A Singular Perturbation Analysis of the
Poisson-Nernst-Planck System

Applications to lonic Channels

Dirk Gillespie

A thesis submitted to Rush University for the degree of

Doctor of Philosophy

September 1999

Chicago, Illinois



Contents

1 Introduction
1.1 Ton Channels . . . . . . . . . .. .. ...
1.2 Theories of an Open Channel . . . .. ... ... .. .........
1.3 Outline of Thesis . . . . . . . . ... .. ... ... ...

2 The PNP Model
2.1 Big Bath, Small Channel . . . . . .. ... .. ... ..
2.2 Derivation of the Equations . . . . . . . ... ... ... .......
2.2.1 Reducing the Nernst-Planck Equations . . . . . . ... .. ..
2.2.2  Reducing the Poisson Equation . . . . ... ... ... ... ..
223 Summary ...
2.3 Scaling the System . . . . . . . ... L
2.4 Mathematical Assumptions. . . . . . . . ... . ... ... ... ...
2.5 Regularity of the Solutions . . . . . . . ... ... ... ... ...

3 A Primer on Singular Perturbation Theory
3.1 Imtroduction . . . . . . . .. .. L
3.2 Enzyme Kinetics as an Example . . . . . .. ... .00 000
3.2.1 Setting Up the Problem . . ... ... ... .. ........
3.2.2  Scaling the System . . . . .. ... ... o L.

3.2.3 Outer and Inner Solutions . . . . . . . . . . . ... .. ....

vi

ot W o= =

J

10
17
19
22
24
26
28



CONTENTS vil

324 TheResults . . . .. ... ... o 43

3.3 Concluding Thoughtson SP . . . . . . . ... ... ... .. ..... 45

4 Single Salt Case 47
4.1 SP Expansion on an Interval with Constant Permament Charge . . . 49
4.1.1 The Outer Solutions . . . . . . .. ... ... ... ...... 56

4.1.2 The Inner Solutions . . . . . . . ... ... ... ... ..... 62

4.2 Matching across a Junction of Two Intervals of Constant Permanent

Charge . . . . . . . . . e 67

4.3 The Current/Voltage Relations . . . . ... ... ... ... ..... 72
4.4 The Reversal Potential and Conductance at Reversal Potential . . . . 77
441 Lemmas . . . . . . . .. 79
4.4.2 General Results . . . . . . .. ... ... L 82
4.4.3 Special Case: Equal Bath Concentrations . . . . . .. ... .. 84
4.4.4 Special Case: M = 1 with Diffusion Coefficient Drops . . . . . 87
4.4.5 Special Case: M = 2 with Diffusion Coefficient Drops . . . . . 96

4.5 Boundary Conditions at the Channel Entrances . . . . ... ... .. 99
4.5.1 Derivation . . . . . . ..o 100

4.5.2 Comparison to Built-In Boundary Conditions . . . .. .. .. 101
4.5.3 Why Doesn’t SP Give Donnan Potentials? . . . . ... .. .. 102

4.6 Comparing Formulas to Numerical Solutions . . . . .. .. ... .. 105
4.6.1 M=1 ... .. . . e 108
4.6.2 M=2 ... . . e 112
4.6.3 M >3 . . . e 113

5 Multiple Salts Case 115
5.1 Technical Lemmas . . . . . . ... .. ... ... ... ... 121
5.2 General Results . . . . . . . . ... 129

5.2.1 Current/Voltage Relations . . . . ... ... ... ....... 129



CONTENTS

5.3

5.4
9.5

5.2.2 Reversal Potential . . . . . .. ... ..o oo
Special Case: One Anion . . . . . ... .. ... ... .........
5.3.1 Current/Voltage Relations . . . . . ... ... ... ......
5.3.2 Reversal Potential . . . . . ... ... ... 00 L.
5.3.3 Conductance at Reversal Potential . . . . .. ... ... ...
The Anomalous Mole Fraction Effect . . . . . .. ... ... ... .
Comparing Formulas to Numeric Solutions . . . . . . ... .. .. ..
5.5.1 Two Salts with Different Anions . . . . . . .. ... ... ...
5.5.2 Two Salts with a Common Anion . . . . . . ... ... ....

5.5.3 Three Salts with a Common Anion . . . . . . . ... ... ..

Dealing with the Area Function

7 Summary of Results

7.1
7.2

8.1
8.2
8.3
8.4

Single Salt Results . . . . . . . ... .. ... ...
Multiple Salts Results . . . . . . .. ... ... ... .........

Discussion

Why PNP? . . . .
Why Not PNP? . . . . . . ..
Analytic Treatments of PNP . . . . . . . .. ... .. ... ......
PNP and the Permeability Ratio . . . . .. ... ... ... .....
8.4.1 The GHK Equation . . . . . .. ... ... ... ........
8.4.2 Taking a Fresh Look at Permeabilities . . . . . .. .. .. ..
843 BacktoHK . ... ... ... .. ...

viil

130
132
134
135
136
139
142
143
143
146

148

154
154
155

159

161



Chapter 1

Introduction

1.1 Ion Channels

Ton channels are cylindrical, hollow proteins that regulate the movement of ions
(mainly Na®, K, Ca™", and Cl™) across nearly all biological membranes. Since
these membranes are otherwise impermeable to charged particles, the only way ions
can cross the membrane is through the pore that runs down the long axis of a channel.
(The structure of the KcsA channel from a recent x-ray crystallography study [15] is
shown in Figure 1-1.) This property has been exploited by evolution to produce many
varied phenomena necessary for life: channels are responsible for the initiation and
continuation of the electrical signals in the nervous system; in the kidneys, lungs, and
intestines, channels coordinate changes in ionic concentration gradients that result in
the absorption or release of water; in muscle cells, a group of channels is responsible
for the timely delivery of the Ca™™ ions that initiate a contraction. Clinically, mal-
functioning channels cause cystic fibrosis, cholera, and many other diseases and have
recently been implicated in schizophrenia and bipolar disorders. Furthermore, a large
number of drugs (including valium and PCP) act directly or indirectly on channels.

To produce such varied and complicated phenomena, channels act in groups,

opening and closing at the same time and letting only specific ion types through
1
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Figure 1-1: Molecular surface of the KcsA channel with a cut-away to expose part
of the pore where three ions are shown. The pore runs up and down in the picture
connecting the inside of the cell (bottom) to the outside (top). The cell membrane
is not shown, but runs horizontally. The overall length of the pore is 45A. Reprinted
with permission from Doyle, D.A., Cabral, J.M., Pfuetzner, R.A., Kuo, A., Gulbis,
J.M., Cohen, S.L., Chait, B.T., MacKinnon, R., The Structure of the Potassium
Channel: Molecular Basis of K™ Conduction and Selectivity, Science 280 (3 April
1998), 69-77. Copyright 1998 American Association for the Advancement of Science.
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the membrane (for example, selectively passing far more Na™ ions than Kt ions).
Despite such complex final results, individual channels only do two things: they open
and close (called gating) and, when open, they conduct ions. It is possible to remove a
single channel from the biological system and study it as an isolated physical system.
(This is rarely possible to do with other objects in biology and still have interesting
results, but for channels this is done everyday by thousands of scientists.) To do
this the individual channel is placed in a phospholipid membrane that seperates two
baths of known ionic concentration. In the baths there may be only one salt (NaCl,
for example) or multiple salts (NaCl and KCI, for example). A voltage is applied
to the system by electrodes in the baths that are far away from the channel and
the amount of current passed by the channel (in the form of ions) is measured. It is
these current /voltage relations that must be recreated by any theory of ion movement
through channels. Our interest in this thesis is the conduction of current through an

individual, open channel; we do not consider gating.

1.2 Theories of an Open Channel

The underlying assumption of charge transport through open channels is that the
process is governed by the same physical principles for all channel types; that is,
although the end results of many channels working in concert to produce an action
potential in a nerve or the contraction of the heart are quite different, the principles
by which ions cross a membrane through a single channel is the same for all channels.

There are several ways to study the permeation of ions through a channel.
The most “realistic” is molecular dynamics (MD) where individual molecules are
subjected to Newton’s laws and followed over time. This microscopic approach takes
large amounts of computer time to “observe” the ions for even a few nanoseconds
of real time (see, for example, [52]). Since an ion usually takes on the order of

one microsecond to move through the channel, the exact detail gained by this first-
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principles approach is at the cost of being able to recover experimental data.

To overcome such difficulties, Brownian dynamics treats each ion as if it were
a particle undergoing Brownian motion in a predetermined electric field. With this
simplification, Chung, et al. [12], used more than 18 hours of CPU time for 1 mi-
crosecond of real time. Although this is a significant gain over MD, the computational
output of the model is still below the millisecond time-scale on which experimental
measurements are made.

On the other hand, macroscopic theories such as rate-constant theory and PNP
(which can be derived from Brownian dynamics under assumptions of the presence
of high barriers for rate-constant models [13] and high friction for PNP [17]) are not
nearly as detailed in their descriptions of permeation. However, they do not suffer
from these real-time-observed limitations, since they only consider the channel on
larger time scales and after steady state has been achieved. (Recently a model that is
intermediate to the microscopic and macroscopic models has been proposed [2], but
has not yet been adapted to channels.)

The most successful macroscopic theory of charge transport through open
channels is the Poisson-Nernst-Planck (PNP) theory developed by R.S. Eisenberg,
D.P. Chen, and V. Barcilon (reviewed in [16]) and extended by W. Nonner [36].
With a small number of adjustable parameters (just one for the calcium release chan-
nel in muscle and one diffusion coefficient for each ion species [10]), PNP has fit the
current /voltage data of approximately half a dozen channels over a large range of
bath concentrations (e.g., 50mM to 2M) and applied voltages (—150mV to 150mV)
([9] and [10]). PNP can also explain the qualitative properties of a large class of chan-
nels [36] as well as other measurable properties of channels such as the anomolous
mole fraction effect (AMFE) [37].

PNP assumes that on the biological times scale (> 10~* sec) ions move through
an open channel by diffusion and electrostatic interactions with other ions and the

protein residues that line the inside of the channel. Mathematically, if J; is the flux
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density of ion species 7, then

de; ez; do
—Jj = Dj(x) [d—; + k—%cj%] (L.1)

where ¢; (x) is the concentration of species j at location z in the channel, ¢ is the
electrostatic potential, z; is the valence of species j, D; () is the diffusion coefficient
of species j, e is the proton charge, k is the Boltzmann constant, and 7" is the absolute
temperature. In biology this is called the Nernst-Planck equation. (In semiconductor
research it is called the drift-diffusion equation [32].) The Nernst-Planck equations
(one for each ion species) are then coupled with the Poisson equation to compute the

electrostatic potential (a.k.a. Gauss’s Law or Maxwell’s First Law):

—% (6 () %) - ezj:%’c‘j () + eq () (1.2)

where € () is the dieletric at location z and ¢ (z) is the “permanent” charge due to
the protein that makes up the channel. (The permanent charge is the key to the PNP
theory: PNP distinguishes different channel types by requiring each channel type to
have a different permanent charge; individual channels within a channel type have
the same permanent charge since they are the same protein. The permanent charge is
created by the inherent fixed charge of the amino acids that form the protein. Because
the amino acids are coded for by DNA, these charges are a fundamental, unchanging
aspect of the channel.)

In this thesis we do a mathematical analysis of the PNP system with the goal

of deriving formulas for experimentally measurable quantities.

1.3 Outline of Thesis

In the next chapter we will derive a slightly different version of these equations. By

starting with the three dimensional PNP equations, we average and get a set of one-
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dimensional equations that do not require constant cross-sectional area. This will
allow us to consider the bath/channel interface in a new and hopefully more accurate
way.

The following three chapters are all mathematics. Chapter 3 uses a detailed
example to illustrate the mathematical procedure we will use in Chapters 4 and 5. In
those chapters we will use the singular perturbation techniques discussed in Chapter 3
to derive some expressions for the reversal potential and conductances at the reversal
potential for the case when there is only one salt in the baths (Chapter 4) and when
there are several (Chapter 5). These chapters can be skipped for those interested
only in the end results, which are reviewed in Chapter 7. Chapter 6 concerns the
implications of a function that in the mathematical analysis is assumed to be given,
but in reality is unknown. Finally, Chapter 8 relates the results of this thesis to

previous work.



Chapter 2

The PNP Model

In this chapter we set up the equations used to describe ion transport through an open
channel. In the following sections we discuss the placement of boundary conditions,
derive the equations, remove their physical units, and then state some of their general

mathematical properties.

2.1 Big Bath, Small Channel

In this thesis, the pore of a channel protein is represented by a generalization of
the usual one-dimensional Poisson-Drift-Diffusion equations of semiconductor physics
(see, for example, [27], [32], [34]). The conduction pathway in semiconductor theories
(but not simulations) is usually given a constant cross-sectional area. While this is
reasonable for an idealized semiconductor, it is problematic even for idealized channel
proteins; their pores (through which ions move) are small “cylinders” (say 10A in
diameter) embedded in a lipid bilayer and attached to a bath on both ends that in
experiments has a volume on the order of 1mm?®. It would be incorrect to represent
the part of the bath near the channel as a cylinder with cross sectional area equal to
that of the channel’s pore. The bath disperses ions into a large volume and has little

resistance to current flow; those crucial features must be retained in any model of the

7
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bath.

So how does one attach a small channel to a big bath? Mathematically, this
is equivalent to asking what kind of boundary conditions to use and where to apply
them. At first glance, one way to deal with this problem is to ignore the bath and
apply suitable boundary conditions at the mouths of the channel. If the baths are
assumed to be charge neutral everywhere and have an electrical potential indepen-
dent of location, then the bulk bath concentrations and the applied voltage become
boundary conditions at the ends of the channel. The problem with that argument is
that the bath is not charge neutral at either channel entrance. The channel protein
has a charge distribution which is not zero everywhere on the protein and rarely adds
up to zero. The entire channel protein has a net charge and ions of opposite charge
are attracted to (and ions of like charge are repelled from) the region of the bath
near a channel entrance. This results in a local region of space charge; that is, the
region is not charge neutral. This, in turn, creates a large local electrostatic potential.
Therefore it is not physically reasonable to apply the bulk boundary conditions that
apply far away from the channel in the regions near the channel.

Other boundary conditions can be used at the channel mouth to represent these
local changes in concentrations and potential. One such approach is via the so-called
built-in boundary conditions used widely in semiconductor physics (for semiconduc-
tors see [50], [47], and [34] under the heading Ohmic contacts; for use of built-in
boundary conditions for channels see [9]). These boundary conditions are derived
with two assumptions (as stated in [8]): (1) the baths are in thermal equilibrium
(that is, there is no flux from any ion species) and (2) the area just inside the channel
at the mouths is charge neutral if both permanent and mobile charges are counted.
As discussed above, the second assumption is not physically plausible because the
capacitance of the channel cannot be neglected. The first condition, upon initial con-
sideration, seems not to be valid since the idea of studying current from a channel

means to study the channel and the bath away from equilibrium. However, because
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the ions go from an essentially one-dimensional setting inside the channel to a three-
dimensional setting in the bath, there is a sudden, large drop in resistance to the
ions” movement. Therefore there is a large gradient in both the concentrations and
the potential and the right-hand side of the Nernst-Planck equation will be much
larger than the left-hand side which is flux. Thus, near the channel entrances, it is
valid to use a zero-flux approximation.

In general, these boundary conditions have been very successful; data from sev-
eral channels was fit very well using these boundary conditions (for example [9], [10],
and [11]). These issues (especially the impact of the charge neutrality assumption)
will be discussed further in Section 4.5.3. Also, in Section 4.5.2, we will show that the
boundary conditions derived from the PNP model considered here are quantitatively
similar to the built-in boundary conditions.

Given these two attempts, perhaps it is safer to apply bulk boundary conditions
in the baths, away from the channel; far enough from the channel, it is reasonable
to apply bulk boundary conditions. A model for how to do this for channels with
a uniform fixed charge and cylindrical symmetry was proposed by Wolfgang Nonner
in [36]. The basic idea behind the model (called Funnel-PNP) is that because of the
geometric constraints imposed by the channel and because ions have small diffusion
coefficients, the ions, in general, do not leave the channel moving parallel to the lipid
bilayer. That is, the ions move, on average, along the axis of the channel much like
water coming out of a garden hose. This is modeled by placing a “funnel” on each
end of the channel. Each funnel has a monotonically increasing radius, and, since
they represent the baths, do not have an inherent (a.k.a. permanent or fixed) charge
like the protein. This is illustrated in Figure 2-1 where the radius function is denoted
R (z). It is important to note that this funnel is not part of the channel, but merely a
way of representing the part of the bath close enough to the channel to matter (given
the rapid diminution of the current/flux density as one moves from one dimensional

flow in a channel to three dimensional flow in the bath). In the next section we will
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no permanent charge

R{x)

permanent charge

Figure 2-1: Representation of the funnel model described in the main text.

derive (almost) the same equations by considering a much more general case: we
assume nothing about the fixed charge of the protein or how the ions enter the baths,

nor do we assume there is any symmetry.

2.2 Derivation of the Equations

In this section we derive a set of one-dimensional Poisson-Nernst-Planck (PNP) equa-
tions from the full three-dimensional drift-diffusion equations that will become our
transport model. (We defer until Sections 8.1 and 8.2 the discussion of whether PNP

is or is not a good model of permeation.) We start by stating the three-dimensional
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drift-diffusion equations (see, for example, [27]):

-V (e(x) VP (x)) = z z;C; (x) + Q (x) (Poisson equation) (2.1)

—J,; (x) = D; (x) (VCj (x) + %Cj (x) VO (x)) (Nernst-Planck equation)

(2.2)

V-J;(x)=0 (continuity equation) (2.3)

where e is the proton charge, k is the Boltzmann constant, T is the absolute temper-

ature,

x = (2,9, 2) (2.4)

is the spatial coordinate, € is the dielectric coefficient, () is the permanent charge
of the channel protein, ® is the electrostatic potential, and, for ion species j, D, is
the diffusion coefficient, z; is the valence, C} is the concentration, and J; is the flux
density. Throughout we assume the Einstein relation between diffusion coefficient
and mobility (see, for example, [18]).

Each equation has a physical meaning. The Poisson equation is a differential
form of Maxwell’s First Law which states that the flux of the electric field across
any closed surface equals the total amount of charge enclosed inside the surface. The
Nernst-Planck (a.k.a. drift-diffusion) equations state that the flux of species j has two
components: simple diffusion and drift along the electric field. Finally, the continuity
equations state that there are no sinks or sources for the flux of each species. Now

consider the equipotential and equiconcentration surfaces of this system; that is, those
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Q)

Qe)

Figure 2-2: A two-dimensional view of the channel and its immediate neighborhood.
The shaded area represents the permanent charge of the channel protein exposed to
the conduction pathway. Also shown are two possible equipotential or equiconcen-
tration curves €2 ((;) and €2 ((,) that intersect the (-axis at ¢; and (,, respectively.
(The subscript on the ’s is omitted and depends on whether the curves represent
equipotential or equiconcentration curves.)
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surfaces {2 and (2; such that

® () = constant (2.5)
and

C; () = constant. (2.6)

The only assumptions we make in the following are that all of these surfaces start
and end on the lipid bilayers and that there is no particle or potential flux across the
bilayers. If we also assume that the lipid bilayer we are using has no surface charges,
then these are reasonable assumptions to make for channels. The inclusion of lipid
surface charges is not in the realm of this work since they would result in unequal
charge distributions in the baths which we do not take into account. (Because of
the low relative permittivity of lipid bilayers, we can also exclude the possibility of
induced charges in the lipid.)

We index these surfaces by drawing an imaginary number line along the center
of the conduction pathway (referred to as the (-axis) and calling Qg ({;) that equipo-
tential surface that crosses this (-axis at ¢; (if it intersects more than once, take the
smallest such () and similarly for €, ({;). This is illustrated in Figure 2-2. If we con-
sider a small neighborhood of the channel, let ( = 0 be the smallest { of the surfaces
inside the neighborhood and define d to be largest. Then d is the length of the new
system we are considering. The surfaces Qg (¢) and Q; ({) are two-dimensional level

surfaces and thus can be parametrized by two variables which we call s and ¢:

Qo (€) = {wa (55,1) = (w5 (G55,1) ,wg (G5, 1) ,wy (Gs,1) [0< st <1} (2.7)

Q; Q) = {w; (¢5,t) = (W] (G55,1) ,w¥ ((58,8) w5 (¢s,8)) [0< st <1}, (2.8)
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These are chosen so that all functions are continuous (and we furthermore assume

their first derivatives are continuous). In other words,
O (we ((55,1)) = D (g (G s,1) ,wo (G 5,1) w5 (¢ 5,1)) = constant (2.9)
and
O (w; (G 5,1) = Gy (w5 (G 5,1) ¥ (G3,) 7 (G 5,1)) = constant (2.10)

whenever 0 < s <1 and 0 <t < 1. As with any parameterization of a surface, there

is an associated Jacobian, which we denote

Jace ({5 s,1) (2.11)
for Qg (¢) and

Jac; ((;s,1) (2.12)

for ©, (¢). We define Ag (¢) and A, (¢) to be the areas of Qg () and €2, (¢), respec-
tively; that is,

As () = / / Jace (C: 5, ¢) dsdt (2.13)

and

A (¢) = / / Jac, (C:5,t) dsdt. (2.14)

(Here and in the following, we suppress the range of integration over s and ¢ since it
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is always from 0 to 1.) Next we define

¢ (Q) = (2 () (2.15)

and
¢j (€)= C; (24 (¢)) - (2.16)

By the indexing scheme, these functions are continuous in ¢ and we will further
assume they are in C1[0,d] (that is, they have a continuous first derivative on the
interval (0, d)).

Before continuing, we need a lemma.

Lemma 2.1 Let

1
h(¢) = m/ﬂ(of (2.17)

for some function f (z,y,z) where A () is the surface area of the surface
Q) ={w (Gs,t) = (W (G, t),w? (G5, 8),w ((55,1) [0S st <1} (2.18)

Then

') = ﬁ//Vf-g—?((;s,t)Jac(C;s,t)dsdt (2.19)

1 0 Jac
g [ £ G ) T (st dsa

jl((f))z //f(w (C;s,t)) Jac (C; s,t) dsdt
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where Jac ((; s,t) is the Jacobian of the parameterization of 2 ((),

vy (320,90,

oz’ Oy’ Oz
and
ow ow® owY ow?
Scsn = (G @ G o0 5 s

Furthermore, if
f(2(¢)) = constant
for all 0 < ¢ < d, then

// vF G 57” Jac (C;5,t) dsdt.

Proof. By the differentiating under the integral sign,

// aC w (¢G5 s,1)) Jac (G 5,1)] dsdi
_i, ¢) //f w (5 5,t)) Jac (¢ 5,1) dsdt.

Then
o t))J :s. t
e 1 @0 (G5.) Jac (G5, 1)
= V- S2 (G T (G 1)+ 1 (@ (G 0) S (G )

ER a¢

and the first formula follows. If

f(©2(¢)) = constant,

16

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)
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then

w ((;8,t)) Jac ((; s,t) dsdt

//f (:5.1) a‘]?c@, ,
[//8Ja(‘ C, p

Jac (¢;s,t) dsdt} . (2.27)

Since

- // Jac (C; s, t) dsdt (2.28)

and thus

//a‘]ac (C; 5, 1) dsdt, (2.29)

the two integrals are equal and the lemma follows. m
We can now start averaging the three-dimensional equations to arrive at one-

dimensional ones.

2.2.1 Reducing the Nernst-Planck Equations

To reduce the Nernst-Planck equations from three to one dimensions, we will average
each Nernst-Planck equation over §2; (). We start by taking the dot product of both

sides with the vector a_g

ow ; &.u 8w-

Next define

D;(¢) = /Q'(C) D; (2.31)
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Ep, (w; (G 5,1)) = Dj (w; (¢55,)) — D; (¢) (2.32)

B0 =00~ | @ (2.33)

Then, by Lemma 2.1,

§(Q) - Ep () = jc Al / K (2.34)
= Vo - a“’] (¢;'s,8) Jac; (C; 5,t) dsdt + Fi (C)(2.35)
- a“’f (© (2.36)
where
w ((:5,1)) aJaCJ (C; 5,1) dsdt (2.37)

/
4; / w (¢;8,t)) Jac; (C; s, t) dsdt.

J

Taking the surface integral over €2, (¢) in (2.30), we get

Ow; a""y %
—/QJ(OJJ--G—C _ (/ Vo, 2 e () e ag>(2'38)
Oow; Oow
p, (w;(C5s, Cj- —J —C’ J
+/Q(OE](W (¢ t))(V 5+ rCive: 8<>
= DA (O +Ze Q)+ B Q) (239)
where
Oow ; Oow ;
' = p, (w; (58, C; =2 —C’ J _
E; (¢) /Q(OE (w; (C:5,1)) (v ol + OV, 3() (2.40)
2]67

D5 (C) A5 (0) e (C) [ Q) + Fa (€)).
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For the left-hand side of the Nernst-Planck equation, let

Jj = / Jj -1 (241)
2;(¢)

where n is the unit vector normal to §2; (¢) oriented in the positive ¢ direction. This
integral is the net flux of species j across €2; (¢) (with a positive sign if there is a net
flux to the right, out of the channel) and since V - J; = 0 this flux is independent of
(. Letting

aw]'

By Q=5 [ 3% (2.42)

2;(¢)

we get the reduced Nernst-Planck equation

—J; = D () As Q) (¢ (O + 20 (00 Q) + B (O - By () (243)

kT

where

O (2.44)

(The reason for this new definition of the diffusion coefficient is so that in the end we

will only have one area function, namely Ag (().)

