this assumption.

The anions have valence —1.

Results

An approximate analytic solution to the PNP equations is derived in Appendix A with Eq.
(99) giving an equation for the flux of species j. Eqs. (13) — (18) allow the results to be
rewritten as

Jj = Zc¢—T

YL

A D;}han {iv ' <YR):| ’Y;_mth (R) Cj (R) - ’Y})ath (L) C; (L) exp (%V) (22)
kT YEC _ ch exp (zce V)

chan
d 7 kT




where z. is the valence of all cations and the left and right side Donnan potentials ¥ and
U R, respectively, define Y7, and Yg by

Y, =exp (keT\I/L> (23)
Yr = exp <kT ) ) (24)

A further simplification can be made if the bath concentrations are small compared to the
fixed charge concentration |q|:

bath

v (L)

L= (L) < g (25)
Vi

and il (")

fy)\. 1 R

j,y(hlll Cj (R) < |q| . (26)
J

In that case, in Appendix B we show that

bath

vem Y L ) o7)

chan

75

zj=2c

and similarly
bath R

~ u (R
|q| Z clnn J ) (28)

Zj=Zc

With this simplification Eq. (22) becomes an explicit equation for the flux:

A le > mn N (R) ¢ (R)
B (2 5D (D) ) %)
" Aj(R)¢j (R) = A (L) ¢ (L) exp (5V)
S A (R s (R) = (X2 Ay (D) s (L)) exp (V)
where
()
Aj (L) = = (30)
1 ex ex
= exp [k_T (1§ (L bath) — p (channel))] (31)
and
()
M (B) = = (32)
1 ex ex
= exp [ﬁ (15 (R bath) — p$ (channel))} : (33)
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4.1 Conductance ratios

Conductance ratio experiments are usually done with the same salt on both sides of the
channel. In that case, Eq. (29) simplifies to
e? A

. chan
I= 2T lq| D™V (34)

where, because the anion current is negligible, the total current I is
I =ez.J;. (35)

Thus in this experiment the uniform fixed charge channel (Section 3.3) has a linear cur-
rent /voltage relation with conductance

dl e A

= = g — D(':han.

(Obviously this result is not true in general; the conductance is independent of the bath
concentrations only in special cases. For example, this approximation is useful if the bath
concentrations are high enough to make g; a “saturated” conductance. Furthermore, condi-
tions (25) and (26) must hold; that is, the bath concentrations must be much less than the
fixed charge density of the channel. In the data fitting of channels (Nonner and Eisenberg
1998, Chen 1997b, 1999), ¢ is 4 — 30 M and therefore the latter condition is generally not a
constraint. )

Applying Eq. (36) to two separate experiments (one with cation species 1 on both sides
of the channel and the other with cation species 2 on both sides) shows that the ratio of the
conductances is an estimate of the ratio of the diffusion coefficients inside the channel:

chan
% = g jl (37)
4.2 Mole fraction experiment
In a mole fraction experiment, if cation species 1 has mole fraction r, then
1 (L) =c (R) =rc (38)
and
co(L)=c(R)=(1-r)c (39)

where c is the total bath concentration. Because the ionic strength is maintained under the
experimental conditions, it is plausible to assume that the activity coefficients of the two
cations are approximately constant for all mole fractions; that is, for all mole fractions r, the
activity coefficient of species 1 (species 2) is equal to its activity coefficient at mole fraction
r =1 (r = 0), when species 1 (species 2) is the only cation. Calculations using the Mean
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Spherical Approximation (Simonin 1996, Barthel, et al. 1998, Durand-Vidal, et al. 2000)
support this approximation and therefore we use it.
Eq. (29) then gives

dJl e A 1 >\1T
- = chan 40
TR T A R W w (40)
% _ ié chan | | A2 (1 — T) (41)
dv kT d ? A+ Ao (1 —7)
where il
W (42)
J chan

J
Even if 7?*" is independent of the mole fraction, by Eq. (21) each ); is a function of mole

fraction r; that is,
)\j = )\j (T’) . (43)