2.2.2 Reducing the Poisson Equation

Instead of averaging the Poisson equation, we rederive it starting with Maxwell’s
First Law: the flux of the electric field through any closed surface is equal to the
total amount of charge inside the surface. For the surface we choose Qg (¢ + A(),
Qs (), and the segments on the lipid bilayer connecting them. Let n be the unit

vector normal to this surface. On each g (§) segment, let n (g (£)) be the unit
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vector normal to g (§) oriented outward of the closed surface. If we define

IO | )
() = A2 (O) /Qq)(g) (2.45)

and

Ee (wa (¢58,1)) = €(wa (G 5,1)) —€(C), (2.46)

then

j(evq»n :/ chp-n(Q@(uAg)H/ VO -n(Q(C)  (247)
Qs (CH+AQ)

Qs(0)
— E(C+AQ / Ve -1 (e (C+AQ)) (2.48)
Qs (C+AQ)
+6(Q) [ Ve n(2(0)

Q4(0)

+/ EV®-n(Qq (g+Ag))+/ E.V® -1 (s (C)).
Qs (C+AQ) Qe (C)

Let

Col) { Jogo VE - [22 — (2 ()] i 0 (0 () 222 >0 210

Jooi) V- [85’—3 +n(Qe (C))} otherwise

Then

_ awcp _ awq)
feVCIJ-n _ e(C+AC)/%(C+AO ve. = _e(g)/%@ va. 29 (5 50)
+Hg (C+A¢) — He (€)
= €((+ADA ((+AQ P (C+AQ —E(O) A ()9 (¢) (251)

+Hs (C+ AC) — He (€)
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where

Ha (C) = / EV® (2 (C) £¢(0) Ga (0).
Qs (C)

21

(2.52)

(The choice of sign is determined by (2.49) and will soon become irrelevant.) As for

the total charge inside the surface, it is

C+AC C+AC
FRERAS 2a(€) ¢ 2 (€)

Letting

and

1
As () Jaso)

q(¢) = Q.

we have the total charge
¢+AC C+AC
3 A 5 (&) d§ + A d
Z/C o (€)¢; (€) de /C 5 (€) () de
S [ A B
+) 7z ; .
j ) < ’
Therefore we have

€(C+AQ As (C+AQ ¢ ((+ AL —€(0) Az () ¢ ()
= —[Zz-/MA <§>c-<s>ds+/c+A4A (£>q(§>d§]
- J ; & J ; @

C+AC
_sz/C Ag () F; (€) d¢ — (He (C+ AC) — Hg (€)) -

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)
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Expressing the left-hand side as

€(C+AQ) As (C+AQ) ¢ (C+ AQ) — () A (C+ ACQ) ¢ (¢ + AC)
+e(0) Aa (C+AQ) ¢ (¢ + AQ) = €(C) A (C+ AQ ¢ (0) (2.58)
+e(0) As (C+ AQ) ¢ (¢) —2(¢) Aa (€) ¢ (C)

dividing each side by A(, letting A( — 0, and dividing by Ag ({), we get the reduced
Poisson equation

—@(0) () —%(¢) ji 8¢ (=226 Q+a(Q+3_ 50 - Zzé

<
~—

2.2.3 Summary

Above we derived the following reduced (one-dimensional) PNP equations for 0 <

x <d:
(@) ¢ @) ~ e TH G @
- . ooy Ha(2)
= Z zjcj (v) + q (v) + Z 2 F; (x) Ao () (2.60)
—J; = D} (@) A (1) (¢ (2) + Z5e; () ¢/ (2)) + B (@) = By (=) (2.61)
% =0 (2.62)

where we have changed from using ( to the more familiar z.
As they stand, this system is only true if the full three-dimensional problem

has been solved. If the goal is to use these equations instead of solving the full
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three-dimensional problem, then we will need some further simplifying assumptions.
Although we will not prove it, we claim that when the functions €(z), Dj (z), ¢ (),
Ag (x), Hg (), Ej (), Fj (z), and Ej, (x) are given, then the system has at least one
solution (¢ (z),¢; (x), J;) for a given set of bulk boundary conditions applied in the
baths along the surfaces Q¢ (0), Qs (d), ©2; (0), and €, (d). (We claim this because we
have a numerical solver for this case that seems always to give a solution.) These func-
tions, however, depend on the equipotential and equiconcentration surfaces and thus
are difficult to estimate. One way to get around this is to assume that the shapes of
the equipotential and equiconcentration surfaces do not change much under different

bath concentrations and applied voltages. Then, in the Poisson equation, the terms

q(z)+> ;2 F; (x)— Z;fg; can be combined into a new effective permanent charge term
which may be recovered for individual channel types by data fitting current/voltage
curves. If, further, the shapes of the equipotential and equiconcentration surfaces are
assumed to be roughly the same and the diffusion coefficients to be roughly constant
on them, then the terms E; () and E;, (z) may be neglected. Although we will use
these assumptions in this thesis, we do not assert they are numerically valid. It is
important that they be verified by averaging the numerical solutions of the full three
dimensional system. We do not do so here because it is not feasible at the present
time. Since, however, the usual PNP equations are recovered for the case when A is
constant, this analysis does include one case of interest.

With these assumptions, we get the final reduced PNP system for 0 < z <
d (cast in slightly different variables) that we will use in this thesis to model the
transport of ions through open channels:

(@) @) @) TR0 =T sn @ e (26

—Jj = D; (@) A() (¢ (@) + s (2) & (1)) (2.64)
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dJ;

kA 2.65
. (2.65)

where we assume € (z), D;(z), ¢(z), and A (z) are given. For the boundaries, we

define

o= ¢0)=Y ¢0) cr=> c¢ld=Y c¢(d (2.66)

Zj=+1 ijfl Zj=+1 ijfl

V=6(0)-6(d). (2.67)

In this form, these equations are the same as for the funnel model used in [36].

2.3 Scaling the System

As described in Section 3.2.2, the first step in singular perturbation theory is to
nondimensionalize (or scale) the system being considered. As in that section, we will

use tildes to denote variables with units of measurement:

3 5= Y 5 (@) + 1@ (269

—J; = D; (#) A@) (& @) + 26 (2) 6 (2)) (2.69)
d.J;
=0 (2.70)

a=Y 0= &0 w=Y § (d) - Y g (d) (2.71)

Zj=+1 Z]':fl Zj=+1 ijfl
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V=0(0)—¢ (CZ) . (2.72)
We scale as follows:
- - LT -
T=ux-d gbz(b-? ¢j=c¢;-C (2.73)

E=¢-Emax Dj=D; Dyae A=A-d* Jj=J;-d0Dyax  (2.74)

where € is the permittivity of vacuum and

o= { L D= e [ Dy 1)} 2.75)
C' = max {sgp G (2)],éL, 63} : (2.76)

The system then becomes

_e? {(e (z) ¢ (x))’ 4 1;11’((;) ¢ (x)} = Z zic; (z) 4+ q (z) (2.77)
—Jj = Dj(z) A(z) (¢j (z) + zjc; (z) ¢’ (x)) (2.78)

co=Y¢0)=Y ¢0) =Y = ¢ (2.79)

V=¢(0)—¢(d). (2.80)
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where 0 < x <1 and

IllﬂXN kT
g =y SuaxfOT (2.81)
e2d2C

For the remainder of this thesis we will assume ¢ < 1.

As always, the scaling chosen here is not unique. For example, one can scale
the potential with the applied potential V' instead of % This becomes important
when |V| > % ~ 25mV. This change in the potential scaling factor, however, does
not change any of the results we will derive since V' ~ %T for channels. Furthermore,
we are not aware of any other scalings that would change the results or extend their
range of validity. Here we consider the small voltages usually used in experiments.

As for the choice of using ¢ as the perturbation parameter, it is a natural one to
make for channels since it tends to be small for channels. It is also the parameter that
is used when similar equations for semiconductors are expanded (see, for example,
[42] and [53]). There are also other approaches possible. In [49] Syganow and von
Kitzing, for example, use a completely different parameter. Although they do not

explicitly state so, they use the perturbation parameter

¢; ()

¢j (z) ¢' ()

6 = max { } (2.82)

to reach the drift limit of the PNP equations (that is, when contributions from diffu-
sion are small). In this case, which is applicable when V' is large enough, they derive

some approximate current/voltage relations.

2.4 Mathematical Assumptions

Before getting to the actual pertubation approximation of this system, we list the
mathematical assumptions we will use throughout this thesis in order to have reason-

ably simple results. First, however, we must understand what the averaging process
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has done to the smoothness of the functions we will be using. In (2.31) (along with
(2.44)), (2.45), and (2.55) we defined new, one-dimensional versions of the diffusion
coefficients, dielectric coefficient, and permanent charge, respectively. These were de-
fined as averages over the equipotential surfaces. Because of that averaging they are
always at least continuous functions, even if the original, three-dimensional function
they are approximating are discontinuous; taking the integral guarantees that. Fur-
thermore, the smoothness of these functions (that is, how many derivatives they have
with respect to (, to use the variable with which they were originally defined) is de-
termined solely by the smoothness of the geometry of the channel and, again, not by
the original, three-dimensional function. This is especially important for the dielectric
coefficient since, in three dimensions, it is usually approximated as discontinuous with
different values in the baths, protein, channel pore, and lipid and such discontinuities
have large impacts on the electric field. However, in its new, one-dimensional version,
this function is at the very least continuous. (Below we will insist that it must have
a continuous first derivative.)

We now come to the mathematical assumptions we use throughout this thesis:

e D, (x) is piecewise constant for all species j

e ¢ (z) is piecewise constant

e (z) is in C1[0, 1]; that is, it has a continuous first derivative (with appropriate

one-sided derivatives at the points 0 and 1)
o A(z)isin C[0,1]

Note that these assumptions are only applied to functions that are given before the
problem is solved; they are not assumptions about the actual solutions. These as-
sumptions are made so we can approximate a reasonably general channel by a com-
posite of step functions as shown in Figure 4-3 on page 68. These assumptions do

not describe the most general possible case; nonetheless they include a great deal
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more than the case of constant fixed charge, and they certainly allow a wide range of
behavior, including all that semiconductor diodes can have.

The first two assumptions go against what we just discussed about the smooth-
ness of these functions. These assumptions are, however, necessary for the mathe-
matics to be tractable and the results to come out in any sort of nice way. That
having been said, these approximations are probably not too bad since these func-
tions (D; (z) and ¢ (x)) are required to go from bath values to channel values quickly
if the orginal, three-dimensional functions were also piecewise constant.

These assumptions will be used throughout this thesis. When other assump-

tions are required for a specific section or chapter they will be stated there.

2.5 Regularity of the Solutions

In this section we briefly consider the regularity (smoothness) of the solution functions
¢, n, and p. Throughout this thesis we assume that ¢, D,, and D, are piecewise

constant and that e is C.

Theorem 2.2 Assume q and the D; are piecewise continuous functions and € and A
are C* functions on [0,1]. Then ¢ is C* in [0,1] with ¢" having jump discontinuities
where q does. Furthermore, each c; is continuous in [0,1] and is C* everywhere except

where D; and q are discontinuous.

Proof. We start by noting that the worst discontinuity any of the functions ¢", ¢, ¢,
and c¢; can have is a jump discontinuity since all the other functions have, at worst, a
jump discontinuity. It immediately follows that ¢" and the ¢; are continuous on [0, 1].
Furthermore, since ¢ and A’ are continuous on [0, 1], it follows that ¢" must have a
jump discontinuity where ¢ does and is continuous otherwise. Also, at any point z
that is not a point of discontinuity of D; or ¢, there is a neighborhood in which we
can differentiate the Nernst-Planck equation for species j and therefore ] exists at x

and the c;- are continuous as z. H



Chapter 3

A Primer on Singular Perturbation

Theory

The work in this thesis uses a mathematical theory called Singular Perturbation (SP).
The purpose of this chapter is to introduce the reader to the basics of SP by means

of an example.

3.1 Introduction

SP is a well-used and proven approximation technique, dating to the turn of the
century when it was first applied to fluid dynamics. Later, SP was applied to quantum
mechanics [4] and semiconductor modeling ([42], [53]) and is still used to study a
wide range of problems. References [4], [28], and [39] are textbooks on SP with many
examples of applications. A history of SP is given in [38]. Some current papers using
SP can be found at the Society for Industrial and Applied Mathematics web site
[46]. The idea behind SP is that a problem (usually a differential equation and its
boundary conditions) with a small parameter (call it £) is just a “perturbation” of the
same problem without the parameter (that is, the problem with ¢ = 0) plus successive

“correction” terms. These correction terms result from breaking the problem up into
29
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a hierarchy of subproblems, which in many cases have physical interpretations (for
an example see [41]). What is especially important to the average scientist is that
this hierarchy of subproblems comes from a systematic method. Since there is then
little intuition (a.k.a. guessing) involved, there are no accidentally dropped terms
and answers are complete.

One of the strengths of SP is that few terms (usually) need to be calculated.
The first correction term is usually £ times an “order 1”7 function (a function that
never gets very large), the second correction term usually 2 times another order 1
function, and so on. Since ¢ is small, each successive power of ¢ is smaller than the
previous and thus successive correction terms make smaller and smaller contributions.
An excellent approximation can be reached very quickly, many times even without
any correction terms; that is, the solution to the unperturbed problem by itself can
be an adequate approximation.

The perturbation series produced by SP is a generalization of the familiar
Taylor series. The difference between the two comes from the choice of the expansion
parameter: in a Taylor series the expansion variable is a location or time, while in a
perturbation series it is often a parameter of the problem. For example, if we expand
an appropriately smooth function f (z) in a Taylor series around the point xg, the

resulting series has the form
f(z)= Zak (z — 20)" (3.1)
k=0

where the coefficients a;, are constants. On the other hand, the perturbation expansion

with parameter ¢ is
fx)=> ay(z)e* (3.2)
k=0

where the coefficients aj are now functions of z. A major difference (although not
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necessarily a drawback) is that perturbation series are rarely convergent. Instead
they are asymptotic to the function f (z). To explain the difference, consider the

error after N + 1 terms in the series:
Ry (z)=f(z) =) ax(x)e", (3.3)

In order for the series to converge it is necessary (although not sufficient) for Ry (z) —
0 as N — oo for each . On the other hand, if the series if asymptotic to f (z) as

e — 0, written
f@)~> ap(z)eb (e —0), (3.4)

then, by definition, for each N the remainder Ry (x) goes to 0 faster than £V as

£ — 0; that is,

. Ry (z)
iy

=0 (N fixed). (3.5)

Then the remainder Ry (x) is much smaller than the last retained term as ¢ — 0, but
it is not necessary for Ry (x) to go to 0 as N goes to oo. (Another way to say it is
that for a fixed x the addition of more terms gives a better and better approximation
(smaller error) for a convergent series, while for an asymptotic series, the better
approximation comes from taking smaller and smaller €.) This subtle difference has

important implications, however. To illustrate that, consider the function

Flz) = —— erf (1) (3.6)

1—2z €

where
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is the Error function (see, for example, [56]). Then the Taylor expansion of f (x) is

f (x) = erf (%) kf;x’f (3.8)

which converges for when |z| < 1 and is useless when |z| > 1. The perturbation

expansion of f (z) is

)~ (1 - S e R _3)62’“> = —0)

(3.9)

which is divergent (apply the ratio test to check) but is asymptotic to f (x) for all .
(A derivation of this series expansion for erf may be found in [28].) The power of the
expansion in ¢ is now obvious: (3.8) is only valid when z is small, while (3.9) is valid
for all z. In other words, the Taylor series is a local approximation (near z = 0), while
the perturbation series is a global approximation (valid for all z). Furthermore, these
properties are true generally for these types of series and therefore the perturbation
expansion can have great advantages over the more traditional method of Taylor
expansions.

One might worry about using a divergent series to approximate anything. The
answer is that typically the terms of an asymptotic series get smaller for a while and
eventually, because the series diverges, become larger and larger. Just like the first
few terms in a convergent series are a good approximation, those terms that are still
getting smaller are a good approximation to the function. Unlike a convergent series,
however, there is a limit to the accuracy of the approximation (for a given ¢) since
after a while adding more terms in the asymptotic series makes the error worse. (An
algorithm for optimal truncation of asymptotic series is discussed in [4].)

Next, we turn to an example to discuss some of the finer details of implementing

an SP expansion.
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3.2 Enzyme Kinetics as an Example

3.2.1 Setting Up the Problem

We use the Michaelis-Menton theory of enzyme kinetics to illustrate the basic methods
of SP. (The following mathematical discussion is a modified version of what appears
in [39]. A detailed exposition of Michaelis-Menton theory from the chemistry point
of view may be found in [48].) We consider a chemical reaction initiated at time zero

that converts substrate S into product P with a single enzyme E:

k’l k2
S+E = SE — P+E (3.10)
ks

where SF is an intermediate substrate/enzyme complex and where the rate constants
k; are independent of reactant concentration. Let §, €, ¢, and p be the concentrations
of S, E,SE, and P, respectively. (The tildes (7) indicate that these quantities are
dimensional; that is, they have units, such as moles per liter for the concentrations.
They will soon be gone.) We adopt the customary ad hoc constraint that almost
none of P reverts to the initial substrate S. This assumption holds at the initial
stages of the reaction before the concentration of P becomes appreciable. An in-
depth mathematical analysis of this reaction requires derivation of this constraint

instead of assuming it.
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The equations governing this reaction are

d3 5 5
E%:—h%+k46

34

(3.11)
(3.12)
(3.13)

(3.14)

These are derived by considering the formation and destruction of each species. For

example, the rate of formation of SE is k;5¢ while the rate of breakdown of SE is

(l%,l + 122) ¢. The initial conditions, which represent the source of energy and matter

for the equations, are

5(0)=5 >0 &(0)=¢ >0

(50 and € are the known initial concentrations)

¢(0)=p(0)=0

(i.e., before the reaction there is no product or complex).

The system can be simplified by noting that

&+@5_0
dt  df
and

M+%+@_
dt = df  df

(3.15)

(3.16)

(3.17)

(3.18)
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These, respectively, imply that

and

5(0) =5 -5 (0) 2 (7).

Using these expressions for € and p, we get the final (nonlinear) system

with boundary conditions

It is these equations we will attempt to solve.

3.2.2 Scaling the System

35

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

The first step in SP is to nondimensionalize (or scale) the system by dividing each

quantity by an appropriate scaling factor. This removes any dependence on which

units of measurement are used. Only when this is done, is it possible to determine

which quantities or parameters are small compared to others. There is more than one

way to nondimensionalize any system, and one of the tricks in SP is to find a scaling

that makes one parameter small as compared to everything else and that will remain

small for the largest possible set of boundary conditions.
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Here we scale by setting

t=Fkieot  s(t) = 1 <L> c(t) = 1 (L) : (3.24)

€0 kl éo

The variables ¢, s, and ¢ (without tildes) are now nondimensional (that is, independent
of units of measurement). To see why this scaling is used, consider the two natural
concentration sizes: the concentration of the substrate S and the concentration of the
enzyme E. Since there cannot be more complex than enzyme, it therefore makes sense
to scale the complex concentration by the known beginning enzyme concentration.
Similarly, it is natural to scale the substrate concentration by its starting value.
That leaves the question of how to scale the time variable. If we use the following

intermediate scaling

t=tgmel  s(t) = ig( ! ) c(t) = i&( ! ) : (3.25)

§0 Lscale €0 Lscale
we get
d - - =
.§0tscale—8 = —kléogos + k1é0.§0 S + ~—1 Cc (326)
dt k130
dé - - ki +k
éOtscale_g = kléogos — kléogo S + g C. (327)
Therefore, defining
lscale = ];3150 (328)

cleans up the equations nicely. (It should be noted that other scalings are possible.

In [45], Segel and Slemrod introduce a scaling which results in the small parameter

éo o £
So(14+K) 14k

= (3.29)
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which has the advantage of being small when ¢ is small and when « is large will
therefore be valid for a larger range of parameters than the scaling we use here.) In
order that our new scaled system of equations looks as simple as possible, we group

several variable into nondimentional parameters:

€ 12‘2 /;3_1 + /;32 Ky

€= — A= = = (3.30)
S0 k1§0 klgo S0
where K, is the Michaelis constant. The system of equations then becomes
d
d—j:—s—l—(s—l—/ﬁ—)\)(: (3.31)
d
5d_§ —s—(s+k)c (3.32)
with boundary conditions
s(0)=1 c(0)=0. (3.33)

In most enzyme reactions the initial enzyme concentration is much less than the
initial substrate concentration, or, mathematically, that ¢ < 1. This will be our

small parameter.

3.2.3 Outer and Inner Solutions

The next step in SP is to state the form of the answer that is expected. It usually
consists of two parts: an “outer” solution that describes the solution when ¢ is far
enough from 0 and an “inner” solution whose only contribution is very near ¢ = 0 and
is assumed to go to 0 very quickly. (The reason for the inner solution is a technical
one: the outer solutions may not be able to reach the boundary values they need to,

so the inner solutions are introduced to make up the difference. We will come back
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to this towards the end of the example.) For this problem we write,

S (t) = Sout (t) + Sin (7—) (334)
¢ (t) = Cous (t) + Ci (1) (3.35)

where 7 = L. (7 is called a stretched variable. Because ¢ is small, 7 becomes large

very quickly as t increases from 0 and thus it is a good variable to examine what

happens when ¢ is close to 0.) Substituting these into (3.31) and (3.32) we get

dSout ldSin
dt e dr
=  —Sout (t) - Sin (7—) + (Sout (t) + Sin (7—)) (Cout (t) + C’in (7—)) (336)

+ (& = A) (cout (t) + Cin (7))
= —Sout (t) = Sin (T) + Sout (t) Cout (t) + Sin (T) Cout (£) + Sout (t) Cin (1) (3.37)
+Siu (7) Cin (7) + (£ = A) Cour (1) + (5 — A) Ci (7)

dcout dCin

“u i

= Sout (t) + Sin (7) — £ (Cout () + Cin (7)) (3.38)
— (Sout (t) + Sin (7)) (Cout (t) + Cin (7))

= Sout (t) + Sin (7) — KCout (t) + KCi (T) — Sout (t) Cout (t) (3.39)

_Sin (7—) Cout (t) — Sout (t) Cin (7—) - Sin (7—) Cin (7—) .
Because the outer solutions are the solutions to the system when ¢ is away from 0,

they must satisfy the original system of equations; that is,

dSout
dt

= —Sout 1 (Sout + K- )\) Cout (340)

dcout
dt

= Sout — (Sout + ’i) Cout - (341)
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The inner solutions are set to satisfy the rest:

édS;;T(T) = =S (1) +c(er) S (7) + (Sous (67) + 5 = N) Ci (1) (3.42)
+Sin (7') Cin (T)
dCin (T)

B = i (7) = ¢ (67) S (7) = (sout (7) + 1) i () = S (7) Cla (7). (3.43)

The next step is to start approximating both the outer and inner solutions. This is

usually done by expanding all the functions in powers of e:

Sout (1) = 8O (t) + s () + 2P (8) + - -- (3.44)
Cout (1) = O (1) +ecP () + 2P (t) + - - (3.45)
S (1) = SO(r)+eSW (1) +£28@ (1) + - - (3.46)
Co (1) = CO(N)+eCY (1) +2CO (1) +--- . (3.47)

This expresses the functions as the solution to the unperturbed problem (those terms
with superscript (0)) plus correction terms. Substituting these into (3.40) — (3.43),
multiplying the series, and equating all terms multiplied by the same power of ¢, we

get a hierarchy of systems:

first level

ds(0)
- —5@ 4 (5O 4 15— \) (3.48)
0 = 5@ — (5@ +k)cO (3.49)

ds®©
— = 0 (3.50)

dC©)
— SO _ 0 (0) SO — (5 (0) + k) CO — SOCO (3.51)

dr
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ds™®
dt
dc©)
dt
ds®)
dr
dc®
dr

second level

SO 9 (0) SO + (59 (0) + k — ) C© + SOCO

de©
% (0) 7 + ¢ (0)) S©

ds©®

S _ 0 (0) ) — (

(0) 7+ s (0) + /1) c

—sOco®) _ g1)(0)

and so on. For the boundary conditions we require that

5(0) =59 0)+590)  ¢(0)=c"(0)+C?(0)

0=s®0)+5®©0) o0=cPO)+c®©) (k>1).

40

(3.52)
(3.53)
(3.54)

(3.55)

(3.56)

(3.57)

These may seem daunting at first, but they will reduce considerably. From the first

two equations, we get

o _ 30

sO + g

ds(0) As(0)
dt 5O rg

The last one can be solved implicitly:

s (t) + kIn (s(o) () = s (0) + kIn (3(0) (0)) — At.

(3.58)

(3.59)

(3.60)
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Also, %(TO) = 0 along with the fact that inner solutions must go to 0 as 7 — oo gives

SO =, (3.61)

The boundary condition for s requires that

5O (0) + 5@ (0) = 5 (0) (3.62)
Thus
sO0) =1 (3.63)
and we have
sO () +rln (s (t) =1 - At. (3.64)
Also, now
dc® _ _ (14 r)CO (3.65)
dr
and thus
CO (1) =aexp[— (14 k) 7] (3.66)

where « is a constant of integration to be determined by the boundary condition

1

0=rc(0)=c(0)+C?(0) = Ty

+a. (3.67)
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Thus

O (7) = — ! —exp[ (1+)7]. (3.68)
Notice that C©) goes to 0 very fast so that any contribution of C'® to the solution C (t)
is near t = 0. The equations also show that during the initial stages of the reaction,
the complex concentration increases exponentially, while the substrate concentration
varies much less quickly (since its inner solution S(® turned out to be identically 0.)
Having assumed that there was much more substrate than enzyme, this makes sense.
We have now solved for all the unknown terms in the first level of the hierarchy.
The next step is to take the first-level solutions, substitute them into the second-level
equations, solve for the second-level solutions, and continue to the third level. We do
not show this here since this is straight-forward and would not offer any more insight
into the ideas behind SP.

Before continuing with the example, we give a short discussion of the inner
solutions (also called boundary layers). At the beginning of the section we said that
the inner solutions are there because the outer solutions cannot meet the boundary
conditions of the problem. The reason for that is when ¢ is set to 0 in the first level

d‘fi)g‘ disappears (compare equations (3.41)

of the hierarchy of equations, the term
and (3.49)). This loss of a derivative is the reason c¢,,; cannot meet the boundary
condition of ¢: for all differential equations, the order of the highest derivative sets
the number of unknowns which are found by having the solution satisfy the boundary
conditions. In this example, the order of the highest derivative for c,, was 1 (see
equation (3.41)) and so there was one unknown. But after setting ¢ = 0, there were no
derivatives of ¢(¥) (see equation (3.49)) and therefore there are no unknowns. In other
words, when we solved for ¢ () (equation (3.58)), c¢(® (0) was already determined
and unless we were very lucky, ¢ (0) would not equal the boundary condition of
the original function ¢ (equation (3.33)) as it must. Therefore, we needed an inner

solution to make up the difference. By comparison, all the derivatives of the s terms
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0.6

0.4

0.2]

Figure 3-1: Concentration of complex vs. time for 5, = 1072M and &, = 1073 M with
k= 105M s, k_; = 102571, and ke = 1025, Because the rate constant ks is an
order of magnitude smaller than in Figure 3-2, the complex dissociates much more
slowly. In this case the heuristic approximation % = 0 is valid.

survived when ¢ = 0 and so 5 could meet the s boundary condition. There was

then no need for an inner solution, as was verified when we found that S = 0.

3.2.4 The Results

To give a little flavor of the validity of these results, consider the Figures 3-1 and 3-2.
They show the graphs of complex concentration (which is directly proportional to the

rate of product production) as a function of time for

S5o=10"2M & =10"°M (3.69)

- - - 10%2s~!  Figure 3-1

ki =10°M~"'s™ ko =10%s"" k= & (3.70)
103571 Figure 3-2.

The graphs then show the expected qualitative features: in Figure 3-1, where the

SE complex dissociates more slowly than in Figure 3-2, ¢ quickly reaches a large

maximum and very slowly returns to 0 (not shown on the time scale of the figure);
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0.8
0.6
0.4

0.2

Figure 3-2: Concentration of complex vs. time for 5, = 1072M and &, = 1073M

with & = 10°M~'s7, k_q = 10257, and ke = 103s™!. Now the reaction with rate

constant ks, is no longer rate-limiting and the heuristic approximation % = 0 is no

dt
longer valid.

there is a bottleneck in the process. When the complex dissociates more quickly there
is less of a bottleneck and c still quickly reaches a maximum, but it is not as large,
and it returns to 0 much more quickly. The graphs also nicely show the inner and
outer solutions at work. The inner solution (a.k.a., layer function or boundary layer)
is the sharp increases from 0 to the maximum near ¢ = 0 and the outer solution is
the part of the graph to the right of the maximum.

To conclude this example, we briefly discuss the biochemistry approach this
problem. As argued in [48], biochemists assume a steady state exists such that the
concentrations of intermediates stay the same while the concentrations of the starting

materials change; that is, they assume

dc

— =0. 3.71
= (3.71)
One might argue that that is essentially how we achieved (3.49) and so this is equiv-

alent to considering the outer solutions and is valid if ¢ is large. This, however, is

not quite true, as illustrated in Figure 3-2. There is an implicit assumption that the
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reaction described by rate constant ks is the rate-limiting step in the process. When
it is not, it is possible for ¢ to never achieve a steady state and the heuristic argument
breaks down (compare Figures 3-1 and 3-2).

The advantages of a systematic mathematical analysis over any heuristic argu-
ment, no matter how wise, should be clear. This is not to say that heuristic arguments
are not of importance. They motivate the SP analysis and indicate what variables
and conditions are important. Furthermore, they show what results the analysis is
expected to give and are important for communicating with previous contributors to

the field, particularly experimental biologists.

3.3 Concluding Thoughts on SP

This discussion was meant to illustrate the power of SP: because SP solves a problem
very close to the original, at even the first level of the approximation the important
features are already present. Furthermore, their formulations are relatively simple.
It is important to note that these are properties of SP, and do not result from the
choice of example. The equations in this example are nontrivial; they are nonlinear
and there are no neat formulations for the functions s and c. In these respects they
are very much like the PNP equations studied in this thesis.

SP, although a powerful method, comes with some caveats. The first of the
three most important is that while SP gives excellent approximations to functions
(such as ¢ above), it sometimes does not give accurate approximations to the derivative
of the function; in some problems the approximation to the function intersects the
actual function many times and thus the derivatives at most points may not be close
to those of the actual function. Therefore, when derivatives are the objects of interest,
more analysis is necessary to ensure that information about them is accurate.

Secondly, many times it is difficult to know the size of error terms in an ex-

pansion. Thus it difficult to know how many terms in the perturbation series (as



CHAPTER 3. A PRIMER ON SINGULAR PERTURBATION THEORY 46

in equations (3.44) — (3.47)) constitute a “good” approximation. For example, as
illustrated in Figure 7.7 of [4], increasing the number of terms (in that particular
case from two to four) can increase the range of validity of the expansion an order of
magnitude. This is one reason why one must always compare the SP approximation
to the numerically calculated solution of the problem.

Lastly, for many problems it is difficult to know for what range of parameters
the approximation is valid. For example, in the work in this thesis, we will find that
when the bath concentrations become too small, the SP approximation is no longer
close to the numerical solution. The parameter range for which an approximation is
valid is a function both of the problem being studied and the choice of nondimension-
alization and must be evaluated on a case-by-case basis, usually by comparing the
approximation with the numerical solution of the problem.

In general, the direct checking of the validity of the approximation to numerical
solutions serves another purpose: one can concentrate one’s energy on the physical
meaning of the problem and its approximations, which is after all what SP is good for.
Therefore the exponential growth in computing power should produce a congruent
growth in the utility and use of SP. It has done the former, but as far as we know

unfortunately not the latter.



Chapter 4

Single Salt Case

In this chapter and the next we describe the singular perturbation expansion of the
model derived in Chapter 2. We consider the cases of single and multiple salts in
the baths seperately because the latter case is more difficult and yields less precise
results.

The single salt case is considered in this chapter. By single salt we mean that
the baths only contain, for example, NaCl or KCI but not a mixture of the two. That
is to say, the baths are “electroneutral” with the concentration of cations (for example,
Na™ in a NaCl solution) equal to the concentration of anion (for example, C1~ in a
NaCl solution) everywhere in the bath, but not in the channel itself. Furthermore,
throughout this chapter (and the next) we only consider the case of monovalent ion
species (for example, Na™, K*, and Cl-, but not Ca?"). In this case, the transport

equations become

Ay
[+ o] =n-p-a (a.)
Jn
DA Ny — N, (4.2)
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J,
~ 5.4 =P~ P (4.3)
P
(Here we use the notation
df
Jo = f/ = % (4'4)

because later we will use superscripts to index the expansions and thus this notation

is more convenient.) For the boundary conditions we have

c =n(0)=p(0) cp=n(l)=p(l) (4.5)

V=9¢(0)-9¢(1). (4.6)

Again, the functions ¢, D,,, and D, are assumed to be piecewise constant on [0, 1].
This is illustrated for ¢ in Figure 4-3 (page 68). We use these boundary conditions
because they correspond to the setup usually used in experiments. Note that they are
not trivial to enforce. In particular, the chemical boundary conditions (4.5) are only
satisfied approximately, because of the relatively small amount of current that flows
through a single channel. For some types of channels (most notably Ca channels) it
cannot be satisfied at all because the concentration on one side of a calcium channel is
typically 1078 M while the currents through a calcium channel can be quite large (100
pA). The electrical boundary condition (4.6) is enforced by a complicated electronic
circuit in experimental situations. In real life, it is sometimes enforced by the proper-
ties of other channels, and active transport systems, but in so called “excitable” cells,
like nerve fibers and skeletal muscle, the potential is not controlled at all. Indeed,
the main role of channels in these cells is to change the potential and thereby carry
and manipulate information. The central task of traditional physiology, epitomized

by the work of Hodgkin and Huxley [24], was to show that channels existed and that
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their properties, studied under voltage clamp conditions account for all the physio-
logical properties of nerve fibers and skeletal muscle fibers under NONvoltage clamp
conditions. While this is certainly a proven case for K and Na channels, one might
argue that it has not been proven for calcium channels because of the problems just
mentioned in controlling or knowing local concentrations. Whether this lapse in rigor
has any practical significance, either physiological or biophysical (or mathematical)

is not known.

4.1 SP Expansion on an Interval with Constant
Permament Charge

We first consider the subproblem of an expansion on the interval [a,b]. The results
will be the basic building blocks for later sections.

In this section we will assume that the permanent charge ¢ and the diffusion
coefficients D,, and D, are identically constant. That is, we consider one of the interals
of [0,1] on which ¢, D,,, and D, are constant (for example, (z1,z2) in Figure 4-3 on
page 68). Furthermore, we assign arbitrary boundary conditions to the functions ¢,

n, and p:

f(a)= ﬁL,f fb)= ﬁR,f (f =¢,n,p). (4.7)

This notation is shorthand to mean

¢(a) = ﬁL,qs ¢ (b) = ﬁR,qs (4.8)

pla)=0r,  pb)=Pry (4.9)
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n(a) =P,  nb)=LPru (4.10)

To start we will do a major change of variables. The reason for this is that,
depending on the sign of the permanent charge ¢, which ions are the counter-ions and
which are the co-ions changes. With this change of variables, we will only have to
do the problem once. Otherwise, we would have to do our analysis twice, once for
positive fixed charge and once for negative. If there is only one region of permanent
charge, then this is equivalent to doing the problem once for cation channels (in which
the fixed charge is expected to be predominantly negative, because the permeating
ions are predominantly positive, and are of course the counter-ions), and once for
anion channels (in which the fixed charge is expected to be predominantly positive,
because the permeating ions are predominantly negative, and are the counter-ions).

For this purpose we define

u(z) = n(z)—lql ifqg>0 L) 1 ifg>0 @1
p(z)—lgl ifg<O 1 ifg<o
Jo ifqg>0 D, ifqg>0
Ju = D, = (4.12)
Jp, ifqg<0 D, ifqg<0

ﬂL/R,u = . (4-13)

w(z) = Zy = (4.14)
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J, ifqg>0 D, ifg>0
J,=4 7 N Do=4 7 "1 (4.15)
J, ifqg<0 D, ifqg<0

Br/rw = Prirp 14 >0 (4.16)
ﬁL/Rm if ¢ <0.

Intuitively, w and the variables with that subscript refer to the co-ions (those with the
same sign as ¢). The variables with the u subscript refer to the counter-ions, while
the function u itself is the difference between the permanent charge concentration
and the counter-ion concentration. We expect the co-ions to be present in much
smaller concentration than the counter-ions. They will be the minority carriers (in
the language of semiconductors) because most of the ions will have the opposite charge
from the fixed charge of the channel wall. The fixed charge of the channel wall will
be balanced approximately by the mobile charge; otherwise a very large electrical
potential will develop. To put it another way, in the time dependent generalization
of the problem we are considering, mobile ions will flow to dramatically reduce such
a potential. Roughly speaking one can expect only a small deviation (a few percent)
from electroneutrality (that is, equality of the sum of mobile and fixed charges) and
only a slightly larger deviation between the concentration of counter ions and fixed
charge in regions away from the boundaries. At the boundaries, it is quite a different

story. Depletion layers develop there that control the properties of many devices.
Next we make an assumption about the size of the area function A. Because
the area function is expected to be much smaller inside the channel than in the baths,

we assume A = O (g), and we define
AW = (4.17)

: AW _
Further, we assume AM) is O (1) while % < %. This means that A never gets
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very large (which is the same as saying that we only include a small part of the baths
in our analysis) and that A" does not increase or decrease too quickly. Examples of
acceptable and not acceptable functions A" are shown in Figure 4-1.

With these definitions the system becomes

AM
—? | (edy), + em% = Z,U + ZpW (4.18)
1 J,
~DAD = Un e + zud, — qo, (4.19)
1 Jy

Similar to what we did in Section 3.2.3, we assume expansions of the following

form:

PO = fos @)+ i (22) 4 P (25) (= mw P =0, 0W),

(4.21)

Substituting these into (4.18) — (4.20) and multiplying out all the sums, we set the
outer solutions to satisfy the original differential operator (4.18) — (4.20) (but not the
boundary conditions) and the inner solutions to satisfy the remaining terms of this
multiplication. Together they will meet the boundary conditions. For the left side,

the inner solution equations are

d (. do,\ . A dd,
_8 (., 2L <L ” 4.22
dC (EL dC)+€LA dC ZUL+Z WL ( )
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2.0+

1+exp(-10x)
1.8

- - - - 1+exp(-50x)

AX)

0.4 0.5

Figure 4-1: Examples of area functions A() that are and are not acceptable. The

basic idea is that A cannot suddenly become large, as one of the functions below.

For this example, let ¢ = 0.1 and consider only the interval [0,0.5]. The curve

AWM () = 1+ exp (—10z) is acceptable because its derivative is at worst —10 and so
1

AY
AD

< 5 < % = 100. However, the curve A" (z) = 1+exp (—50z) is not acceptable

AV (0

because its derivative at x = 0 is —50 and so A(l)(O)‘ <25 K 6% = 100.
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AUy, d, _ddg dd,  ddp
== ) —— — —g—= 4.2
AWy, do, APy, dd;,
_ L ) -~ 4.24
0 i +ZwWLdC + Z,Wr, i + 2oW1 i ( )
where
T —a
- 4.25
(=2 (4.25)
and
frQ)=fla+ed)  (f=euw). (4.26)

For the right side the equations are

d (. ddp  Ax ddpy
dxX R

GRK € Tﬁ == ZuUR + Z'u)WR (427)

dUg dop, _ ddp ddp  ddp

_ USSR L 0 08 OOk SR 4.2

0 dX+ZURdX+ZURdX+ZURdX 9% (4.28)
dWg dop, _ ddp dd

_ R TR -k R 4.2

0="3x TaWegy +atr g +2Wegs (4.29)
where
b_

Xx=--7 (4.30)
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and

~

frRX)=f-eX) (f=euw). (4.31)

In writing seperate equations for the left and right sides of the interval [a, b],
we have assumed that the layers on each side are well seperated. This is a standard
technique in SP since all functions describing layers are expected to go to zero very
quickly. If they do not go to zero fast enough and the layers from each side do interact
with one another, the situation is usually too complex to work out nicely. However,
assuming that layers are independent and do not interact when they actually do can
be a major source of error (both quantitative and qualitative). Later in this chapter
(Section 4.6) we will show when boundary layers are likely to interact for the PNP
equations. (If the boundary layers interact enough, the numerical solution of the full
PNP equations must be used.)

Next, all of the functions are expanded in powers of e:

four (2) = fO (@) +fD (2) 4+ (f = d,u,w) (4.32)
Fr(Q) = F (Q+eF QO+ (F=9,UW) (4.33)
Fr(X)=FO(X)+F) (X)+-- (F=9,U,W) (4.34)

Jp=ed+IP 0 (f=uw). (4.35)
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These functions will be solved to satisfy

dr) 2F"

gli%oFL(’;)R (©) = CIEEOTLgm (€)= lim dCI;/R (¢)=0 (F=a,UW;k=>0)

(4.36)
and the boundary conditions

6O (a) + 7 (0) = By, 6® (b) + ) (0) = By

o® @)+ (0)=0 (k=1 M@ +eR(0)=0 (k>1)

u® (a) + U (0) = B, — |d u® (b) + UY (0) = B, — ldl (@37

uP (@) +UP0)=0 (k=1 u®EH)+UP©0) =0 (k>1)

w® (a) + W (0) = B, w® (b) + W (0) = B,

w® (@) + W 0)=0 (k=1 w®®)+W0)=0  (k>1)

4.1.1 The Outer Solutions

If we substitute (4.32) into (4.18) — (4.20), multiply the series, and equate like powers
of €, we get a hierarchy of equations for the outer solutions. At leading order, these

equations are

ul® = @ (4.38)
)
— 5w = ) — e + 2P — gl (4.39)
7
Y = w0 4 2wl (4.40)

" D,AD
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which reduce to

)

- DA - U;O) — Zuqz + Zuu(0)¢§co) - quio) (4'41)
)

Instead of working with this system directly, we will do one more change of variables;
it will be more convenient to work with the following system which results from adding

and subtracting the equations above:

B Rl v — (@ L H1} 240 4.4
2 (Du D, | AT (“ R )x 5%z (4.43)
(1) (1)
1( J w | 1 4]
_Z _ — 0) ;. =) 40
5 ( ) Dw> - = (u + 5 ) ¢! (4.44)

where we have used the identity

gl = —2ugq. (4.45)
Letting
WA
JP =22 4.46
~=5 ( D, =D, (4.46)
and
p=u® + ldl (4.47)
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these equations become the final equations for the outer solutions

JJ(rl) q (o)
A T My — 5% (4-48)
JY
a0 = pot. (4.49)

With this new notation, the boundary conditions become

¢ (a) + @ (0) = B, ¢ (b) + @) (0) = Bry
pla)+ 5+ U (0)=Fry  n(®) + %+ U5 (0) = Br., (4.50)
pia) =4+ w2 0) =8, pbd)-L+Ww (0)=7Fg.

(It is important to note that the “4” and “-” in the JS) notation do
not refer to the charge of any ion species, but only to the mathematical
operations of addition and subtraction. Furthermore, this will always hold
true; the symbols “+” and “—” will never be used to indicate charge, but
will always refer to addition and subtraction. Charge is always referred
to by p and n.) Intuitively, u(z) can be thought of as the average mobile ion

concentrations at x since

q|

1
p=u® + 5 = (u® +w® +|q|) ~ 5 (n+p). (4.51)

N[ —

Unfortunately, we do not have an intuitive feeling for the Jf). These variables arise

so naturally that one suspects they have a simple physical meaning, at the least in
reduced problems.

Next we solve these outer solution equations.
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Theorem 4.1 (Outer Solutions) The outer solutions are given by

( ) qJ(l)
(1) H(T) — 5= T
q J 2 Jy (1) ds
p(zr) —p(a) + = In — | +J =0 (4.52)
2 70 p(a) — PEAY T Ja AW (s)
2 ‘]4(})

Jw
W [ rE) - 55w
+

¢(0) :¢(0) a) — —1n
@7

o (4.53)
(a) — 42
H 250

Therefore the outer solutions are completely determined if we know p (a) and ¢ (a).

Proof. Eliminating ¢’ from equations (4.48) and (4.49) gives

JO g W
©) _ 40 a [F___ds
o =" (a) + J /a ) AT () (4.55)

The first equation is a seperable differential equation (see, for example, [5]) and can

be solved implicitly by

&)
qJ=

o [ rE) - i5m 2
qJ> 27 1 ds
p(x) = pla)+ 27 In erl) + J-(‘r)/ AD (5) 0. (4.56)
T p(a) — %@ ¢
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-1/e

A
W. ]

Figure 4-2: Graph of the two real branches (W, and W_;) of the Lambert W function.
A detailed review of the properties of this special function are given in [14].

Also from the first equation,

1) rz s .
s _ 2 () = @)+ [7 5| a0 .
" Ja n(s) AW (s) —ﬁln(“@) ifg=0
g pi(a) q

A
J(l) /11(1') 2 5

= = + (4.58)
) )
J qJ=
+ p(a) = 35m

and the theorem follows. m
Before going on to the inner solutions, we make a brief digression into how

to (numerically) compute p (x) from (4.52). To start, we introduce the Lambert W
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function as that function which solves the equation
W (z)exp (W (z)) = . (4.59)

(Note: This function is not related to the layer functions Wy, i.) This special function
is known to Maple (cf. [14] and [21]) and its properties are reviewed in [14].
discussed in that article, the Lambert W function has two real branches, denoted W,

and W_; with W > —1 and W_; < —1. These are illustrated in Figure 4-2.

Lemma 4.2 For p(x) as in (4.52) and gJM #£0

J
w (@) = L= Wi (2)] (4.60)
2 J( )
Jr
where
J g 1) fzr  ds
p(a) — %W p(a) — gﬁ - I fa A((li)(s)
7 = — exp 0 (4.61)
2,0 2 ;0
pe)
0 ifl (1) >0
k= el (4.62)
-1 if3 <1>
Proof. Let
S Fie)
p(z) — = 1= J(l) T
IR U L o8 ' /o (463)
J(_1) qJ(_l) g
p(a) — 2 70 p(a) =3 e p(a) =3 7D
Then

0=y—1+Aln(y)+ B (4.64)
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which is solved by

y = AWy (% exp (%)) : (4.65)

The choice of k comes from the fact that p(z) > 0 and thus if A > 0 (A < 0) then
W > —1 (W < —1) which occurs if and only if k =0 (k= —1). =

The reason for introducing this form of the solution for u (z) is that [14] de-
scribes an efficient and easily implemented numerical technique (specifically Halley’s
method [1]) for computing W. In order to use some of the later results of this work,
it will be necessary to numerically solve (4.52) many times and therefore an efficient

algorithm becomes adventageous.

4.1.2 The Inner Solutions

For the inner solutions, we show the work on the left and suppress the L/R notation.
As with the outer solutions, we get a hierarchy of equations after substituting
(4.33) into (4.22) — (4.24), multiplying the series, and equating like powers of €. At

leading order the equations are

€(a) DY) = —z, (UO — W) (4.66)
0 0 lq| 0
0=0U"+ 2,00 + 2, (# (a) + 7) o (4.67)

0= WC(O) - qu(O)q)éO) — 2y (/L (a) — M) @éo). (4.68)



CHAPTER 4. SINGLE SALT CASE 63

Theorem 4.3 (Inner Solutions) The inner solutions are given by

2
€(a) (d®\" _ NI 0 _ 440
1 ( i = p (a) cosh (@L ) + 5 sinh (@L ) - 2<I>L — p(a) (4.69)

0 = (@) + L) (e (~2u0?) - 1) (4.70)
Wy = (u (a) — %) (exp (zu0”) = 1) (4.71)
U (f}%) = (b cosh (90) + Lsink (o) ~ L6® 1) (a72)
00 = (5 + %) (o0 (~a0y) - 1) (@.73
Wi = ()~ 2] (o () - 1). (@74)

These results still hold when q = 0 by taking z, = —1 and uw = n and w = p or by

taking z, =1 and u =p and w = n.

Theorem 4.4 At the boundary we have the following relations:

r0= (1@ + 9 ) exp (=2 (51— 00 @) (4.75)

0= (@) =12 oxp (s (51— 0 @) (4.76)
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e = (10 + 1) 0 (=2 (880, - 0 ) (4.77)

= (10 =2 ) exp (a0 (50, - 67 ). (4.78)

Proof. The second theorem follows from the first by evaluating U éo/)R and WL((;)R at 0
and the boundary conditions (4.50). m
Proof of Theorem 4.3. We will work on the L side and leave out the L subscripts.

The equations are solved to satisfy

lim @0 () = Jim o (¢) = lim &¢ () =0 (4.79)
2 (0) = B — ¢ (a). (4.80)

Adding and substracting (4.67) and (4.68), substituting (4.66), and integrating the

equations with the dissipation conditions (4.79), gives

2
0O Lo — 6(;) (29)" + g2 (4.81)
0=z, (UO - W) + U+ W) o + 2 (a) B (4.82)

Substituting the first equation into the second and using (4.66) we get that ®(©) must
satisfy

0 1 0)? q 0 2p(a) (o
0= —5 (o) - L (a)cb@cpg B0 (4.83)
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To make the notation less cumbersome, let

Q) =29(). (4.84)

Then

2p (a)
e(a)

q

(a)

1
0= fec — 3 (fe) — o fe— fe. (4.85)

The standard way to solve equations of this type (autonomous: where the independent
variable ¢ does not explicitly appear; see, for example, [4, page 24]) is to introduce a

new function v:

v(f) = fe. (4.86)

Then

2
¢ (a)

(v?) i v? = (af +2p(a)). (4.87)

Solving this for v and substituting back we get

2

2
(27) = Brexp (@) + Byexp (—2) - - o (@0 +2u@)  (4s)
and, by differentiating this,
0 _ Bi 0 By 0 q

Letting ¢ — oo and using the dissipation conditions (4.79) gives

(,u (a) + %) (4.90)
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2 q

B2 =0y (n@-3). (4.91)

Therefore

0 2 2 q 0 2 q .
(Cbé )) ) (“ (a) + 5) exp (21%) + (@ (u (a) — 5) exp (— @) (4.92)
o 1+ 2 (0)
= - (4a) (,U (a) cosh (cI>(0)) + = sinh (cp(O)) gq)(o) — (a)) (4.93)
and

(IDE_? = (u (a) sinh (CI>(0)) + gcosh ((ID(O)) - %) . (4.94)

e(a)

We do not continue to find a closed form solution for & since we are not aware of
a formulation that would be useful for any later work. Furthermore, we do not need
such a formulation since we are not interested in the functions ¢, n, and p themselves,

but only in the current/voltage relations.

To find U©® and W we start with (4.66):

U9 w0 = _—ze(a) @E-%) (4.95)
= —2z,u(a)sinh (@(0)) + |g| cosh (@(0)) — |q| (4.96)

= 2u(a)sinh (—2,2?) + |g| cosh (—2,2?) — |g] (4.97)

From (4.81) we have

2
0O Lo _ € (2“) (82 + 42 (4.98)
= 2u(a)cosh (CID(O)) + ¢sinh (CID(O)) —2u(a) (4.99)

= 2u(a)cosh (—zu(ID(O)) + |g| sinh (—zu(ID(O)) —2p(a) (4.100)
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where we have used the identities

sinh (—z) = —sinh ()

cosh (—z) = cosh (z) .
Thus

Uéo) = ( ) COSh (0))+sinh (—zu(IJ(O)))

W]EO) = (p (a) — %) (cosh (—zu(ID(O)) — sinh (—zuq)(o)))

- (u (a) - %)
= (1@~ (e (w2") -1)

The proofs for the R side and when ¢ = 0 are similar. =

67

(4.101)

(4.102)

(4.103)

(4.104)

(4.105)

(4.106)

4.2 Matching across a Junction of Two Intervals

of Constant Permanent Charge

If we want an expansion of the PNP equations for a piecewise constant permanent

charge and diffusion coefficients, we must match the solutions found in the previous

section across any discontinuities. To start, let M +1 be the number of discontinuities
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]
q,
qix)
q; : q-

ﬁ I ﬁ

X, = 0 Xl X2 X3 X,= 1

q,
]

Figure 4-3: Dividing up the interval [0, 1]. In this example we divide up the interval
[0, 1] into 4 segments, which corresponds to M = 2. The baths (where ¢ = 0) are the
M — 2 intervals (zo, 1) and (z3,24) and the channel (where ¢ # 0) is represented by
M intervals (x1,x2) and (x2,x3) where ¢ takes on M different values, one one each
interval.

of ¢, D,,, and D,. Call the discontinuties zi,... ,zp; and order them such that

T < Xg <+ < Tpfq1- (4107)

Lastly, define xg = 0 and x;;,o = 1. Then the baths are represented by the two
intervals (zo,z1) and (741, pr42) (intervals 0 and M + 1, respectively) and the
channel by the M intervals (z1,x2), ..., (zar,Zar41)- This is illustrated in Figure 4-3.
Throughout we will assume that the baths are of equal length (that is, 1 — zg =
Zare2 — Ta41) and that the diffusion coefficient of each species is the same in the two
baths.

On each interval (x;, z;,1) the permanent charge and diffusion coefficients are
identically constant, as in the previous section. For z; < x < z;,q, let ¢(x) = g;,

D,, (x) = D;, and D, (z) = D,,. Furthermore, since each interval (x;,z;;1) will be
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different, we rename the outer and inner solutions from the previous section as

0 0 0 0

i, ¢, UL LR Wi(,L)/R7CI’Z(L)/R (4.108)

Since, in the baths, there are no differences in diffusion coefficient, we have

Doy =Dy (f=n,p). (4.109)

(We will always use Dy, and Dy, for the bath diffusion coefficients.) To be technically

complete, we also define

fi(zi) = lim fi(z) fi(zip1) = lim  fi(») (f = W, ¢(0)) :

T—Tq,T>T; T=Ti41,T<Tit1

(4.110)

In the new notation, on the interval (z;,z;11), (4.52) and (4.53) evaluated at the

endpoint x;,1 become:

Jb pi (1) — $ ey

g Ji- ¢ .
0= p; (@ir1) = p (2:) + 5 0 In - T | S (4.111)
i \Li) — 5 1717
; ( 2 50
g
- " W i (Tip1) — % J(_li
¢ (Tip1) = & (@) — Fo) In 0 (4.112)
ut p; (25) — bl 70

Titl (g
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and

CORTCY
O 4.114
Jz,i 2 (D,L’n D,L'7p> . ( . )

Now consider the two intervals (z;, z;11) (a.k.a. the ¢ segment) and (z;41, Zi12)
(a.k.a. the ¢ + 1 segment). By Theorem 2.2, at the junction z;;; we require that all

the functions (¢, n, and p) are continuous:

ﬁi,R,f = ﬁz’+1,L,f = ﬁz’+1,f (f =¢,n,p). (4.115)

In order to use equations (4.111) and (4.112) for the outer solutions in (x;; 1, Z;y2),
we must know the left-side boundary conditions ¢§.§)1 (w;41) and p; 1 (zi41). The next
theorem expresses these in terms of the right-side boundary values ¢§0) (i+1) and

p; (z;41) of the previous interval (x;, z;1).