Then the total conductance measured in the experiment is

; (T) _ Zce_Qé |q| D%hanTAl (T) + Dghan (1 _ 7“) )\2 (7“)
kKT d AL (r)+ (1 —7) A2 (7)

(44)

Since the mole fraction is between 0 and 1, there are two limiting conductances, when the
solutions contain only one type of cation. These are

82 A chan
G=g(r=1) _ch_TEle (45)

when the solution contains only cation species 1 and

e A

— Dchan 4
e lal D (16)

g2=9(r=0)=
when the solution contains only cation species 2. Eq. (44) then becomes

Cgird(r) g (T —1) X (r)

90 = T T = e () (47)
The midpoint mole fraction (MMF) (denoted rypr) defined by
g (rvur) = % (g1 + g2) (48)
can be determined by solving the implicit equation
A2 (rvuir) (49)

TMMF = .
MME = S (raner) + Az (Taur)
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If both A; are independent of the mole fraction (Nonner and Eisenberg 1998, Chen 1999),
then Eq. (49) is explicit. In any case Eq. (49) together with Eq. (42) shows that the MMF
18 determined by the activity coefficients of the ions inside the channel.

Fig. 1 shows a mole fraction experiment [Eq. (47)] computed assuming the \; are
independent of the mole fraction. In that case, our model channel does not exhibit an
anomalous mole fraction effect; it does not have an extremum. However, the conductance
versus mole fraction curve is nonlinear whenever

bath bath

gl g
)\1 = ihan # )\2 = 3]1&11 (50)
1 2
or, equivalently,
pi* (bath) — pf* (channel) # ps* (bath) — ps* (channel) . (51)

4.3 Permeability ratios

We now turn to the most commonly used selectivity experiment, the measurement of the
reversal potential to estimate the permeability of the channel to ions. This situation can
be studied without the analytic approximation to the PNP equations derived in Appendix
A. In particular, the analysis of this section does not require a channel with uniform fixed
charge (Section 3.3).

We start by writing the Nernst-Planck equation [Eq. (9)] in integral form (with no
approximations) by integrating over the channel which lies in (0, d):

zje

[ 5 e (26(0)) ds =y s @ ewp (Zoo@) (o2
— 75 (0) ¢ (0 exp (226 (0))

As discussed in Section 3.2, we use the results of Gillespie and Eisenberg (2001) to evaluate
the right-hand side of Eq. (52). Specifically, Eq. (70) of that paper shows that

% (0)¢; (0) exp (26 (0)) ~ ™ (L) ¢ (L) exp (Z2V) (53)
% (d)e; (d)exp (226 (d)) = A" (R) ¢ (R) (54)
and so Eq. (52) becomes
[ e (0 ) ds = () (1) (55)
W (L) e (L) exp (V)

13



Therefore, for a channel with the GHK assumptions listed in Section 3.3, we have

,y;han d Y (S) Zc€ __ bath
—nghan/() T D o (o) ds = (e (B) (56)

hath Zct
— (L) e (L) exp (V)
for cation species j. If there are two cation species 1 and 2 and the anion current is negligible,
then at the reversal potential V.,
Jo =—J1 (57)

and
_ é _ Dghan/Dizhan . ,yliath (R) Co (R) _ ,yliath (L) Co (L) exp (%V}cv) (58)
J1 ,yghau/,y%han ,yll)ath (R) c1 (R) _ fyll)ath (L) c1 (L) exp (% 1'ev)

Under the bi-ionic conditions of the permeability experiment, with only species 1 in the left
bath (c2 (L) = 0) and only species 2 in the right (¢; (R) = 0), by Eq. (5) we have

—1

‘P2 B Dghan )\2

2 _ L2 59
Pl Dizhan )\1 ( )
where, for bath concentration ¢, we define
bath
x ()
>\j = - chan ° (60)

Vi

This derivation of the GHK equation is mathematically similar to the one by Hille (2001),
but includes more physics.