Theorem 4.5 The boundary conditions at the i +1 segment (x;11,T;19), in terms of

results from the previous segment (;,x;y1), are given by the following:

2 q21 q;
Hit1 (l‘z’+1):\/,ui (Tig1)” + zr —ZZ (4.116)
© (N O 1, (B (@iny) 111
00 (o1e0) = 01 () + 1 (5 (@17
where
me(y) + %
By (y) = : (4.118)
e (y) — %
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Proof. Multiplying the results of Theorem 4.4 for the left and right sides, we get

(:U’i (2is1) + %') (ui (2i11) — |‘§|>

= BiruBirw = Bis1.0u0i+1 0w (4.119)
qit+1 qi+1
= (um (CE'Z'+1)+| 2*') (Mm (:E'z'+1)—| 2*') (4.120)

Solving for p;, (z;41) gives the first result. Similarly, dividing the results of Theorem

4.4 for the left and right sides, along with

o; = sign (¢;) = —zu,, (4.121)
we get
Bitin pi (Tip1) + % " (0)
—_— = - exp [2 (ﬁl P ($Z+1)):| (4.122)
5i+1,p i (Tig1) — % e
Oit1
,LL»L $z 1 + qz+1
= (L) PP o T (B — o0 )] @123)
Hita $1+1 T2 {
Since
(‘””’q) _4Fre oy, (4.124)
a—oq a—q

the second result follows. m

We conclude this section by presenting a theorem that will be needed later.

Theorem 4.6 If ¢ (z) is C' on [0,1], then at the boundary between segments i and

i+ 1 we have

qi qi+1 qi (0 di+1 (0
(— - ) Bit1s = 5@( (i) — 2+ ¢§+)1 (Tiv1) = pi (Tig1) + g (Tig1) -

2 2
(4.125)
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If ¢ = giy1, then
ﬁz’+1,¢ = ¢EO) (Ti41) = ¢§931 (@ig1) - (4.126)

Proof. By Theorem 2.2 we require ¢, to be continuous. At leading order this becomes

dd°) do”
ng (0) = 7&2“ (0). (4.127)

By (4.93) and (4.80) and assuming that ¢ is C?, this becomes

q;
tt; (iy1) cosh (ﬁm,(p — ¢ (fﬂz’+1)) —3 (@'H,(p — ¢ (272'+1))
qi .
+§ sinh (ﬂﬁLl,(f’ - ¢z(0) (ziﬂ)) — 1 (Tig1)
qi+1
s (2is1) cosh (B g = 00 (@i11) ) = 222 (B — 0 (2140) J(4.128)

qit+1 . 0
+ ; sinh (ﬁi+1,¢ - ¢z('+)1 (%H)) = Mig1 (Tit1)

By (4.75) — (4.78) this reduces to

% (5#1,@5 - ¢z(0) ($i+1)) + i (Tig1)

q;
= TH (@'H,(/) - @@1 ($i+1)) + Hip1 (Tiy1) - (4.129)

The result for ¢; = ¢;1 follows from the previous theorem. m

4.3 The Current/Voltage Relations

With the work done so far, there are two ways to determine how the applied voltage
and the current through the channel are related. First, however, some definitions. At

leading order the nondimensional current is eI™") where

n

W =g — v (4.130)
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and the applied voltage is
VO =67 (0) = g3/ (1). (4.131)

(Being potentials, qﬁf} 1 (1) may be taken to be 0.) In the following we will drop the
order notation for I/ and V(| writing them only as I and V, respectively.

The first way to find the current/voltage relations from the work done so far is
to fix bath concentrations ¢z, and cg and an applied potential V. To find JS) and J,gl)
that make up the current, we start on the interval (0,z). Using g (z9) = ¢z, solve
(4.111) for p1 (x1) and (4.116) then gives p, (x1). Solving (4.111) with this p; (x1) and
i =1, then gives p, (z2). Continue this process through ¢ = M + 1. In the same way
solve (4.112) repeatedly starting with qb(()o) (0) = V. The solution ( W, ]Sl)) is that
ordered pair such that after this procedure, p1;,,1 (ar42) = cg and ¢§8} 1 (Targ2) = 0.

Another way to find the current is via a V' (I) curve; that is, the applied voltage
as a function of the output current. This may seem backwards since, in general, one
wishes to consider how the output current I depends on the given applied voltage V.
However, from semiconductor modeling (which uses the same type of equations) it is
known that this function is not well-defined. Specifically, in a device called a thyristor,
one voltage may correspond to two or more output currents (see, for example, [53]).
Therefore, in order to have a well-defined function, it is necessary to consider the
function V' (I). Once that is found, it is only necessary to reverse the axes of the
graph to get I (V). It is this V (I) approach we will use.

We now come to the theorem from which everything in this chapter follows.

Theorem 4.7 (Current/Voltage Relation: General Case) Let I be given. We
define

Ei (1) = pi (i) (4.132)

the left-side boundary value of u on the interval (z;,x;y1)
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T HX 3)=f’\3
E =1, (x)
de) =f!\3
_ R X |)=”“n
En:!'lﬂ(xn)
1

Figure 4-4: The figure illustrates the definitions of the =; and A; for the case M =2
(which was illustrated in Figure 4-3) from a graph of £ (n+ p) for which f; is the
outer solution in the interval (x;, z;11). The functions p,;, shown with the dotted line,
are outer solutions and thus are only valid as solutions of the equations away from
the points =1, x2, and z3. By Theorem 4.5 is possible to calculate =;, if A; is known.
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Ai (1) = p; (it1) (4.133)

the right-side boundary value of u on the interval (z;,x;i1)

to explicitly indicate the dependence of p,; (x;) and p; (z;41) on I. (This is illustrated
in Figure 4-4.) Then

o7
T2 (1) = S’Oi (e = Ao (1) + B 1 (4.134)

where

. — DO,nDO,p Di,p + Di,n
o Di,nDi,p DO,p + DO,n

(4.135)

1 1 DO,nDi,p + DO,pDi,n
2D;,D;, Dy, + Doy, .

(4.136)

Let Ao (I) be that number which gives Ay (I) = cr after repeatedly solving (4.111)

in conjunction with (4.116) as described before. Then

(4.137)

Proof. We start by writing

V=6 (0) — ¢ (1) (4.138)
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as the telescoping series

M+1 M
V= Z (¢z('0) (@) — ¢z('0) (%H)) + Z (¢z('0) (Tiv1) — @@1 ($i+1)) :
=0 1=0

The V (I) formula then follows from (4.112) and (4.117).
Next, note that

J g 1 1 1
o — oy + JOU 4 7
o Din  Dip Din  Dip) ™ = Diy
_ Di,p + Di,n J(l) + 1 I
DinDip " = Dip

and therefore, by (4.111) with ¢ =0,

Dop+ Do 5y 1 ;5500 _ 2 (e = o (1))

Dy Do p " Dy, 0+ So
Thus

g —9 DonDop cr, — i (1) _ Dy

" D()’p + DO,n SO Do,p + DO,n
and
Jo DoynDop Dip £ Din ¢ — i (1) 11 DonDip F DopDin I3
o DinDiyp Doy + Doy, So 2D;,D;n Dy + Doy,

Letting

o DO,nDO,p Di,p =+ Di,n
D;nD;p Dop+ Doy,

Q4+

1 1 DO,nDi,p + DO,pDi,n

ﬁi,i - _5 Di,nDi,p DO,p + DO,n ’

76

(4.139)

(4.140)

(4.141)

(4.142)

(4.143)

(4.144)

(4.145)

(4.146)
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it follows that

1) _ QG+

Ji i S

(cr = po (1)) + Bi ] (4.147)

2

where p (1) is the only unknown in the problem. It is found as described above.
(Note that ag 4 =1 and 3, , = 0. Also, since the baths are assumed to be identical

(except for ion concentration), we have Sy = Sary1, aox = a1+, and By, =

Brriie-) ™

4.4 The Reversal Potential and Conductance at
Reversal Potential

Next we concentrate on finding the reversal potential V;., (the potential at which no

net current is flowing) and the conductance 4 at the reversal potential. Since by

Theorem 4.7 we have a formula for V (I), to find the conductance we will find 4% and

use the relation

a1

P W (4.148)
In our notation,
View =V (0) (4.149)
and the conductance at reversal potential is
ar (Viev) = L (4.150)
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We will use the same notation as in Theorem 4.7:

() =pi (@) Ai(]) = p; (wig1) (4.151)

to explicitly indicate the dependence of p, (x;) and u; (z;11) on I (see Figure 4-4 on
page 74). We start by expanding these in Taylor series for small I, defining the Taylor
coefficients with a notation similar to (4.32) — (4.35):

=)=+l g .. (4.152)

A(D =T AT B2y (4.153)

Note that since the bath concentrations are held constant, we have

& =Z(0)=Z(I) = ¢4 (4.154)
A= =
L d],f (0) d],f ()= (k>1) (4.155)
M1 = Marer (0) = Aaryr (1) = cr (4.156)
[k] d*Apri d* Ay

Substituting these series into (4.116) and expanding the result around I = 0, it follows
that

2 2 -
ol = \/ (AEOJI) 4 % _ q’; (i>1) (4.158)
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A0 AL
1 71— 77— .
& = 751[0] L (1>1).

Similarly we have

T == (o =2) + (ﬁi,i - “gﬂé”) 1+0(r%)
0 0

Next, we rename two quantities we will encounter several times:

a— Di,p - Di,n

Q{Z» prnd g
o+  Dip+ Dy
and
(677 1
Yi = Pi— — _’ﬁi,+ =15
Qi y D, + Dy

Note that these are only functions of the diffusion coefficients in segment .

Before starting on our next results, we need some quick lemmas.

4.4.1 Lemmas

Lemma 4.8

[0] gi
0 gl % g (A5 | S ( _ [0])
0=XA"—& + o i In ( 0 _ % ) + San’Jr cL — Ao

i ALl i
0 — AF—SEH—%%( i _ &

)\Z['O] - %ai SEO] - %ai

S; [1] qi
_S_Oai,—i-)‘o + Sif; 1+ + EKZ'

79

(4.159)

(4.160)

(4.161)

(4.162)

(4.163)

(4.164)



CHAPTER 4. SINGLE SALT CASE 80

where

So, W _ 20\ g, AT ¢l
Qi+ (CL - )\%]) & — %Oéz'

Equation (4.163) is the I =0 version of (4.111).

Proof. This result follows from expanding the right-hand side of (4.111) in powers

of I and setting the first two powers of I equal to zero. m

Lemma 4.9

q Jm
J(l_) Ai 511(71)
““In Z’f
Jz(%‘z =. _ % Ji(s—)
7 2 Ji(,ll
)\[0] _ g, )\[1} [1]
= ailn | —m—2— |+ lai | g — 3 — | + K;| I (4.166)
eV 2q, R A o
+0 (I?)
L (E=8) (airt)
(E+9%) (Mi-%)
(&"-4) (A" +34)
= —=In ® . 0 . (4.167)
(fz + %) ()‘i - %)
(1] (1] (1] (1]
1 gz )\ gz )\z 2
+2 <§[0] g _)\[0] % _§[0]+ﬂ+)\[0]+ﬂ>1+0([)
7 2 7 2 7 2 2 2

where K; is given by (4.165).

Proof. These are Taylor expansions of the given functions for small /. =
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Lemma 4.10 For 1 <i< M,

2

; MWL s, ;
)\EO])‘EH — ()\EO] o %ai) L[OZ]—I—;—; + S_OQLJF)\E] _ (Siﬂi,—i- + %Kl) (4.168)
—Lq,

where

2 Qm,+

M+1 0 Gon Qe
D m— Wi, M4+1SmClm, + ()\gn] - Tam,Jr)

En]\le Wm, M+1 (Smﬁm,Jr + qTMKm) ()‘Lg] - q_mmn—77)

A g, (4.169)

and wp,; is given by (4.172) and K; is given by (4.165). Therefore each )\EH can be

found in terms of )\([)1].

Proof. We start with (4.164). Using (4.159) this becomes

0]y 1] N = Lai o o G 1]
i T %
q; o] 4
(S B+ 5 ; 5 Q

By induction, we get

1 (< m i —
AN = <§ Wi S s (AL‘?} - %a—)> A (4.171)
0 O, +

m=0
: Qm [0] Qm am,—
mz::OW,< ﬂ7++2 (m 204m,+>

where

ALO] _gr %r,—

7 2 o g . .
I — "t ifm <
=m-+1 [0]7_7‘0‘7',—
Wme =1 ST (4.172)
1 if m =1.

Therefore, in order to find )\El] for i > 1 all we need to know is )\E] and A for

0 < m <. By letting ¢ = M + 1 and using the fact that )\R}H = 0 (from (4.157)),
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we can then solve for )\[01] and the lemma follows. m

4.4.2 General Results

Theorem 4.11 (Reversal Potential: General Case) Let )\EO} be such that if (4.163)
is solved repeatedly fori =0,1,... , M +1 in conjunction with (4.158), then Ayr110 =

cr. Then

M+1 o g M 5[0] _ ﬂ) ()\[O] + ﬁ)

A o 1 ( i 2 i 2
View = ;In | —=— - | . 4.173
2 n( ) X\ ey ¢

—
0 )
& - %,

Proof. Taylor-expanding V' (I) for small I gives

V(I):V(0)+%(0)1+%(0)ﬂ+---. (4.174)

Therefore V., is the first term of the two expansions in Lemma 4.9. =

Theorem 4.12 (Conductance at Reversal Potential: General Case) Let )\[00]
be as in Theorem 4.11. Then

M M+1

A%
—(0) = ST —H)N + YK, (4.175)
i=0

where H;, H!, and K; are given by (4.178), (4.180), and (4.165) respectively and the
A gre gwen by Lemma 4.10.

2
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Proof. By (4.166), (4.167), (4.174), and (4.159) we have

M+1 M+1 0 (]
av A £
—(0)- ) K, = o Lt (4.176)
dl ; ; A - Loy SEO] -2
2 — 52[0] . q_21 )\EO] . ﬂ 52[0] + q_21 )\Z[O] + %
M . @
= > — - (4.177)
i o g4 2
i=0 )\z[ | (12 Q; ()\EO]) o %
M+1 0 )
> [ :
! [0] O _ @ P
i=1 &i &i « (5[0]) q4
where we also used 50 =0 and )‘M+1 = 0. Let
o, % )
Hi= YL, 0 @ ((=01,.... M) (4.178)
w0 -t
)\[0] a+1 qigl
! 7 7 .
i = 2o | 0 e N2 (i=0,1,....,M)  (4.179)
Eir1 \ i1 — "9 Qi (&ll) L
a 2 2 o)) 2 2
\/(AEO]) _ % + Q?Zl \/(AEO]) ({422 + Tiy1 qz;1 i1 ()\Z ) _ qz
(4.180)

Then
M+1 M+1
(4.181)

Z)\“ H; — Z A H
_ EA“ H, — Z)\ Ry Z (H; — H)A'"  (4.182)
=0

| =
=
|
|'M
=
|
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which proves the theorem. m

At this point it seems in order to discuss Theorems 4.11 and 4.12 and Lemma
4.10. The important thing to note is that after )\BO} is found for a pair of bath
concentrations as described in the hypothesis of Theorem 4.11, then both the reversal
potential (Theorem 4.11) and the conductance at the reversal potential (Theorem
4.12) follow immediately: the reversal potential V' (0) only depends on 5&0] and )\Z[»O]
which, through (4.163), only depend on )\([)0]; the conductance at reversal potential is
a function of K;, H;, and H] (which depend on the {EO] and )\EO] and thus only on )\([)0])
and )\Zm (which are functions of )\BO] by Lemma 4.10).

4.4.3 Special Case: Equal Bath Concentrations

We now consider the special case of equal bath concentrations (when ¢ = cg = ¢),
since in this case many of the formulas of the previous section simplify greatly and is

of experimental interest.

Lemma 4.13 When ¢, = cg = ¢,
A= ¢ (4.183)
and

MW=l =yJe+ L. (4.184)

. 4 . 0
Therefore, in this case, we have an exact expression for the unknoun )\B}.

Proof. It is straight-forward to see that )\EO] = c is the solution as described in the
hypothesis of Theorem 4.11. From (4.163) it immediately follows that )\EO] = §£0] and
the lemma follows from (4.158). =

The next theorem is obvious by physical intuition, but we include it to show

that we do get this result exactly; that is, in this case, after all the approximating,



CHAPTER 4. SINGLE SALT CASE 85

we get an exact result.

Theorem 4.14 (Reversal Potential: Equal Bath Concentrations) Whency, =

CrR=G¢, View = 0.

Proof. The result follows immediately from Lemma 4.13 and Theorem 4.11. m
These two results have been straight-forward. To find the conductance, how-
ever, there is a technical problem: the function K; is not defined when )\([)0] = ¢ and

)\EO] =¢ E.O]. Therefore we need the following lemma.

Lemma 4.15
Si;
)\([)O]—n: )\Z — %ai
Proof. We start with a rearrangement of (4.163):
0 _ g
o S0 oo g (A TS
Ao St A =&+ 5 i In (6[0] - ﬂa»)] . (4.186)
) i 9 '3
Therefore
0 s 0 _ o] i
lim c 5 0 = —— lim lTSZ + gOzi (4.187)
N Siliq A0 | (A B 2
6" - e
Sot”
_ Dk (4.188)
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and
. )\[0]
lim o (4.189)
)\([)O]—w ﬂa A=
CEDICED
2 A0 g,
[0] qi ln L 2 °
5 (¢-%0) . ()
= — 1 1 i 4.190
Sia 4 Loy ALO]LHQLOJ + 2 )\EO] _ §£0] ( )
569 € _ ag,
_ Sk & —2" (4.191)

SiCsz_ —I)éi

The lemma follows from the definition of K; in (4.165). =
There is now enough information to prove a theorem on conductance in this

special case.

Theorem 4.16 (Conductance at V;.,: Equal Bath Concentrations) When

cL =CRr=c, (4.192)

0

av 1 R Q1] @G g (i

- —— i S Y pu—s 24 _ 2 DEAN — 3. 4.1
7 (0)=— ;S (s b [32,> + (50 0 ﬁH) (4.193)
where

M / 2 m
Em:l Sm (ﬁer 02 + qu - %ﬁm,)
Z%iol Sm (am,Jr \/ 02 + % - quam,)

Note that this a closed-form formula; there are no unknowns )\([)0] to find like in The-

orems 4.7, 4.11, and 4.12.

A g, (4.194)

Proof. Instead of starting with Theorem 4.11, in the light of Lemma 4.13 it is easier
to derive the result from scratch. Rearranging (4.164) with Lemmas 4.13 and 4.15
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gives

AL W e _ Si, g Siv
P (A=) = oM = S+ 5 o (4.195)

AV M+1 o @ Y y
70 = - (A =) 4.196
- ! L
=0 )‘[0 q; Q;
1 q A\ M1
- BV i n [
= g 2 i= i
| Ml .
DI A ) I (4.198)
i=0
M+1
1 4i o 94 2 Si7i
+§ - [E (Oéz)\z 2) — } )\[0 qz o
| M . M+l
= 53 (e =5 s (! ) 3 2 N8 (4199
=0

The formula for )\([)1] follows from Lemma 4.10 (noting that w,,; = 1 for all m and i)

and Lemma 4.15. =

4.4.4 Special Case: M = 1 with Diffusion Coefficient Drops

In this section we consider a special case that will be the focus of study for multiple
salts. In particular we consider the case of uniform permanent charge (which means
that there is only one interval of permanent charge or, equivalently, M = 1) where
there is also a significant drop in the size of the diffusion coefficients of all the mobile
ions as they enter the channel. The latter condition is generally believed to be true

for channels on physical principles and has always been a result of the data fitting
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([9], [10], [11]). The former condition is an important case both mathematically
and experimentally: mathematically, along with the diffusion coefficient drops, it is
possible in this case to approximate the unknown )\BO} in Theorems 4.11 and 4.12;
experimentally, this is how the data of the calcium release channel was fit ([10], [11]).

We start by stating the simplifying assumptions about the diffusion coefficients:

Condition 4.17 (Diffusion Coefficient Drop) Mathematically, the diffusion co-
efficient drop (DCD) condition is stated as: T < 1, where T is defined as

7= max {D;,,D;,}; (4.200)

1<i<M

that is, T is the maximum of all the diffusion coefficients inside the channel and
this number is assumed to be small. With the scaling we have chosen (see Section
2.3), requiring T < 1 is equivalent to having both D;, < Dy, and D;, < Dy, for

1<i< M.

By this condition,
Diy=0(1) (1<i<M; f=n,p), (4.201)
and so we define

Di;=

- =0(1) (I<i<M; f=np). (4.202)

Substituting these into the definitions of the a; . and 3, . in (4.135) and (4.136), we
find that

e (1) (1<i<M), (4.203)
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@¢=O(%> (1<i<M).

Then, by defining

DO,nDO,p D;,p :l: D;,n o
DD Dop+ Doy

0(1)

/
;4
and

1 1 DO,nD,'yp + DO,pD;,n

(2

ﬂ,

it = "5 =0(1 )
* 2D;,nD;,p DO,p+D0,n ( )

we get

0 =Ty e Bie =108+ (i=1,...,M).

Lastly we expand A; (I) and =Z; (1) in powers of 7:

A (D) = (1) = A (D) + A (D) + AP (D) 72+ 0 ()

[1]

=i (1) = g () = 20 (1) +

Theorem 4.18 If Condition 4.17 is satisfied, M > 1, and I = O (1), then

No(I)=po (1) =c+0(r)  Enrs1(I) = piprss (@ar41) = cr+ O (7).

Proof. From the above definitions, we have

/
Oy 4

So

SiJ) =S, (

N

(cr. — Ao (1)) + ﬁ;,ij>

Wr+EP M+ o).

89

(4.204)

(4.205)

(4.206)

(4.207)

(4.208)

(4.209)

(4.210)

(4.211)
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Then, using the notation of (4.208),
% 1 1
SiJ) =S, (—i (cL — A (1)) + ﬁ;,il) -=0 (;> . (4.212)

Rearranging (4.111) slightly, gives

gt
- qi Jz'(l—) A -5 J@ (1)
Ai (I) — = (I) + 5 J(71) In N ) J.(717) = _SiJi,+- (4213)
it () —-% JZ(1+)

Since A; (I) and Z; (1) are O (1) so is the left-hand side and from the above we have
that the right-hand side is O (%) Therefore we must have

a;, 0 /
So+ (cL Sy (1)) +3, 1=0 (4.214)

for all 1 <47 < M. In general this only makes sense if

I=o0(r) (4.215)
so that
/ a;, 0
Fial < 5 (cL AL (1)) (4.216)

which we will assume since we are most interested in the case I = 0. (If I = O (1),

for example, then Aé0> (I) will depend on i, which is not possible. It does balance for
By

>
!
(3

@4

all I only if are equal for all . However, this is not very useful, since resulting

equations cannot be solved neatly unless I = 0.) In that case it follows that
A (D =y (4.217)

A similar argument for the M + 1 segment, proves the theorem. =
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Theorem 4.19 Let M = 1. If Condition 4.17 is satisfied, then

Ao (0) =2 = ¢, + By + B, + O (7°) (4.218)
2
— c
200 =& = (/d+ % + ——=——="0 (4.219)
c% + %1
1 2
L B, + 2(1_ 2ch2>3§
Ve +4 2¢/ci +4 L+ 7
+0 (7%
[0] 2 Q% CR
c%%—i— %1
1 2
——L B+ 1- —2 | B 40 ()
2+ 4 2/ + 4 ck+ 4
RT 4 RT % 4
22 (0) = 5[20] —cr—B1— By +0(7°) (4.221)
where
2
1 S 2 2 C2 + 4 _ ﬂal
B = —=22 \/c%%—i—@—\/c%—l—ﬁ—l—ﬁalln L S—
a4 Sl 4 4 2 C% + % . %061
— 0(7) (4.222)
2
1S CL( it _%0‘1) +CR( C%+%_q21al>
By = —B—=2 (4.223)
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Proof. We start with some relations between the =;’s and A;’s. From (4.111) with
i =0and 2, (4.154), (4.156), and the assumption that the baths are identical (except

ion concentration) we get
EQ ([) = CR — SQJQ(}_?_ = CR — S()Jé}j_ =CRp+cL — AO (I) . (4224)

Also, from (4.116) we have

=, (1) = /A2 (]) + % (4.225)
and
q2
By (1) =4/ A2 (1) — Zl‘ (4.226)
Therefore
2 | 4
A1 (I) = \/(CR+CL—A0 ([)) +Zl (4227)

Evaluating (4.111) at ¢ = 1 with I = 0 gives

Ay (0) — &
0=A(0)— = (0)+ Loy (M
Z1(0) -4

2 > + %au (c — Ao (0)) (4.228)

and therefore

2 2
02’%%+%-M@W+%—¢M@+% (4.229)
(caten—A(0)° + 4 —%ar) g
—f—@&l In \/ 1 2 1&1 + (CL - AO (0))

2 AZ(0) + 4 — a,
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From Theorem 4.18 we know that

AN (0)=c,+0(T). (4.230)

With
Ao (0) = ¢ + ASY (0) 7+ ASY (0) 72 + O (7°) (4.231)

and expanding (4.229) in powers of 7 (keeping in mind that a; 4 = O (1)) and

equating like powers of 7, we get

2 q% q1 1
1 Crt 7 — 3™ a1 51, a
- A (0)

41 91
0:\/CR—|———\/ + =+ =ailn
4 4 2 /C% + % - %O{l SO
(4.232)

o _ @, (__cn ANO) a Ay’ (0)
2 c%—{—‘f\/c% Z%—q?oz \/C%—i—% C%—i—%-q—goq
o S
A (0) - =AY (0) - LS;lAg” (0). (4.233)
2 +4 & +4 0

A (0) 7 and By = A{Y (0) 72 gives

Solving for Aé1> (0) and Aél> (0) and letting B, =

the formula for A (0).
For the other formulas, start by expanding (4.227) in powers of T

V / q1
2 ¢
_1 2 _1
\V ch + 4 \/ rt 1

+0 (7°)
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and then use the definitions of B; and B, given above. Similarly, expanding
=0 (1) = /A2 (1) + % (4.235)

in powers of 7, we get

(4.236)
_ 4 ﬁ

) (A )]
Y F< 7+7)
O (r

+
Finally, using
EQ (O) =cr+cr — AO (0) (4237)

the theorem follows. m
Since the only unknown for all the formulas derived in the previous sections
was Ag (0), for M =1 we now have explicit, closed-form formulas for V., and 27 (0)

from Theorems 4.11 and 4.12:

Theorem 4.20 (Reversal Potential: M = 1 and Diffusion Coefficient Drop)
Let M = 1. If Condition 4.17 is satisfied, then

)\[0} )\[0 _ 4,
‘/7'81! = Qp ln C}-{—[%] + oq ln [0]721 (4238)
créy 1~ %041

1 () (04 8)
+—1In

2 ( [0]+ Q1) ()\[10] _q_21)

where )\EO], 1o )\[10 , and 52 are giwen in Theorem 4.19. As stated in Theorem 4.19,

By = O (1) and By = O (72). If both By and By are used in the calculation of Vi,
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then the error terms are O (13). If the O (72) terms are not used, then the error terms

are O (1%). If both By and By are set to zero, then the error terms are O (7). In that

case, we have

‘/vlcz aq ln > (4239)
2 4+4_a,
L 4 2“1
(\/C%‘f‘%—q—;) (\/ +4 +ql>
+—=1In

As before, we get V,., = 0 when c;, = cpg.

Theorem 4.21 (Conductance at V;.y: M =1 and Diffusion Coeff. Drop) Let
M = 1. If Condition 4.17 is satisfied, then

dv Al
—=(0) = (ﬂ - Hé) AL H =02 | M+ Ky (4.240)

2

(&)
S, )\[0]
T 0%[01 In | < 0
crL — )‘0 Csz

where

)\[0] oy q1
H =% -2 4.241
0 é,[lo} 5[10] _ g, ()\[10])2 ( )

(4.242)
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S1B1 4+ + 5K

1
A = = (4.243)
S
oo+ (5[10]_0%1a1 + AEO]_Q%OH) + g
)\[0] q oy )\[0] S q

I 0 Gl Y (S + 8y ) 4.244
1 )\[10] [10] — %al Soal,Jr 0 1ﬁ1,+ 1 ( )

Ky = 0 Sl W) oM 0

o1 4+ (CL — )\%]) 61 - %al 2 ()\[1] — %al) ( [1] — q—zlal)

(4.245)

and )\g)}, [10], )\[10], and 5[20] are given in Theorem 4.19. As stated in Theorem 4.19,

B =0 (1) and By = O (1%). If both By and B, are used in the calculation of %% (0),
then the error terms are O (73). If By is set to zero, then the error terms are O (72).
However, By and By cannot both be set to zero, since then K is not defined. (It is

assumed the cp, # cr. When this is the case, Theorem 4.16 should be used.)

4.4.5 Special Case: M = 2 with Diffusion Coefficient Drops

In this section we consider how the case M = 2 (that is, two intervals of constant
permanent charge) is simplified by the Diffusion Coefficient Drop Condition 4.17 and
Theorem 4.18.

Theorem 4.22 Let M = 2. If Condition 4.17 is satisfied, then

AP (0) = ¢ (4.246)

=0 (0) = /2 + % (4.247)
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AP (0) = 4/ e + qzl (4.248)

20 (0) = cg (4.249)

A (0) is the solution to

S 2 2 0)_ @
A<0> (0)_}__1% (A§O> (0)) —q—1+@+2a11n 17 (0) 50
52a2+

2, q
QQ 51061+1 CRt 7

S g \/(A?)(O))Q—%-F%%_%Qa?

[, @G  Sias [ 2 qt
"+ 21 4.250
cL+ + S s %+ 1 ( )

and

=0 (0) = \/ (A§O> (0))2 - % + qf. (4.251)

Proof. The first three equations are merely a restatement of Theorem 4.18. A§0> (0)

is found by considering (4.111) with / = 0 for both i = 1 and i = 2:

A (0) — Lo
0= A1 (0) - El (0) + 20&1 In (Lﬂ) + 510417+ (CL - AO (0)) (4252)
=1 D)

2 aq

o > + 82a27+ (CL - AO (0)) . (4253)
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Exanding these in 7 using (4.208) and (4.209) gives

o:Aﬁan—EPan+§aﬂn

A (0) -2
: (1() 220 )~ S00 A8 () (4.254)

2 2)——Sﬂm#A€>m). (4.255)

g A<0> 0) — &
= D0 00 () =0 (0) + Loy 22 D7 p0 (4.256)
Sy gy 2 =5 (0) — Zay
and since
2 2 2
=0 ) =/ (AP ) - L4 & (4.257)

the theorem follows. ®m
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Theorem 4.23 (Reversal Potential: M =2 and Diffusion Coefficient Drop)
Let M = 2. If Condition 4.17 is satisfied, then

A<0> 0 @ 2+ L2y
‘/7‘6'1! CYll - ( )2 2a +a21n “ 2 & 2~
i+ %o \/(A§°>(o)) % e,
2 1 0 1
) (y/c%—%% - %> (A (0) + %)
+5n : m (4.258)
( c%+%+q;> (A 0) - %)
2
(e ) ()
+—=1In
(0) 2 4 ) q2 2 a3 q2
(Al (O)> —ata Tty CRt a1 — 7%
+0 (1)

where A§O> (0) is given by (4.250).

Unfortunately it is not possible to apply the results of Theorem 4.22 to find
the conductance at reversal potential since the functions K; have ¢, — Ag (0) in the
denominator and this approximated in Theorem 4.22 by 0. Thus the K; are undefined
without a better approximation of ¢;, — Ay (0) which is not possible for M = 2 in a

simple way.

4.5 Boundary Conditions at the Channel Entrances

In this section we derive boundary conditions for the function ¢, n, and p at the
channel entrances (so that the baths may be ignored) as discussed in Section 2.1. We
then compare these results to the boundary conditions that have been used in the

past to fit the data of several channels.
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4.5.1 Derivation

Theorem 4.24 For one salt, if Condition 4.17 is satisfied and when currents are
small, the problem of considering the channel along with the baths may be reduced to

the problem of considering only the channel with following boundary conditions:

Bro=0"0)+ T, +0(5,7)  Bry= it (@rp) + Ve +0(e,7)  (4.259)

Brn=crexp(¥r)+O0(g,7) Brn=crexp(¥g) + O (g,7) (4.260)

Brp=rcLexp(=V.)+0(e,7) B, =crexp(—Vg)+0(e,7) (4.261)

where

2
9 2 1 \ei 44 a
vy, ( 2+ hn_ CL> + §ln L 42 2 (4.262)
Veat+i—%
q2
+ 4
T

2 (] 2 1 (Ve + 4
Vp=—— c;+ v _ cr | +=1In i 2. (4.263)
qum 4 2 Ve B qu
2

Proof. By Theorems 4.5 and 4.6 with ¢ = 0 and ¢ = M we have

2
Blo = o (o @n) = (@0) + 67 (1) (4.264)
2 2 1 CZ + i + q1
= ¢ (0)+ = (cL —\/ci + %) +5n =) (4.265)
q 2 @ _w
L 4 2

+0 (1)
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2
ﬁg\?—ﬁ-l,(p = @ (NN[-H (Trr41) — par (xM-H)) + ¢S\Of) (Tare1) (4.266)

2
) SN e
am 4 2 \/m_ am
R 4 2

+O (7). (4.267)

The concentration boundary conditions follow from the above and (4.75) — (4.78). m

4.5.2 Comparison to Built-In Boundary Conditions

As discussed in Section 2.1, the so-called built-in boundary conditions have been
used in the data fitting of several channels (for example, [9], [10], [11]). The resulting
fits have been very good, leading to the hypothesis that perhaps these boundary
conditions, while perhaps not completely physically plausible, are not too far off.
Here we numerically compare the results of the previous theorem to the built-in
boundary conditions and find that this is true (at least in the case of small currents
and two monovalent ion species that experience a drop in diffusion coefficient upon
entering the channel).

The built-in boundary conditions are as follows (for reference, see [8] and [9])

for a channel on the interval (z1,23/.1) (We use the notation of the previous sections):

2 +q_% + q1
VO T T (4.268)

CrL

Gpi (21) =In

2
/02 + A1 + dM 41
UB— 2 (4.269)

b; (Zar41) =1n
CRr

¢ (x1) = ¢ (0) + ¢y (1) ¢ (zrr1) = ¢ (1) + ¢y (Tar41) (4.270)
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n (z1) = cr, exp (¢, (1)) n(Trr41) = crexp (P (Tar41)) (4.271)

p(z1) =crexp (=g (z1)) P (Tar1) = crexp (= (Targ1)) - (4.272)

The (single) potentials ¢,; (x1) and ¢,; (xpr41) are also called Donnan potentials (see,
for example, [22]).

To compare these boundary conditions with those of Theorem 4.5 we consider
one side of a channel with permanent charge ¢q. In Figure 4-5 we graph the Don-
nan potential and the SP-derived boundary condition as function of £ (¢ is the bath
concentration on that side of the channel). In Figure 4-6 we graph % (the concentra-
tion of the negative ion species compared to the permanent charge) from the built-in
boundary conditions and the SP-derived boundary condition as functions of (91. From
these graphs it is easy to see why the built-in boundary conditions can work well; they
and the SP-derived boundary conditions have the similar shapes and are numerically

similar.

4.5.3 Why Doesn’t SP Give Donnan Potentials?

Since Donnan potentials are a classical result of permeable membranes theory (see,
for example, [22] and [44]), it seems in order to discuss why the singular perturbation
approach does not give Donnan potentials, but rather potentials that are (in absolute
value) smaller (see Figure 4-5).

In short, the problem does not lie with the SP approach or approximations,
but rather with the way the Donnan potentials are classically derived. Whether
the Donnan potential is derived by thermodynamic arguments ( [22, Chapter 5],
[44]) or from a Nernst-Planck equation ([8], [22, Chapter 8]) the argument is always
made that the ionic solution and the system must be electrically neutral everywhere.

This assumption is wrong. As mentioned in Section 2.1, there is a simple physical
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21 L Donnan Potentia (g>0)
K —-—--Donnan Patentid (g<0)
+\ — SPPotl Bound. Cond. (q>0)
R - - - SPPot'l Bound. Cond. (q<0)

Potential (KT/e)

c/|al

Figure 4-5: Comparision of the Donnan potential and SP-derived boundary condition
from Theorem 4.5 at a channel entrance. c is the bath concentration on the side of
the entrance and ¢ is the permanent charge of the channel at the entrance.
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n/ |qg| a channel entrance

N
ol

o
o

=
a1

1.0

----- Built-In Bound. Cond. (g>0)
—-—-=Built-In Bound. Cond. (g<0)
—— SP Bound. Cond. (g>0)
- - = SPBound. Cond. (g<0)

104

Figure 4-6: Comparision of the built-in boundary condition and SP-derived boundary
condition from Theorem 4.5 at a channel entrance for n. ¢ is the bath concentration
on the side of the entrance and ¢ is the permanent charge of the channel at the

entrance.
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argument why it is plausible to have a thin layer of space charge near the membrane.
Perhaps the argument can be made that when considering membranes (which are
huge compared to the thickness of these layers) that this layer can be neglected. This
argument does not work for channels, however; the sizes of the channel opening and
the bath considered in the analysis are roughly the same size as the layer of space

charge and therefore cannot be ignored.

4.6 Comparing Formulas to Numerical Solutions

In this section we attempt to dissect how well the derived formulas work and what
parameters are most important in determining the accuracy of the approximations.

The single largest source of error is break-down of the mathematical condition
that the layer functions on each side of an interval (x;,z;+1) (on which ¢ and the dif-
fusion coefficients are constant) do not interact with one another (see the discussion
on page 55). The breakdown of this condition is illustrated in Figures 4-7 and 4-8.
There are several causes for the breakdown of this condition. Intuitively, it happens
under conditions when it is difficult for the channel to achieve electroneutrality and
therefore the outer solutions (which were derived under the condition of electroneu-
trality) do not have a chance to assert themselves. The conditions that bring this
about include: the intervals (x;, x;,1) are too short; the bath concentrations are too
low compared to the permanent charge; there is too much current flowing through
the channel. Since we are mainly focusing on when there is no net current flowing,
we will not discuss this last one.

The other two conditions, as stated, are a little vague. What is “too short” and
what is “too low”? The short answer is that it depends on all the other parameters in
the system. Specifically, take a channel with a uniform permanent charge distribution
(that is, M = 1) and length d;. Then, lowering one or both the bath concentrations

will eventually lead to the breakdown of the condition that layers do not interact.
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Figure 4-7: This figure is meant to illustrate how a function (for example, concentra-
tion as a function of position inside the channel) can be decomposed into an outer
solution (light color) and layer functions (black). In this case the layers are seperated
far enough so they are (very close to) zero well before reaching the other side. Thus
they do not interact with one another and in the middle (light colored) section the
outer solution dominants.
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Figure 4-8: This figure illustrates what happens when the layer functions on each side
of the interval do not go to zero fast enough and thus interact with one another (cf.
Figure 4-7). In this case there is no (almost) linear section where the layers are small
and the outer solution dominates.
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This is always true. (This is how Figures 4-7 and 4-8 were created.) However, if we
take another channel with the same permanent charge distribution but with length
ds > dy, then the breakdown of the condition is delayed; that is, it remains valid for
lower bath concentration to permanent charge ratios. If we have M > 2 then this
still holds, except instead of d; and dy being the channel length, they are the length
of the permanent charge intervals.

Another way to look at this situation is the following: the results of the pre-
vious sections (specifically, Theorems 4.7, 4.11, 4.12, and 4.16) are always valid if
the intervals (z;,z;41) are long enough and the bath concentrations are high enough.
However, when it comes to studying channels, changing the channel length is not
possible. Experimentally, changing the bath concentrations is possible. Therefore, in
general, in order to use the formulas derived here, experiments should be
done at the highest bath concentrations possible (and then lowered until the
formulas breakdown).

We illustrate these points in the next two sections by comparing the formulas
to the numerical solutions of the full equations. We break the discussion into three

parts: M =1, M =2, and M > 3.

4.6.1 M=1

In this section we present the comparison of the numerical solutions to the formulas
for the case M = 1 for two different channel lenghts (10A and 30A). In both cases
1 = —5M and the baths were 90A long, which was necessary to have the outer
solutions of the ion concentrations be valid when the bath concentrations were low.
The diffusion coefficients for the negative ion were 1.0 x 107 m?/sec in the baths
and 1.0 x 10719 m?/sec in the channel. The diffusion coefficients for the positive ion
were 3.0 X 107 m?/sec in the baths and 1.5 x 107! m?/sec in the channel. In these
calculations, for simplicity, the function A was kept constant at 38.48A? (the area of

a circle of radius 3.5A).
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cr | cr | actual | (4.173) | % error | (4.238) | % error | (4.239) | % error
2.012.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20110 =126 | —13.3 —56 | —14.5 —15.1| —-16.3 —-294
20105 =259 | —-27.1 —46 | —29.5 —-13.9 | -33.7 —30.1
20(10.1 | =53.6 | —55.8 —4.1| —66.8 —24.6 | —75.1 —40.1
05102 —-21.2| —-21.7 —-24 | =218 —28 | =235 —10.8
02102 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.2 17.1 17.3 —1.2 17.3 —1.2 17.9 —4.7
0.05 ] 0.2 34.4 34.5 -0.3 34.6 —-0.6 35.8 —4.1
0.1]0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.05 | 0.1 17.6 17.6 0.0 17.6 0.0 17.9 —-1.7

Table 4.1: Comparison of Vyey for the 10A channel. All concentrations are given in
molar and all potentials in mV. Entries in the “actual” column are calculated from
numerical solutions of the full PNP equations. The other entries are calculated from
the equations given in the column title. Equation (4.173) is the general solution
from Theorem 4.11 without taking the diffusion coefficient drops into consideration.
Equations (4.238) and (4.239) take the diffusion coefficient drops into consideration,
with (4.239) being the crudest approximation.

cr | cr | actual | (4.173) | % error | (4.238) | % error | (4.239) | % error
2.012.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20|10 —14.7| —14.9 —-14 | —-15.0 —-20| —-16.3 —10.9
20105 =303 | —30.6 —-0.1| —=31.1 —26 | —33.7 —11.2
20101 | -64.0| —-64.1 —-0.2 | —68.9 —7.7| =75.1 —17.3
05102 =228 | —-228 0.0 =229 —-04 | —-235 —3.1
02102 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.2 17.7 17.7 0.0 17.7 0.0 17.9 —-1.1
0.05 ] 0.2 35.4 35.3 0.3 35.4 0.0 35.8 —-1.2
0.1]0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.05 | 0.1 17.8 17.8 0.0 17.8 0.0 17.9 —0.6

Table 4.2: Comparison of Vyey for the 30A channel. All concentrations are given in
molar and all potentials in mV. Entries in the “actual” column are calculated from
numerical solutions of the full PNP equations. The other entries are calculated from
the equations given in the column title. Equation (4.173) is the general solution
from Theorem 4.11 without taking the diffusion coefficient drops into consideration.
Equations (4.238) and (4.239) take the diffusion coefficient drops into consideration,
with (4.239) being the crudest approximation.
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cr | cr | actual | (5.122) | % error
2.0120] 0.397 0.406 —-2.3
0.2 0.2 ]0.0511 | 0.0469 8.2
0.1 ]0.1]0.0280 | 0.0234 16.4

Table 4.3: Comparison of conductance at Vyey for the 10A channel at equal bath
concentrations. All concentrations are given in molar and all conductances in pA/mV
(or nS). Entries in the “actual” column are calculated from numerical solutions of the
full PNP equations. The other entries are calculated from equation (5.122) from
Theorem 4.16.

cr, | cr | actual | (5.122) | % error
20120 0.243 0.248 —2.1
0.2 1 0.2 ]0.0460 | 0.0426 7.4
0.1 ] 0.1 ]0.0264 | 0.0225 14.8

Table 4.4: Comparison of conductance at Vyey for the 30A channel at equal bath
concentrations. All concentrations are given in molar and all conductances in pA/mV
(or nS). Entries in the “actual” column are calculated from numerical solutions of the
full PNP equations. The other entries are calculated from equation (5.122) from
Theorem 4.16.

cr, | cr | actual | (4.175) | % error | (4.240) | % error

2011.0] 0.292 0.297 —-1.7 0.211 28.9
20105 0.215 0.214 0.5 0.171 20.5
20101 ] 0.108 0.101 6.5 0.071 34.3
0.5]0.2]0.0738 | 0.0692 6.2 | 0.0681 7.7

0.1]0.2]0.0365| 0.0319 12.6 | 0.0318 12.9
0.05 | 0.2 ] 0.0248 | 0.0198 20.2 | 0.0197 20.6
0.05 | 0.1 ] 0.0203 | 0.0159 21.7 | 0.0159 21.7

Table 4.5: Comparison of conductance at Vyey for the 10A channel at unequal bath
concentrations. All concentrations are given in molar and all conductances in pA/mV
(or nS). Entries in the “actual” column are calculated from numerical solutions of the
full PNP equations. The other entries are calculated from equation (4.175) which does
not take the diffusion coefficient drops into consideration and (4.240) which does.
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cr, | cr | actual | (4.175) | % error | (4.240) | % error

2.011.0] 0.190 0.194 2.1 0.188 1.1
20105 ] 0.145 0.146 -0.7 0.161 —11.0
2.0 1 0.1 ] 0.0683 | 0.0651 4.7 1 0.0583 14.6
0.510.2]0.0622 | 0.0592 4.8 | 0.0591 2.0

0.1]0.2]0.0336 | 0.0296 11.9 | 0.0296 11.9
0.05 | 0.2 | 0.0231 | 0.0185 19.9 | 0.0185 19.9
0.05 | 0.1 0.0194 | 0.0154 20.6 | 0.0154 20.6

Table 4.6: Comparison of conductance at Vyey for the 30A channel at unequal bath
concentrations. All concentrations are given in molar and all conductances in pA/mV
(or nS). Entries in the “actual” column are calculated from numerical solutions of the
full PNP equations. The other entries are calculated from equation (4.175) which does
not take the diffusion coefficient drops into consideration and (4.240) which does.

In Tables 4.1 and 4.2 is presented the reversal potential data from the 10 and
30A channels, respectively. The actual numerical solutions to the PNP equations are
compared with the major equations for V., that were derived in this chapter: (4.173)
is the general reversal potential formula for any M and any diffusion coefficients (it
had an unknown )\([)0] which had to be found numerically); (4.238) is (4.173) evaluated
at the approximate )\EO], £ [10], )\[10], and 5[20] found for M = 1 with diffusion coefficient
drops (Condition 4.17) in Theorem 4.19 (with all of the B; as in that theorem); (4.239)
is the crudest form of (4.238) obtained by ignoring all the B; of Theorem 4.19.

These tables show several trends about the approximation formulas for V.,

when M = 1:

1. All the approximations become better when the channel is longer, even under

very asymmetric conditions.

2. The general formula (4.173) is generally very good, but is better when the

channel is longer.

3. The cruder approximations become worse when bath concentrations become

more asymmetric.
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4. All the approximations become better as both the bath concentrations are low-
ered. This is a complete surprise, and we do not understand why this is so. It

is important to stress that this is only true when M = 1.

Next, Tables 4.3 and 4.4 show the conductances at reversal potential under
symmetric conditions (that is, when bath concentrations are equal) from the 10 and
30A channels. Interestingly, these conductances (as well as the ones from asymmet-
ric conditions) are influenced much less by the length of the channel, than by the
bath concentration to permanent charge ratio. Therefore, when conductances are
the object of study, it is very important to have the bath concentrations as high as
possible.

Lastly, Tables 4.5 and 4.6 show the conductances at reversal potential under
asymmetric conditions (that is, when bath concentrations are not equal) from the
10 and 30A channels. Lowering the bath concentrations on either side causes large
errors in the approximations, especially in the cruder approximation (4.240). It is
important to note, that the only improvement gained by making the channel longer

is for the rougher approximation (4.240), which improves dramatically.

4.6.2 M=2

In this section we consider the case M = 2. In this case ¢ = 5M and ¢ = —5M.
The channel was 30A long (divided equally between the two intervals of permanent
charge) and, as before, the baths were 90A long. The diffusion coefficients for the
negative ion were 1.0 x 1072 m?/sec in the baths and 1.0x 107'° m? /sec in the channel.
The diffusion coefficients for the positive ion were 3.0 x 1072 m? /sec in the baths and
1.5 x 1071° m?/sec in the channel. In these calculations, as before, the function A
was kept constant at 38.48A2 (the area of a circle of radius 3.5A).

As before, the general reversal potential formula (4.173) does very well, as
shown in Table 4.7. (Despite the seemingly large percent errors at low bath concen-

trations, the absolute differences of about 0.3mV are barely measurable in experi-
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cr, | cgr | actual | (4.173) | % error
2.013.0 2.26 2.10 7.1
20120 0.0 0.0 0.0
20110 =742 | -7.61 —2.6
20105 -19.1| —-19.8 —3.6
20(01| —495| -50.9 —-2.8
05102] —-124 | —-12.6 —1.6
02102 0.0 0.0 0.0
01102 -160| —1.94 —21.3
0.05|02]| -12.3 | —13.0 —5.7
0.110.1 0.0 0.0 0.0
0.05 01| =197 | —2.20 —11.7

Table 4.7: Comparison of Vyey for the channel with M = 2 described in the text. All
concentrations are given in molar and all potentials in mV. Entries in the “actual”
column are calculated from numerical solutions of the full PNP equations. The other
entries are calculated from equation (4.173), the general solution from Theorem 4.11.

ments.) Also, as shown in Table 4.8, the conductance approximation becomes very

bad as the bath concentrations are lowered.

4.6.3 M >3

In general, to have good results from the approximations (4.173) and (4.175) for
any M it is necessary to have the lengths of the intervals (z;,z;11) be at least 20A
(preferably 30A or longer). If this is not true, then both the reversal potential and
the conductance there have large errors. Even when the intervals are long, very high
bath concentrations (beyond experimental limits) are many times needed in order to
get good results. Therefore, if one is considering biological channels, it is not feasible

to have M > 3.
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cL | cr actual | (4.175) | % error
2.013.0 0.167 0.157 6.0
2.012.0 0.243 0.248 —2.1
201 1.0 0.0941 0.0844 10.3
20105 0.0766 0.0689 10.1
2.01]0.1 0.0516 0.0461 10.7
0.50.2 0.0106 | 0.00711 32.9
0.2]0.2] 0.00287 | 0.00185 35.5
0.1 0.2 0.00162 | 0.00102 37.0
0.05 | 0.2 | 0.00126 | 0.000790 37.3
0.1] 0.1 | 0.000792 | 0.000470 40.7
0.05 | 0.1 | 0.000446 | 0.000258 42.2
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Table 4.8: Comparison of the conductance at Vyey for the channel with M = 2
described in the text. All conductances are given in pA/mV (nS). Entries in the
“actual” column are calculated from numerical solutions of the full PNP equations.
The other entries are calculated from equation (4.175), the general solution from
Theorem 4.12.



Chapter 5

Multiple Salts Case

In the previous chapter we only had two monovalent ions (one salt) in the system. We
now consider the case of multiple monovalent ions. This case is much more difficult to
do rigorously than the single salt case. The main reason for this is that the general case
of s salts reduces to a system of 2s — 1 equations that must be solved simultaneously.
This is difficult to do numerically, let alone analytically or with closed-form formulas.
(Even when s = 1 as in the previous chapter, clean, closed-form formulas were hard
to come by.) Our approach to overcoming this problem is to consider the simplified

problem with the following assumptions:

1. The channel has uniform permanent charge (that is, M = 1).

2. All the ions experience a significant drop in their diffusion coefficients as they

enter the channel.
3. The area function A is constant inside the channel (but not the baths).

4. For some of the results we require that there be only one anion in the system;
that is, all the salts have a common anion (which experimentally is usually
Cl7). Tt is possible to derive similar results when there is only one cation, but

experimentally the one-anion condition is much more common.
115
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Luckily this is still a very interesting and important case. The uniform per-
manent charge then excludes rectifying channels (as far as we are aware, uniform
permanent charge only gives (almost) linear current/voltage relations), but at the
very least it already includes the calcium release channel ([10] and [11]).

Before continuing, we make assumptions #1 and #2 mathematically rigorous.