4.4 Determining model parameters

The results of the previous sections can be used to estimate the physical and chemical
properties of ions in channels given certain assumptions. Specifically, for each ion species
j, the diffusion coefficient D;fh““ and the activity coefficient fygh“n can be determined from
experimental measurements (assuming our model of the channel). Bath values of these
parameters are known (Zematis, et al. 1986, Conway 1969, Robinson and Stokes 1965) or
can be calculated from separate theories (Simonin 1996, Barthel, et al. 1998, Durand-Vidal,
et al. 2000).

In order to find the ion parameters, one must know the dimensions and fixed charge
profile of the channel. For many channels the dimensions such as the radius and length
of the channel (or the selectivity filter) are approximately known from experiments. The
tertiary structure of the channel shows which amino acid side chains face the conduction
pathway, when the structure is known. Genetic manipulations gives this information in
other cases. The identity of the amino acid residues allows good estimates of the permanent
charge g (perhaps depending on protonation state). When we assume uniformly spread fixed
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charge, ¢ is given by the sum of the charges of the amino acid residues divided by the volume
of the pore determined from the estimates of A and d.

It is important to note that if the channel contains both positively and negatively charged
amino acid residues (voltage-gated sodium channels, for example) this approach should not
be used; the spatial distribution of permanent charge in the channel has profound effects
on the qualitative and quantitative properties of the channel including its current/voltage
relations. This result is well known from the analogous analysis of semiconductors (Selberherr
1984, Jacoboni and Lugli 1989, Henisch 1984).

If the charge, length, and area of the channel (¢, d, and A) are known, diffusion and
chemical parameters can be determined from the conductance and mole fraction experiments.
Eq. (36) can be used to estimate the diffusion coefficient of species j from its saturated
conductance g;:

k’T d gj
7 Azl

Determining the channel activity coefficients (that is, excess chemical potentials or free
energies) first requires assuming that these activity coefficients inside the channel are the
same for all experiments; that is, we must assume that Eq. (21) is not true. In that case, the
measurement of the midpoint mole fraction ryr allows an estimate of the relative channel
activity coefficients through Eq. (49):

chan bath
’yihan = ’yiath ( . - 1> : (62)
a "1 TMMF

chan

By using Eq. (62), the absolute channel activity coefficients of all the experimental ions
can be determined if one knows the absolute activity coefficient of one ion. Nonner and
Eisenberg (1998) do this by assuming the activity coefficient of protons is 1.

5 Discussion

5.1 Summary

We have examined three selectivity experiments (Section 2) in terms of the Poisson-Nernst-
Planck (PNP) electrodiffusion model. The Goldman-Hodgkin-Katz (GHK) permeability
ratio was examined for a fairly general class of channels (Section 3.3). The conductance ratio
and conductance mole fraction experiments were treated with a simple model channel with
a constant fixed charge density in the channel. For that model, we derived an approximate
analytical solution to the PNP equations with Donnan boundary conditions (Section 3.2).
The PNP model we consider [Egs. (9) and (12)] contains two ion parameters: the diffusion
coefficient and the excess chemical potential. Both take into account the size of the ions,
but measure different physical properties: the diffusion coefficient measures the resistance a
moving ion encounters, while the excess chemical potential measures the effects of the ions’
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packing and the electrostatic effects of such packing (Nonner, et al. 2000), as well as the
solvation energy (Nonner, et al. 2001).

In the case of the model channel, the conductance ratio and mole fraction experiments
each directly measure one of these two properties. Specifically, if g; is the saturated conduc-
tance of cation j, then, for two cations, the ratio of these conductances is the ratio of the

diffusion coefficients: |
chan
g2 Dy

- chan *
91 Dy

(63)

Furthermore, in the mole fraction experiment the midpoint mole fraction ryypr (where the
total conductance is half way between the limiting conductances) is determined by the ratio
of the activity coefficients of the ions inside the channel:

1
IMF = ——————— 64
'MMF 1 +)\1/>\2 ( )

where il
>\j = ’y{'h‘\.ll (65)

Vi

and the activity coefficient is linked to the excess chemical potential by Eq. (10). Lastly,
the GHK permeability ratio is a combination of the diffusion and activity coefficients inside
the channel: o
o PR § (66)
P1 D(ihdn )\1
Note that by Eq. (21) it is possible that the \; are functions of the concentration and in that
case Eq. (64) is an implicit equation and the permeability ratio in Eq. (66) is concentration
dependent. Even when the 7]“-'1“‘“ are not functions of the mole fraction, the permeability
ratio given by Eq. (66) is concentration dependent because the bath activity coefficients
will vary with bath concentrations. For LiCl and KCI solutions this effect alone can give a
permeability ratio at 2 M that is 60% larger than that at 100 mM (Zematis, et al. 1986,
Conway 1969, Robinson and Stokes 1965).

Although we invert these equations to give ion parameters (Section 4.4), it must be
understood that the equations depend on many assumptions designed to make this model
analytically simple — and the inversion requires even more assumptions. For example, the
inversion requires the unrealistic assumption that the excess chemical potentials are the same
under all experimental conditions.

To do the inversion correctly, one needs a correct general theory and then a procedure
based on that theory to measure the parameters of the channel. Solving this kind of “inverse”
or “reverse engineering” problem sometimes yields formulas, as in this paper. Generally,
however, parameters must be determined by the best fit between theory and experiment
(Chen, et al. 1997a, 1997b, 1999). Theories of how to calculate the excess chemical potentials
of an electrolyte solution confined in complex geometries are only now being developed
(Rosenfeld 1993, Rosenfeld, et al. 1997) and do not yet include flux. In this paper we use
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our simplified channel to try to make theoretical inroads into the physics and chemistry of
selectivity.

5.2 Thermodynamics of selectivity

A closer examination of the derivation of the conductance ratio result [Eq. (36)] shows that
each individual cation species conductance is proportional to its own diffusion coefficient
when it is the only cation species in both baths:
e? A
9i = %TTq

(This is true with either symmetric or asymmetric bath concentrations.)

It is interesting to note that the conductance does not depend on the activity coefficient of
the cation. The reason is that the inside of the channel is (nearly) charge neutral [Eq. (96)].
(Gillespie and Eisenberg (2001) give a detailed discussion.) Because the channel protein is
negatively charged with charge density g, it attracts sufficient cations to neutralize (that is,
screen) its own charge. Since charge neutrality is the end result, the specifics of the cations’
packing and their dehydration energy (which are measured by the activity coefficient) are
unimportant. In this case, the only difference between cations in two experiments is the
resistance they experience as they move through the channel. That is measured by the
diffusion coefficient alone.

When there are several types of cations to screen the fixed charge of the channel protein,
then, for each ion species, the difference between its electrochemical potentials in the baths
and inside the channel determines how well the ion partitions into the channel (Nonner, et al.
2000, 2001). In general, the more negative the electrochemical potential of an ion is (either
in the bath or in the channel), the more energy it takes to remove it and any difference in
the electrochemical potential between two compartments is a driving force on the ion.

As discussed in Section 3.1, the local electrochemical potential of ion species j has two
components, ideal (id) and excess (ex) (Nonner, et al. 2000):

pj () = pit () + s (2) (68)

|q| D;:han‘ (67)

where

it (2) = zjed (x) + KT Infe; ()] (69)
Here ¢ (x) is the electrostatic potential and ¢; () is the concentration of species j at position
x. With these definitions the electrochemical potential difference between two points x; and
xo can be split into two pieces:

Apj (w1, 22) = Ap (21, 22) + Ap§* (w1, 22) (70)

where
Apit (w1, 22) = pit (1) — g1t (2) (71)
= zje[¢ (x1) — ¢ (22)] + kT In (Z EZ;) (72)
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and

A (w1, w2) = i7" (21) = 5" (22) = kT'In (Zj EZ;) ' )

Now suppose that we take x; to be in the left bath and xo = 0 (the left edge of the
channel) to give