Condition 5.1 (Diffusion Coefficient Drops) Mathematically, the diffusion co-
efficient drop (DCD) condition is stated as: T < 1, where T is defined as

T = Imax {Dl,nj)Dl,pj} (51)

1<j<s

where s 1s the number of salts in the baths; that is, T is the maximum of all the
diffusion coefficients inside the channel and this number is assumed to be small. With
the scaling we have chosen (see Section 2.3), requiring T < 1 is equivalent to having
both D1y, < Doy, and Dyp, < Doy, for all salts j. (Keeping with the notation
of the previous chapter, we have M =1 and so Dy, for example, is the diffusion
coefficient inside the channel and Do, = Da n; 18 the diffusion coefficient in the baths

for the j™ negative ion species.)

Condition 5.2 (A is constant in the channel) In the interval [z1,x5] the func-

tion A is identically constant:
Az) = A (1 <z <x9). (5.2)

In the baths A is not required to be constant and it is still assumed that on the entire

interval [0,1] A has a continuous first derivative.

Next consider the original PNP equations for multiple monovalent ions (no

approximations):

2@ @), eGP0 @ = T n-r-1 63

ijfl Zj:l
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In; _dn; do
Dn @ A@  de @) g @) (5.4)
_m B % (%) +p; () % () (5.5)

co=» m;(0)=) p;(0) ex= Y m(1)=) p;(1). (5.6)

Zj:—l Zjil Zj:—l Zjil

To simplify the notation, we assume without loss that the concentrations n; and p;

come from salt j. Since these salts are electrically neutral, we have

n; (0) =p; (0)=¢;(0)  n;(1)=p; (1) =¢;(1). (5.7)

If the same anion (for example, Cl7) is used in all salts, then we formally consider it as

a different ion species with concentrations nq,ns, ... and equal diffusion coefficients.
Letting
N=>Y mn P=>p JIv=)Y I Jpzzﬁ (5.8)
Zj:—l Zjil Zj:—l Dn] Zjil Dpj
it follows that
A, (z
2 |(e(a) g, @), + ¢ (@) 2o, (@) =N =P g (5.9
A ()
N N, (1)~ N (2) 6, (2) (5.10)
Afz) ‘ '
Jp
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Note that these equations are the same mathematical equations as (4.1) — (4.3) for
the singe salt case. The only difference is that the variables now represent different
things. Therefore, most of the mathematics done in the previous chapter is still valid
for these variables. The most important difference mathematically is that now Jp—
Jn is no longer the current. However, since much of the mathematical results are still
valid, in the following we will set up the multiple salts case to look like the single salt
case and then exploit the already existing mathematics to derive new results.

In order to do that, we make the same definitions as before:

i (z) = () = |a| ifq = q (5.12)
P(z)—lg| ifq<0 -1 ifg <0
Ju={ NN Diw=1 (5.13)
Jp ifq <0

Bir/ru = ) (5.14)
ﬁL/R,P if ; <0
() P(z) if¢g >0 1 if ; >0 (5.15)
w; (z) = Zayy = :
N(z) ifq¢ <0 -1 ifg;<0
Jp ifg >0
Jow=14 0 N Diw=1 (5.16)
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Bin)rw = / _ (5.17)
ﬂL/R,N if¢; <0
for i = 0,1,2. We have set D,, = D,,, = 1 since no diffusion coefficients appear in

(5.9) — (5.11). Also, we have the same types of expansions on each interval (z;, z;11)

as before:

(5.18)

fou () = fO (@) +fV (@) +--- (f=d,u,w) (5.19)
FL(Q)=F" Q) +eRY QO+ (F=0,UW) (5.20)
Fr(X)=FO(X)+FP (X)+-- (F=9,U,W) (5.21)
Jp =l + 200+ (f=n,p) (5.22)
Jp=ed +&IP 0 (f=uw) (5.23)

AW = é (5.24)
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Next define
_ () ||
2% (55) = U (1‘) + 5 (5-25)
1=y JPV-3%" Jb (5.26)
Ei (1) = p; () A (I) = p; (wi41) (5.27)
and
(1) (1)
m_ 1IN + I’ 9
Jii 5 (DN D] (5.28)

Theorem 5.3 Here we quickly restate some the single salt results we will need.

o (N5

. —_ qi Ji,— Jit (1)
0= AZ - = + E J(l) In - o J,(l) + SiJi,+ (529)
i,+ = — 2
3
gL
Q7, r,—
g Ai =50
0 0 i,— i,
6 (wisn) = ¢ (@) — ) n —® (5-30)
it -2 D
i,+
2 2
Eig = \/A? + % - % (5.31)
0 0 1 Ei+1 + ﬁ 1 Az + L
¢z(+)1 (@is1) = ¢z( : (zi1) + §ln B . — ﬁ B §ln A; — ; (532)
—i+1 D) 7 )
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1
J, f,ﬁ =

B
Di,nj :l: Z Dz’,pj

Zjil

1
2

Zj:—l

Soon we will define a; + and 3; ;. such that, for I = O (7),

T =" e Mo+ B0 (1=0.1,2),

to complete the analogy to the single salt case.

5.1 Technical Lemmas

Lemma 5.4 Let M = 1. If for some E,; and E,, we have

D1 fi Ef
Jp = — = —]J 1 =n, )
5= D By (f p)
then
E,G, + F,G,
Co+ =02+ = — = ~
F,G,, + F,G,
1 GnF G,
Bos = Pas = —5Chm a2
0 > 2 "E,Gn+ F,G,
F,E, + F,E,
M+ = =15
F,G, + F,G,
LG E, F GhE,
bre=—57~ "7~

" 2F,G, + F,G,
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(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)
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where

E,= Y E,

zj=—1

Fn = Z Dl,njEnj

zj=—1

Dl,nj

E, = z Epj

zj=1

Fy, = Z Dl,ijpj

zj=1

¢ 221 DO*”J' ! " ZZI Do’pj "
Proof. From (5.35), (5.26), and (5.41) it follows that
jo_fr o _In
Dl,plEm o Dl,mEm "
and, from (5.28),
ORI N il N BN R
L9 = Din, ~ = Dy, 2FE,, Din, ~ 2E, D1,
Then
1 1 E, 1E
e — (En + —Ep) JO £ =22
: 2D, E,, F, 2 F,
Similarly, when ¢ = 0, then
1 1 Di,, E,, 1 Dy, E,,
Jgvo = My Jr(Ll) + Pi Pi (1)
0. 2 ij_l DO,nJ Dl ni Enl ! ijl DOpj Dl,p1 Ep1 n
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(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)
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Then, by (5.43),

1 1 F, 1G
JY = = (Gt =G, ) JV £ =P, 5.48
0% 2 Dl,nlEm ( Fp p) " 2 FP ( )
Since, by (5.29),
— Ao (1
JélJ)r — e = Ao (I) (5.49)
) SO
we have
1 1 1 — Ay (I 1G
g (A0 18
2 Dl,nlEnl ! Gn + FZGP SO 2 Fp
and thus
J(l) _ FpEn :i: FnEP Cr — AO ([) . leEn :F GnEp] (5 51)
1.+ = )
' F,Gy, + F,G)p So 2 F,G, + F,.G,
and

1 FpGn:i:FnGp Cy, _AO (I) 1 Gn¢G’n

Jodl = — G
0BG+ F.G,  So 2 PE,Gn + F,G,

I (5.52)

and the lemma follows. m

Lemma 5.5 For multiple salts, if Condition 5.1 is satisfied, and I = O (1), then
Ao (I)=cL+O(7) Evr1 () =cr+0(7). (5.53)

Proof. From the previous lemma, it follows that if Condition 5.1 is satisfied, then
arr =0 (%) and 8; L = O (%) The rest of the proof of this exactly the same as for
the single salt case (Theorem 4.18). =
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Theorem 5.6 Let M = 1. If Condition 5.1 is satisfied, then

A0(0)20L+B1+O(7'2)

1) =/ +T+0m)
Al(o):\/c%+q1%+0(7)

EQ(O):CR—B1+O(7'2)

[1]

where
1 S \/ qi \/ @ o CRr
B = —— 2 4 L 2 4 A 0T
1 a17+5«1 CR+ 4 L+ 4 + 2061,_:,_ . /CQ—l-q—%—
L 4
= O(7)

and all the oy + are evaluated at I = 0.

124

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

Proof. With the previous lemma, the proof of this is the same as the proof of

Theorem 4.19. m

Lemma 5.7 Let M = 1. If Conditions 5.1 and 5.2 are satisfied, then

1 Dl,fj Efj (V)

) = T +o(r =
i Dy B (V) m ¢

(5.59)



CHAPTER 5. MULTIPLE SALTS CASE

for all species 7, where

¢j (1) —¢; (0) exp (zij)
n ipz,cj/Q 1 eXp(ijV)7<Z—IL*)zfj/2
So L ijV—%ij ln(’;—?) exp(ijV)+1

Efj (V) - (f

Dlvfj

DO,fj

and

2 2

2 9 ¢ 2 4 . Qn

_\/cL+4—|—2 _\/CR+4+2

PL = = Pr = 5 :
CLta 3 RT 71— 72
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(5.60)

(5.61)

In general, V' is small enough and Z—’; is close enough to 1 so that Ey, may be well

approximated by

g =90 9Oepiv) (=

where, if ¢, # cg,

zf./2 zf./2
Diy, 18 pg'" —pf”

bp DO,fj 2Sp o |:(P_R)ij/1
PL
When cp, = cg = ¢, then
Dyg, 2551 2, 1
i DO,fj 75’_0 (f - ﬂ,p)

where

2 ‘1% Qa
cc+ Tt

2
2 aQ @
ct+ 5 9

p:

(5.62)

(5.63)

(5.64)

(5.65)

Then Ey, from (5.60) or E;f']E from (5.62) define ao+, a1+, By, and B o through

Lemma 5.4.
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Corollary 5.8 With these Ey,, the ay i+ and (3, 4 given by Lemma 5.4 give

al,i (V)
So

Tl (V1) = (e = Do (D) + By (V) I +0O (7). (5.66)
It is the error term in these equations that limits the error terms in all the following

theorems to O (7).

Proof of Lemma 5.7. Integrating the orginal Nernst-Planck equations from 0 to
1 gives

' exp(=9(s))

—Jm
Y o Dy (s) AD (s)

ds = n; (1) exp (~6 (1)) = n; (0)exp(~6(0)  (5.67)

- <1>/ Dexi A(l) )ds:pj (1) exp (¢ (1)) — p; (0) exp (¢ (0)). (5.68)

We start approximating the integrals in these equations by the integrals over their

outer solutions:

exp (26 (s)) ds
o Dy, (5) AD (5)

1 /;cl exp (2¢(()0) (3)) ds 1 /1 P <Z¢§O) (S)) o (5.69)

Doy Jo — ADG) Doy, AD (5)
1 z2 exp (z¢§0) (8)) ds o
—I—Dij / A (5) + 0 (e).

This is justified because we interested in the integral of exp (z¢), not the function
exp (z¢) itself. Furthermore, the layers at the edges become narrower since the func-

tion is the exponential of ¢, reducing the error even more. By Lemma 5.5 and (5.30)
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we have
e exp (290 (s)) ds
/0 (A(l) (5) ) = Spexp (z¢80) (0)) + O (1) (5.70)
vexp (2¢) (s)) ds
/ (A(12) (s) ) = So exp (Zébgo) (1)) +0(7). (5.71)
The last integral in (5.69) is approximated by
/xg o o )
T3 M (s)
~ Au) eXP ( — ¢ (1:1)) ﬁ + 29" (x1)> ds (5.72)
et .
ST - @) -

What is done here is to use a linear approximation of the outer solution to approximate
the integral. This is justified because, when A is constant (and only then), this is not

a bad approximation. Furthermore, all of these approximations have been validated

by numerical calculations.

Since, by (5.32), (5.30), and Lemma 5.5,
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it follows that

o (ﬁj’((s)) i (55E) o (e ) - (22)° o (5 (0)
. ) 2(-V+im(§EE) - im(£52))

Letting

2, 4 @ 2 .4 | a
VL taty ‘et a T3
2 2 (5.77)

then

2/2
[ L)t oy () 2=

: AW (s) 2V =3I ()
L
and so
JY D, E
fi 1,f; Hf;
= =4+ 0(7) (5.79)
g D By,
where

B, — ¢j (1) —¢; (0) exp (ij V) ' (5.80)

j PR Zf,/Z
Dusi 4 ipsz/z 1 exp(=1,V) - (58)
So L ijV*%ij ln(’;—?) exp(ijV)+1

DO,fj

The approximation Ejf'; comes by using the first term of the expansion

1 exp(v) =y 1y—1 1 (1—7

1 2
v—In(y)exp(v)+1 2 Iy 2Iny +_“+70“+00W (5.81)

In~ 2
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zf./2
with v = z;,V and v = (p—f) ™" The result for ¢y, = cg = c follows from taking the
limit pp — p;. W

Notes:

1. It is this lemma that does not carry over when M > 1 since a generalization
would require a priori knowledge of A; for 2 < ¢ < M which are generally not
known. It was because M = 1 that we were able to find approximations for A

and A; through Lemma 5.5.

2. If E}f is used, then the E’s, F’s, and G’s will be denoted by E#, F#_ and G¥.

The problem is now set up analogous to the single salt case. There is one
very important difference, however: the a’s and 3’s are now functions of V' by the
definitions of E’s, F’s, and G’s. The single salt results only carry through directly if

these are independent of V.

5.2 General Results

5.2.1 Current/Voltage Relations

Theorem 5.9 Let M = 1. For multiple salts, if Conditions 5.1 and 5.2 are satisfied,

then V (I) is found by simultaneously solving the following equations for V (I) and
Ao (1):

(1) \/ e 1 g I 0D
J (V, [) T J(l) (V,I)
V() = 0 v X J<1) v (5.82)
14 V¢ 1 2 Jtl) (VD)
1 ( c%+£—%)( cR+q1+‘“>
+§ " 2, 4 @ 2 % q +oln)
LTty CrtT %
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2 2
0 = \/(cRJrcL—AO([))2+qzl—\/A%([)—ir%1 (5.83)
W (v.1)

1 \/ A+ G e
o i (V1) (crten=Ao(1)"+3 =5 TV, (1)
- In - + 570 (v, 1).
2 Jl(}r ) A1) +4— q S -(VI) ;

7 0 4 250w

Proof. Copying the first part of the proof of Theorem 4.19 we have the formula
for Ap (I) and the rest follows from (4.137) with substitutions from Lemma 5.4 and
Theorem 5.6. =

5.2.2 Reversal Potential

Similar to before, we define

L e (V)
(V) = S (5.84)

Theorem 5.10 (Reversal Potential: General Case) Let M = 1. For multiple
salts, if Conditions 5.1 and 5.2 are satisfied, and cy, # cgr, then V., is the solution of

the following equation:

02 + 4 ﬂa ‘/7'6’0
Vo = a3 (Vi) In \/L: 701 (Vi) (5.85)
C

To emphasize it, note that this formulation is implicit since the ay depend on V..
Furthermore, this equation is one V., must necessarily satisfy but it is, in general
not sufficient to give a unique value of V,.,; that is, there can be multiple solutions
to this equation. In some cases, there are no solutions to this equation. This will be

discussed later.
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Proof. This theorem follows by evaluating Theorem 5.9 at I = 0 and using Theorem

56. m

Corollary 5.11 Let M = 1. For multiple salts, if Conditions 5.1 and 5.2 are satisfied
and «y is independent of V', then the right-hand side of (5.85) is independent of Vi,

and gives V., directly (up to order T ).

Theorem 5.12 (Reversal Potential: Equal Bath Concentrations) Let M = 1.
For multiple salts, if Conditions 5.1 and 5.2 are satisfied and c;, = cgr = ¢, then Vi,

(up to order T) is the solution to

Vidleyon = o2+ & (5.50)
a1 (Vi) . _ = —r/c2+ —. .
relenmen g, 4
Proof. If cg — ¢1, in the previous theorem, then
View =04+ O (1) (5.87)
unless, perhaps,
Ut | r—g.ep—cp, = 0 (5.88)
or
2 @ a1 Q1,—
%+z—3a‘
lim : =0 (5.89)
o C%+%_q_2121; 1=0

where v exists, is positive, finite, and not equal to 1. The first possibility (V.e, = 0)
implies that V., is always the same and independent of ¢, which is not true just
by examining the numerical solutions for the full PNP equations. Thus we reject
that possibility. Next, taking the limit a3 1 — 0 in (5.9) gives Vi, = 0 which we

have already dismissed and is in contradiction to the requirement that oy  (Viey) =
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0. The sole remaining possibility necessarily requires that both the numerator and
denominator go to 0 as ¢, cg — ¢. Therefore
2 gt

—— 02 + =
IZO,CL:CR ql 4

Qq

(05

(5.90)

and the theorem follows. m

5.3 Special Case: One Anion

The main reason for considering this special case is the simple formulations of the a’s

and (’s, which are given in the next theorem.

Theorem 5.13 Let M = 1. For multiple salts, if Conditions 5.1 and 5.2 are satisfied,
the approzimation (5.62) is used, and there is only one anion, then

N _ @ (R) —ax (L)exp (V) _ b (R) —be (L) exp (V)
=W @ e wep) Y T ® A e ) O

N _ax(R) —ax (L)exp (V) _ b (R)—bs (L)exp (V)
s eem) Y T m T mew ) O

where
ar (Y)=fy £ Diney (Y =L,R) (5.93)
b (¥) = — (gy 7 o ey) v = L.R) (5.94)
_ Dl n

a+ (Y) = L fy + Dl,ng (Y = L, R) (595)
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_ 1Dy,
by (V)= - (15 1) gy (Y =L,R)
2 Do n,
. (1
eL:ZCJ(O) P 10
Mp; Mp;

zj=

fL—ZDlp]C] fR:ZDl,iji?—(l)

zj=1 j zj=1 pj

EIL—ZDIPJ (0 gRZZ%Cj—(l).

z;=1 Do, nPJ z;=1 Doyp; 1y,

In the notation of Lemma 5.4,

Ef =ep—epexp (V) F¥ = fr— frexp (V)

G;f =gr—grexp (V).

133

(5.96)

(5.97)

(5.98)

(5.99)

(5.100)

(5.101)

Note that as (Y), by (Y), @ (Y), and by (Y) are independent of the voltage V and

the current 1.

Proof. This is a straight-forward substitution of the given definitions into (5.36),

(5.38), (5.37), and (5.39). m
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5.3.1 Current/Voltage Relations

Theorem 5.14 For multiple salts, if Conditions 5.1 and 5.2 are satisfied, the ap-

proximation (5.62) is used, there is only one anion, and

6O _ s g, (5.102)

then ap+, 1.+, By 1, and 3, 4 are independent of V. In this case, all the single salt

results (specifically Equations 4.239 and 4.240) carry over with

Jr = Don g1 Jr £ Diper fr — Diner
Qo+ = 53— — =75 ap = ——=1— (5.103)
fL + DO,nlgL ﬁfl] + Dl,nlgL fL + Dl,nleL
1 (15 1) | 9L per
+1)gL Do,n
box=—5r17 — Pa=-op (5.104)
2 fL + DO,nlgL 2 DO’ 1 fL + Dl,nlgL
sl
Proof. We start with the relations
# E#
F*E# + F*E* 5 L7
4 = p# ’; ’;ﬁ i — T;ﬁ L (5.105)
n P
Bf _ Ef
1G#EY £ GHEY 1oz T oF
Brx= pon FOn Dy _Gh G (5.106)

—§Fp#G#+F#G# o _2F_§+%
s G

If

¢; (1) = pc; (0)  for all j (5.107)
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then

c;(1 c; (0 c; (0
Z'd' ()—eXp(ijV)Zd]ni) Zdjnf,)

(A (1 c\Y) 0 c\Y) )"
Z] d; 77 — &Xp (ij V) Z] d; nf Z] d; nf

(5.108)

The result follows from the formulas for a; + and 3, ;. given above (and similar ones

for i+ and 3, ,) and the fact that there is F¥ = Dy, E# and G# = %Eﬁfﬂ ]
) R

5.3.2 Reversal Potential

Theorem 5.15 (Reversal Potential: One Anion, Equal Bath Concentrations)
Let M = 1. For multiple salts, if Conditions 5.1 and 5.2 are satisfied, the approxi-
mation (5.62) is used, there is only one anion, and ¢, = cg = ¢ but ¢; (0) # ¢; (1) for
some salt j, then

Lag (R)—ay (R cz—l-ﬁ
Vi =1n | 2 (B) ~ o (B) Ll+0¢) (5.109)

La_ (L) —as (L)y/e2+ £

If ¢; (0) = ¢; (1) for all salts j (that is, the baths are identical), then

View =0 (7). (5.110)

Proof. By the previous theorem and Theorem 5.13 and we have

(5.111)

Solving for Vi, gives the result. When ¢; (0) = ¢; (1) for all j, then by Theorem 5.14
the « is independent of V and Vo, =04+ O (7). =
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5.3.3 Conductance at Reversal Potential

Theorem 5.16 (Conductance at Vi.y: One Anion) Let M = 1. For multiple
salts, if Conditions 5.1 and 5.2 are satisfied, the approximation (5.62) is used, there

s only one anion, and cy, # cg, then

d} (0) o SO K (ﬁl,f (iv‘cw) — (Lr(m) ﬁlﬂL (iv‘m:)) i O (7_) (5 112)
dI V7 Biaji (Vi y air(La (R)—a_(L)ay (R) :
101, (View) K exp (View) ) (o (D) oo (Vi) 1

where By is as defined in Theorem 5.6 and

2
C%{ + % - %al (‘/ICU)

K = In (5.113)

2
C% + % - (1_21&1 (‘/7‘(:'1,')

2 | 4 2, &
¢ (Vies) \/CR‘l‘Zl_\/CL"‘Z1

+—aq 5 7 " 9 2 @ '
m — 50 (‘/;‘C’IF) \/E ! (V"c'”)

2
Proof. In general, by Theorem 4.7 we have

(1) 24 4 @ W)
J (L RT 7 2 5,M
Vi = lf()m o (5.114)
Jl(l(j C%_f_ﬁ_Q_lJtS(I)
7 LN

—t
N
o)
N
+
R
|
o2
N———
7~ N
)
ml\D
+
4>~|5w
+
ol
N———
+
Q
S

Differentiating this with respect to I and evaluating at I = 0, we get

dV dJq
—= (0) =K~ (0) (5.115)
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where K is as defined in the theorem and

LI a V) = b (D) + S8, (VI
Jl(lJ)r (1) (V1)) (e — Ao (D)) + SoBy 4 (V (1)) I '

Ji (1)

Differentiating this last expression with respect to I and evaluating at I = 0, we get

dJ (5 - dau)‘ (9 - al;f}H)’
dI « dI y « »
—=(0) = — = -5 - [=0 (5.117)
dl 041,+|1:o B, a1,+|1:0
where, as in Theorem 5.6,
B1 = AO (O) —Cr,. (5118)
From Theorem 5.13, we have
d dv a, (L R) — Lya, (R
z},i — ﬁ (O) eXp (‘/rev) a’t ( )a’i (_) (Ii ( ) (I+ ( 2) . (5119)
1=0 (@4 (R) — @y (L) exp (Viev))
Then
(daL, o da1’+)‘
A ey A )|, ay (LYa_ (R) —a_ (L)a (R) (5.120)
arel o (as (R) — ay (L) exp (Vier))’
and thus
dJ dv Lya_(R)—a_ (L R
“@J1 (0) _ (O) exp (‘/;ev) a4 ( )a’ ( ) a ( )a+ ( 2) (5121)
dl dl ((IJr (R) — a4 (L) exp (‘/wv))

a1, —
(ﬂL_ - a1:+51,+)

1=0
Bi ol

~ S

Substituting this into (5.115) and solving for 27 (0) gives the theorem. m

Theorem 5.17 (Conductance at V;.y: One Anion, Equal Bath Concentrations)
Let M = 1. For multiple salts, if Conditions 5.1 and 5.2 are satisfied, the approxi-
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mation (5.62) is used, there is only one anion, and c;, = cg = ¢ but ¢; (0) # ¢; (1) for

some 7, then

ﬂ(()) =

S (ﬁl,— (‘/7‘0'1:) - q%ﬂ17+ (‘/7‘0'1:) c? + %)

dI A1
o ‘/7‘(:'1:

(a4 (R) — ay (L) exp (Vier))*

X

exp (View) (a1 (L) a— (R) — a_ (L) ay (R))

+0 (7).

Proof. As in the proof of Theorem 5.12, let

2
2 @ _q
\ep+ 3 — Loy (Vie

v)

v = lim

cLerC [ o @ q
CL + Vi ?al (‘/1(‘

v)

which is assumed to be positive, finite, and not equal to 1. Then

2 'k
(04 ‘/1'ev = 2 + =
' ( ) q1 4
and
2 @
Viev = —A/ 2+ =1n(v).
qQ1 4 ( )

Next, to make the next limits easier to see, let

2
= yJe+d _ I, v
xz CR+4 2a1(1e\')

2
y = \/C%—f—% — %al (Viev) -

Then

(5.122)

(5.123)

(5.124)

(5.125)

(5.126)

(5.127)

(5.128)
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K=In (5) B (Vi) 22 (5.129)

and

av

-7 (0)=

(5.130)
r—y+ Loy (Vie) In (;)

In (E) + %061 (va) =

Y Yy

<

X
ay(L)a—(R)—a—(L)ay(R) z @ Ty ) _
P (Vier) (@) ) oxp(ien ) (ln (y) oo (Vi) 5 ) !

+0 (7).

Taking the limit z,y — 0 gives the result since, by the above, % —v. i

Theorem 5.18 (Conductance at V;.y: One Anion, Identical Baths) Let M =
1. For multiple salts, if Conditions 5.1 and 5.2 are satisfied, the approzimation (5.62)
is used, there is only one anion, and c; (0) = ¢; (1) for all j, then %% (0) is given by

Theorem 4.16 with ag s, a1+, By x, and B o given by Theorem 5.14.

Proof. By Theorem 5.14, ag +, a1+, By 4, and 3, . are independent of V.., and thus

the single salt results carry over directly. m

5.4 The Anomalous Mole Fraction Effect

Consider the following experiment: identical mixtures of two electrolytes of equal
valence (one with mole fraction p = < and the other with mole fraction %2 =1 — p)
are placed on each side of a channel and the conductance at reversal potential (in
this case V., = 0 since we have identical bath solutions) is measured as a function of

p. (Total bath concentration is held constant at c¢.) For most channels, this function

of conductance versus mole fraction has a minimum. Physically this means that
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the channel is conducting less current after a second electrolyte of the same charge is
added than if the channel were bathed in pure solution of either electrolyte. Since one
would intuitively expect this function to be linear, the occurance of such a minimum
is called the anomalous mole fraction effect (AMFE). In this section we will examine
this effect from the point of view of PNP theory.

With the addition of one extra parameter for each ion species, it is known
that PNP theory can explain the AMFE [37]. This parameter is a constant added
to the Nernst-Planck equation of each ion species and is called an excess chemical
potential. Its purpose is to account for possible chemical interactions between the
ions and the channel protein or to account for any errors from reducing the three
dimensional equations to one. It is conjectured that PNP cannot explain the AMFE
without this parameter. This is in essence what we find here.

From Theorem 5.18 it is straight-forward to derive a formula to describe the

experiment:

Theorem 5.19 (Conductance vs. Mole Fraction) Let M = 1. Let the baths
have equal total concentrations ¢ of two monovalent salts with one common anion at

concentrations ¢, and co. Defining

p=— (5.131)
we have < =1 — p. Then
2
Diy 18 |[Ve+T+%
= 5 i too, | T (=12 (5.132)

eL = — + (i - i) p (5.133)
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D D, D
5, — D +< m Lm) ) (5.134)
77102 77101 77102
Diyy 1 (D, 1 Dy 1
=Dl <%_ _ %_) p (5.135)
0,p2 Tlp, 0,p1 Tlpy 0,p2 Mpy

Qo = fL + D07nlgL s = fL + Dl,nleL (5136)
’ Jr+ Don, gL 7 %Ji + D191
gL F 2ep
By = _1 0¥ Dgr g, -1 Doy (5.137)
) 2 fr + Don 9L ’ 2 g(l)—::ifL + Dy g1
and
(o) 0= (5139
S, \dI Pr= '
2
g 2 c2 + q_l/B _ Q_l/B _
<2§OCO{0, + C2 + %O{L, _ %a17+> 4 M1+ : 2 M1,
1 2% cany + 1/ + Hayy — Lay
So % ¢
_25_16%’_ —\/ 2+ Zﬁl,_ + Eﬁl,—i-‘

The graph plotted in the AMFE experiment then is

- (5.139)
(G (0)) ()

At first glance (5.138) is a very complicated formula, both as function of p and other
parameters like Sy, Si, ¢, ¢1, and the diffusion coefficients. However, when this
function is analyzed numerically, it is a linear function of p no matter what values
the other parameters take. In numerical experiments (5.139) which used both very

large and very small values for the parameters listed above, the results have always
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shown (5.139) to be a linear function of p to at least ten significant figures. Since
this formula is such a complicated function of these parameters and because of the
approximations made in its derivation, this is a complete surprise. Unfortunately,
we have not been able to prove the linearity of (5.139) with mathematical certainty;
the formula is just too large to work out by hand or with the help of Maple. This
numerical evidence, however, does support the conjecture that the AMFE cannot be

accounted for by the PNP model considered in this thesis.

5.5 Comparing Formulas to Numeric Solutions

In this section we compare the formulas to the numerical solutions of the full PNP

equations. For all of the cases given below we use the following parameters:

e bath length: 90 A unless otherwise indicated

channel length: 30 A

the function A is constant with a value of 38.48 A? or, equivalently, the area of

a circle of radius 3.5 A.
e permanent charge: —5 molar

diffusion coefficients:

— Do, = 1.0x107° m?/sec, Dy ,, = 1.0 x 1071% m?/sec. If there is a second

anion, Dy, = 2.5 X 107° m?/sec, Dy ,, = 1.5 x 10719 m?/sec.

— Dy p, =2.0 x 1072 m?/sec, D1, = 2.0 x 107'% m*/sec. Dy, = 3.0 x 1077
m?/sec, D1, = 1.5 x 1071 m?/sec. If there are more than two salts,

Do py = 5.0 x 107 m?/sec, Dy, = 5.0 x 1071° m? /sec.

In the following all concentrations are given in molar (M), all potentials in

millivolts (mV), and all conductances in picoamps per millivolt (pA/mV).
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c1(0) | c2(0) | 1 (1) | e2(1) | actual | (5.60) | % error | (5.62) | % error
1.25 | 0.75] 1.80| 0.20 | 0.975| 0.624 36.0 | 0.613 37.1
1.25 | 0.75] 0.20| 0.80 | —15.9 | —17.1 —7.5| —17.2 —8.2
1.25| 0.75] 080| 0.20| —14.9 | —154 34| —-154 3.4
1.25 | 0.75] 0.10 | 0.40 | —32.3 NS — NS —
1.25| 0.75] 040 | 0.10 | —32.3 | —32.9 —-1.9| =329 —-1.9
1.25 | 0.75 | 0.02| 0.08 | —67.8 | =73.5 —8.4 | =752 -10.9
0.02] 0.03| 0.10| 0.10 35.0 34.6 1.1 34.6 1.1
0.04 | 0.01| 0.08 | 0.02 17.9 17.9 0.0 17.9 0.0
0.04 | 0.01| 0.02] 0.08 23.5 23.8 1.3 23.8 1.3

Table 5.1: Reversal potentials from Theorems 5.10 and 5.12 using the values of Ey,
given by the formulas indicated in the column head. “NS” indicates that there was
no solution to the equation for Vyey. When there were multiple solutions, the closest
to the actual value was chosen. Since there are no formulas for conductance in this
case, it was not possible to distinguish multiple solutions for the reversal potential in
that way as was done in later sections.

5.5.1 Two Salts with Different Anions

For the case of multiple salts with multiple anions there are only formulas for reversal
potentials via Theorems 5.10 and 5.12. For the case of two salts with two different
anions, Table 5.1 shows the results of the comparison.

As in the single salt case with M = 1, the reversal potentials work well at low
bath concentrations (again a surprise) and only give bad estimates for very asym-
metric bath concentrations. (The 36% error in the first line may be large, but the

absolute difference of 0.3 mV is quite small.)

5.5.2 Two Salts with a Common Anion

In this section we present the comparison in a different way. With 30A baths we
set ¢1(0) = 1.25M, ¢y (0) = 0.75M, and ¢; (1) = 0.2M and let the right-side bath
concentration of salt #2 vary from 0.01 to 6M. The graph of the reversal potential
and the conductance at reversal potential for this set-up are shown Figures 5-1 and

5-2, respectively. In this case, if there were multiple solutions for V.,, then the
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Figure 5-1: Graph of V., as a function of ¢y (1) as explained in the main text. The
empty region 0.16 < ¢y (1) < 1.8 is where there is no solution to (5.85).

“correct” was determined to be the one that gave a positive conductance. Two things

are immediate from these figures:

1. The reversal potential formula (5.85) works well (when it has a solution) and is

more accurate at higher bath concentrations.

2. Equations (5.112) and (5.122) for the conductance at reversal potential do not
seem to be good approximations, although they are somewhat reasonable at

high bath concentrations.

While these results for the conductance formulas are not very impressive, one
interesting result is that the formula for conductance at reversal potential for identical

baths given in Theorem 5.18 is very good, as shown in Table 5.2. It is interesting
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Figure 5-2: Graph of conductance at reversal potential as a function ¢, (1) as explained
in the main text. The inset shows the region [0,0.16] in more detail. From this
graph it is intuitively obvious why there sometimes there is no solution to (5.85): the
conductance is not defined in certain regions defined by rapid changes near the edges.
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c1(0)=c1 (1) | c2(0) =c2(1) | actual | SP | % error
1.0 0.01 | 0.130 | 0.130 0.0

0.3 0.7 0.144 | 0.147 —2.1

0.03 0.07 | 0.0240 | 0.0204 15.0

0.1 0.07 | 0.0336 | 0.0304 9.5

Table 5.2: Conductance at reversal potential for identical baths as outlined in The-
orem 5.18. The accuracy increases as the total concentration on each side increases.

c1(0) [ c2(0) | c3(0) | e1 (1) | ea(1) | es(1) | actual | SP | % error
1.25 | 0.75 0.1 1.80| 0.20 1.0 14.2 | 14.7 3.5
0.125 | 0.075 | 0.01 | 0.02] 0.08 0.1 15.0 | 15.1 0.7

Table 5.3: Reversal potential for three salts with a common anion. The approxima-
tion which uses the coarse approximation (5.62) is good for both high and low bath
concentrations, which is the same as for the one and two salt cases discussed earlier.

to note that the accuracy seems to be a function of total bath concentration (with
accuracy diminishing as it is lowered), rather than concentration of one individual
salt; that is, even if one salt has a concentration of 0.01M, for example, the results
are still very accurate as long as the other salt has a large concentration, say 1.0M.
Since this is the formula used in the AMFE calculation, this gives even more credence

to the results from that section.

5.5.3 Three Salts with a Common Anion

The trends observed above (namely the good performance of the formulas for reversal
potential and conductance for identical baths) are true for more than two salts. This
is illustrated in Tables 5.3 and 5.4 where we have used only the crudest approxima-
tions (that is, using (5.62)). Since the general formulas for conductance at reversal

potentials does not appear to work well, we do not show them here.
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c1(0)=c1(1) | c2(0) =c2(1) | c5(0) =c5(1) | actual | SP | % error
0.3 0.7 0.1 0.171| 0.173 1.2
0.03 0.07 0.01 | 0.0281 | 0.0242 13.9
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Table 5.4: Conductance at reversal potential for identical baths as outlined in The-
orem 5.18. As in the one and two salt cases, the accuracy increases as the total

concentration on each side increases.



Chapter 6

Dealing with the Area Function

The only thing not addressed so far has been how to deal with the area function A.
As was shown in Chapter 2, A is the area of the equipotential surfaces in the three
dimensional problem. So far we have treated it as a given function and have found

that it only comes into the final formulas we have derived in the form

T g
S’:/m A(s) 6.1)

that is, all we have to know about A are two or three of its integrals, depending on

the number of intervals of permanent charge. In this chapter we briefly consider what
to do with these integrals.

The most correct (and thus the least useful) answer is that because A repre-
sents a property of the three dimensional equipotential surfaces which are sensitive
functions of the bath concentrations and the applied potential, one has to solve the
full three dimensional PNP equations given in Chapter 2 for at least some cases in
order to emperically determine regimes where some approximations of these inte-
grals can be made. This is unfortunately not possible at this point in time since the
computations of the full three dimensional PNP equations are too time-consuming.

The next possibility is to try and eliminate these integrals from the final results
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by some argument. The one fact that we do know about A is that in the baths, the
farther the equipotential is away from the channel, the larger its surface area and so
A tends to be large away from the channel. Thus the only contribution to Sj is near
the channel. Furthermore, inside the channel, because the channel is narrow, A must
be roughly the same size as the cross-sectional area of the channel 7% where r is the
radius of the channel (if we model the channel as a right cylinder). Therefore, if A
becomes large (relative to the cross-sectional area mr?) quickly, then g—; is large. We
will try to use this fact to get some A-independent results.

First let us consider the formulas for the reversal potentials. In the coarsest
approximation of the reversal potential in the single salt case (4.239), because of
the diffusion coefficient drop, we were able to obtain a result independent of the S;.
All the multiple salts results, however, still have these integrals (in the form g—;)

Specifically, they come in through the 7, (in the case of a common anion):

Dip,  181pr—py
e R 6.2
"= Dy, 250, (2) ez # ex) (62)
L

where
2 (I% q1 2 Q% q1
Vet Ty Vet ty
PL = > PR = > (6.3)
Ve +i-4 R
and

2
_Dl,pj+151 \/02_’_%_’_%

M, = — (c, =cr=rc). (6.4)
With the way the formulas are written, if
Tps ~ 1 (6.5)

77?1
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for all salts j, then it is valid to drop out the n terms by setting them equal to 1.
This happens when

Dy, 18 pr—pyL
AL

(c1, # cgr) (6.6)

or

Dl,pj 1 Sl \/ 2+ + ql (CL —ep— c)
Doy, 25, /702
S1

Since 3 I8 large and 1”’] is small, that condition is true if the quantities
Do,p;

(6.7)

multiplying g 21 are not too small. However, for small bath concentration to permanent

charge ratios (Tf and ';R) the terms multlplymg can be small enough to make

Dy, - 151 pr—p1

6.8
DO,pj 25 o (P_R) (CL # CR) ( )
L
or
/ 2
Dlyijlsl 62+%+q_21 (CL:CR:C) (69)

Doy, 250 2, @€ _q
c+ 3 2

(depending what the size of g—(l) is). This is especially true in the equal bath concen-

tration case. What is always true is that

Iy

— 1 (6.10)
77191

S1

as gt — oo. Therefore, the graph of V.., as a function of g—; (for given bath concen-

trations and diffusion coefficients) will tend to a limiting value as g—; — 00, call it

Vieer Vit

rev

is the same as V., with the 7’s set to 1.) Consequently, if the graph of V;.,
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as a function of % is already close to its limiting value for small values of % (say, for
0 0
example, 5), then V¥ should be a good approximation of the true channel. (In the
case of multiple solutions to the V., equation, each root changes continuously as a
function of g—; and in this case all solutions can be plotted and analyzed in the same

way.) This illustrated in the following examples with

Dipy 1 Dip 1 (6.11)
Do, 20 Do, 10 '

¢ = —5M. (6.12)

These are illustrated in the Figures 6-1 and 6-2. In Figure 6-1 none of the multi-
ple solutions to the reversal potential equation vary too much over the range of g—;
making V* a good approximation of the true channel in this case. In Figure 6-2 the

rev

reversal potential does vary a lot and so V!

rev

is probably not a good approximation
of the true channel in this case. It is important to note that Figure 6-1 is the same
experimental set-up as in Figure 6-2 except that 0.1M of salt #1 was added to the
right bath. Therefore it is difficult to tell without the graphs when Vi is a good
approximation of the true channel. We are not sure exactly what the cause of this is.
The only discernible difference between these two cases is that inside the channel the
concentrations of the two cations are roughly equal for case shown in Figure 6-2 and
are not equal for case shown in Figure 6-1. Also, this does not appear to be because
cr, = cg for case shown in Figure 6-2.

As for the formulas for the conductances, they are functions of the absolute
values of Sy and Si, not just their ratios. This is problematic because we do not
know how to estimate these parameters, especially Sy. Therefore, at these points,
these formulas are not practical for interpretation of data or for gaining intuitive
insight and it is an open question if there is a better way to derive equations for these

quantities that incorporates the baths in a more managable way.
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Figure 6-1: In this graph the bath concentrations were: c¢; (0) = 0.1M, ¢ (0) =
0.05M, ¢ (1) = 0.15M, and ¢5 (1) = 0.1M.
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Figure 6-2: In this graph the bath concentrations were: c¢; (0) = 0.1M, ¢ (0) =
0.05M, ¢; (1) = 0.05M, and s (1) = 0.1M.



Chapter 7

Summary of Results

In this chapter we distill the results of the last two chapters into formulas that are
solely in terms of biological variables. Again we divide the results into single and

multiple salts results.

7.1 Single Salt Results

As was discussed in Section 4.6, unless the channel under consideration is extremely
long (> 50A), the results in the single salt case are only useful when the permanent
charge is modeled with one or two intervals on which it is constant; more than two
requires a longer channel. Here we present only the uniform (one interval) permanent
charge results because of the complexity of the other results. Furthermore, it is
generally believed to be true that ions undergo a significant drop in the values of
their diffusion coefficient. One of the results we derived (Theorem 4.18) was that
when this occurs one can neglect the baths in the analysis. This result is independent
of the area function A (Chapter 6).

In the following, the cation has diffusion coefficient Dy in the baths and D,
inside the channel and the anion has diffusion coefficient D in the baths and D,, inside

the channel. The left and right baths have concentration c¢; and cg, respectively.
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When the baths are taken into consideration, they must be taken long enough so that
the mobile ion concentrations reach c;, and ci well before the edge of the bath. For
a 30A channel this is usually satisfied with 90A baths in the worst-case scenario of
treating the baths as cylindrical extensions of the channel. Usually 30A baths are
more than sufficient.

In the single salt case the reversal potential is given by

Z_i_q_%_ﬂM

iV _ D, - D, In CRT 2 2 Dp+Dn, (7.1)
kT rev Dp + Dn 02 + ﬁ . ﬂDprn
LT 4 = 2DytDn
 ((Vaet-g) (Var+g)

+—1n

2 2
(Va+g+s)(Vari-1)

This formula appears to work well when compared to the numerical solutions

>‘>~|>—Am

of the full PNP equations (Section 4.6), although it seems to break down with very
asymmetric bath concentrations.

Other, more accurate formulas that involve the area function A (see Chapters
2 and 6) are given in Chapter 4, as are formulas for the conductance at reversal

potential.

7.2 Multiple Salts Results

When there are more than two ion species (that is, more than one salt) in the system,
results were much more difficult to obtain and the results we do have are not nearly
as nice as those in the single salt case. In this summary we will only include the
case of multiple salts with a common anion. Furthermore, it is important that the
conditions set out in Chapter 6 are met. Only then can one ignore the contributions
of the area function A and have the practical results stated below. Otherwise the

full PNP equations should be solved numerically or a good model for A must be
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developed. In that case the general results are listed in Chapter 5.
In this section the salts are denoted by j and each salt 7 has bath concentra-
tion ¢; (L) and ¢; (R) in the left and right baths, respectively. Then the total bath

concentrations are

cL = z ¢; (L) and  cp= Z ¢ (R). (7.2)

When ¢y, # cg and

ci (L ci (R
J ( ) # J ( ) (7.3)
Cr, CRr
for some j, then Vi, is the solution to the following equation:
o, (Vo) (VA te)
rev — 5_
_ @Z] (Dpj - D") (Cj (R) —Cj L) exp (BZ?) (7 4)
e 32 (Dy, + D) (¢ (R) — ¢; (L) exp (%5)

Ej( . (Cj(R)_Cj(L)EXp kT))

X In 325 (D +Dn ) (o3 (B)—es (1) exp( <5+ ) )
2 & 0 i(Pr D) () () ()
L0425 (Dy;+Dn) (e (R)—c; (L) exp( 8 ) )

This implicit equation is not as nice as one might hope; usually there are multiple
(two or three) solutions for this equation and for some ranges of the parameters there
may not be any solutions.

When ¢, # cr and
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for all salts j, then

o | & g 2i(Pp;=Dn)e;(L)
L VN > (Dp; = Dn) ¢ (L . Rt 4~ >, (Dp;+Dn)e; (L) (7.6)
Lo 2 3 (Dp;+Dn )e; (L)

Unlike the previous result, this is an explicit equation for V., (that is, V.., does not
appear on the right-hand side) and thus has exactly one solution.

In the usual cases we have that the function

> (Dpj — Dn) (cj (R) —¢j (L) exp (
Zj (Dpj + Dn) (Cj (R) —¢; (L

a(V) = (7.7)

Y

$

ks

—~

I Ry
N—"

N—

is not constant. For some combinations of diffusion coefficients and bath concentra-
tions, however, w is constant. (The most common case is %LL) = %}f) for all salts
j with we have just deal explicitly because these are experimentally possible. Other
instances include the theoretical limits D, = 0 for all salts j and D,, = 0. These
limits should in general be avoided because the function « (V') is a very nonlinear
function that is linear if one of these limits is taken. Since diffusion coefficients are
never exactly zero, there is always a V' such that the denominator of a (V') is zero
while the numerator is not. Furthermore, the analysis we did to get to these formulas
requires that all the diffusion coefficients inside the channel are of the same order in

size.) When ¢, = cg = ¢ and « (V) is not a constant function, then

2
2+4N (D, +D,)ci(R)—2> . (D, —D,)c; (R
‘/;ev:gln 4 Z]( Dj ) ]( ) 2 Z]( Dj ) .7( ) . (7.8)

e c2+‘§zj (Dp, + Dy) ¢; (L) — %3 (Dy, — Dy,) ¢; (L)

(Again, in this case there is exactly one solution.) Specifically, when ¢; (L) = ¢; (R)
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for all salts j (that is, all the individual salt concentrations are equal), then

View = 0. (7.9)



Chapter 8

Discussion

8.1 Why PNP?

In this thesis we have focused on the one-dimensional Poisson-Nernst-Planck (PNP)
theory as a description of ion permeation through an open channel. Why would one
want to use this theory? Ideally, of course, one would want to model permeation by
molecular dynamics where all particles in the channel interact according to the laws
of physics. However, these simulations only last up to nanoseconds of real time and
so cannot reach the time scales of permeation. Therefore some reductions must be
made. PNP is the reduced form of at least two models of transport. One of these is
the modeling of ions as undergoing Brownian motion in an electric field generated by
the applied potential and the channel protein. Then, in the limit of high friction and
relatively low fluxes, the Nernst-Planck equation can be derived [17]. PNP can also
be derived from the Boltzmann Transport Equation (BTE) [7] for gases which treats
the collisions of particles in a different way than Brownian motion. By taking one
integral moment of the BTE (which corresponds to the conservation of mass), one
derives the Nernst-Planck equation [27]. Finally, the Nernst-Planck equation must be
coupled to the Poisson equation for the electric field (which is a differential form of

Maxwell’s First Law). Physically this is necessary because the distribution of charges
159
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in the system changes the potential (Poisson equation), which, in turn, changes the
distribution of charges (Nernst-Planck). Mathematically this is necessary so that the
number of unknown functions is equal to the number of equations and the system is
then consistent and solvable.

Furthermore, the PNP system of equations has had great success in the mod-
eling of semiconductors for over 40 years. There the system is called Drift-Diffusion.
(This model has been so successful and the engineers are so comfortable with it that
new transistors are being designed to fit the PNP equations [54].) This is important
because the basic problem of semiconductors is similar to channels: charged parti-
cles must move from region to another through a medium that contains permanent
electrical charges under the influence of an applied potential. Furthermore, a recent
analysis of the applicability of the Drift-Diffusion (PNP) system in semiconductors
showed that this system is applicable in situations where it was once thought it could
not be used [3]. Essentially it established that it is possible to formally model much
smaller devices with the Drift-Diffusion (PNP) system than for which it had originally
been designed. While this is not directly applicable to channels, it is further evidence
that the PNP is a much broader theory than one might think. (Another example
of this is the derivation of the PNP equations from the BTE which was originally
designed to model gases.)

The biggest reason, however, for using the PNP theory is a much more practical
one: PNP fits the data of several channels very well ([9], [10], [11], [36]) over a
large range of bath concentrations and applied voltages with a minimum of fitting
parameters. This alone is an indication that PNP is on the correct track for modeling
permeation. Specific issues such as selectivity and chemical interactions between ions
and the channel are not explicitly addressed in this electrostatic theory, and must be
dealt with. However, the data fitting alone indicates that the PNP theory is a good

place to start.



CHAPTER 8. DISCUSSION 161

8.2 Why Not PNP?

PNP is, of course, not the be all and end all of ion permeation theories; it has many
problems.

One such problem is that it is not possible to tell how the parameters (for
example, the permanent charge ¢) from the one-dimensional theory relate to the
reality of the three-dimensional structure of the channel. In this thesis we have
outlined a possible way to relate these, but, because it is currently not possible to
do the three dimensional numerical calulations, that cannot be verified. At a time
when more and more channel structures are known at atomic scales, it is important
to have atomic detail in any model of permeation. This problem can be alleviated by
using the three dimensional PNP equations (see Chapter 2) which include permanent
charge distributions based on known atomic structures [29).

Another problem with PNP (which cannot be fixed by using the three di-
mensional PNP equations) is that it treats ions as point particles; by ignoring the
volume of the permeating ions, PNP can miss single-filing effects due to the small
channel geometry. There are a couple of ways to try and deal with this issue. First,
for uncharged particles it has been shown that single-filing, diffusing particles can
be modeled by Fick’s Law of Diffusion with an effective diffusion coefficient that is
smaller than the normal bulk diffusion coefficient of the particle [35]. A drop in diffu-
sion coefficient inside the channel is something that is already believed to be true for
channel permeation (and we have used it in this thesis many times). Therefore PNP
may in some way already have inadvertantly have addressed this issue — but only in
part. There is now increasing evidence that the so-called “excluded volume” effects
have a large impact on the electrostatics inside channels and that the inclusion of the
Mean Spherical Approximation into the channel geometry may explain many aspects
of selectivity [6]. This work is at an early stage and must be explored in more depth.

A similar fundamental problem is that the channel protein, the lipid bilayer,

and the water molecules are modeled as a simple dielectric material. This is not
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appropriate since the channel is so small that all analysis must be done at atomic
length scales; dielectrics are, by definition, the approximation to be used when the
length scale of a system is large compared to atomic length scales such as for wires
or capacitors. In the channel environment, the microscopic electric field is almost
certainly not the same as the spatially-averaged electric field that is implied by a
dielectric. (Griffiths [20] gives an excellent discussion of this point.) This problem
may perhaps be addressed by invoking a different kind of averaging. PNP is a mean
field theory and thus involves an average, not over spatial coordinates, but over time;
averaging the permeation of many particles over a long time gives the concentrations
(actually probabilities [17]) and potentials that are used in the equations and removes
the results of atomic vibrations and other phenomena that occur on times scales that
are much less than the microsecond time scale necessary for permeation. This kind
of time averaging may also give something like a dielectric, at least for the channel

protein and the lipid bilayer, on the biological times scale.

8.3 Analytic Treatments of PNP

Attempts to derive formulas for measurable quantities from the PNP equations in
the past have largely come from work on liquid junctions in solutions (reviewed in
[33]) and ion transport through membranes (reviewed in [51] and [22]). For liquid
junctions, much of the analytical interest focused on the electrostatic potential at the
junction, while for membrane transport, the goal was to describe the flux as we are
attempting to do for channels.

In all of these attempts to derive formulas for measurable quantities, the au-
thors have used assumptions which may be appropriate for the situation they were
considering, but that are not necessarily justifiable for individual channels. The two
most commonly used of these assumptions are setting the permanent charge of the

membrane to zero or to assume electroneutrality everywhere in the system. An as-
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sumption that is always made is that the cross-sectional area of the system is constant.
For the case of liquid junctions all of these assumptions are perfectly reasonable; when
one is considering only ionic solutions there is no structure with a permanent charge
and thus pointwise electroneutrality is true, as is constant cross-sectional area. When
modeling a homogeneous membrane seperating two baths of ionic solutions, the zero
permanent charge assumption depends on the specific substance used to construct the
membrane. When the permanent charge is nonzero, then the pointwise electroneu-
trality condition is technically not true at the bath/membrane junctions because of
the accumulation of counter-ions and repulsion of co-ions near the channel entrances.
However, if the membrane is relatively thick, then the pointwise electroneutrality
condition is a good approximation of reality and the concentration and electrostatic
profiles can be treated as discontinuous functions with jump conditions provided by
Donnan potential theory. The constant cross-sectional area condition is also valid,
even when including part of the baths in the analysis, if the membrane is assumed to
be homogeneous.