Apj (L,0) = ze[V — ¢ (0)] + kT In <CCJL(§))) + kT In[); (L)]. (74)

By Eq. (70) of Gillespie and Eisenberg (2001), we have
: (L) ,y(_:han (O)
zie [V — ¢ (0 +len(j—>%len | = —kTIn[\ (L 75
J [ ( )] Cj (0) ’Y}Mth (L) [ J( )] ( )
where fygh“n (0) is the activity coefficient just inside the left side of the channel. Therefore
Aps (L, 0) ~ 0; (76)

that is, the (left) bath and the channel are close to equilibrium. A similar results holds for
the right bath if we take z; in the right bath and z, = d (the right edge of the channel):

Ap; (R,d) ~ 0. (77)

This near-equilibrium situation then allows us to determine the free energy of partitioning
for each ion species from the left and right baths into the channel:

(0 =t () ~ W - 00)] 4y (0] (78)
5 (R) =In (3%) ~ =6 (d) + [, (R)). (79)

Each s; is then in energy units of k7. If s; (L) > 0, then species j partitions into the channel
from the left bath and similarly for the right bath.
Therefore, one quantitative measure of selectivity of species 1 and 2 is

ALQ = exp (% {81 (L) + S1 (R) — [82 (L) + So (R)]}) (80)

¢ 22 L Y 1/2
~ exp <ﬁ s— V=060 -¢ (d)]) <%> : (81)

In the case that z; # 25, the terms V — ¢ (0) and ¢ (d) may be calculated from Eq. (68) of
Gillespie and Eisenberg (2001) or can be approximated more coarsely as Donnan potentials
(Nonner, et al. 2000, 2001). If A5 > 1, then one can infer that species 1 partitions more
easily into the channel compared to species 2.
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In the specific case considered in this paper, we have z; = z5 and

chan 0
’Yilnn( ) =1 (82)
Vi (d)
For the mole fraction (mf) experiment,
v}mth (L) — v}mth (R) = fy})ath7 (83)
and therefore )
m 1
1,5 = )\_2 (84)
For the bi-ionic reversal potential experiment, on the other hand,
A (L) = (R) = 1 (35)
and so 12 12
AGHK _ (,yghan ﬁ) _ ﬁ (7]2)8“1 (R)> (86)
1,2 fﬁhan )\2 )\2 fyll)ath (L)

The partitioning selectivity in the mole fraction experiment [Eq. (84)] is different from
the partitioning selectivity in the reversal potential experiment [Eq. (86)] because the mea-
surements are made under different conditions. Under bi-ionic conditions, species 1 can only
partition in from the left bath and species 2 only from the right bath, while in the mole
fraction experiment, both species partition from both baths. However, the term

bath \ 1/2
(zi)ath ) (87)

is usually close to 1 if the two baths are at the same concentration; for the rather extreme
case of 2M KCI and 2M LiCl, it less than 1.3 (Zematis, et al. 1986, Conway 1969, Robinson
and Stokes 1965). Therefore, the partitioning selectivities are approximately the same in the
mole fraction and reversal potential experiments [with the value given by Eq. (84)] if the
channel activity coefficients between the two experiments are not too different [Eq. (21)].
This difference in the partitioning selectivity A;» between the two experiments is one
example of the variability of the partitioning selectivity; the partitioning selectivity A is
not a constant for the two species 1 and 2. A;» not only contains the bath activity co-
efficients of both ions that vary with bath concentration, but it also contains the channel
activity coefficients. The channel activity coefficients 7;-’113“ have several components with
different physical and chemical origins. First, there are terms that measure the excluded
volume (entropic) interactions arising because two ions cannot occupy the same space. Intu-
itively one might think that the smaller ion would always be favored because it is seemingly
easier to pack into an already crowded volume. However, density functional theory studies
of uncharged systems have shown that in various confined geometries larger spheres can be
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selected solely on the basis of excluded volume (Goulding, et al. 2000, 2001). fy;h"‘“ also de-
pends on electrostatic effects that can be different even for ions of the same valence (Nonner,
et al. 2000) and solvation effects that measure the difficulty of removing an ion from the bath
(Nonner, et al. 2001). Each of these components can change for each ion species depending
on the exact experimental conditions.