When considering individual channels, however, none of those three assump-
tions is generally valid. Because channels are such small structures, any amount of
charge on the amino acid residues of the channel protein has an impact on ion perme-
ation (see Section 8.4.1 below). Also, channels can be short enough that the regions
of space charge near the channel entrances can be a significant fraction of the channel
length. Therefore imposing pointwise electroneutrality is not a prior:i valid. Further-
more, because Donnan potential theory requires pointwise electroneutrality, the jump
conditions offered by it are not necessarily the best to use (see Section 4.5.3). Lastly,
because channels have small openings that are exposed to big baths, the constant
cross-sectional area assumption cannot be valid; the ions disperse into the baths and
diffuse in three dimensions, not just one as would be required by this assumption.
In this way, the baths would act as resistors and any results regarding flux would be

incorrect. (All of these points are also discussed in Section 2.1.)
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In this thesis we tried to analytically solve the PNP equations with a minimum
of assumptions, being especially mindful never to include the ones discussed above.
These equations can be useful for intuitive thinking about what makes a reversal
potential or conductance at reversal potential, but it is important to stress that these
are only valid for channels that can be described by a uniform permanent charge.
This then immediately excludes any rectifying channels and, from one of our other
results, channels that have little or no anomalous mole fraction effect. Also, it is
generally much better to use the full PNP system to describe a channel. That means
that for any particular channel (and each of its mutants) a permanent charge profile
and the diffusion coefficients should be derived from data fitting as has already been
done for several channels. This is the way only to be sure that there are no errors from
using the formulas on channels which do not satisfy the assumptions we made or from
more subtle errors. This is something the computational semiconductor community
took to heart long ago where these quantities are calculated numerically directly from
models (most notably PNP). This eliminates any errors made from reducing a system
of differential equations to formulas, while still allowing intuitive interpretation from
graphical representations.

In the mathematics community, work similar to that done in this thesis has
been presented in the context of semiconductors. The work of Ward, et al., [53] is
closest in form, but they consider a case which corresponds to an unrealistically long
channel. Furthermore, they only consider the case of built-in boundary conditions
with a very specific permanent charge and do not explicitly calculate the boundary
layers as was done here. Ward, et al., based their approach on that of Please [42] who

seems to have done the first mathematical asymptotic expansion of the PNP system.
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8.4 PNP and the Permeability Ratio

In this section we consider the concept of relative permeability (that is, which ion
species a channel prefers to pass). We start with the classical approach and offer a
new twist on this approach. Next we consider the subject without any assumptions

and derive some results and then relate these to the classical approach.

8.4.1 The GHK Equation

To quote the book almost every paper on channels quotes at some point [23, p.
341]: “By far the most commonly used formalism for describing ionic permeability
and selectivity of membranes has been the Goldman [19] and Hodgkin and Katz [25]
constant-field theory.” To add some weight to that statement, a quick search in the
Biophysical Journal found several articles published in 1998 and 1999 alone that use
the GHK equation in the case of monovalent ion species, the case we are considering
here (for example, [30], [43], [55]). This is why we have included this section comparing
our results for the reversal potential to that of what has historically been called the
Goldman-Hodgkin-Katz (GHK) equation.

First, a quick review of the GHK equation. As succinctly described in [23, p.
341], the underlying assumptions of GHK are:

1. The membrane is considered a homogeneous slab of materical into which the
permeant particles partition instantaneously from the bulk solution; no refer-

ence is made to pores.
2. Flux for each species is governed by a Nernst-Planck equation.

3. The ions cross the membrane independently (without interacting with each

other).

4. The electric field in the membrane is constant; that is, the potential drops

linearly across the membrane.
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5. The ions do not interact with the membrane in any way, except perhaps by
having their diffusion coefficients change. This is not stated in [23], but is

necessary for the arguments that allow to the GHK equation to work.

Having been stated in this way, the limitations of the GHK equation should be
immediately clear. The only a prior: physically reasonable assumption is that the flux
is described by the Nernst-Planck equation. Assumption #1 may be reasonable when
considering whole-cell patch clamping experiments, but not for the single channel
bilayer experiments we have in mind. Assumptions #3, #4, and #5 are used to
remove the Poisson equation from the full PNP system that we have considered.
Assumptions #3 and #5 are especially problematic assumptions: this would suppose
that all the millions of charged particles per second that go through a channel do not
interact with themselves or the channel protein despite the basic fact that Coulombic
interactions go as Ri and the channel is 30A long channel and 4-10A in diameter
and lined with charged and polar amino acid residues. These assumptions are usually
given without a reason as in [23], [19], and [25]. From this one can infer that they were
used as mathematical simplifications more than anything else. (It is understandable
that Goldman, Hodgkin, and Katz did this because they did not have the computation
capabilities to solve the full PNP equations. Fifty years later, however, this approach
is no longer appropriate.)

Having reduced the problem to the stage that the Nernst-Planck equations can
be integrated by hand, the GHK equation can be derived:

Viev =

(8.1)

e

KT 1 Zj Dpjﬁpj ¢j (R) + Dyf3,cr
"\, D,,8,,¢; (L) + Dubcr

where we have assumed a common anion. (In this form technically this is the
Hodgkin/Katz (HK) equation since Goldman [19] did not include the §’s. In the

following we will refer to it as the HK equation.) The [3’s are the so-called partition
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coefficients, defined by

By, = s = 2 (8.2)

g, =2 _ G (8.3)

where ¢ (L/R) and c;, (L/R) are the concentrations of the given ion species just
inside the channel on the left and right sides. These partition coefficients are another
peculiarity of the HK equation. If there is no permanent charge (that is, ¢ = 0) as
is assumed in #5, then all the partition coefficients must be 1; this is something we
proved in this thesis (Theorem 4.5), but is also true from Donnan potential theory, and
intuitively, without some charge from the membrane, and no source of energy there
is no reason for the concentration of one species to increase in relation to another.
If, however, there is a permanent charge associated with the membrane, then that
negates Assumption #5. Thus, for the sake of consistency, in the following we set all

the partition coefficients to 1:

kT (Ej Dy,c; (R) + DnCL> ' (8.4)

View =—In
e > Dp;cj (L) + Dncr

To illustrate that the assumptions that were made in deriving the GHK/HK
equations do have an impact on the final results we consider the following examples.
First we consider the case of one salt in the system. In Figure 8-1 the reversal
potential is plotted as a function of ¢z, (while cg is kept fixed) as predicted from GHK
and singular perturbation with and without permanent charge. GHK and SP with
q1 = 0 are surprisingly close. This is, however, the only time that happens; when
some permanent charge is added the results are quite different. When two salts are
present, Figure 8-2 shows the reversal potential as a function of ¢; (L) such that the

total bath concentration is identical on both sides while in Figure 8-3 ¢; (L) is kept



CHAPTER 8. DISCUSSION 168

50 _
40 -
] ——— P (q=-5M)
7o 7 [ N GHK
X SP(g,=0M)
20 »  PNP(g,=-5M)
9 N <~ X
£ 104 T
B Teel
>
0 -
_10 -
_20 -
T I T I T I T I T I
0.0 0.1 0.2 0.3 0.4 0.5

c. (M)

Figure 8-1: Comparison of the GHK equation for reversal potential and the singular
perturbation (SP) approach for uniform permanent charge in the case of only one
salt. Here g—: =2, ¢ = 0.25 M, and the channel has length 30 A and radius 3.5 A.

fixed while ¢; (L) is varied. In this case, again when ¢; = 0, the GHK is roughly the
same as the singular perturbation approach for large concentrations, but not when
permanent charge is added to the system.

Today the HK equation is mainly used to estimate permability ratios

D,3,

P,
£ = (8.5)
Por Doy
for various cations p through a channel where
D D
P, = Duby Poy = Dabar (8.6)

dch d(:h



CHAPTER 8. DISCUSSION 169

2 —_
e — SP(q,=-5M)
1 %> GHK
XN =  PNP(g=-5M)
0+ X SP(g,=0M)
—~ -1+
>
£
& 2
>
-3
-4 -
5 T T T T T T T T T 1
0.0 0.2 04 0.6 0.8 1.0

¢,(L) (M)

Figure 8-2: Comparison of the GHK equation for reversal potential and the singular
perturbation (SP) approach for uniform permanent charge in the case of two salts.

. . o .1 D
Here we have used the same channel dimensions as in Figure 8-1 with =% = 2,
n

% = 1.5, ¢; (R) = 0.25 M, and ¢; (R) = 0.75 M. The total bath concentration is

maintained at 1 M on both sides.
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Figure 8-3: Comparison of the GHK equation for reversal potential and the singular
perturbation (SP) approach for uniform permanent charge in the case of two salts.

DP
Dn

. . o )
Here we have used the same channel dimensions as in Figure 8-1 with =% = 2

Y

2 =1.5,c(L) =0.25 M, ¢; (R) = 0.25 M, and ¢, (R) = 0.75 M.
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Since the partition coefficients are not necessarily well-defined (see above) in the HK
formula, we now derive a formula for them from the result of our work in the case of
one salt in the baths. If we take as the concentrations just inside the channel (defined
as ¢, (L/R) and c;, (L/R) above) the concentrations that would result if the channel
were electroneutral there (this is not reality, but is a well-defined quantity that is easy

to calculate), then we can define the left and right partition coefficients as

* |/ 2 ﬁ _
ﬂL/R — Cp (L/R) CL/R + 4 2 (87)

p =
CL/R CL/R

and

CL/R CL/R

2 Q% q1
“(L/R Veirt ot o

These are true for all forms of permanent charge, even when it is not constant. Note

that for different ion species of the same valence, the partition coefficients are equal,

that is, for two cation species p; and p, we have 51 = 52 and 117%1 = g. One can
then define left and right “permeability ratios”
D ﬁL/R D ﬂL/R
L/R pPp L/R ni-n
dch d(:h

When c¢;, = cg = ¢, the left and right partition coefficients for each ion species are
equal (call them 3, and f(3,) and it is then possible to write a definition for the

permeability of each ion species

D, 3
=P PLZPRzﬁEP* (8.10)

n n dch n

D, j3;
L _ pR __ p-p
Pp_Pp_ dch
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and the permeability ratios are then

2
P* D.3* D CZ_i_q_l_ﬂ
B _ Dby _DyVeFTa—% (8.11)

Bi DBy DnJoy ity a

In order to determine the permeability ratios, one then needs the value of the uniform

permanent charge (assuming this is a valid description of the channel in the first place)
and the ratio of the diffusion coefficients of the ions inside the channel.

However, knowing these quantities is not necessary when one is interested in

. . . . P .
the permeability ratios of two ion species of the same valence, 5 for instance. If the
P1

two experiments are done with a common anion, then
L R *
Pp2 _ Pp2 _ PP2 _ D

‘e _lm_p_ Um (8.12)
PL ~ PR~ Pr D,

This is true not only when ¢, = cg = ¢ and the permanent charge is uniform, but
under all circumstances since the left and right partition coefficients defined above
are equal and thus cancel when we consider this particular ratio.

Whether this is a useful way to infer which ion species the channel prefers to

pass is a question we consider next.

8.4.2 Taking a Fresh Look at Permeabilities

In this section we want to take a new look at the entire notion of the relative perme-
ability of various ion species and then relate the results of the PNP approach to the
classical HK a equation. In order to tie in with the results of this thesis, we consider
only 1,1-monovalent electrolytes and permeability ratios of two ion species with the
same valence will be done by two one-salt experiments, not one two-salts experiments
as is sometimes done (see, for example, [23]).

First, we need a definition of what it means for one ion to be more permeable

than another. The simplest such definition seems to be that under identical conditions
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(that is, same applied voltage and bath concentrations), the fluxes J; and J; measured
in the two experiments are not equal and so the more permeable ion is that with the

larger flux. Therefore, the permeability ratio can be defined to be

Jo
Z2 8.13
; (8.13)
In the notation of the previous chapters, these ratios can be
Jy, J I
L2 and 22, (8.14)
n Iy Iny

Let us consider the permeability ratios of two ions with the same charge (that

is, % and %) For simplicity, we will only discuss the case of cation ratios since
P1 n1

the anion ratios are derived similarly. Consider the Nernst-Planck equation for these

ions:

Jpl / /
_ _ 8.15
DplA P+ 1o ( )
_Im e (8.16)
D,, A

Integrating these over the channel region (z1,xs) gives

e [P exp(9)
Dpi 1 A ($)

dx = p; (v2) exp (¢ (22)) — pi (z1) exp (¢ (z1))  (i=1,2).
(8.17)
The values on the right-hand side are not a priori the same for both ion species.

However, if there is a large drop in all the diffusion coefficients between the bath and

the channel, then one of the results derived in this thesis (Theorem 4.24) shows that
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they are (almost) equal. Thus, we have

I o D . (8.18)
Jpl Dpl

This formula is true for all forms of permanent charge, not just uniform. Note that
then the new definition of permeability from the previous section is a useful indicator
of the flux ratios we have used as our working definition of permeability ratios (cf.
(8.12)).

Next we consider the case of uniform permanent charge to derive an approxi-

mate expression for g—zz. We start with the reversal potential formula (7.1):
1

2
2 a q_lDPifD"

e v D,, — Dn1 CRt 7 2 Dy, 4 Dn (8.19)
—V, = n )
kT D, + D, 24 @ g Dp;—Da

LT % 2 Dy, +Dn

4>‘|>—"‘Qw
N

2
1 ( 2+ )(\/Cg+%+%>
+—=In

2 2 2
(Va+$+s)(Vardi-1)

where 7 = 1,2 and V; and V5 are the reversal potentials of p; and ps, respectively.

(We assume a common anion in both experiments.) If both the bath concentrations
cr, and cg are small compared to the uniform permanent charge ¢; (which is usually

the case in channel experiments), then

e CRr 9 9 D, 71 c‘}%—c‘i
—Vi=—cln|= — — 2
W Jn<cL)+a(cR ‘i) (Dn) Q%+O< gt (8.20)

where

o =sign (q1) . (8.21)
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Therefore
JPQ ~ DPQ ~ %‘/Q + O'III (z_lz) (8 22)
Jp1 Dpl %Vvl +o0ln (i—f)

If we consider a cation channel where presumably o = —1, then ;=V; + oln (2—1;) is

the difference between the measured reversal potential and the Nernst potential of
cation species ¢ and thus the permeability ratio % is approximately the ratio of these
Pl

differences.

8.4.3 Back to HK

Now that we have a working definition of relative permeabilities, how do the perme-
ability ratios used in the HK equation relate to our definition? At least in the uniform
permanent charge case we can give an answer.

If we solve the HK equation for one salt for the permeability ratio of the cation

to the anion, we get

P, cnexp (Viw) — i

L= ) 8.23
Pn Cr — CL €Xp (‘/;'ev) ( )

Using (8.19) in this expression for species 1 and 2, we can then relate the GHK
permeability ratios to the diffusion coefficient ratios (which approximate the flux

ratios):

i:cRexp(Vg)—chR—cLexp(Vl) (8.24)
P, cr—crexp (Vo) crexp (V1) —cr’ '

Through Figures 8-4 and 8-5 we consider several properties of this function.
First we consider how the HK permeability ratios relate to the ratio of the diffusion
coefficients. As is shown for one example in Figure 8-4, this relationship is almost

linear, despite the fact that (8.24) is a very complicated-looking function. Further-
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Figure 8-4: Graph of (8.24) for ¢, = 1.0M, cg = 0.5M, and ¢; = —5M. The ratio

%”nl was kept constant at 2 while % was varied. Varying the bath and permanent

charge concentrations does not prodﬁce significantly different curves.
more, from (8.19) and (8.24) it is possible to prove that whenever D, = D,,, we
have P, = P,,. Therefore, the GHK permeability ratios correctly predict when the
permeability ratio as we have defined it is less than or greater than 1. From a mathe-
matical point of view this a surprising result since the HK formula does not take into
consideration permanent charge or ion-ion interactions.

Next we consider the result of changing the bath concentrations in (8.24).
In Figure 8-5 are the graphs of (8.24) as a function of ¢, with different permanent
charges ¢; which show that the HK permeabilities become concentration dependent
as the permanent charge gets lower. Because of the small structure of channels, one

would expect that the charge concentration inside the channel is large and when that
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Figure 8-5: Graph of (8.24) as a function of ¢ for the permanent charge values

¢1 shown. The bath concentration cp was kept constant at 0.1M with % =2
and % = 5. A similar pattern of less concentration dependence with larger |q;| is

exhibited for q > 0.

is the case, Lr2 is concentration independent which is observed in many, but not all,

PPl

experiments [23]. In the cases when the HK permeability ratios are concentration
dependent, this has been attributed to multiple ions occupying a channel at one time
[23]. If the presence of multiple ions influences the diffusion coefficients of the ions
inside the channel, then this may still have an effect on the flux ratios, but it is no
longer necessary to explain the concentration dependence of the HK permeability

ratios.



Bibliography

1]

Alefeld, G., On the Convergence of Halley’s Method, American Mathematics
Monthly 88 (1991), 530-536.

Arnold, A., Carrillo, J.A., Gamba, I., Shu C.-W., Low and High Field Scaling
Limits for the Vlasov- and Wigner-Poisson-Fokker-Planck Systems, Transport
Theory and Statistical Physics, to appear.

Assad, F., Banoo, K., Lundstrom, M., The Drift-Diffusion Equation Revisited,
Solid-State FElectronics 42(3) (1998), 283-295.

Bender, C.M., Orszag, S.A., Advanced Mathematical Methods for Scientists and
Engineers, McGraw-Hill, New York, 1978.

Boyce, W.E., DiPrima, R.C., Elementary Differential Equations, 6th ed., John
Wiley and Sons, Inc., 1997.

Catacuzzeno, L., Nonner, W., Blum, L., Eisenberg, B., Ca Selectivity in the
‘EEEE’ Locus of L-Type Ca Channels, Biophysical Journal 76 (1999), A259.

Cercignani, C., The Boltzmann Equation and Its Applications, Springer-Verlag,
New York, 1988.

Chen, D.P., The Electron Correlations in Solids and Ion Permeation in Mem-
brane Channel Proteins, Proceedings of Conference on Scientific and Engineering

Computing for Young Chinese Scientists, Beijing, China, Aug. 17-21, 1993, (Cui,
178



BIBLIOGRAPHY 179

[10]

[11]

[12]

[14]

[15]

[16]

J.-Z., Shi, Z.-C., Wang, D.-L., eds.), National Defence Industry Press, Beijing,
P.R. China, 1994.

Chen, D. P., Lear, J., Eisenberg, B., Permeation through an Open Channel:
Poisson-Nernst-Planck Theory of a Synthetic Ionic Channel, Biophysical Journal
72(1) (Jan 1997), 97-116.

Chen, D. P., Xu, L., Tripathy, A., Meissner, G., Eisenberg, B., Permeation
through the Calcium Release Channel of Cardiac Muscle, Biophysical Journal
73(3) (Sept 1997), 1337-1354.

Chen, D. P., Xu, L., Tripathy, A., Meissner, G., Eisenberg, B., Selectivity and
Permeation in Calcium Release Channel of Cardiac Muscle: Alkali Metal Ions,

Biophysical Journal 76(3) (Mar 1999), 1346-1366.

Chung, S.-H., Hoyles, M., Allen, T., Kuyucak, S., Study of Ionic Currents across
a Model Membrane Channel Using Brownian Dynamics. Biophysical Journal 75

(1998), 793-809.

Cooper, K., Jakobsson, E., Wolynes, P. The Theory of Ion Transport through
Membrane Channels, Progress in Biophysics and Molecular Biology 46 (1985),
51-96.

Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E., On the
Lambert W Function, Advances in Computational Mathematics 5 (1996), 329-
359.

Doyle, D.A., Cabral, J.M., Pfuetzner, R.A., Kuo, A., Gulbis, J.M., Cohen, S.L.,
Chait, B.T., MacKinnon, R., The Structure of the Potassium Channel: Molecular
Basis of Kt Conduction and Selectivity, Science 280 (3 April 1998), 69-77.

Eisenberg, B., Ionic Channels in Biological Membranes: Electrostatic Analysis

of a Natural Nanotube, Contemporary Physics 39, 447-466.



BIBLIOGRAPHY 180

[17] Eisenberg, R.S., Klosek, M.M., Schuss, Z., Diffusion as a Chemical Reac-
tion: Stochastic Trajectories between Fixed Concentrations, Journal of Chemical

Physics 102(4) (Jan 1995), 1767-1780.

[18] Feynman, R.P., Leighton, R.B., Sands, M., The Feynman Lectures on Physics,
Addison-Wesley Publishing Co., New York, 1963.

[19] Goldman, D.E., Potential, Impedance, and Rectification in Membranes, Journal

of General Physiology 27 (1943), 37-60.

[20] Griffiths, D.J., Introduction to Electrodynamics, 3rd ed., Prentice-Hall, Inc., Up-
per Saddle River, New Jersey, 1999.

[21] Heck, A., Introduction to Maple, Springer-Verlag New York, Inc., 1993.
[22] Helfferich, F., Ion Exchange, McGraw-Hill Book Company, Inc., New York, 1962.

[23] Hille, B., Ionic Channels of Excitable Membranes, 2nd ed., Sinauer Associates,
Inc., Sunderland, Massachusetts, 1992.

[24] Hodgkin, A.L., Huxley, A.F., A Quantitative Description of Membrane Currents
and its Application to Conduction and Excitation in Nerve, Journal of Physiology

117(4) (1952), 500-544.

[25] Hodgkin, A.L., Katz, B., The Effect of Sodium Ions on the Electrical Activity of
the Giant Axon of the Squid, Journal of Physiology 108 (1949), 37-77.

[26] Jackson, J.D., Classical Electrodynamics, 3rd ed., John Wiley & Sons, New York,
1999.

[27] Jerome, J.W., Analysis of Charge Transport: A Mathematical Study of Semicon-
ductor Devices, Springer-Verlag Berlin Heidelberg, New York, 1996.

[28] Kevorkian, J., Cole, J.D., Multiple Scale and Singular Perturbation Methods,
Springer-Verlag New York, Inc., 1996.



BIBLIOGRAPHY 181

[29]

[30]

[31]

32]

[37]

Kurnikova, M.G., Coalson, R.D., Graf, P., Nitzan, A., A Lattice Relaxation Al-
gorithm for Three-Dimensional Poisson-Nernst-Planck Theory with Application
to Ion Transport through the Gramicidin A Channel, Biophysical Journal 76(2)
(Feb 1999), 642-656.

Levitan, 1., Garber, S.S., Anion Competition for a Volume-Regulated Current,

Biophysical Journal 75(1) (July 1998), 226-235.

Levitt, D.G., General Continuum Theory for Multiion Channel I: Theory, Bio-
physical Journal 59 (Feb 1991), 271-277.

Lundstrom, M., Fundamentals of Carrier Transport, Addison-Wesley Publishing
Company, Reading, MA, 1990.

Maclnnes, D.A., The Principles of Electrochemistry, Reinhold, New York, 1939.

Markowich, P.A., Ringhofer, C.A., Schmeiser, C., Semiconductor Equations,
Springer-Verlag New York-Wien, New York, 1990.

Nelson, P.H., Auerbach, S.M., Self-Diffusion in Single-File Zeolite Membranes
is Fickian at Long Times, Journal of Chemical Physics 110(18) (8 May 1999),
9235-9243.

Nonner, W., Eisenberg, B., Ion Permeation and Glutamate Residues Linked by
Poisson-Nernst-Planck Theory in L-Type Calcium Channels, Biophysical Journal
75(3) (Sept 1998), 1287-1305.

Nonner, W., Chen, D. P., Eisenberg, B., Anomalous Mole Fraction Effect, Elec-
trostatics, and Binding in Ionic Channels, Biophysical Journal 74(5) (May 1998),
2327-2334.

O’Malley, R., Bulletin of the American Mathematical Society 7(2) (Sept 1982),
414-420.



BIBLIOGRAPHY 182

[39] O’Malley, R., Singular Perturbation Methods for Ordinary Differential Equa-
tions, Springer-Verlag New York, Inc., 1991.

[40] Park, J.-H., Jerome, J.W., Qualitative Properties of Steady-State Poisson—
Nernst—Planck Systems: Mathematical Study, SIAM Journal on Applied Math-
ematics 57(3) (1997), 609-630.

[41] Peskoff, A., Eisenberg, R.S., Cole, J.D., Potential Induced by a Point Source of
Current in the Interior of a Spherical Cell, University of California at Los Angeles

Report UCLA-Eng.-7259 (Dec 1972).

[42] Please, C.P., An Analysis of Semiconductor P-N Junctions, IMA Journal of
Applied Mathematics 28 (1982), 301-318.

[43] Qi, Z., Sokabe, M., Donowaki, K., Ishida, H., Structure-Function Study on a
de Novo Synthetic Hydrophobic Ion Channel, Biophysical Journal 76(2) (Feb
1999), 631-41.

[44] Rieger, P.H., Electrochemistry, 2nd ed., Chapman & Hall, Inc., New York, 1994.

[45] Segel, L.A., Slemrod, M., The Quasi-Steady State Assumption: A Case Study
in Perturbation, SIAM Review 31, 446-477.

[46] Society for Industrial and Applied Mathematics (SIAM) web site,

http://epubs.siam.org/

[47] Streetman, B.G., Solid State Electronic Devices, 4th ed., Prentice Hall, Inc.,
Englewood Cliffs, New Jersey, 1995.

[48] Stryer, L., Biochemistry, 4th ed., W.H. Freeman and Co., New York, 1995.

[49] Syganow, A., von Kitzing, E., The Drift Approximation Solves the Poisson,
Nernst-Planck, and Continuum Equations in the Limit of Large External Volt-

ages, Furopean Biophysics Journal 28 (1999), 393-414.



BIBLIOGRAPHY 183

[50]

[51]

[52]

[53]

[54]

Sze, S.M., Physics of Semiconductor Devices, 2nd ed., John Wiley and Sons,
New York, New York, 1981.

Teorell, T., Transport Processes and Electrical Phenomena in Ionic Membranes,

Progress in Biophysics and Molecular Biology 3 (1953), 305-368.

Tieleman, D.P., Berendsen, H.J.C., A Molecular Dynamics Study of the Pores
Formed by F. coli OmpF Porin in a Fully Hydrated POPE Bilayer, Biophysical
Journal 74 (1998), 2786-2801.

Ward, M.J., Reyna, L.G., Odeh, F.M., Multiple Steady-State Solutions in a
Multijunction Semiconductor Device, SIAM Journal on Applied Mathematics
51(1) (Feb 1991), 90-123.

Wong, H.-S. P., Frank, D.J., Solomon, P.M., Wann, C.H.J., Welser, J.J.,
Nanoscale CMOS, Proceedings of the IEEE 87(4) (April 1999), 537-570.

Zhou, 7Z., Gong, Q., Ye, B., Fan, Z., Makielski, J.C., Robertson, G.A., January,
C.T., Properties of HERG Channels Stably Expressed in HEK 293 Cells Studied
at Physiological Temperature, Biophysical Journal 74(1) (Jan 1998), 230-41.

Zwillinger, D. (ed.), CRC Standard Mathematical Tables and Formule, 30th ed.,
CRC Press, Boca Raton, Florida, 1996.