Although the partitioning selectivity A; 2 is not a constant for the two cation species, we
can use it to divide selectivity into equilibrium and nonequilibrium components. Specifically,
because each side of the channel is in near equilibrium with the bath on that side of the
channel [Egs. (76) and (77)], the partitioning selectivity A; o as defined in Eq. (80) is an
(approximately) equilibrium quantity. However, as the conductance ratio and permeability
results suggest, there is a nonequilibrium component to selectivity as well, namely the ratio
of the diffusion coefficients of the cations inside the channel. We will call this the diffusion
selectivity. (It is possible, of course, that that the formula for the diffusion selectivity is
more complex in channels for which our assumptions do not hold.) Both of the equilibrium
and nonequilibrium components are necessary to determine the function of the channel; the
partitioning selectivity measures the energetic differences that determine the contents of the
channel, while the diffusion selectivity measures the relative resistance encountered by the
ions moving through the confined geometry of the channel.

An interesting consequence of separating selectivity into equilibrium (partitioning) and
nonequilibrium (diffusion) components is the possibility that these two components can have
opposite, perhaps balancing, effects. For example, ion species 1 might partition more easily
into the channel (compared to ion species 2), but might have a lower diffusion coefficient in
the channel. In that case

Ao >1 (partitioning favors 1) (88)
while
Dghan . ‘
Tchan > 1 (diffusion favors 2). (89)
1

An example of such a case is the ryanodine receptor with Li* and Kt as species 1 and 2,
respectively (Chen, et al. 1999).

For our model channel, both the conductance and mole fraction experiments give clear
measures of the diffusion and partitioning selectivities, respectively, if the activity coefficients
inside the channel are assumed constant:

g2 Dghan
= = > 1 90
g1 Dizhan ( )
1 1
F=—<= 91
MMF 11 A1,2 5 ( )

The GHK permeability ratio, however, gives a composite and thus ambiguous measure of
the diffusion and partitioning selectivities:
P2 Dghan )\2 Dghan 1
Fl = Dghan )\_1 ~ Dghan A1,27

(92)
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it may be less than or greater than 1. This ambiguity shows that the GHK permeability ratio
is not an ideal indicator of which ion is preferred by the channel. The GHK permeability
ratio does, however, measure the relative size of the partitioning and diffusion selectivities.

6 Conclusion

The work in this paper is a first extrapolation of the selectivity theory introduced by Non-
ner, et al. (2000, 2001). There the authors considered only an equilibrium situation, but
calculated the excess chemical potentials from the concentrations of all the ions to show
how both charge interactions and the space available to the ions affect selectivity. Here, we
showed that even the simplest implementation of the charge/space competition idea in a
flux model offers new ways to measure selectivity of a channel using classical experimental
protocols. Consideration of the detailed properties of charge/space competition is likely to
lead to other methods of measuring the physical properties of open ionic channels and more
insight into the physics and chemistry of selectivity.
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A Approximate solution to the PNP equations

Here we derive the approximate analytic solution to the PNP equations using all the as-
sumptions of Section 3.3. We start by rewriting the PNP equations (12) and (9) for the
inside of the channel with these assumptions:

2

—es = Z zic; +q (93)
J
B de; zje d¢
—Jj = DJA (dl‘ + kTCJdCU) (94)

with the channel located on the interval (0, d).

For boundary conditions we will use the classic Donnan boundary conditions (13) — (18).
In general we do not require all of the specific details of these boundary conditions, but only
the fact that due to Eq. (15) the channel is charge neutral at the edges; that is,

0= 26 (0)+4(0) =D z¢;(d) +q(d). (95)
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In this analysis we could use any boundary conditions which satisfy this condition. However,
for channels the Donnan boundary conditions are the only boundary conditions we are aware
of that give charge neutrality at the edges.

We will show that when we use boundary conditions for the concentrations that include
charge neutrality and when the anion concentration is negligible, that the exact solution
of the PNP equations follows by requiring charge-neutrality everywhere inside the channel;
that is,

0= Z zic; +q (96)
J

or, equivalently by the Poisson equation (93),

d*¢
— =0 97
T2 (97)
throughout the channel. We show this by deriving a general condition that must be satisfied
whenever condition (97) is assumed.
For the moment we do not assume that ¢ is constant, but some function of x. By Eq.
(97), ¢ is linear and necessarily

6 (@) = [#(d) = 9 (0)) 5 +6(0). (98)

Integrating the Nernst-Planck equation (94) gives

A ci(d) — ¢ (0)exp (—2%)
B g v ) o
where e
U =170 -6 (0)]. (100)
Substituting Eq. (99) into the Nernst-Planck equation (94) gives
"Lp Cj (d) —Cj (0) exp (_Z]'z/}) _ % . %
AT 1—exp(—z0) T Y 1oy
whose solution is
~¢i(d) —ci(0)exp(=2z9)  ¢i(d) —¢(0) BT
¢ () = 1 — exp (—z;0) ~1—exp (—29) P (_Zﬂpd> ' 10

Eq. (102) is a solution for the concentrations if it satisfies the Poisson equation (93).
Therefore, substituting Eq. (102) into Eq. (96) shows that

—ulz . ¢j(d) —cj(0)exp (—z;00) = ¢;(0) —¢;(d) ext (—zor™
O‘Q(”;’( et e e () a0
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Therefore any time one assumes that ¢ is linear, the measure of how good this approximation
is how close the right-hand side of Eq. (103) is to zero for all x (in an absolute sense if all
concentrations are measured in molar). If the right-hand side is not small for some region
of x, then there is a region of space charge. In that case, the original assumption of charge
neutrality is violated and, by the Poisson equation (93), the potential ¢ is no longer linear.
This, in turn, will invalidate the predicted concentration profiles and current.

In the case that we consider where ¢ is constant inside the channel, the co-ions have
negligible concentration inside the channel, and all the counter-ions are of the same valence,
then Eq. (103) is zero because we assumed that the channel was charge neutral at the edges.
Therefore, up to these approximations, Eqgs. (98) and (102) are an exact solution to the
PNP equations.

B Low concentration approximation of Donnan poten-
tials

If the cations all have valence z. and the anions have valence —1, we will show that

bath

Zc€ Ze v; ( L)

eXp( ‘I’L) 1 2. ~ i (L) (104)
J

zj=zc

To start, by Eq. (15) the Donnan potential ¥; must satisfy

0= NY*™ —qv* — 2 P (105)
where e (1)
fy')a‘ 1
P=Y)" Jvl—cj (L) (106)
zj=2c J
bath L
N= Z ’yj,ygha(n )C] (L) (107)
Zj:—l J
Y = exp (kiTxpL> . (108)

(We show the work on the left side of the channel. Similar formulas are valid for the
right side of the channel by substituting R for L.) For cation channels, ¢ < 0, and so
we have

0=caeY* " 4+ Y* — z.¢ (109)

where we have dropped the L subscript,

: (110)
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and

P
e=— <1 (111)
|4l
Rewriting Eq. (109) as
Y = 2.6 — agY* T (112)

we find that the right-hand side is of order € and so Y* = O (¢) (Kevorkian and Cole
1996). In that case
agY*t = O (271/%) (113)

and therefore
Y* = z.e 4+ O (e277) (114)

which is equivalent to Eq. (104).
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Figure Caption

Figure 1: Graph of Eq. (47) with gy = 1, go = 3, and A\;/A2 = 4. While this channel
does not exhibit an anomalous mole fraction effect (it does not have an extremum), it is
nonlinear. The curve has a midpoint mole fraction of ryyr = 1/ (1 + A1/A2) = 0.2.
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